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A novel application of hierarchical modeling to decouple sampling artifacts from socio-1 

ecological effects on poaching intensity 2 

Abstract 3 

Poaching is a global driver of wildlife population decline, including inside protected 4 

areas (PAs). Reducing poaching requires an understanding of its cryptic drivers and 5 

accurately quantifying poaching scales and intensity. There is little quantification of how 6 

poaching is affected by law enforcement intensity (e.g., ranger stations) versus economic 7 

factors (e.g., unemployment), while simultaneously accounting for imperfect detection. 8 

Using extensive data of poaching events (i.e., seizures) and censuses of nine ungulate 9 

species across the PAs and unprotected lands of Iran from 2010 to 2018, we developed a 10 

single-visit hierarchical (N-mixture) model to accurately estimate annual poaching of 11 

Iranian ungulates and to differentiate between social and ecological effects on annual 12 

poaching intensity. We found that poaching detectability increased with numbers of 13 

ranger stations. A recent surge in poaching (2013-2018) coincides with rising 14 

unemployment rate. We estimated that 19727 ungulates (95% confidence interval 11178–15 

36195) were poached across the country during 2010-2018. Poaching intensity was 16 

positively related to unemployment rate, road density, and ungulate abundance. Our 17 

simulations demonstrated that the Poisson and Negative binomial N-mixture models had 18 

adequate performance when the conditions of Sólymos et al. (2012) were satisfied, in 19 

particular, when at least one covariate is unique to both the detection and abundance parts 20 

of the model. Overall, we suggest that single-visit models offer unique insights into 21 
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understanding the link between poaching intensity, economic conditions, and law 22 

enforcement in large-scale landscapes while accounting for imperfect detection of 23 

poaching events. 24 

Keywords: Economic status, illegal killing, large mammals, N-mixture model, protected 25 

areas, ranger station  26 
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1. Introduction 39 

Illegal exploitation of wildlife is occurring at an unprecedented rate and is a leading 40 

driver of global population declines and local extinctions of wildlife (Dirzo et al., 2014; 41 

Ripple et al. 2015). The unlawful harvest of wildlife (hereafter poaching) takes multiple 42 

forms, typically being undertaken by locals with a variety of motivations (Montgomery, 43 

2020). However, economic factors tend to predict illegal activities better than approaches 44 

based solely on environmental variables (Wittemyer et al., 2011; Challender and 45 

MacMillan, 2014). Specifically, the unemployment rate is a key metric, representing the 46 

state of economic growth and development in a region (Mohseni & Jouzaryan, 2016). 47 

This metric serves as a useful proxy for assessing and understanding illegal exploitation 48 

rates (Dobson and Lysane, 2008; Wittemyer et al., 2011). Barnes et al. (2016), for 49 

instance, analysed historical data indicating that populations of large mammals could 50 

increase in countries with stable economic conditions despite high human population 51 

densities.  52 

Poaching is also facilitated by the presence of roads allowing human access to remote 53 

areas (Benítez-López et al., 2017, Carter, 2020). Road access has exposed wildlife, 54 

regardless of remoteness, to modern hunting techniques, including firearms, motor 55 

vehicles, and, or, snares, markedly expediting the intensity of poaching in many areas 56 

(Carter et al., 2020). Globally, but especially in Asian countries, road networks are 57 

rapidly growing, contributing significantly to large mammal population declines by 58 

reducing habitat quality even within protected areas (hereafter PAs) and increasing 59 
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poaching exposure (Carter et al., 2020).  60 

Despite its detrimental effects on wildlife populations, few studies have examined the 61 

relationship of poaching events (i.e., counts of seizures) with both the efficacy of law 62 

enforcement (e.g., number of ranger stations) and economic trends (e.g., unemployment 63 

rate) (Milner-Gulland et al., 2003, Dobson and Lysane, 2008, Wittemyer et al., 2014). 64 

Particularly in southwest Asia, data on poaching are only locally available (Soofi et al., 65 

2018; Ghoddousi et al., 2019) and may be reported in a non-systematic manner during 66 

regular wildlife patrols by rangers (Egli, 2015). 67 

PAs play a fundamental role in protecting biodiversity from illegal exploitation (Watson, 68 

Dudley, Sharma et al. 2014; Segan and Hockings, 2014). To be effective for species 69 

conservation, wildlife populations within PAs require regular monitoring at an 70 

appropriate scale and frequency to detect any changes in key parameters (Nichols and 71 

Williams, 2006). The management of PAs requires law enforcement to halt poaching 72 

activities (Hilborn et al., 2006). However, PA managers typically are hindered in this task 73 

by multiple barriers, including inadequate resources (e.g., ranger stations, rangers), 74 

economic instability (e.g., unemployment, poverty; Ghoddousi et al., 2017), and 75 

insufficient strategies for addressing poaching problems (Milner-Gulland et al., 2003). 76 

Many of these challenges arise from the clandestine nature of poaching, making its 77 

detection notoriously difficult and costly (Wittemyer et al., 2014). In Africa and Asia, 78 

law enforcement interventions to detect and control poaching typically involve active 79 

patrols by armed rangers who are usually based in nearby ranger stations (Critchlow et 80 
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al., 2017). Provision of rangers can be the single highest expenditure of many PAs 81 

(Moore et al., 2014; Plumptre et al., 2014). If it occurs, poaching may likely be frequently 82 

detected in areas that hold an adequate coverage of active ranger stations (Plumptre et al., 83 

2014, Ghoddousi et al., 2019); however, it may remain undetected if enforcement is 84 

insufficient or lacking (Soofi et al., 2018). 85 

A critical challenge to understanding causes and effects of poaching is the difficulty in 86 

measuring it accurately and in an unbiased way (Burn et al., 2011; Marescot et al., 2019). 87 

Importantly, due to its illegality and social context, poaching events are seldom detected 88 

perfectly, leading to negatively biased observations of poaching seizures. Thus, spatial 89 

counts of poaching events represent a negatively biased representation of the true 90 

frequency of events. Moreover, spatial and temporal heterogeneity in the probability of 91 

detecting poaching events is expected due to variation in social and ecological factors. 92 

Thus one cannot expect the count of individual poaching events to be an unbiased index 93 

of poaching intensity. Absolute poaching assessment methods are often not cost-94 

effective, especially at large spatial scales.  95 

In the past decades, multiple statistical methods have been developed to account for 96 

imperfect detection in sampling wildlife populations (e.g., Pollock, 1974; Otis et al., 97 

1975; MacKenzie et al., 2002; Royle, 2004, Kéry and Royle, 2016). So far, these 98 

methods have not been routinely applied to the analysis of poaching data. In the context 99 

of poaching, a series of studies have relied on relative differences in counts or on 100 

occurrence (detection/non-detection) data of poaching while accounting for detection 101 
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errors (Sharma et al., 2014; Marescot et al., 2019). Royle (2004) proposed an alternative 102 

approach that is known as the N-mixture model, a model that takes biased counts of 103 

events collected across multiple spatial units and simultaneously estimates both detection 104 

and abundance. This class of model enables estimation of animal population abundance 105 

over time and space (Sólymos et al., 2012).  106 

Here, we apply a single-visit N-mixture model to estimate the true number of poaching 107 

events for a given year and spatial unit (Royle 2004; Sólymos et al., 2012). The model 108 

regards the true number of poaching events as a latent variable (analogous to population 109 

size in the classical use of the N-mixture model) and estimates the latent quantity using 110 

observed counts of seizures biased by imperfect detection. The model accommodates 111 

explicit covariates in both the ‘abundance’ (i.e., true number of poaching events, N) 112 

model and the model describing variation in the detection (p) of poaching events (Sharma 113 

et al., 2014; O’Kelly et al., 2018), even if such covariates affect both abundance and 114 

detection (Kéry, 2018). Earlier studies have demonstrated that hierarchical models for 115 

single-visit surveys are identifiable when covariates for both detection and abundance 116 

parameters are available, with at least one distinct (“private”) covariate for each (Lele and 117 

Byne, 2012, Sólymos et al., 2012; Kéry, 2018).   118 

 119 

 120 

 121 
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In this study, we use an extensive dataset of seizures of illegal killing of ten ungulate 122 

species across protected and unprotected areas of Iran based on media reports. We 123 

combine these data with ranger-collected census data, as well as several socioeconomic 124 

variables. We use the single-visit N-mixture model (Sólymos et al., 2012; Kéry and 125 

Royle, 2021) to estimate the effects of PAs, unemployment rate, and ungulate population 126 

abundance on poaching intensity and effects of ranger stations and elevation on detection 127 

of poaching events across all species from 2010 to 2018, while simultaneously 128 

accounting for imperfect detection. In addition, we quantify law enforcement efforts in 129 

PAs, systematically describe poaching events and quantify population trajectories of the 130 

study species.  131 

2. Materials and Methods 132 

2.1. Study area and focal species 133 

Iran is a country located in southwest Asia that covers an area of ~1,648,195 km2 and 134 

contains portions of the Palearctic, Saharo-Arabian, and Oriental zoogeographic realms. 135 

The country includes a wide range of habitat types (Yusefi et al., 2019), and it contains 136 

two major mountain ranges, the Alborz Mountains in the north and the Zagros Mountains 137 

in the south (Figure 1a). Since 1957, the establishment of PAs in Iran increased rapidly to 138 

11% of its land area (Iran Department of Environment, hereafter DoE, www.doe.ir; 139 

Figure 1b). The PA system in Iran is composed of four IUCN-based (International Union 140 

for Conservation of Nature) categories: national parks (NP, Cat. II), natural monuments 141 

(Cat. III), wildlife refuges (WR, Cat. IV), and protected areas (PA, Cat. V). No-hunting 142 

http://www.doe.ir/
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areas (NHAs) is a country-specific (non-IUCN) reserve type created by the DoE in the 143 

1990s, with the aim of population recovery of threatened species (Darvishsefat 2006; 144 

Figure 1b). Iran has a wide variety of mammalian herbivores threatened by poaching, of 145 

which nine species we focus on in this article. The species arranged by family are; 146 

Bovidae: – urial (Ovis vignei Blyth, 1841), mouflon (Ovis gmelini, Blyth, 1841), central 147 

Alborz red sheep, a hybrid population (O. vignei × O. gmelini) in the central Alborz 148 

Mountains, bezoar goat (Capra aegagrus Erxleben, 1777), goitered gazelle (Gazella 149 

subgutturosa Guldenstaedt, 1778), jebeer or chinkara gazelle (Gazella bennettii Sykes, 150 

1831); Cervidae: Persian fallow deer (Dama mesopotamica Brooke, 1875), Caspian red 151 

deer or maral (Cervus elaphus ssp. maral Gray, 1850), roe deer (Capreolus capreolus 152 

Linnaeus 1758); and Equidae: onager (Equus hemionus ssp. onager Boddaert, 1785) 153 

(Yusefi et al., 2019) (Figure 2).    154 

2.2. Response variable 155 

We systematically compiled data on known poaching events (seizures) of the focal 156 

species by searching keywords (in Persian) in the Google search engine, including all 157 

combinations of ‘poaching,’ ‘poacher,’ ‘arrest of poachers,’ ‘shooting,’ in Iranian 158 

national and international media news websites during 2005 to 2019 (see Table A1). 159 

These searches included events at the city, county, and province levels. We registered and 160 

georeferenced the location of every poaching event using Google Earth Pro. Across all 161 

studied species, we pooled poaching event data and used the observed count of poaching 162 

events as the response variable. A ‘poaching event’ here refers to an occasion where 163 
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rangers caught the poachers in the act of killing or capturing animals over a particular 164 

time during patrols inside a PA or an occasion where poached animals were confiscated 165 

at the residence of poachers (as defined by Montgomery (2020)). Data on the number of 166 

killed animals (e.g., female and male animal and age groups) were included when 167 

available. Additionally, we recorded the method of capture used for each poaching event 168 

(i.e., firearm, steel trap, chase and capture by motorcycle, live trapping of newborns, or 169 

hunting dogs). 170 

2.3. Statistical Modeling 171 

We regard the observed count of poaching events ,i tC  as a binomial random variable with 172 

parameter ‘p’ being the probability that a poaching event is reported and with binomial 173 

sample size ,i tN  being the true but unknown “population size” of poaching events. This 174 

conceptual view is consistent with the N-mixture model (Royle 2004) but, since we have 175 

only a single count for each year, the situation is equivalent to the single-visit N-mixture 176 

model (Sólymos et al., 2012).  177 

The N-mixture model is a hierarchical model consisting of two components. The first 178 

component is the ecological model describing variation in the latent (unobserved) 179 

population size Ni,t , which in the present context is the true but unobserved frequency of 180 

poaching events: 181 

Ni,t ~ Poisson(λi,t) 182 
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where, Ni is the latent poaching state in cell i {i = 1, 2, 3, . . . , M} and λi,t was the 183 

expected count of poaching events in cell i and year t. We model covariate effects on the 184 

log-transformed Ni,t (see below). In addition to the Poisson event frequency model, we 185 

also consider a negative binomial (NB) distribution and compare the two models using 186 

Akaike Information Criterion (AIC). The second component of the model is a binomial 187 

thinning model in which we assume that the observed number of poached animals is a 188 

binomial random variable:  189 

Ci,t ~ Binomial(Ni,t, pi,t) 190 

where Ci,t is the number of observed poaching events in cell i during year t, and p is the 191 

detection probability for each individual poaching event. We model covariate effects that 192 

describe variation in detection probability on the logit-transformed parameter. The 193 

models were fitted in the R package ‘unmarked’ (Fiske and Chandler, 2011).  194 

2.4. Covariates 195 

To spatially assign the counts of poaching events into PAs and unprotected areas, we 196 

superimposed grid cells of 20 × 20 km2 throughout Iran. Poaching events (Ci,t) were 197 

extracted per grid cell (i) across years (t). The choice of cell size was an approximate 198 

compromise between: (a) patrolling efforts (ca. 20 km) of rangers (e.g., using car, horse 199 

riding, foot patrols) around their assigned ranger stations, (b) and movement patterns of 200 

poachers, which tend to hunt animals mainly in areas nearby their settlements 201 

(Ghoddousi et al., 2016; Marescot et al., 2019).   202 
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 203 

2.4.1. Covariates on abundance (N) 204 

We included protected area size (IUCN categories including NHAs and unprotected 205 

areas) since poaching pressure may vary with reserve size (Daskin and Pringle, 2018). 206 

We further extracted human population density from the Gridded Population of the 207 

World v.4 at a 1-km spatial resolution (data from the Socioeconomic Data and 208 

Application Center http://sedac.ciesin.columbia.edu/data/se). These data were available 209 

for 2005, 2010, 2012, and 2015. We included human population density as a covariate on 210 

N as it has been linked to higher exploitation of wildlife (Daskin and Pringle, 2018). We 211 

obtained unemployment rates from 2005 to 2018 from the Ministry of Economic Affairs 212 

and Finance (www.databank.mefa.ir) of Iran and included all people aged >15-yr not 213 

employed or self-employed during the reference week. We included unemployment rate 214 

since economic downturns can lead to escalation of wildlife poaching (Wittemyer et al., 215 

2011).  216 

We obtained the site-specific ranger-collected population census data of nine species 217 

from 2010 to 2019 both inside and outside of the PAs (DoE). We used annual count data 218 

(censuses) routinely provided by rangers within each PA in winter (November-219 

December). During censuses, the areas are divided into distinct sampling routes that are 220 

surveyed by at least 2-3 experienced rangers. Depending on the area of the PA, surveys 221 

http://sedac.ciesin.columbia.edu/data/se
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take approximately 1-3 days (Egli, 2015). We assumed that poaching might often occur 222 

in areas with higher ungulate density (Brodie et al., 2015).  223 

2.4.2. Covariate on detection and abundance (p, N)  224 

We included covariates that affected both p and N. We obtained ranger station data from 225 

Iran’s atlas of PAs (Darvishsefat, 2006; DoE 2021; Figure 1c), and refined them through 226 

personal correspondence with Iranian rangers, conservationists and scientific experts. We 227 

included the number of ranger stations (in each cell) since it has been shown that ranger 228 

stations have been coupled with higher law enforcement measures and detection of illegal 229 

activities (Critchlow et al., 2017; Ghoddousi et al., 2019; Shokri et al. 2020).   230 

To account for the effects of terrain on poaching events (Brodie et al., 2015), we included 231 

mean elevation from a 30-m resolution digital elevation model obtained from the NASA 232 

Shuttle Radar Topography Mission (https://search.earthdata.nasa.gov). We included 233 

elevation because we assumed that elevation might affect the patrol efforts of rangers 234 

and, therefore, may lead to lower capture rates. We also assumed that elevation might 235 

influence poaching intensity since poachers often focus on areas where animal abundance 236 

is higher (Brodie et al., 2015). Additionally, we considered the possibility of a quadratic 237 

effect of elevation to allow non-linear change due to variations of poaching events in 238 

gradients of elevation (Critchlow et al., 2017). We also measured the total road density 239 

per cell from Open Street Map data (including motorways, primary roads, secondary 240 

roads, tertiary roads, trunks, and corresponding link roads from 241 

https://search.earthdata.nasa.gov)/
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http://download.geofabrik.de/ and https://extract.bbbike.org/; Figure 1d; 2018). We used 242 

this variable since roads are known to facilitate poaching activities (and hence N) and 243 

may also influence detectability of poachers by rangers (Benítez-López et al., 2017).  244 

We checked for multicollinearity among covariates and excluded variables for which 245 

Spearman’s correlation coefficients were |rho| r ≥ 0.70. All site covariates were 246 

standardized; as for the survey covariates, the unemployment rate was centered, and the 247 

square root, as well as log transformation, were applied to ungulate abundances and road 248 

density, which were highly skewed. Finally, the ranger station variable was used on its 249 

natural scale ranging from 0 ranger stations to 17 (per cell). We restricted our poaching 250 

data to the years from 2010 through 2018; this allowed us to improve the consistency and 251 

matching (year) of the explanatory variables. All the spatial data preparations were 252 

performed in ArcGIS v.10.7.1 (ESRI 2016).  253 

2.5. Single-visit N-mixture model assumptions   254 

The N-mixture model has several important assumptions that must be met for the 255 

approach to be used effectively and reliably. The first assumption is that local populations 256 

of the focal species are closed during sampling. That is, population size must not change 257 

between repeated samples (Royle 2004). This assumption is satisfied in the single-visit 258 

N-mixture design because the sampling is instantaneous. In addition, the single-visit N-259 

mixture model requires that at least one unique covariate is available for both detection 260 

(p) and abundance (N) submodels (Sólymos et al. 2012).   261 

http://download.geofabrik.de/
https://extract.bbbike.org/;%20Figure%201d;%202018)


 

 

14 

 

2.6. Model Selection 262 

We kept at least one unique covariate in both detection submodel (ranger stations) and 263 

the abundance model (linear effects of four different IUCN categories, ungulate 264 

abundance, unemployment rate and human population density). We then simultaneously 265 

expanded both submodels by including common covariates (elevation, road density), and 266 

then considered models with quadratic effect (elevation^2) and a year intercept on 267 

abundance submodel (N). In addition, we also allowed the detection (p) intercept to vary 268 

among years (alpha0) (Kéry and Royle, 2021). Finally, we considered the best model 269 

according to AIC. Thus, the most global model for each parameter was: 270 

log (λi,t) = β0,t + β1. xnational park,i + β2 . xwildlife refuge,i + β3. xprotected area,i +  271 

β4. xno-hunting area,i + β5. xelevation,i + β6.xelevation^
2

,i +  β7. xroad density,i + 272 

 β9. xunemployment,i,t + β10. xungulate abundance,i,t + β11. xranger stations,i 273 

and 274 

logit(pi,t) = α0,t + α1.xelevation,i,t + α2.xroad density,i,t + α3.xranger stations,i  275 

We selected the candidate models according to AIC using the ‘AICcmodavg’ R package 276 

(Mazerolle, 2019). We carried out a bootstrap goodness-of-fit analysis with 99 iterations 277 

(Kéry and Royle, 2020). We considered the effect size as significant if the 95% (CI) of 278 

the mean coefficient did not overlap with zero (Kéry and Royle 2016).  279 

 280 
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2.7. Quantifying expected number of poached ungulates annually  281 

We estimated the annual mean number of ‘poaching events’ per grid cell by 282 

exponentiating both the intercept estimated for each year plus the beta coefficients of the 283 

covariates in the best-fitting model. We multiplied the sum of the resultant value by the 284 

total number of cells (1 to 3931). Finally, we calculated the annual total ‘poached 285 

animals’ by multiplying the mean (1.74 SD = 1.46; CIs) poached animals per poaching 286 

event by the total ‘poaching events’ (Table 1).  287 

2.8. Model identifiability  288 

Knape and Korner-Nievergelt (2015) have argued that the detection probabilities in 289 

single-visit surveys could be non-identifiable and that absolute abundances cannot be 290 

estimated when log-link functions for both expected abundance and detection probability 291 

are employed. Kéry (2018) later recommended that the negative binomial N-mixture 292 

model must be examined for identifiability of the parameters. We, therefore, examined 293 

the sensitivity of the best-fitting model parameters over varying levels of likelihood 294 

truncation in the calculation of the marginal likelihood (i.e., K = 107, K = 200, K = 400) 295 

recommended by Kéry (2018) and Kéry and Royle (2021). This approach ensures that the 296 

maximum likelihood estimates are not on the boundary of the parameter space (i.e., with 297 

infinite abundance and zero detection; Dennis et al., 2015). We compared the AIC of 298 

these best-fitting models with an increased value of K. 299 

2.9. Simulation study 300 



 

 

16 

 

To evaluate the ability of our model to estimate true poaching intensity from biased 301 

counts, we conducted several simulation scenarios. We simulated data under the 302 

following model:   303 

Ni ~ Poisson (λi), with log (λi) = β0  + β1* unemployment rate  304 

Cij |Ni ~ Binomial (Ni,, pij) with logit (pij) = a0 + a1* ranger stations  305 

For the parameter values, we used those estimated from the data. We fitted three 306 

simulations as follows: (1) First, we simulated Negative binomial (NB) data and then 307 

fitted the NB model. (2) Next, we simulated Poisson data and then fitted the Poisson 308 

model. (3) We also simulated NB data and fitted NB model with moderate over-309 

dispersion parameter (a = 1). These simulations were fitted under Poisson distribution in 310 

the ‘unmarked’ R package (Fiske and Chandler 2011), where we regarded the covariates 311 

that affected distinctly the detection (a1) and abundance model (β1) and ran 200 312 

simulations using all sites (M = 3931, with a single replicate J = 1) (Sólymos et al. 2012; 313 

Kéry and Royle, 2016) discreetly for each model. The parameter values for the NB model 314 

were: (1) the intercept (β0 = –1.50) of the abundance model, unemployment rate (β1 = 315 

2.00), and (2) the intercept (a0 = –2.50) of the detection model, number of ranger stations 316 

(a1 = 2.00) and over-dispersion parameter (alpha = –2.25). We did similar parameter 317 

settings for the Poisson mixture model (β0 = 1.25, β1 = 2.00, a0 = 2.40, a1 = 1.60). We 318 

also ran NB simulations with a moderate value of the over-dispersion parameter (a = 1). 319 

For each simulation, we calculated the bias and 95% confidence interval (CI) coverage 320 
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for each parameter, that is, the proportion of the CI, which included the true value (Royle 321 

2004). We also calculated the mean estimated total population size (number of poached 322 

events in our case) which was compared to the simulated value.   323 

2.7. Population trajectory metrics  324 

We quantified population trajectory metrics for the focal species at two points in time. 325 

Historical ungulate abundance data (censuses) came from De-Vos (1975), and modern 326 

data (censuses) were from the years 2010-2018. For some species (e.g., maral), we relied 327 

on additional literature (Kiabi 1987, Kiabi et al., 2004). Population trajectories (λ) were 328 

calculated as the annualized finite rate of population change:  329 

λ[Y2-Y1] = (N[Y2]/N[Y1])^(1/(Y2-Y1)) where Y2 and Y1 are the years in which 330 

population abundances were reported. Thus, λ = 1 indicates a stable population, λ > 1 331 

denotes a growing population, and λ < 1 indicates a diminishing trend (Daskin and 332 

Pringle, 2018).  333 

 334 

2.8. Post-hoc analysis  335 

We compared the differences in poached quantities amongst species seizure records using 336 

the Kruskal-Wallis test. Dunn’s z-test statistic approximation (1964) with a Bonferroni 337 

adjusted p-value was used for pairwise comparisons among multiple groups (‘dunn.test’ 338 

R package) (Dinno, 2017). Lastly, we examined the difference between the number of 339 

seizures inside PAs, at poachers’ residences, and cases where the poachers escaped using 340 
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a Wilcoxon rank-sum test. We compared the ratio of the estimated true mean to the mean 341 

observed (“media report”) data and the yearly mean counts of DoE.  342 

3. Results 343 

3.2. Single-visit N-mixture model results (N)  344 

The abundance submodel suggested that the number of poaching events per year 345 

increased in each year until it reached a peak in 2014 and then slightly decreased in each 346 

subsequent year (Figure 3a). In 2014 we estimated 3701 animals were poached (95% CI 347 

2055–6666) throughout Iran (Figure 3a; Supplementary file, Table A2). We found that 348 

the unemployment rate had a significant positive effect (β = 1.26, 95% CI 0.51–2.00) on 349 

the intensity of poaching (Table 1). Likewise, poaching events increased with greater 350 

ungulate abundance (β = 0.08, 95% CI 0.07–0.09) but ranger stations appeared 351 

insignificant in determining poaching events (β = –0.08, 95% CI –0.10, 0.07) (Table 1). 352 

Road density had a positive (β = 0.22, 95% CI 0.12–0.31) influence on poaching events 353 

(Table 1). Elevation had an insignificant influence on poaching events. Poaching 354 

intensity increased inside no-hunting areas (β = 0.14, 95% CI 0.07–0.21) and category V 355 

areas (β = 0.16, 95% CI 0.09–0.23) (Table 1).  356 

Using the ‘abundance’ (poaching intensity) parameter estimates from the best fitting-357 

model, our estimated total number of poached animals was 19727 (95% CI 11178–358 

36195). The total count of DoE, 15741 poached animals (Figure 3a, Supplementary file, 359 

Table A2), was within the confidence interval range of the true estimate. However, the 360 
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mean number of yearly poached animals (1749) reported by DoE and our observed mean 361 

counts of the media reports (189) both under-counted the true poaching by 20% and 91%, 362 

respectively, relative to the model-based estimates, which account for imperfect detection 363 

(Figure 3a). The goodness-of-fit results indicate that our NB model fits well. By contrast, 364 

the Poisson mixture model did not provide an adequate fit (see Table A3, A4; Figure A1). 365 

The results were not changed by increasing K from 107 to 200 and then 400, indicating 366 

that the parameters are well estimated and identifiable in the sense of Kéry (2018). 367 

Likewise, the AIC of these models were also identical (Table 1, Table A5).     368 

3.3. Single-visit N-mixture model results (p)  369 

Detection probability (p) of poaching events in the best-fitting model positively (β =1.88, 370 

95% CI 0.28, 3.49) increased as the number of ranger stations went up (Table 1; Figure 371 

3b). However, elevation had an insignificant effect on the detection of poaching events (β 372 

= 0.22, 95% CI –0.13, 0.57) (Table 1).  373 

3.4. Simulation results 374 

The average true poaching events for the simulated realizations under the Poisson 375 

mixture scenario was 10383 (SD = 107). The mean estimated across all 200 simulation 376 

realizations was 10454 (SD = 795) poaching events suggesting near unbiasedness for 377 

estimating the total population size. The Poisson mixture performed well in terms of CI 378 

coverage achieving nearly the nominal 95% coverage for model parameters. Likewise, 379 

the NB model yielded good performance with slightly worse CI coverage compared to 380 
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the Poisson mixture model. Similarly, the true population size of poaching events (8217 381 

SD = 177) in the NB model was substantially close to the true poaching events (8230 SD 382 

= 96) under the moderate over-dispersion parameter. Although both NB mixtures 383 

scenarios led to smaller numbers of true poaching events compared to the Poisson 384 

mixture model (Table 2). The estimated effects of number of ranger stations and 385 

unemployment rates in all simulation scenarios were nearly unbiased (Table 2; for 386 

details, see Supplementary file, Table A6, A7, A8).   387 

3.4. Population trajectory metrics  388 

The population (censuses) declines experienced by our study species showed 389 

considerable interspecific variation (Table 3). The most frequently poached species, the 390 

bezoar goat, experienced a decline of 9% (λ = 0.91) compared to the 1975 estimate 391 

(66328 vs. 80000; Table 3). Despite the evidence of poaching, the overall population size 392 

of the three wild sheep species appeared to be stable (83597 vs. 75000; λ = 1.06; Table 3; 393 

Figure 4a) compared to historical estimates (De-Vos, 1975). Among the Ovis species, the 394 

central Alborz red sheep was poached most frequently (Figure 4b). The maral showed the 395 

most dramatic decrease in estimated population size, dropping by a 59% compared to the 396 

population in 1977 (λ = 0.41; 747 vs. 5430).   397 

3.5. Post-hoc analysis results 398 

Our review of media articles over 15 years (n = 2165) provided evidence of 1177 399 

poaching events involving nine ungulate species (except fallow deer) and the (hybrid) 400 
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central Alborz red sheep (Supplementary file, Figure A2). Across all species, the average 401 

poaching intensity was estimated to be ~1.74 individuals (SD = 1.46, 95% CI 1.66–1.82) 402 

per poaching event from 2005 to 2019, with no significant change over time. Rangers 403 

encountered a total of 2368 poachers during this period, of which 2009 (SD = 2.34, 85%) 404 

were apprehended. Among these, 268 poachers had previous convictions.  405 

The mean poacher group size per hunting event was 1.71 (SD = 1.24), and this size did 406 

not change significantly across years. The majority of detentions occurred during patrols 407 

in and around reserves (n = 775, 66%), whereas 28% of detentions occurred at the 408 

poachers’ residences (n = 324). Finally, in 0.1% (n = 78) of cases, poachers were able to 409 

escape while rangers seized their catches. These proportions were significantly different 410 

(χ2 = 658.2, P < 0.00) (Supplementary file, Figure A3). 411 

The 148 terrestrial PAs (Cat. II, IV, V) and 105 NHAs and off-reserve areas included in 412 

the analyses had a total of 400 ranger stations (1 per 488.67 km2) ranging from 0 to 17 413 

stations per area. The category II areas had the greatest coverage of ranger stations (1 per 414 

214.24 km2) followed by category V (1 per 413.27-km2), category IV (1 per 897.60 km2), 415 

and NHAs (1 per 771.97-km2). However, about 39% of all NHAs, consisting of 72% of 416 

off-reserve areas and 13% of category V areas, lacked any ranger stations. By contrast, 417 

all areas of the strictest IUCN categories (Cat. II, IV) contained ranger stations (range 1-418 

10 stations).  419 

4. Discussion  420 
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Overexploitation (including illegal harvest) has been identified as one of the major 421 

drivers of defaunation worldwide (Dirzo et al., 2014). Here we used a type of hierarchical 422 

model, the single-visit N-mixture model, to examine the factors associated with poaching 423 

intensity, given there are only observed counts of poaching events, which are expected to 424 

be biased by imperfect and heterogeneous detection rates over space and time. Our results 425 

show that poaching intensity increased each year (Figure 5) until it reached a peak in 426 

2014 across the country.  427 

Our single-visit N-mixture model suggests that capture of poachers is positively 428 

associated with unemployment rate at the provincial scale. Overall, poaching was 429 

widespread across Iran (Figure 6) while strongly affected by the temporal and spatial 430 

changes in unemployment rates at provincial scales. An earlier study suggests that the 431 

poaching of ungulates in Iran’s oldest national park (‘Golestan NP’) was motivated 432 

mainly by poverty, hunting for the meat market, pleasure, tradition, and conflict 433 

(‘reprisal’) with park rangers (Ghoddousi et al., 2019).  434 

A plausible approach to reduce poaching intensity in our study area will be to undertake 435 

economic interventions and the allocation of resources that target provinces with high 436 

rates of unemployment (Mohesni and Jouzaryan 2016). A similar study on elephant 437 

poaching in Africa indicated that elephant poaching could be reduced if corruption and 438 

poverty were reduced simultaneously (Hauenstein et al., 2019).  439 
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We found that ungulate poaching intensity was positively associated with high road 440 

densities, suggesting that roads increase opportunities for poachers to access ungulate 441 

populations. Roads are well known to facilitate poaching activities and assist in the 442 

transport of meat into urban markets (Benítez-López et al., 2017). We also found 443 

evidence that poachers were reported to use motorcycles for capturing species adapted to 444 

arid plains, including goitered gazelle, jebeer gazelle, and onager. Nearly 41% of poached 445 

gazelle of both species were shot or captured by poachers using motorcycles, underlining 446 

the risks posed by extending road networks both inside and outside PAs across Iran. Road 447 

development not only increases mortality within PAs through poaching it also potentially 448 

reduces the carrying capacity of ungulates populations in PAs (Ripple et al., 2015). 449 

An important finding from our research is that poaching occurred both inside and outside 450 

of PAs. However, poaching was most commonplace in higher category V areas and 451 

unclassified reserves (i.e., NHAs and unprotected lands). While these reserves (IUCN 452 

category V, NHA, and unprotected lands) collectively encompass ~64% of Iran’s total 453 

protected lands, alarmingly, over 46% of them lacked ranger stations. Thus, ungulate 454 

populations in these PAs without ranger stations can be more vulnerable to poaching.  455 

 456 

We found no significant association between the strictest IUCN categories (Cat. II, IV) 457 

and poaching events. By contrast, despite the large combined area of NHAs (36%), they 458 

experienced a high intensity of poaching, suggesting that this category urgently needs 459 
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enhanced, consistent law enforcement measures and associated infrastructure to 460 

effectively limit poaching.  461 

Our model highlights that a high detection probability of poaching occurred in areas with 462 

the highest number of ranger stations (e.g., with four ranger stations per 400 km2 463 

detection probability of poaching is nearly perfect), suggesting that higher densities of 464 

ranger stations do increase patrol presence and law enforcement. Poaching may go 465 

undetected in areas where ranger stations are less common, particularly where 466 

enforcement measures are inadequate or lacking (Plumptre et al., 2014), which can 467 

effectively reduce the size of PAs over time (Dobson and Lysane, 2008). We 468 

acknowledge that poaching detectability in practice relies on optimum ranger patrol 469 

efforts (Critchlow et al., 2017). We found that poaching intensity was positively 470 

associated with high ungulate density. A plausible explanation for this pattern is that local 471 

hunters seek out areas with higher ungulate abundances. This process could lead to 472 

greater poaching pressures and future local extinctions and declines of ungulate 473 

populations in these PAs. 474 

Our post-hoc results showed that rangers seized 71% of poachers during anti-poaching 475 

patrols within PAs with the remainder of captures (29%) taking place at the poachers’ 476 

residences. To alleviate poaching pressures, rangers have relied on developing networks 477 

of informants around PAs, which has led to increased seizures in poachers’ residences. 478 

However, this type of capture did not significantly differ from other seizures (i.e., 479 

reserve-caught, escaped poachers). Rangers in Iran also relied on internet applications 480 
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(e.g., Instagram) for detecting wildlife crimes. Further, the Iranian DoE is seeking to 481 

discourage poaching by adopting newly increased fines for wildlife crime (Article 3 [of 482 

the hunting law from 1967] was introduced in July 2019). Evidence from elsewhere 483 

shows that prevention of poaching is more dependent upon the increased rate of 484 

detections rather than harsher sentences (Hilborn et al., 2006, Dobson and Lysane, 2008). 485 

Therefore, increased fines should not come with a reduction in detection efforts. Our 486 

results suggest that the use of media news to tally total poaching activity tended to 487 

undercount the mean true kills by 91%, while the yearly mean counts from the Iranian 488 

Department of Environment appeared to underestimate the true poaching rate by 20%.   489 

The majority of the ungulate species we assessed showed downward population 490 

trajectories over a period from the mid 1970s to censuses carried out in 2010-2018. 491 

However, there was considerable variation in population trajectories across species. No 492 

poaching of the Persian fallow deer was detected, most likely because the species only 493 

persists within captive breeding sites (n = 12). In comparison, despite the rarity of maral, 494 

this deer faces notable poaching pressure. As a result, most maral populations occur 495 

inside reserves with higher levels of protection (Soofi et al., 2017; Shokri et al., 2020). 496 

We acknowledge that these census data may be biased as the total count approach does 497 

not accommodate non-detection bias (Egli, 2015), although we believe the interpretation 498 

of these data as indices to abundance is reasonable.     499 

We conclude that the single-visit N-mixture modelling approach used in this study offers 500 

unique insights to disentangle sampling artifacts from socio-ecological effects 501 
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influencing poaching intensity and to quantify poaching in large-scale landscapes. 502 

However, application of the single-visit N-mixture has several caveats. Knape and 503 

Korner-Nievergelt (2015) have argued that the detection probabilities in single-visit 504 

sampling are non-identifiable in some cases. For example, absolute abundances cannot be 505 

estimated when log-link functions for both expected abundance and detection probability 506 

are employed. As a consequence, if the available data were obtained by multi-visit 507 

sampling designs, the dynamic N-mixture model would be preferable to the single-visit 508 

N-mixture model, since it provides explicit information about detection probability. 509 

However, for poaching systems that lack rigorously designed monitoring programs, data 510 

collected under such alternative and more informative sampling designs is often 511 

uavailable. Thus, the study of poaching processes and their effects in real landscapes 512 

requires more intensive model-based procedures such as the single-visit N-mixture 513 

model.  514 

Our simulation study suggests that the Poisson and negative binomial N-mixture models 515 

both produce approximate unbiased estimates of model parameters and total population 516 

size of poaching events. Even, when we regarded the negative binomial mixture with 517 

moderate over-dispersion parameter, the results remained unbiased. These patterns are in 518 

agreement with earlier findings (Sólymos et al. 2012). Therefore, we suggest that the 519 

single-visit N-mixture models can be useful in the monitoring of poaching processes, 520 

because it provides a means for correcting detection error, particularly for large-scale and 521 

long-term monitoring datasets such as ranger collected data for which multiple visit 522 
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covariates are rarely available. However, to ensure reliable application of single-visit N-523 

mixture models, it is important that at least one covariate is unique to both the detection 524 

(p) and abundance (N) submodels (Sólymos et al. 2012). In addition, when the negative 525 

binomial N-mixture model is being applied, it must be examined for identifiability of the 526 

parameters (Kéry 2018). This test ensures that the maximum likelihood estimates are not 527 

on the boundary of the parameter space (Dennis et al., 2015).  528 

Our results suggest that an increase in law enforcement can improve the detection of 529 

poaching events; however, this approach must be combined with the establishment of 530 

multiple community based livelihood alternatives if it is to be successful in the long-term 531 

(Hoffmann et al. 2015). The current scale of large ungulate poaching in our study area 532 

suggests that without a two-pronged focus on law enforcement and community-based 533 

economic interventions, large ungulates will continue to decline and may disappear from 534 

many areas in our study area in the near future.  535 

 536 
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 538 

 539 
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 706 

 707 

Figure 1. Map of Iran (a), protected areas (b), number of ranger stations (c), and road 708 

density across protected areas (d).  709 

 710 
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 711 

Figure 2. Iran’s threatened ungulate species. Circles represent the regional IUCN Red 712 

List status (VU, vulnerable; EN, endangered; CR, critically endangered). Photo credits: 713 

mouflon, Persian fallow deer (a,i; F. Eskandari), urial, bezoar goat, goitered gazelle, 714 

jebeer gazelle (b,c,d,e; H. Moqimi), onager (f; H. Fahimi), and maral and roe deer (g,h; 715 

H. Tizrooyan).  716 
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 717 

 718 

Figure 3. (a) Estimated true mean of poached animals (black line with 95% confidence 719 

interval), DoE counts: annual number of poached animals that were seized by rangers for 720 

the years 2010-2018 (red line) and observed number of poached animals in Iran based on 721 

media articles for the same years (green line). (b) Expected detection probability of 722 

poaching events in Iran, in relation to the number of ranger stations (per grid cell of 400-723 

km2, the dashed line indicates the highest detection probability of poaching captures at 4 724 

ranger stations).  725 

 726 
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727 

Figure 4. (a) represents the total counts (population abundance) of nine ungulate species 728 

(plus a hybrid population, the central Alborz red sheep) in Iran in 2018 (source DoE). A 729 

population count for roe deer was not available. (b) represents the relative percentages of 730 

the poached quantities during the years 2005-2019.   731 

 732 

 733 

 734 

 735 

 736 

  737 
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 738 

Figure 5. Trends of poaching events (counts of seizures) identified in media reports for 739 

nine ungulate species throughout Iran during the years 2010-2018.        740 

 741 
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 742 

Figure 6. Poaching intensity (log scale) of nine ungulate species and plus a hybrid 743 

population in 2014 in 3931 400-km2 grid cells across Iran, predicted by the single-visit 744 

N-mixture model. Poaching intensity is the product of the full set of covariates both in 745 

abundance (N) and detection (p) parameters of the best-fitting model.       746 

 747 

 748 

 749 

 750 
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Table 1. Estimates of negative binomial (NB) abundance (lambda) submodel and 751 

detection submodel parameters and the mean (confidence intervals) annual poached 752 

quantities for the best fitting NB model (single-visit N-mixture model; n = 3931 grid 753 

cells) of the ungulate poaching (count) data in Iran during the years 2010-2018. β and α 754 

indicate the coefficients estimated for abundance (N) and detection probability (p) models 755 

respectively.  756 

Model parameters Estimate 

(β) 

CI (95%) 

Abundance    

  βunemployment rate   1.26 (0.51, 2.01) 

  βungulate abundance    0.08 (0.07, 0.09)  

  βranger stations   –0.02 (–0.10, 0.15) 

  βprotected area (Cat. V)   0.16 (0.09, 0.23) 

  βno-hunting area (non-IUCN)   0.14 (0.07, 0.21) 

  βelevation    –0.08 (–0.30, 0.15) 

  βroad density   0.22 (0.12, 0.31) 

  βyr2010 –5.93 (–7.20, –4.66) 

  βyr2011 –4.93 (–5.80, –4.07) 

  βyr2012 –4.28 (–5.01, –3.55) 

  βyr2013 –2.64 (–3.24, –2.04) 
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  βyr2014 –2.37 (–2.96, –1.78) 

  βyr2015 –2.43 (–3.02, –1.84) 

  βyr2016 –2.65 (–3.25, –2.05) 

  βyr2017 –2.58 (–3.17, –1.98) 

  βyr2018 –2.59 (–3.19, –2.00) 

Detection   

   α0 intercept –0.81 (–1.62, –0.00) 

   αranger stations      1.89   (0.28, 3.49) 

   αelevation      0.22   (–0.13, 0.57) 

AIC 5668.15  

 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 
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Table 2. Summary of the simulations for estimating true poaching events. Estimated 765 

mean is the values of the simulated realizations based on 200 simulations. True value is 766 

the parameter values that were used for the simulations. Ntrue is the number of true 767 

poaching events and Nestimate is the estimated mean poaching events. Nobserved poaching is the 768 

number of observed poaching events. CI coverage is the fraction of the 95% confidence 769 

interval which included the True value. P is Poisson, NB is the negative binomial and  770 
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 NB1 is the negative binomial mixture with moderate alpha. 771 

 772 

 773 

 774 

Parameters Mean 

 (P) 

Mean 

(NB) 

 

Mean 

(NB1) 

True  

value 

(P) 

True 

value 

(NB) 

True 

value 

(NB1) 

CI 

coverage 

(P) 

CI 

coverage 

(NB) 

CI  

coverage 

(NB)1 

Abundance          

λintercept –1.25 –1.52 –1.50 –1.23 –1.66 –1.66 0.96 0.89 0.95 

λunemployment 

rate 

  1.99   2.47   2.49   1.90   2.16   2.16 0.93 0.89 0.98 

Detection          

aintercept –2.81 –2.47 –2.50 –2.80 –2.16 –2.16 0.94 0.90 0.98 

aranger stations   1.59   2.08   2.02   1.56   1.91   1.91 0.96 0.87 0.99 

aa    –2.22   1.25    –2.25     0.96   

Ntrue     10383   

8217 

 8230    

Nestimate 10454 8112  8221         

Nobserved 

poaching events 

1034         
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Table 3. The estimated population trajectory metrics, historical, and the current population 775 

sizes of ungulate species in Iran. The IUCN-g and IUCN-r indicate the global and the 776 

regional status of species (Yusefi et al., 2019), respectively. The historical population size 777 

represents the overall population of urial, mouflon, and central Alborz red sheep. EN, 778 

endangered; CR, critically endangered; LC, least concern; NT, near threatened; VU, 779 

vulnerable.  780 
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Scientific name Historical 

population 

size 

Population 

size 

2018 

Population 

trajectory     

(λ) 

IUCN-g IUCN-r Reference 

for the historical 

population 

estimate 

Ovis vignei  75000 25284 

 

36939 

 

21374 

1.06 VU VU C2a(i) ( De-Vos, 1975) 

O. gmelini   

VU 

 

 

VU C2a(i) 

( De-Vos, 1975) 

O. gmelini × O. vignei                              VU VU C2a(i) ( De-Vos, 1975) 

Equus h. onager 1300 1218 0.97 NT  

EN B2ab, 

C2a(i) 

( De-Vos, 1975) 

Capra aegagrus 75000–85000 66328 0.91  

LC 

 

VU C2a(i) 

( De-Vos, 1975) 

Cervus e. maral 3750–4950 744 0.41  

LC 

 

EN C2a(i) 

 (Kiabi 1978, 

Kiabi et al., 2004) 

Capreolus capreolus – – – LC EN C2a(i)  

Gazella bennettii 7000 2742 0.63 LC EN C2a(i) (De-Vos, 1975) 

Gazella s. 

subgutturosa  

35000 26479 0.87 VU EN C2a(i) ( De-Vos, 1975) 
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 781 

           782 

 783 

Dama mesopotamica 611 272 0.67 EN 

 

CR B1ab, 

B2ab, 

C2a(i) 

(DoE, 2009) 


