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Population changes and sustainability of energy drive cooling 

demand related risks in urbanized India  

 

Abstract  

Global warming poses a challenge to India’s energy policy as rising temperatures coincide with 

population growth and lifestyle changes to substantial increase in cooling energy requirements. 

The concept of cooling degree-days (CDD) is often used to assess probable changes in cooling 

demands but, to date, no study has considered CDD changes within a risk framework to 

consider exposure and underlying vulnerabilities of a population. Here, we quantify the trends 

in observed CDD data across administrative divisions of India for 1951-2019. Using 

temperature data from five climate models under three representative concentration pathways 

(RCPs), we then estimate the relative changes in average annual CDD across India under 1.5°C, 

2°C and 3°C levels of global warming. We further quantify the risk associated with increased 

cooling requirements for most urbanized regions of India using CDD as hazard, population as 

exposure, and two alternative vulnerability metrics that account for economic conditions (per 

capita Gross Domestic Product, GDP) and energy source (proportion of renewable energy to 

total energy). For 62% of administrative units, the Pettitt’s test identified a statistically 

significant change point in annual CDD values, with 1993 as the median year of change. 

Climate model projections suggest a likely increase of 5-14%, 13-80% and 22-160% in average 

annual CDD values for a majority (>90%) of administrative units under the 1.5°C, 2°C and 

3°C levels of global warming, respectively. The risk assessment showed that population 

exposure was the primary factor governing risk scores when per capita GDP was used as a 

proxy for vulnerability. Risk scores differed substantially when the vulnerability index was 

based on contribution of non-renewables to electricity requirements. Our analysis emphasizes 
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that prevailing socio-economic conditions and energy policies are likely to play a strong role 

in mitigating climate change impacts related to cooling energy requirements in urbanized 

Indian regions. 

 

Keywords: Cooling Demands, Global Warming, Risk Assessment, Cooling Degree Days, 

Urban, India, Population Growth, Renewable Energy, Electricity, Carbon Emissions  
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1. Introduction  

Global warming has become a major environmental concern in the last few decades, with 

global mean surface temperature rising by 0.87°C in 2006-2015 relative to 1850-1900 (Hoegh-

Guldberg et al. 2018). Increasing global temperatures have coincided with an increase in 

frequency of heatwaves in most land as well as marine regions (Baldwain et al. 2019; Frölicher 

et al. 2018). Due to the intensification of the hydrological cycle, the frequency of floods and 

droughts have also increased at the global scale (Zhang et al. 2019). These changes threaten 

many natural ecosystems as well as agri-ecosystems by impacting crop yields (Hoegh-

Guldberg et al. 2018). In addition, fisheries and aquaculture also face increasing risk from 

ocean warming and acidification (Reverter et al. 2020).  

 

As of 2012, India contributed 5.7% of global carbon emissions of 34.5 billion tons/year 

maintaining a per capita emission of 1.6 tons/ person (Olivier et al. 2013). India aims to reduce 

its carbon emissions intensity (CO2 emissions per GDP) by 33-35% by 2030 from 2005 levels, 

which will be enabled, in part, by a transition to cleaner energy sources as India aims to generate 

40% of the electricity from non-fossil sources (Zhu et al. 2018). Nearly a third of the electricity 

generated in India is consumed by domestic and commercial sectors, which includes household 

and commercial cooling demands. The contribution of cooling requirements to electricity 

consumption is poised to increase sharply in the coming years as a result of increasing 

appliance ownership (IEA, 2021). For example, Indians may operate nearly 1 billion air 

conditioning units by 2050. According to the latest assessment by IEA (2021), under a standard 

policy scenario, the electricity demand for cooling may increase by six-fold by 2040, with 

electricity use peaking in early evening. At present, nearly 80% of electricity requirements are 

met by thermal power plants while remaining from nuclear (~2%), hydro-electricity (8.7%), 

and other renewable sources (8.3%) (MoSPI, 2020).  Energy access is still poor and unreliable, 
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in fact, energy poverty is more prevalent as compared to income poverty in India (MoSPI, 

2020; Sedai et al., 2020). Thus, the energy policy for India needs to address the challenges of 

sustainability and equity in distribution of energy while also reducing carbon emissions 

(Solanki et al., 2020).   

 

Global warming related heatwaves will result in increasing energy requirements and cause 

power outages due to unprecedented peaks in electricity use (Ciancio et al. 2020; Zhang et al. 

2021; Petri and Caldeira 2015; Mishra et al., 2019; Lipson et al., 2019 and Yaduvanshi et al., 

2021). Thus, innovative strategies for building cooling requirements need to be developed that 

can be either applied during construction or retrofitting stages (Ascione et al. 2017; Balaban 

and de Oliveira, 2017; Zhao et al. 2019; Hossain and Poon, 2018; Zhang et al. 2021). These 

approaches include novel cooling systems design such as the roof-integrated radiative air-

cooling system proposed by Zhao et al. (2019), adopting solar absorption air-conditioning 

(Solano-Olivares, 2019), etc. Long-term energy planning of buildings using a multi-stage 

multi-objective approach to identify the suite of best possible energy conservation measures 

would also enable a transition to sustainable building designs (Ascione et al. 2017). As the 

extensive use of air conditioning is also likely to have a detrimental impact through the urban 

heat island effect, design of sustainable air conditioning systems would be crucial in mitigating 

negative health impacts of global warming (Tremec et al. 2012).  

 

In order to design and manage buildings under warming conditions, planners require 

information regarding the probable changes in cooling requirements in the future. Air 

temperature followed by relative humidity are the dominant climatic variables affecting energy 

consumption in a building (Sailor et al., 2011; Lee et al., 2014; Kumar et al., 2020; Maia-Silva 

et al., 2020). The concept of degree days is often used to relate outside climatic conditions and 
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energy consumption (Thom, 1959; Quayle and Diaz, 1980, De Rosa et al., 2014). Two related 

variables: heating degree days (HDDs) and cooling degree days (CDDs), are commonly used 

to calculate the energy required to warm up and cool down buildings, respectively. Although 

the use of degree‐days has some shortcomings (Mc Intyre et al., 1987; Moral‐Carcedo and 

Vicens‐Otero, 2005; Antunes Azevedo et al., 2015), they are widely applied for climatological 

and impact analysis in India (Gupta et al., 2012, Borah et al., 2014; Bhatnagar et al., 2018) as 

well as other regions (e.g., Wang et al., 2010; Castañeda and Claus, 2013; Spinoni et al., 2018, 

Morakinyo et al., 2019; Shi et al., 2018; Ramon et al., 2020; Islam et al., 2020).  

 

A number of studies have assessed the historical changes in CDD values at various spatial 

scales such as cities (Badescu et al., 1999), countries (Morakinyo et al., 2019; Islam et al., 

2020) and buildings (Christenson et al., 2006; Bhatnagar et al., 2018). More recently, Biardeau 

et al. (2020) estimated global air conditioning requirements based on CDD values using 

population and daily temperature data across 1692 cities in the world. They reported that India 

has highest exposure to rising CDD compared to any other place in world. The application of 

degree days indicators in energy studies on India has been spatially restricted to buildings, 

cities, or specific regions as well as temporarily to short historical periods at hourly or daily 

scale (Shanmugapriya et al., 2011; Borah et al., 2015; Bhatnagar et al., 2018). For example, 

Borah et al. (2015) analysed HDD and CDD for three climatic zones in northeast India and 

found that hourly temperature data is more suitable than daily data for degree days calculation. 

However, availability of hourly temperature data can be challenging.  Desai et al. (2019) have 

developed a python-based toolbox to estimate energy consumption for 59 Indian cities covering 

five types of buildings using hourly temperature data.  
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In our study, we make two main contributions. First, we analyse the spatiotemporal trends in 

CDD across India at the scale of fine administrative units for the historical time period using 

observational datasets. To date, a country-wide assessment of CDDs has not been carried out 

using available observations, and our analysis would help understand the changes in cooling 

requirements in recent past. Our second contribution is the development of a  framework that 

quantifies the risk associated with rising CDDs in the future using downscaled climate model 

outputs and two different vulnerability indicators. We use per capita Gross Domestic Product 

(GDP) to represent the ability to cope with rising energy demands. We also include a 

sustainability oriented vulnerability metric that quantifies the relative contribution of non-

renewable energy to total energy usage in electricity. In addition, our risk framework quantifies 

future exposure using projected population under different Shared Socioeconomic Pathways 

(SSPs; Riahi et al., 2017). Specifically, we address the following objectives: 

1. Analyse the spatiotemporal changes in CDD values in the historical time period (1951-2019) 

across India. 

2. Quantify the projected changes in CDD values under 1.5°C, 2.0°C, and 3.0°C warming 

worlds and associated uncertainties. 

3. Quantify the risk of CDD exposure in ten most urbanized regions in India and understand 

how risk is related to CDD and other factors. 

2.  Data and Methods  

2.1 Data  

We performed our analysis for lower-level administrative divisions of India, termed districts. 

The choice of the spatial scale is made considering that districts are often considered as a unit 

for program implementation and development planning in India. The data sources used in the 

study are summarized in Table 1. As the temperature data is available as a gridded product, it 
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is area-averaged to obtain district-wise estimates. Observed temperature data from 1951-2019 

is used to analyse the statistical trends in CDD. Observed population data for the year 2011 can 

be downloaded from https://www.census2011.co.in/city.php. GDP data for 2011 is available at 

https://www.aegonlife.com/insurance-investment-knowledge/which-are-indias-top-10-cities-

by-gdp/.  

 

Future projections of temperature are obtained from the downscaled and bias-corrected 

product developed under the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, 

Warszawski et al., 2014). The projections are available for five general circulation models 

(GCMs) from the coupled model intercomparison project-5. These are: GFDL–ESM2M, 

HadGEM2–ES, IPSL–CM5A–LR, MIROC–ESM–CHEM, and NorESM1–M. Projections are 

available for three representative concentration pathways (RCPs), RCP2.6, RCP6.0 and 

RCP8.5. Population and GDP projections are obtained at 0.5° grids for decadal time steps 

from 1980 to 2100 (Murakami and Yamagata, 2019; 

http://www.cger.nies.go.jp/gcp/population-and-gdp.html). This global dataset was generated 

by downscaling the urban population, nonurban population, and gross domestic productivity 

(GDP) (Billion USD at 2005-year rate) by country under three shared socioeconomic 

pathways (SSPs) namely, sustainability (SSP1), middle of road (SSP2) and regional rivalry 

(SSP3). SSPs are generated by considering various aspects such as climate change 

vulnerability, adaptation, land use change, and emission pathways that wield control over 

demography (O’Neill et al., 2014). Projections of population and GDP for each district for 

1.5°C, 2.0°C, and 3.0°C WLs are estimated as the median value out of decadal SSPs datasets, 

following procedures described in Singh and Kumar (2019) and Kumar and Mishra (2020). 

The projected population and GDP are used to estimate relative change values between future 

and reference periods and are applied to the year 2011 values. 

https://www.census2011.co.in/city.php
https://www.aegonlife.com/insurance-investment-knowledge/which-are-indias-top-10-cities-by-gdp/
https://www.aegonlife.com/insurance-investment-knowledge/which-are-indias-top-10-cities-by-gdp/
http://www.cger.nies.go.jp/gcp/population-and-gdp.html
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Table 1. Various data products used in the analysis along with their spatial resolution, time 

period and associated data sources. 

 

2.2 Estimation of Cooling Degree Days (CDDs) and Statistical Analysis 

Degree days are a climate statistic originally developed by the US utility companies in the 

1930s for estimating the demand for coal and gas based upon typical energy usage (Sailor and 

Munoz, 1997; Borah et al., 2015). CDD is estimated as an accumulated difference between the 

daily mean temperature and a given reference temperature over a certain period (Barger and 

De, 2001). We calculate CDDs values using Eq. (1). 

SNo. Variable 
Spatial 

Resolution 
Time Period Data Source Reference 

1 

Observed 

Daily Mean 

Temperature 

1°x1° 1951-2019 
India Meteorological 

Department, IMD 

Gupta et al., 

2020 

2 

Projected 

Daily Mean 

Temperature 

0.5°x0.5° 2005-2100 

Inter-Sectoral Impact 

Model 

Intercomparison 

Project ISI-MIP 

Warszawski et 

al., 2014 

3 

Observed 

Population 

Data 

District 2011 
Census-2011 

 

Singh and 

Kumar, 2019 

4 

Projected 

Population 

Data 

0.5°x0.5° 1980-2100 SSP 1 to SSP 3 

Murakami and 

Yamagata, 

2019 

5 
Observed 

GDP 
District 2011  

Business 

World-June 

2017 

6 
Projected 

GDP Data 
0.5°x0.5° 1980-2100 SSP1 to SSP3 

Murakami and 

Yamagata, 

2019 

7 

Relative 

contribution 

of non-

renewables 

to electricity 

suppplied 

District 2020 
Carbon Disclosure 

Project (CDP Portal) 

CDP-ICELI 

Unified 

Reporting 

System 

https://imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html
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                          𝐶𝐷𝐷 =  ∑ (𝑇𝑑(𝑡) − 𝑇𝑏)   𝑓𝑜𝑟 𝑇𝑑(𝑡) ≥ 𝑇𝑏;  𝑒𝑙𝑠𝑒 0𝑛
𝑡=1 .  (1)  

In Eq. (1), temperature 𝑇𝑑(t) is the daily mean temperature [°C], 𝑇𝑏 is the reference temperature 

[°C], t is the index for each day from the first to nth day in a year. It follows that the units of 

CDD is also °C. The CDD value thus obtained is for each year by adding daily values. The 

CDD value for a time period spanning several years is obtained by averaging the annual CDD 

values across all years. 

 

The reference temperature should be chosen such that it adequately represents the threshold 

beyond which cooling requirements emerge in a given climate. It therefore incorporates the 

effects of local conditions on cooling requirements. Thom (1952) first adopted a value of 

18.3°C, which was also used by the recent global analysis by Biardeau et al. (2020). Several 

choices have been used in the past such as 18°C, 20°C, 26°C and 28°C (Kadioglu and Sen 

1999; Yildiz and Sosaoglu 2007; Elizbarashvilli et al. 2018). For India, Bhatnagar et al. (2018) 

identified 18°C as the reference temperature for cooling and heating after performing an energy 

simulation-based analysis for 60 cities of India. Here, we have also adopted 18°C as the 

reference temperature following the India-wide analysis by Bhatnagar et al. (2018).  

 

Two statistical tests, namely the Pettitt’s test and the Mann-Kendall’s test (Kendall, 1975), are 

applied on annual CDD time series to assess whether any break or trends are present in annual 

CDD values. We first apply the Pettitt’s test to identify change points in the data. Then the 

Mann-Kendall’s test is used to identify significant monotonic changes in annual CDD values 

after the change point to focus on recent trends in annual CDD values. The Pettitt’s test is one 

of the important non-parametric tests to assess the change in a time series (Pettitt, 1979; 

Sneyers, 1991; Verstraeten et al. 2006). According to Pettitt’s test, x1, x2,…, xn is a series of 

observed data with a change point at time t such that the distribution of data points prior and 
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after the point t  is F1(x) and F2(x), respectively. The non-parametric test statistics Ut for this 

test is estimated using Eq. (2). The test statistic K and the associated confidence level (ρ) for 

the sample length (n) are estimated using Eqs. (3-4).  

𝑈𝑡 =  ∑ ∑ 𝑠𝑖𝑔𝑛 (𝑥𝑡 −  𝑥𝑖

𝑛

𝑗=𝑡+1

𝑡

𝑖=1

)                                                    (2) 

                            𝐾 = 𝑀𝑎𝑥 |𝑈𝑡|                                                                                  (3)       

𝜌 = exp (
−𝐾

𝑛2 + 𝑛3
)                                                                       (4) 

The series will be divided into two parts at the location of change point where the significant 

change point exists. If the p-value is less than the significance level α, the null hypothesis that 

no change in the distribution of a sequence of random variable is considered to be rejected. 

Further details on the Pettitt test can be found in Jaiswal et al. (2015) and Dhorde and 

Zarenistanak (2013).  

 

The Mann-Kendall trend test is widely used in detecting statistically significant tendencies in 

environmental datasets, and has been recommended by the World Meteorological Organization 

(Irannezhad et al. 2014; Gavrilov et al. 2016). The test is based on a null hypothesis (H0) that 

states that there is no trend in the time series and the data are independent and randomly 

ordered. The alternative hypothesis (Ha) indicates a trend in the time series. The test statistic S 

for a time-series (x) is estimated using Eq. (5). 

𝑆 =  ∑ ∑ 𝑠𝑔𝑛 (𝑥𝑗 −  𝑥𝑖

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

)                                         (5) 

In Eq. (5), sgn represents the signum function. Hence a large positive value indicates that the 

later observations are larger than the previous ones, thereby indicating a positive trend, and 

vice versa. An advantage of this test is that the assumption of normality is not required (Helsel 

and Frans 2006).  
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2.3 Risk assessment framework  

Global warming coupled with increasing population, income and urbanization are likely to 

contribute to a steep rise in cooling demands (Campbell et al., 2018 and Khosla et al., 2021). 

India has about four times more population and three times as many CDDs per person as the 

United States (Sivak et al., 2013). Most analyses of cooling risk using CDD focus on the hazard, 

i.e., changes in CDD and its trends. However, the severity of risk associated with increasing 

CDD values would be modulated by exposure of the population as well as underlying 

vulnerabilities. Climate-related risk analyses on hazards such as heat waves (He et al., 2019 

and Estoque et al., 2020), floods (Canccado et al., 2008; Kazmierczak and Cavan, 2011 and 

Armenakis et al., 2017), and droughts (Cardona 2011 and Prabnakorn et al.,2019) 

conceptualize risk as a function of hazard, exposure and vulnerability, a definition also adopted 

by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 

2014). This framework is in line with the field of disaster risk reduction and Crichton’s risk 

triangle (UNSIDR, 2017; Crichton, 1999).  

 

Following prior approaches, we define risk considering the three dimensions of hazard, 

exposure, and vulnerability. Hazard is a natural phenomenon that may cause damage to people, 

property, and the environment. Exposure is defined as the extent with which an environmental 

hazard affects a group of people or the system. Vulnerability captures the susceptibility of the 

exposed system or people to damage. Vulnerability is characterized by the physical, social, and 

economic conditions of the system that make it susceptible to the damaging effects of a hazard 

(Philip and Rayhan, 2004). It is possible to be exposed but not vulnerable. For instance, people 

residing in heat wave affected areas could cope up with hazard depending on the availability 

of sufficient (cooling) means. The risk associated with hazard, exposure and vulnerability 
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metrics can be combined using Eq. (6) (INFROM Global Risk Index, 2018; Cardoni et al., 

2021). In Eq. (6), the hazard is quantified using average annual CDD values across the time 

period of assessment, and exposure is quantified as the population of the region for which CDD 

is assessed.  

 𝑅𝑖𝑠𝑘 = (𝐻𝑎𝑧𝑎𝑟𝑑 ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 ∗ 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦)
1

3                         (6) 

 

Vulnerability is a critical factor in risk calculations and also one that is more difficult to 

quantitatively characterize. Here, we considered two aspects related to rising degree-days that 

may affect populations in the context of cooling energy requirements: 1) the economic resource 

available to a population to respond to rising cooling demands, and 2) the relative amount of 

cooling energy being supplied by non-renewable sources as compared to the renewable 

sources. Per capita GDP has often been used to characterize a population’s ability to cope with 

heat stress (Jagarnath et al., 2020), and therefore used here similarly. Higher values of per 

capita GDP will be associated with lower risk scores as populations with elevated income levels 

would have adequate means to deal with higher temperatures (Bosello et al., 2006, 

Ahmadalipour et al., 2019). The source of energy becomes crucial from a sustainability 

perspective. Regions heavily dependent on non-renewables witnessing increasing degree-days 

are likely to pose a greater risk from increasing carbon emissions. Note also that data limitations 

prohibited a detailed exploration of implications of energy sources.  So, the comparison across 

vulnerability metrics is limited to five urbanized districts while per capita GDP based risk 

metrics are compared across ten urbanized districts. 
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Each component is re-scaled to vary from 1 to 10 so that none of the individual components 

dominate the risk calculation (Eq. 7, INFROM Global Risk Index, 2018).  In Eq. (7),  𝑋𝑠𝑐𝑎𝑙𝑒𝑑 

is the scaled value of the variable, Xes is estimated value of variable (hazard, exposure and 

vulnerability) at a given location, Xmin and Xmax are the minimum and maximum value of the 

variable across all locations and warming levels. Per capita GDP values are multiplied by -1 

prior to scaling as it is inversely related to risk score.  

                      𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = 1 + 9 (
𝑋𝑒𝑠− 𝑋𝑚𝑖𝑛 

𝑋𝑚𝑎𝑥− 𝑋𝑚𝑖𝑛
)                                                                                (7) 

 

2.4 Projections at different warming levels 

A warming level corresponds to a time period when the global mean temperature rises above 

the pre-industrial level by the amount specified by it. Each GCM-RCP combination will reach 

a certain warming level in a different time period as it represents varying climate dynamics and 

forcings. These time periods are identified using the approach proposed by Vautard et al. 

(2014), which has been used in a number of recent analyses (Masson-Delmotte et al. 2018, 

Singh and Kumar 2019; Kumar and Mishra, 2020; Sieck et al., 2021). Historical records 

indicate that the global mean temperature for the reference period 1971-2000 was around 

0.46°C higher than the pre-industrial period (1881-1910) (Jacob et al., 2018). Thus, the 

procedure identifies 30-year time periods when global mean temperature reaches 1.04°C, 

1.54°C and 2.54°C above the reference period (Supplementary Table S1). Then, the relative 

change in average annual CDD for each GCM-RCP combination is calculated by using the 

average annual CDD values for the reference period 1971-2000 as a baseline using Eq. (8). 

                     𝑅 = 100 (
(𝐶𝐷𝐷𝐹+1)−(𝐶𝐷𝐷𝑅+1) 

𝐶𝐷𝐷𝑅+1
)                                                                                (8) 

In Eq. (8) 𝑅  is the relative change in %, 𝐶𝐷𝐷𝑅 and 𝐶𝐷𝐷𝐹 are the average annual CDD values 

for the reference period and future period, respectively. Note that both values are incremented 
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by 1 to allow finite values of R in cases when reference period value may be 0. Using three 

RCPs and five GCMs results in 15 GCM-RCP combinations for which relative change in CDD 

is projected for each warming level. The risk analysis uses median values of average annual 

CDD across the 15 GCM-RCP. 

 

3. Results and Discussion 

We begin our results section with a description of observed trends in CDD for the historical 

time period 1951-2019 (Section 3.1). Following this, the projected changes in CDD across 

India are discussed for each warming level (Section 3.2). We conclude with the risk analysis 

for most urbanized regions is detailed in Section 3.3.  

 

3.1 Spatiotemporal trends in observed CDD for 1951-2019 

Mean annual CDD values for 1951-2019, as estimated by observed IMD data, range from 

586°C to 3863°C across the districts of India (Figure 1a). As expected, the lowest mean annual 

values of CDD  are found northern most regions of the country that are dominated by 

mountainous terrains and cooler climate. Notably, highest CDD values (>3000°C) are found in 

the eastern parts of Peninsular India, despite the presence of the Thar desert in the north-western 

region. Despite recording highest daily temperatures during summers, the CDD values in these 

drier (desert) dominated districts remain lower than the regions in eastern Peninsular India 

because of lower winter temperature. We also find a distinct rise in annual CDD values in the 

recent years (Figure 1b). The mean annual CDD value has been exceeding 4000°C in a few 

districts since 1980. 
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Figure 1. (a) Spatial distribution of observed mean annual cooling degree-days (CDD) values 

[in °C] across India for 1951-2019. (b) Boxplot of observed annual CDD (x-axis) across all 

administrative units for each decade. The median CDD value for each decade is represented 

by the horizontal black line within the box while the edges represent the 25th and 75th percentile 

CDD values. The whiskers extend from the box to 1.5 time the inter-quartile range, the 

difference of 75th and 25th quartiles. Data beyond range of whiskers are shown 

individually.(Coloured Figure) 

 

The Pettitt’s test identified a large range (1961-2008) of change points in annual CDD time 

series across India for 1951-2019 (Figure 2a). However, only 62% of these change points were 

statistically significant with p-Value < 0.01. The median value of the year of abrupt change in 

annual CDD for statistically significant change points was 1993, while the 25th and 75th quantile 

of change years was 1981 and 1997, respectively. The year of abrupt change in annual CDD 

occurred earliest in south eastern India around 1970, followed by the southern peninsular region 

around 1980. For regions with statistically significant change points, we further carried out the 

Mann-Kendall test on the annual CDD times series after the change point (Figure 2b). The 

Sen’s slope ranged from 2.93 to 16.87 °C/year for regions with statistically significant (p-Value 
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< 0.01) trends. Highest slopes are observed for the mountainous regions in northeast India 

although the change point there occurred later. Note also that the Mann-Kendall test identified 

an increasing trend for a majority (88%) of regions in India after the change point, even though 

many of these were not statistically significant.  

 

Figure 2. a) The year of abrupt change in annual CDD values as identified by the Pettit’s test 

for each administrative unit 1951-2019. Only statistically significant (p-Value < 0.01) change 

points are shown in grey scale and further analysed by the Mann-Kendall test. b) Sen’s slope 

of annual CDD values for administrative units with statistically significant trends as identified  

by the Mann-Kendall test. The slope is estimated for the time series following the year of abrupt 

change. In both panels, white regions correspond to p-Value > 0.01 for the Pettitt and Mann-

Kendall test. (Coloured Figure) 
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To further interpret the results from the Pettitt’s and Mann-Kendall test, we visualize the 

observed annual CDD time series for two example regions: Delhi and Chennai (Figure 3). The 

year of abrupt change in CDD values occurs much later (1997) in Delhi when compared to 

Chennai (1978). Note also that the change point for Delhi was not statistically significant (p-

Value > 0.01). The change in CDD values following the year of abrupt change is also more 

drastic for Chennai (5.09 °C/year) when compared to Delhi (1.13 °C/year). Again, the trend 

from Mann-Kendall test is not statistically significant for Delhi, even though it indicates likely 

increasing CDD values. 

 

Figure 3. Time series of annual CDD values for a) Delhi, and b) Chennai for 1951-2019. The 

year of abrupt change in annual CDD values as identified by the Pettit’s test is shown as 
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vertical solid line. Sen’s slope for annual CDD values is also shown for the period after the 

year of abrupt change. Significant trends (p-Value <0.01) as identified by the Mann-Kendall 

test are highlighted by solid lines for Sen’s slope in case of Chennai.  

 

3.2 CDD projections under 1.5°C, 2°C and 3°C warming levels  

Cooling demands as represented by CDD values are projected to increase across all regions of 

India for all three warming levels (Figure 4). The median value of the relative increase in CDD 

across 15 GCM-RCP combinations is used as an estimate of the likely change in CDD for each 

warming level and is further analysed. A majority (90%) of regions are likely to experience a 

5-14%, 13-80%, and 22-160% increase in average annual CDD at 1.5°C, 2°C and 3°C warming 

levels, respectively. Note also that as different climate models and concentration pathways 

attain a warming level at different future periods, these changes are likely to occur between 

2006-2076, 2016-2089, and 2035-2096 for the 1.5°C, 2.0°C, and 3.0°C warning levels, 

respectively (Supplementary Table S1).  

 

The projections show a clear advantage of limiting global warming below 1.5°C, when 

compared to 2.0°C and 3.0 °C as the former entails much lower average annual CDD values as 

well as extremes. For example, only 24 regions are likely to experience average annual CDD 

exceeding 4000°C in the 1.5°C warmer world, but this number rises to 46 (159) in the 2.0°C 

(3.0°C) warmer world (Figure 4, grey outlines). These extreme CDDs will be experienced first 

in south-eastern regions that are already known to experience high summer heat. The 3.0°C 

warmer world presents a concerning picture with large parts of southern peninsula likely to 

experience average annual CDDs exceeding 4000°C, in addition to regions in the western 

desert regions and a few along the west coast.  
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On comparing the performance of GCM projected CDD for the reference period of 1971-2000 

to observed data, we find a generally good skill in capturing CDD values across all GCMs 

(Supplementary Figure S1, Table S2). However, considerable biases are noted for regions with 

lower CDD values (<2000 °C), especially in northeast India. Climate models used in the 

present study are known to have cold biases (Basha et al., 2017) especially for Himalayan and 

North Eastern region (Liu et al., 2014 and Basha et al., 2017). Models that include cloud 

interaction and aerosols dynamics show relatively less temperature and a cold bias. (Lohmann 

et al. 2007).  

 

Figure 4. Relative change in average annual CDD values for a) 1.5 °C, b) 2.0 °C, and c) 3.0 

°C rise in global mean temperatures compared to pre-industrial levels for administrative units 

across India. Grey outlines highlight regions with median values of average annual CDD 

exceeding 4000°C. The median of relative changes values across 15 GCM–RCP combinations 

is plotted. Panel (a) locates the urban regions considered in the risk analysis. (Coloured 

Figure) 

 

https://link.springer.com/article/10.1007/s00024-019-02203-6#ref-CR30
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The future trajectories for annual CDD values exhibit considerable variability across the ten 

most urbanized regions of India (Figure 5, Supplementary Figure S2). In the reference period, 

Chennai has the highest average annual CDD values with the median across five climate 

models as 3945°C. Cooling demands are expected to rise sharply for Chennai under RCP 8.5 

when this value is projected to reach 5660°C by the end of the century. Regions such as Surat, 

Hyderabad, and Ahmedabad are also likely to experience high CDD values (>5500°C) by the 

end of century under RCP8.5. The maximum average annual CDD values for Delhi, Kolkata, 

Jaipur, Mumbai and Pune regions are expected to remain below 5000°C, while for Bengaluru 

and Pune are excepted to remain below 4500°C. The recent analysis by Rai and Ukey (2021) 

found a similar significant increasing trend in historical and projected CDDs for eight cities 

across India at decadal scale (1.3-3.8% in 1969-2017). In addition, they also report an expected 

rise of 8.3%-54.1% in CDD values by 2050 in these cities. These top ten urbanized regions are 

projected to experience CDD values above the national average under all 15 GCM-RCP 

combinations, suggesting an increasing demand for household level cooling in urban regions. 

Elevated levels of CDD coupled with increase in population and GDP could pose a severe 

challenge on the existing vulnerabilities of urbanised districts, thus necessitating a risk analysis 

that considers these conditions simultaneously.  
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Figure 5. Annual CDD values for a) Chennai and b) Delhi, two of the ten most urbanised 

districts of India for the time period 1971-2099. Observed CDD is plotted using solid black 

circles. The ensemble median and inter-quartile range across five GCMs for the period 1971-

2005 is indicated by solid grey lines and background grey shades, respectively Coloured lines 

trace the median CDD across five GCMs for each RCP for the time period 2006-2099. 

Background shades indicate the interquartile range of annual CDD values across five GCMs. 

(Coloured Figure) 
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3.3 Risk assessment for most urbanised districts  

The risk associated with CDD hazard was highest for Chennai, Mumbai and Kolkata, in that 

order, when using GDP per capita as a vulnerability metric and population as exposure metric  

for the year 2011 (Table 3). These risk scores are primarily driven by population and CDD 

values, standardized values of these metrics have a Pearson correlation coefficient of 0.65 (p-

Value<0.05) with the risk scores. On the other hand, per capita GDP does not play an important 

role in determining the risk scores for 2011 with Pearson correlation coefficient of -0.1 with 

risk scores at a p-Value >0.05. While Delhi has greater population, Kolkata’s slightly higher 

CDD value puts it at an overall slightly higher risk on the risk score. Noteworthy is the finding 

that apart from Chennai and Hyderabad, two other districts with CDD exceeding 3000 degree-

days (Ahmedabad and Surat) do not feature in the top 5 most risky districts owing to lower 

population. Therefore, the risk associated with cooling demands is driven by population 

followed by CDD values in 2011, with the vulnerability metric (per capita GDP) playing a 

secondary role.  

Table 3: Risk calculation using hazard (CDD), exposure (population) and vulnerability (per 

capita GDP) for ten most urbanized districts of India for the year 2011. 

District 
Hazard, CDD 
[°C] 

Exposure, Population 
[millions] 

Vulnerability, GDP per 
capita [$/person] 

Risk 
Score [-] 

Ahmedabad 3276 6.4 10667 4.23 

Bengaluru 2409 8.5 10375 2.83 

Chennai 3866 8.7 7333 5.56 

Delhi 2703 16.3 10438 4.52 

Hyderabad 3236 7.7 9250 4.58 

Jaipur 2910 3.0 8000 3.08 

Kolkata 2986 14.1 10714 4.97 

Mumbai 2944 18.4 11611 5.28 

Pune 2741 5.0 9600 3.25 

Surat 3269 4.6 8000 4.04 
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Table 4: Risk calculation using hazard (CDD), exposure (population) and vulnerability (per 

capita GDP) for ten most urbanized districts of India for 1.5°C, 2.0°C, and 3.0°C warming 

levels. 

District CDD [°C] 
Population 
[millions] 

GDP per capita 
[$/person] 

Risk Score [-] 

 1.5°C 2°C 3°C 1.5°C 2°C 3°C 1.5°C 2°C 3°C 1.5°C 2°C 3°C 

Ahmedabad 3746 3987 4313 7.2 7.9 8.3 21857 41625 85125 4.81 4.89 4.02 
Bengaluru 2933 3157 3484 9.8 11.0 11.4 20100 40455 77636 4.25 4.43 4.00 
Chennai 4201 4376 4734 11.1 13.4 15.1 17091 37615 77867 6.10 6.15 5.49 
Delhi 2917 3117 3490 18.8 19.3 19.4 20684 42474 81263 5.16 5.16 4.64 

Hyderabad 3552 3788 4204 8.7 9.1 9.2 19778 42667 80333 5.01 4.86 4.26 
Jaipur 3042 3281 3660 3.3 3.3 3.2 18333 37000 67667 3.15 3.20 3.07 

Kolkata 3447 3674 4103 18.0 21.7 24.2 23111 47182 96500 6.00 6.17 4.90 

Mumbai 3643 3834 4216 23.7 30.8 37.4 24917 53258 112622 6.86 6.93 4.31 
Pune 3055 3262 3657 6.2 7.4 8.3 22000 47714 91000 3.80 3.87 3.38 

Surat 3763 3985 4261 5.8 6.8 7.4 18667 41143 98000 4.66 4.70 3.36 

 

On further analysing the risk values under the 1.5°C warming level, we find a similar greater 

influence of population exposure on the risk scores with a statistically significant high Pearson 

correlation coefficient between the risk score and standardized population (p-Value < 0.01, 

coefficient =0.82). Mumbai, with the highest projected population, attained highest risk score 

despite highest per capita GDP and fourth highest CDD value (Table 4). Neither per capita 

GDP nor CDD had a statistically significant relationship with the risk scores, but their 

complementary impact on risk score was evident. For example, even though Chennai ranks 4th 

in population, it attains the second highest risk score due to highest CDD values and lowest per 

capita GDP under the 1.5°C warming level.  

 



24 
 

The impact of rising population on CDD related risk is even more evident in the 2.0°C warmer 

world with a statistically significant Pearson correlation coefficient between the risk score and 

standardized population (p-Value < 0.01, coefficient =0.87). In the 2.0°C warmer world, 

highest risk score is again attained by Mumbai owing to high population and fourth highest 

CDD. Note that despite having highest per capita GDP, the risk score for Mumbai indicates the 

possibility of an alarming impact of rising heat related hazard on its population. Similarly, 

despite having only the fourth highest CDD value, Kolkata ranks second in its risk score in the 

2.0°C warmer world due to its high population. Thus, population increase will primarily govern 

the risk associated with CDD in the 2.0°C warmer world. Notable exceptions are Bengaluru 

and Ahmedabad, higher CDD values make Ahmedabad at higher risk than Bengaluru despite 

a lower population. 

 

The 3.0°C warmer world results in much more complex interactions between hazard, 

vulnerability and exposure metrics, neither attaining any statistically significant correlation 

with the risk score. The highest risk score for this warming level is attained by Chennai owing 

to its highest CDD value, fourth highest population, and lower per capita GDP. Kolkata attains 

the second highest risk score primarily owing to its high population despite moderate CDD 

values. Mumbai ranks fourth in CDD related risk in this warming level due to rapid economic 

growth improving per capita GDP. Ironically, Jaipur, an urban district in a hot desert, maintains 

the lowest risk score across all future time periods owing to its lower CDD (cold winters) and 

population, despite having lower per capita GDP. 

 

We further contrast the risk scores considering two vulnerability metrics. The relative 

contribution of non-renewables to electricity supplied to Bengaluru, Chennai, Delhi, Jaipur and 
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Kolkata is 85.0%, 52.1%, 58.1%, 50.0%, and 92.1%, respectively. The resulting risk scores 

indicate a significant impact of choice of the vulnerability definitions on inferred risk values 

(Figure 6, Supplementary Tables S3-S5). For the year 2011, Kolkata attains the highest risk 

score considering the energy-source as a vulnerability indicator, while Chennai attains the 

highest risk score when per capita GDP is considered. This is due to the high dependence on 

non-renewables for electricity in case of Kolkata, and the lower per capita GDP for Chennai. 

Bengaluru and Jaipur attain the 4th and 5th rank in risk score using either vulnerability metrics. 

Despite a higher per capita GDP and lower CDD, Bengaluru has a higher risk score than Jaipur 

due to its higher population. Using source of energy as a vulnerability metric further increases 

the difference in the risk score between Bengaluru and Jaipur due to the former’s greater 

dependence on non-renewables.  

 

The influence of energy source on risk score is more prominent as the warming levels increase 

(Figure 6). Due to its high dependence on non-renewables, Kolkata’s risk score is the greatest 

across all risk values, the highest score of 9.11 attained in the 3.0°C warming level when energy 

source is considered. On similar lines, Bengaluru attains the second highest risk score across 

all urban districts for each warming level when considering energy source as a vulnerability 

metric, but fourth highest when considering per capita GDP. Considering per capita GDP, 

Chennai attains the highest risk score for 1.5°C and 3.0°C warming levels, surpassed by 

Kolkata only in the 2.0°C warming world. This is due to the complex influence of population, 

CDD changes and per capita GDP on the risk scores. Similarly, Jaipur always attains the lowest 

risk scores due to lowest population and lowest dependence on non-renewables. The energy-

source based risk scores consistently increase in magnitude with rising warming levels, while 

per-capita GDP based risk scores attain the highest value at the 2.0°C warming level, thereby 
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reducing in the 3.0°C warming level. This is due to a sharp rise in per capita GDP in the 3.0°C 

warming world, which compensates for the influence of increasing population and CDD.  

 

Figure 6. Vulnerability (z-axis), hazard (y-axis), and exposure (x-axis) for five urbanized 

districts of India in 2011 (historical), 1.5°C, 2.0°C and 3.0°C warming worlds. Size of markers 

represent the relative risk score. The marker type represents different time periods. Two 

colours differentiate vulnerability metrics based on per capita GDP (red) and percentage of 

non-renewable energy contribution to electricity (blue). Numbers corresponds to the urban 

districts. Note: axis values may be distorted due to viewing angles. Please refer to 

Supplementary Tables S3-S5 for details. GDP: Gross Domestic Product. (Coloured Figure) 

 

4. Conclusions 
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Our results indicate a clear benefit of limiting global warming levels to below 1.5°C by limiting 

the rise in degree-days between 5-14% across majority of the country. Less than 10% of the 

administrative units across India are likely to experience average annual CDD exceeding 

3690°C at the 1.5°C warming level. However, under the 3.0°C warming level, nearly 50% of 

the administrative units are likely to exceed this value. We identify Mumbai with highest risk 

score under 1.5°C and 2.0°C warming levels, and Chennai with the highest risk score in the 

3.0°C warming level, when comparing the top ten urbanized regions using per capita GDP 

based vulnerability metric. Despite its higher average annual CDD values, Chennai remains 

second to Mumbai in two out of three warming levels due to the important role of population 

in determining risk scores.  

 

Similarly, we find a considerable influence of the choice of vulnerability metric in determining 

the risk score. Kolkata consistently attains the highest risk score when energy-source is 

considered. On the other hand, Chennai is placed fourth out of five regions despite its higher 

CDD values due to its lower dependence on non-renewables. This also indicates the great role 

that energy policy will play in alleviating these risks. An increasing reliance on renewables is 

likely to offset the negative emission consequences of increasing CDDs. According to IEA 

(2021), India’s long-term energy planning needs to account for potentially rising peak demands 

due to increase in air conditioning and other appliance use in households. It also needs to 

consider the need for increased flexibility in power systems to support renewable energy 

transition, including increase battery storage, coordinating use of electricity among domestic 

and agriculture sectors in a day, etc.   

There are a number of ways our analysis can be improved to further strengthen its policy 

relevance. CDD is not a perfect indicator to measure cooling demands as it entirely driven by 
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temperature. Additional variables such as humidity and solar radiation could provide detailed 

information on energy demands (Kumar et al. 2020; Maia-Silva et al. 2020; Rastogi et al. 

2021). Future projections of humidity indicators at fine resolution would help the researchers 

to get the more robust findings. Our analysis also indicates a room for improvement in climate 

model reproduction of CDD values. Though climate models are generally to capture 

temperature quite well, our results point out the need to improve predictions in cold regions. 

Furthermore, due to unavailability of electricity source data at fine spatial resolution, our risk 

assessment is restricted to only five districts of India. To inform adaptation strategies across all 

India, there is a dire need of climatic, socio-economic, and energy data sets at fine spatial 

resolution.  

 

India has come up with the India Action Cooling Plan in March 2019 to provide sustainable 

and smart cooling for the next 20 years (Cell,O., 2019) Although the plan seeks reduction in 

cooling demand and focuses on sustainable cooling to lower emissions, our analysis shows that 

the challenges will vary by cities. Rising temperatures, dense populations, and high-income 

levels will pose challenges to reduce the risk of CDDs in the urban cities of Kolkata, Chennai 

Delhi and Mumbai. With use of renewable energy sources and low GHG emission, efforts can 

be made in achieving sustainable cooling targets. India’s target of 450 gigawatts renewable 

energy capacity by 2030 could be a stepping stone in the process of meeting India’s sustainable 

goals (Gupta and Bonds 2020). Risk assessment presented here is first of its kind in analysing 

CDD risk by looking at existing vulnerabilities of most urban districts. Findings could also 

contribute to national level policies by highlighting the gravity of adapting renewable energy 

sources and motivating in achieving sustainable ways of fulfilling the cooling demand.  

 



29 
 

Declaration of competing interest: The authors declare that they have no known competing 

financial interests or personal relationships that could have appeared to influence the work 

reported in this paper. 

Author’s Contributions: A.Y. performed the formal analysis, contributed to the analysis of data, 

and writing of the paper. R.S. helped in numerical experiments, contributed to the writing, and 

supervised the work. R.K. helped in interpretation of the results, formulation of research goal 

and co-wrote the paper. 

References 

1. Ahmadalipour, A., Moradkhani, H. and Kumar, M., 2019. Mortality risk 

from heat stress expected to hit poorest nations the hardest. Climatic 

Change, 152(3), pp.569-579. 

2. Antunes Azevedo J, Chapman L, Muller CL. 2015. Critique and suggested 

modifications of the degree-days methodology to enable long-term 

electricity consumption assessments: a case study in Birmingham, UK. 

Meteorol. Appl. 22(4): 789– 796 

3. Ascione, F., Bianco, N., De Masi, R.F., Mauro, G.M. and Vanoli, G.P., 

2017. Resilience of robust cost-optimal energy retrofit of buildings to 

global warming: A multi-stage, multi-objective approach. Energy and 

Buildings, 153, pp.150-167.  

4. Badescu, V. and Zamfir, E., 1999. Degree-days, degree-hours and ambient 

temperature bin data from monthly-average temperatures (Romania). 

Energy conversion and management, 40(8), pp.885-900. 



30 
 

5. Balaban, O. and de Oliveira, J.A.P., 2017. Sustainable buildings for 

healthier cities: assessing the co-benefits of green buildings in Japan. 

Journal of cleaner production, 163, pp.S68-S78. 

6. Basha, G., Kishore, P., Ratnam, M.V., Jayaraman, A., Kouchak, A.A., 

Ouarda, T.B. and Velicogna, I., 2017. Historical and Projected Surface 

Temperature over India during the 20 th and 21 st century. Scientific 

reports, 7(1), pp.1-10.  

7. Bhatnagar, M., Mathur, J. and Garg, V., 2018. Determining base 

temperature for heating and cooling degree-days for India. Journal of 

Building Engineering, 18, pp.270-280. 

8. Biardeau, L.T., Davis, L.W., Gertler, P. and Wolfram, C., 2020. Heat 

exposure and global air conditioning. Nature Sustainability, 3(1), pp.25-

28. 

9. Borah, P., Singh, M.K. and Mahapatra, S., 2015. Estimation of degree-days 

for different climatic zones of North-East India. Sustainable Cities and 

Society, 14, pp.70-81.  

10. Bosello, F., Roson, R. and Tol, R.S., 2006. Economy-wide estimates of the 

implications of climate change: Human health. Ecological Economics, 

58(3), pp.579-591. 

11. Brager, G.S. and De Dear, R., 2001. Climate, comfort, & natural 

ventilation: a new adaptive comfort standard for ASHRAE standard 55. 



31 
 

12. Campbell, I., Kalanki, A. and Sachar, S., 2018. Solving the Global Cooling 

Challenge. The Rocky Mountain Institute, November. 

13. Cançado, V., Brasil, L., Nascimento, N. and Guerra, A., 2008, August. 

Flood risk assessment in an urban area: Measuring hazard and 

vulnerability. In 11th International conference on urban drainage, 

Edinburgh, Scotland, UK (pp. 1-10).  

14. Cardona, O.D., 2011. Disaster risk and vulnerability: Concepts and 

measurement of human and environmental insecurity. In Coping with 

global environmental change, disasters and security (pp. 107-121). 

Springer, Berlin, Heidelberg.  

15. Cardoni, A., Noori, A.Z., Greco, R. and Cimellaro, G.P., 2021. Resilience 

assessment at the regional level using census data. International Journal of 

Disaster Risk Reduction, 55, p.102059. 

16. Castañeda ME, Claus F. 2013. Variability and trends of heating degree-

days in Argentina. Int. J. Climatol. 33(10): 2352– 2361. 

17. Cell, O., 2019. India Cooling Action Plan. New Delhi: Ministry of 

Environment, Forest and Climate Change, Government of India. 

http://www. ozonecell. com/viewsection. jsp. 

18. Christenson, M., Manz, H. and Gyalistras, D., 2006. Climate warming 

impact on degree-days and building energy demand in Switzerland. Energy 

conversion and management, 47(6), pp.671-686. 



32 
 

19. Ciancio, V., Salata, F., Falasca, S., Curci, G., Golasi, I. and de Wilde, P., 

2020. Energy demands of buildings in the framework of climate change: 

An investigation across Europe. Sustainable Cities and Society, 60, 

p.102213. 

20. Crichton, D., 1999. The risk triangle. Natural disaster management, 102(3). 

21. De Rosa, M., Bianco, V., Scarpa, F. and Tagliafico, L.A., 2014. Heating 

and cooling building energy demand evaluation; a simplified model and a 

modified degree days approach. Applied energy, 128, pp.217-229. 

22. Desai, A., Vaidya, P. and Pathella, S.,2019. A Simplified Method for 

Estimating Cooling Energy Savings Due to Passive Strategies for Indian 

Cities.  

23. Dhorde, A.G. and Zarenistanak, M., 2013. Three-way approach to test data 

homogeneity: An analysis of temperature and precipitation series over 

southwestern Islamic Republic of Iran. J. Indian Geophys. Union, 17(3), 

pp.233-242. 

24. Elizbarashvili, M., Chartolani, G. and Khardziani, T., 2018. Variations and 

trends of heating and cooling degree-days in Georgia for 1961–1990 year 

period. Annals of Agrarian Science, 16(2), pp.152-159. 

25. Estoque, R.C., Ooba, M., Seposo, X.T., Togawa, T., Hijioka, Y., 

Takahashi, K. and Nakamura, S., 2020. Heat health risk assessment in 

Philippine cities using remotely sensed data and social-ecological 

indicators. Nature communications, 11(1), pp.1-12. 



33 
 

26. Frölicher, T.L., Fischer, E.M. and Gruber, N., 2018. Marine heatwaves 

under global warming. Nature, 560(7718), pp.360-364. 

27. Gaffin, S.R., Rosenzweig, C., Xing, X. and Yetman, G., 2004. 

Downscaling and geo-spatial gridding of socio-economic projections from 

the IPCC Special Report on Emissions Scenarios (SRES). Global 

Environmental Change, 14(2), pp.105-123. 

28. Gavrilov, M.B., Tošić, I., Marković, S.B., Unkašević, M. and Petrović, P., 

2016. Analysis of annual and seasonal temperature trends using the Mann-

Kendall test in Vojvodina, Serbia. Időjárás, 120(2), pp.183-198. 

29. GRI, I.E. and GRI, E.I., 2018. Incorporating epidemics risk in the 

INFORM Global Risk Index. 

30. Gupta, A.R. and Bonds, G., 2020. Financing India’s renewable energy 

vision. Issue Brief, (336). 

31. Gupta, E., 2012. Global warming and electricity demand in the rapidly 

growing city of Delhi: A semi-parametric variable coefficient approach. 

Energy economics, 34(5), pp.1407-1421. 

32. Gupta, P., Verma, S., Bhatla, R., Chandel, A.S., Singh, J. and Payra, S., 

2020. Validation of surface temperature derived from MERRA‐2 

Reanalysis against IMD gridded data set over India. Earth and Space 

Science, 7(1), p.e2019EA000910. 

33. He, C., Ma, L., Zhou, L., Kan, H., Zhang, Y., Ma, W. and Chen, B., 2019. 

Exploring the mechanisms of heat wave vulnerability at the urban scale 



34 
 

based on the application of big data and artificial societies. Environment 

international, 127, pp.573-583.  

34. Helsel, D.R. and Frans, L.M., 2006. Regional Kendall test for trend. 

Environmental science & technology, 40(13), pp.4066-4073. 

35. Hoegh-Guldberg, O., Jacob, D., Bindi, M., Brown, S., Camilloni, I., 

Diedhiou, A., Djalante, R., Ebi, K., Engelbrecht, F., Guiot, J. and Hijioka, 

Y., 2018. Impacts of 1.5 C global warming on natural and human systems. 

Global warming of 1.5 C. An IPCC Special Report. 

36. Hossain, M.U. and Poon, C.S., 2018. Global warming potential and energy 

consumption of temporary works in building construction: A case study in 

Hong Kong. Building and Environment, 142, pp.171-179. Baldwin, J.W., 

Dessy, J.B., Vecchi, G.A. and Oppenheimer, M., 2019. Temporally 

compound heat wave events and global warming: An emerging hazard. 

Earth's Future, 7(4), pp.411-427. 

37. International Energy Agency, “India Energy Outlook 2021” (Paris: 

International Energy Agency, 2021) https://www.iea.org/reports/india-

energy-outlook-2021. 

38. IPCC (2014) Summary for policymakers In: Field CB et al (eds) Climate 

Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and 

Sectoral Aspects. Contribution of Working Group II to the Fifth 

Assessment Report of the Intergovernmental Panel on Climate Change, 

Cambridge University Press, Cambridge, and New York, pp 1–32 



35 
 

39. Irannezhad, M., Marttila, H. and Kløve, B., 2014. Long‐term variations and 

trends in precipitation in Finland. International Journal of Climatology, 

34(10), pp.3139-3153.  

40. Jagarnath, M., Thambiran, T. and Gebreslasie, M., 2020. Heat stress risk 

and vulnerability under climate change in Durban metropolitan, South 

Africa—identifying urban planning priorities for adaptation. Climatic 

Change, 163(2), pp.807-829. 

41. Jaiswal, R.K., Lohani, A.K. and Tiwari, H.L., 2015. Statistical analysis for 

change detection and trend assessment in climatological parameters. 

Environmental Processes, 2(4), pp.729-749. 

42. Kadioglu, M. and Şen, Z., 1999. Degree-day formulations and application 

in Turkey. Journal of Applied Meteorology, 38(6), pp.837-846. 

43. Kazmierczak, A. and Cavan, G., 2011. Surface water flooding risk to urban 

communities: Analysis of vulnerability, hazard and exposure. Landscape 

and Urban Planning, 103(2), pp.185-197.  

44. Kendall, M., 1975. Rank correlation measures. Charles Griffin, London, 

202, 15. 

45. Khosla, R., Agarwal, A., Sircar, N. and Chatterjee, D., 2021. The what, 

why, and how of changing cooling energy consumption in India’s urban 

households. Environmental Research Letters, 16(4), p.044035. 



36 
 

46. Kumar, P. and Sarthi, P.P., 2019. Surface temperature evaluation and 

future projections over India using CMIP5 models. Pure and Applied 

Geophysics, 176(11), pp.5177-5201. 

47. Kumar, R., Rachunok, B., Maia-Silva, D. and Nateghi, R., 2020. 

Asymmetrical response of California electricity demand to summer-time 

temperature variation. Scientific reports, 10(1), pp.1-9. 

48. Kumar, Rohini, and Vimal Mishra. "Increase in population exposure due 

to dry and wet extremes in India under a warming climate." Earth's Future 

8, no. 12 (2020): e2020EF001731. 

49. Lee, K., Baek, H.J. and Cho, C., 2014. The estimation of base temperature 

for heating and cooling degree-days for South Korea. Journal of applied 

meteorology and climatology, 53(2), pp.300-309.  

50. Lipson, M.J., Thatcher, M., Hart, M.A. and Pitman, A., 2019. Climate 

change impact on energy demand in building-urban-atmosphere 

simulations through the 21st century. Environmental Research Letters, 

14(12), p.125014. 

51. Liu, Z., Mehran, A., Phillips, T.J. and AghaKouchak, A., 2014. Seasonal 

and regional biases in CMIP5 precipitation simulations. Climate Research, 

60(1), pp.35-50. 

52. Lohmann, U., Stier, P., Hoose, C., Ferrachat, S., Kloster, S., Roeckner, E. 

and Zhang, J., 2007. Cloud microphysics and aerosol indirect effects in the 



37 
 

global climate model ECHAM5-HAM. Atmospheric Chemistry and 

Physics, 7(13), pp.3425-3446. 

53. Maia-Silva, D., Kumar, R. and Nateghi, R., 2020. The critical role of 

humidity in modeling summer electricity demand across the United States. 

Nature communications, 11(1), pp.1-8. 

54. Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., 

Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R. and 

Connors, S., 2018. Global warming of 1.5 C. An IPCC Special Report on 

the impacts of global warming of, 1(5). 

55. Mc Intyre GN, Kliewer WM, Lider LA. 1987. Some limitations of the 

degree day system as used in viticulture in California. Am. J. Enol. Vitic. 

38(2): 128– 132. 

56. Mishra, V., Tiwari, A.D., Aadhar, S., Shah, R., Xiao, M., Pai, D.S. and 

Lettenmaier, D., 2019. Drought and famine in India, 1870–2016. 

Geophysical Research Letters, 46(4), pp.2075-2083. 

57. Morakinyo, T.E., Ren, C., Shi, Y., Lau, K.K.L., Tong, H.W., Choy, C.W. 

and Ng, E., 2019. Estimates of the impact of extreme heat events on cooling 

energy demand in Hong Kong. Renewable Energy, 142, pp.73-84. 

58. Moral-Carcedo J, Vicens-Otero J. 2005. Modelling the non-linear response 

of Spanish electricity demand to temperature variations. Energy Econ. 

27(3): 477– 494. 



38 
 

59. Ministry of Statistics and Programme Implementation Government of 

India (MoSPI) 2020, Energy Statistics 2020; 

https://www.niua.org/csc/assets/pdf/key-documents/phase-2/Energy-

Green-Building/Energy-Statistics-2020.pdf  

60. Murakami, D. and Yamagata, Y., 2019. Estimation of gridded population 

and GDP scenarios with spatially explicit statistical downscaling. 

Sustainability, 11(7), p.2106. 

61. Nerini, F.F., Tomei, J., To, L.S., Bisaga, I., Parikh, P., Black, M., Borrion, 

A., Spataru, C., Broto, V.C., Anandarajah, G. and Milligan, B., 2018. 

Mapping synergies and trade-offs between energy and the Sustainable 

Development Goals. Nature Energy, 3(1), pp.10-15.  

62. Olivier, J.G., Peters, J.A. and Janssens-Maenhout, G., 2013. Trends in 

global CO2 emissions. 2013 report. Available online at: 

https://www.pbl.nl/sites/default/files/downloads/pbl-2013-trends-in-

global-co2-emissions-2013-report-1148_0.pdf  

63. O’Neill, B.C., Kriegler, E., Riahi, K., Ebi, K.L., Hallegatte, S., Carter, 

T.R., Mathur, R. and van Vuuren, D.P., 2014. A new scenario framework 

for climate change research: the concept of shared socioeconomic 

pathways. Climatic change, 122(3), pp.387-400. 

64. Petri, Y. and Caldeira, K., 2015. Impacts of global warming on residential 

heating and cooling degree-days in the United States. Scientific reports, 

5(1), pp.1-14. 

https://www.niua.org/csc/assets/pdf/key-documents/phase-2/Energy-Green-Building/Energy-Statistics-2020.pdf
https://www.niua.org/csc/assets/pdf/key-documents/phase-2/Energy-Green-Building/Energy-Statistics-2020.pdf
https://www.pbl.nl/sites/default/files/downloads/pbl-2013-trends-in-global-co2-emissions-2013-report-1148_0.pdf
https://www.pbl.nl/sites/default/files/downloads/pbl-2013-trends-in-global-co2-emissions-2013-report-1148_0.pdf


39 
 

65. Pettitt, A.N., 1979. A non‐parametric approach to the change‐point 

problem. Journal of the Royal Statistical Society: Series C (Applied 

Statistics), 28(2), pp.126-135. 

66. Philip, D. and Rayhan, M.I., 2004. Vulnerability and Poverty: What are the 

causes and how are they related. ZEF Bonn, center for Development 

Research, University of Bonn. 

67. Prabnakorn, S., Maskey, S., Suryadi, F.X. and de Fraiture, C., 2019. 

Assessment of drought hazard, exposure, vulnerability, and risk for rice 

cultivation in the Mun River Basin in Thailand. Natural Hazards, 97(2), 

pp.891-911.  

68. Quayle, R.G. and Diaz, H.F., 1980. Heating degree day data applied to 

residential heating energy consumption. Journal of Applied Meteorology 

and Climatology, 19(3), pp.241-246. 

69. Ramon, D., Allacker, K., De Troyer, F., Wouters, H. and van Lipzig, N.P., 

2020. Future heating and cooling degree days for Belgium under a high-

end climate change scenario. Energy and Buildings, 216, p.109935. 

70. Rastogi, D., Lehner, F., Kuruganti, T., Evans, K.J., Kurte, K.R., and 

Sanyal, J., 2021. The role of humidity in determining future electricity 

demand in the southeastern United States. Environmental Research Letters. 

71. Reverter, M., Sarter, S., Caruso, D., Avarre, J.C., Combe, M., Pepey, E., 

Pouyaud, L., Vega-Heredía, S., De Verdal, H. and Gozlan, R.E., 2020. 



40 
 

Aquaculture at the crossroads of global warming and antimicrobial 

resistance. Nature communications, 11(1), pp.1-8.  

72. Riahi, K., Van Vuuren, D.P., Kriegler, E., Edmonds, J., O’neill, B.C., 

Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O. and Lutz, W., 

2017. The Shared Socioeconomic Pathways and their energy, land use, and 

greenhouse gas emissions implications: An overview. Global 

environmental change, 42, pp.153-168. 

73. Sailor, D.J. and Muñoz, J.R., 1997. Sensitivity of electricity and natural 

gas consumption to climate in the USA—Methodology and results for 

eight states. Energy, 22(10), pp.987-998. 

74. Sailor, D.J., 2011. A review of methods for estimating anthropogenic heat 

and moisture emissions in the urban environment. International journal of 

climatology, 31(2), pp.189-199.  

75. Sedai, A.K., Nepal, R. and Jamasb, T., 2021. Flickering lifelines: 

Electrification and household welfare in India. Energy Economics, 94, 

p.104975. 

76. Shanmugapriya, S., Premalatha, M., Rajkumar, S.R. and 

Thirunavukkarasu, I., 2011. Analysis of Colling Degree Days for 

Tiruchirappalli-A District In India. International Journal of Research and 

Reviews in Applied Sciences, 8(1), pp.44-56.  



41 
 

77. Shi, Y., Wang, G., Gao, X. and Xu, Y., 2018. Effects of climate and 

potential policy changes on heating degree days in current heating areas of 

China. Scientific reports, 8(1), pp.1-13. 

78. Sieck, K., Nam, C., Bouwer, L.M., Rechid, D. and Jacob, D., 2021. 

Weather extremes over Europe under 1.5 and 2.0° C global warming from 

HAPPI regional climate ensemble simulations. Earth System Dynamics, 

12(2), pp.457-468. 

79. Singh, R. and Kumar, R., 2019. Climate versus demographic controls on 

water availability across India at 1.5 C, 2.0 C and 3.0 C global warming 

levels. Global and planetary change, 177, pp.1-9. 

80. Sivak, M., 2008. Where to live in the United States: combined energy 

demand for heating and cooling in the 50 largest metropolitan areas. Cities, 

25(6), pp.396-398. 

81. Sneyers, R., 1991. On the statistical analysis of series of observations (No. 

143). 

82. Spinoni, J., Vogt, J.V., Barbosa, P., Dosio, A., McCormick, N., Bigano, A. 

and Füssel, H.M., 2018. Changes of heating and cooling degree‐days in 

Europe from 1981 to 2100. International Journal of Climatology, 38, 

pp.e191-e208. 

83. Thom, E.C., 1959. The discomfort index. Weatherwise, 12(2), pp.57-61. 

84. Thom, H.C.S., 1952. Seasonal degree-day statistics for the United States. 

Monthly Weather Review, 80(9), pp.143-147. 



42 
 

85. Ukey, R. and Rai, A.C., 2021. Impact of Global Warming on Heating and 

Cooling Degree Days in Major Indian Cities. Energy and Buildings, 

p.111050. 

86. UNFCCC. Intended National Determined Contributions (INDC) 

Submissions. United Nations Framework Convention on Climate Change, 

individual country’s INDC can be found at the following website: 

https://www4.unfccc.int/Submissions/INDC/; 2015. 

87. UNISDR. Words into Action Guidelines,2017. National Disaster Risk 

Assessment. Governance System, Methodologies, and Use of Results. 

(United Nations Office for Disaster Risk Reduction, Geneva, Switzerland.  

88. Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., 

Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.F. and Masui, 

T., 2011. The representative concentration pathways: an overview. 

Climatic change, 109(1), pp.5-31. 

89. Vautard, R., Gobiet, A., Sobolowski, S., Kjellström, E., Stegehuis, A., 

Watkiss, P., Mendlik, T., Landgren, O., Nikulin, G., Teichmann, C. and 

Jacob, D., 2014. The European climate under a 2° C global warming. 

Environmental Research Letters, 9(3), p.034006. 

90. Verstraeten, G., Poesen, J., Demarée, G. and Salles, C., 2006. Long‐term 

(105 years) variability in rain erosivity as derived from 10‐min rainfall 

depth data for Ukkel (Brussels, Belgium): Implications for assessing soil 

erosion rates. Journal of Geophysical Research: Atmospheres, 111(D22). 



43 
 

91. Wang XM, Chen D, Ren ZG. 2010. Assessment of climate change impact 

on residential building heating and cooling energy requirement in 

Australia. Build. Environ. 45: 1663– 1682. 

92. Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O. and 

Schewe, J., 2014. The inter-sectoral impact model intercomparison project 

(ISI–MIP): project framework. Proceedings of the National Academy of 

Sciences, 111(9), pp.3228-3232.  

93. Yaduvanshi, A., Bendapudi, R., Nkemelang, T. and New, M., 2021. 

Temperature and rainfall extremes change under current and future . global 

warming levels across Indian climate zones. Weather and Climate 

Extremes, 31, p.100291. 

94. Yildiz, I. and Sosaoglu, B., 2007. Spatial distributions of heating, cooling, 

and industrial degree-days in Turkey. Theoretical and Applied 

Climatology, 90(3), pp.249-261 

95. Zhang, C., Kazanci, O.B., Levinson, R., Heiselberg, P., Olesen, B.W., 

Chiesa, G., Sodagar, B., Ai, Z., Selkowitz, S., Zinzi, M. and Mahdavi, A., 

2021. Resilient cooling strategies–A critical review and qualitative 

assessment. Energy and Buildings, 251, p.111312. 

96. Zhang, W., Zhou, T., Zhang, L. and Zou, L., 2019. Future intensification 

of the water cycle with an enhanced annual cycle over global land monsoon 

regions. Journal of Climate, 32(17), pp.5437-5452. 



44 
 

97. Zhao, D., Aili, A., Yin, X., Tan, G. and Yang, R., 2019. Roof-integrated 

radiative air-cooling system to achieve cooler attic for building energy 

saving. Energy and Buildings, 203, p.109453.  

98. Zhu, B., Su, B. and Li, Y., 2018. Input-output and structural decomposition 

analysis of India’s carbon emissions and intensity, 2007/08–2013/14. 

Applied Energy, 230, pp.1545-1556.  


