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Highlights 1 

• Deep learning models predict solute descriptors of LSERs 2 

• Singletask models are better compared to multitask models due to the small dataset 3 

• Data augmentation strategies based on tautomers improve the training of DNNs 4 

Abstract 5 

Experimental solute descriptors for about 8,000 chemicals are currently available to apply 6 

physicochemical property predictions based on linear solvation energy relationship (LSER) 7 

models. The solute descriptors can be predicted by fragmental-based quantitative structure-8 

property relationship (QSPR) models. However, the predictions are problematic for larger 9 

chemical structures, including multiple functional groups. We developed deep neural networks 10 

(DNNs) as alternative prediction models based on graph representations of the chemicals. The 11 

root mean square errors rmses range between 0.11 and 0.46 for the different solute descriptors. 12 

The predictions of the solute descriptors were compared to predictions from the QSPR of 13 

LSERD (an online database) and ACD/Absolv (a commercial software). We further 14 

investigated the predictive power of all tools based on three different datasets of experimentally 15 

determined partition coefficients, namely the octanol-water partition coefficient (Kow), the 16 

octanol-air partition coefficient (Koa), and the water-air partition coefficient (Kwa). Additionally, 17 

we used two different sets of retention data for GC and LC to evaluate the results of all 18 

prediction tools. All prediction tools perform comparably well with rmses of ~ 1.0 log unit for 19 

the Kow dataset (12010 chemicals) and ~ 1.3 log units for the Kwa dataset (696 chemicals), for 20 

example. Nevertheless, larger chemical structures are predicted poorly by each approach. We 21 

recommend to use the novel DNN model as a complementary prediction tool. 22 
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1. Introduction 32 

Researchers in environmental science and experts in chemical risk assessment need reliable 33 

predictions of physicochemical properties. Often they predict partition coefficients like the 34 

octanol-water partition coefficient (Kow) and octanol-air partition coefficient (Koa) and apply it 35 

to characterize the bioaccumulation potential of chemicals[1, 2]. Other frequently used partition 36 

coefficients are the water-air partition coefficient (Kwa)[2, 3] and the organic carbon-water 37 

partition coefficient (Koc)[4], both describing the behavior of chemicals in the environment. 38 

Several partition coefficients for biocompartments explain enrichment of chemicals in specific 39 

tissues or organs in an organism[5, 6]. In each case, reliable results are only achieved by 40 

experimental values or precise predictions of the respective partition coefficients. An often 41 

applied mechanistic approach for the predictions of these partition coefficients are linear 42 

solvation energy relationship (LSER) models (Eq. (1), (2), and (3))[7, 8]. 43 

SP = c + eE + sS + aA + bB + vV         (1) 44 



SP = c + eE + sS + aA + bB + lL         (2) 45 

SP = c + sS + aA + bB + vV + lL         (3) 46 

In eq. (1), (2), and (3) the solute property SP is defined by five different terms and a system 47 

constant c. Each term consists of an upper case letter defining the molecular interactions of the 48 

solute, and a lower case letter defining the molecular interactions of the surrounding phase 49 

system. The eE term includes the excess molar refraction E and van der Waals interactions of 50 

the two-phase system, sS includes polarizability and dipolarity in both cases. The aA term and 51 

bB term describe hydrogen bond interactions, namely the hydrogen bond acidity A and the 52 

hydrogen bond basicity B, and vice versa for the phase parameters. In the vV term the McGowan 53 

characteristic volume V and the cavity formation v are depicted. And the lL term includes the 54 

logarithmic hexadecane-air partition coefficient L and dispersion and cavity formation 55 

interactions l. 56 

Eq. (1) describes condensed phase systems, whereas eq. (2) defines systems including air as 57 

one phase and a condensed phase as a second one. Eq. (3) is applicable for both systems[7]. 58 

However, the LSER approach is only valid for neutral chemicals. Some attempts have been 59 

made to adapt the equations to ionic chemicals by adding a j+J+ and j-J- term for cations and 60 

anions, respectively. The application domain is, nevertheless, rather small including only a few 61 

classes of chemicals[9]. 62 

LSER models are often applied to predict environmentally relevant partition coefficients for 63 

chemicals such as Kwa[10, 11] or Kow[10, 12]. Further, they describe the sorption of chemicals 64 

to carbonaceous sorbents such as humic acids[13, 14]. The sorption to passive sampling 65 

materials[15, 16], which are commonly used for environmental analysis of aqueous samples 66 

e.g., is also predicted by the use of the LSER models. LSERs also depict the biopartitioning of 67 

chemicals[6], which includes the description of the sorption to proteins[17, 18] and lipids[19, 68 

20] in an organism. There are many other partitioning processes of chemicals which are 69 

described by the equations, for example retention behavior in chromatography[21, 22] or 70 

adsorption processes to surfaces[23, 24]. 71 

Currently, experimentally determined solute descriptors are available for about 8,000 72 

chemicals. But these days, the Chemical Abstracts Service (CAS) includes more than 182 73 

million registered chemicals[25]. This means that the solute descriptors cover only a small 74 

range of chemicals in the chemical universe. It is not feasible to determine these descriptors for 75 

each chemical individually when applying the respective property predictions. Thus, methods 76 



for precise predictions of solute descriptors are needed. A QSPR (fragmental approach) for the 77 

prediction of solute descriptors is available at the free online platform LSERD[24]. And a 78 

similar prediction tool is included in the commercial software ACD Percepta (Absolv)[26]. 79 

Both prediction tools deliver valuable results for simple chemical structures including one 80 

functional group. But predictions for complex chemical structures with multiple functionalities 81 

are more erroneous. 82 

Here, we develop a deep neural network (DNN) to predict solute descriptors. Compared to the 83 

QSPR predictions, DNN models may offer the opportunity to overcome the problems in the 84 

prediction of solute descriptors for chemicals with multiple functional groups. DNN models 85 

have already been successfully applied to predict physicochemical properties[27-29]. They 86 

further act as fast alternatives to classical quantum-chemistry based methods[30] with 87 

comparable predictive performance, for example on the QM9 dataset [27, 31, 32]. Thus, our 88 

aim is to develop DNN models for the precise prediction of solute descriptors, and to verify if 89 

their performance is better in comparison to existing QSPR approaches. Further, our aim is to 90 

check whether these models can overcome current problems with predicted solute descriptors. 91 

We test their applicability in the prediction of partition coefficients especially for chemicals 92 

with large and complex structures. 93 

 94 

2. Methods 95 

 96 

2.1 Curation of the initial dataset  97 

The DNN models were developed based on the Abraham Absolv dataset[24]. The dataset 98 

consists of 7,881 chemicals. We only focused on chemicals with more than one descriptor being 99 

available and selected the S descriptor as marker (see SI 1). We skipped all chemicals without 100 

S descriptor, which reduced the dataset to 7241 chemicals. We then excluded metals and 101 

organometallics as well as gases like argon, nitrogen, and methane and started with the 102 

identification of potential errors in the dataset. The identifiers of the chemicals in the database 103 

were already curated. Thus, our focus was on the experimentally determined solute descriptors. 104 

We developed pre-DNNs to identify potential erroneous solute descriptors by the appearance 105 

of outliers. For each outlier, we checked the original solver file (if available). The solver file 106 

includes all partition coefficients and solubility data which were used initially by M. Abraham 107 

to determine the solute descriptors of the respective chemical. The solver files were provided 108 



by M. Abraham (personal communication). We identified several problems in the solver files 109 

and excluded these chemicals from the dataset. Errors that lead to exclusion are: A) only two 110 

partition coefficients are used to determine the solute descriptors, B) the chemical was ionized, 111 

C) calculated partition coefficients were used to determine the solute descriptors. We did not 112 

exclude outliers where the corresponding solver files were not available. We used JChem for 113 

Excel v. 20.6.0.618[33] for the generation of tautomeric forms based on the SMILES 114 

representation and for the calculation of pKa and pKb values. Details are given in the Table 115 

Dataset_and_predictions.xlsx in the GIT repository. 116 

 117 

2.2 Technical details and development of DNN models  118 

The models were trained using a Tuxedo book (Intel core i7, 64 GB RAM) with an NVIDIA 119 

RTX2080 Max Q (8 GB). Feed-forward graph convolutional networks were developed using 120 

the DeepChem library v. 2.2[34, 35] and Tensorflow v. 1.14.0 in Python v. 3.5.6[36]. The full 121 

code for the DNN development is given at the GIT repository 122 

https://github.com/nadinulrich/solute_descriptor_prediction. For model development, we used 123 

the DeepChem library, which is available at https://github.com/deepchem/deepchem. We 124 

adapted and modified the code given in the library for the prediction of the solute descriptors. 125 

The graph generated from the SMILES is an initial feature vector with a corresponding neighbor 126 

list for each atom in the molecule. The information included are atom-type, hybridization type, 127 

and valence structure[27]. The singletask DNNs consist of an input layer followed by two 128 

hidden layers, including 16 and 32 neurons (each hidden layer included graph convolution, 129 

batch normalization and graph pool layer), and a dense layer with ReLU activation function. 130 

After the dense layer, a batch normalization was applied with a dropout of 0.1. In the output 131 

layer a tanh activation function was implemented. The training was performed for each solute 132 

descriptor over 80 epochs for the singletask DNN without applying data augmentation 133 

(DNNmono) and for the singletask DNNtaut where data augmentation was used. A batch size of 134 

50 was used in both cases, and the learning rate was set to 0.0001. The parameters stated here 135 

resulted from an optimization procedure where different DNNs (two-layer and three-layer 136 

structure with different number of neurons) and different learning rates were tested. The 137 

performance of the different DNN model structures is strongly dependent on the size of the 138 

training set itself. Our dataset is relatively small. Thus, DNN models with more layers and 139 

neurons tended to overfitting and performed worse compared to the two-layer net with a smaller 140 

number of neurons, see SI 2. The same structure of the DNN and learning rate were used for 141 

https://github.com/deepchem/deepchem


the multitask models. Only the number of epochs for training differed, with 150 epochs for the 142 

multitask DNNmono and 100 epochs for multitask DNNtaut. The rmses for the training set and 143 

validation set over epochs for the respectively best models are shown in SI 2. We randomly 144 

split 10% of our curated dataset as test set and further divided the remaining set into 80% 145 

training set and 20% validation set. The split was done for the S descriptor (which was the 146 

largest dataset). We kept the assignment of the chemicals for all descriptors, resulting in 147 

different numbers of the chemicals in each dataset (see Figure 1 and SI 1). 148 

 149 

Figure 1 Scheme of DNN model development. After data curation (first step), the dataset was 150 

split into training, validation, and test set. Training and validation set were used for DNN model 151 

development in the second step and for the optimization of the hyperparameters of the DNN 152 

models. Model evaluation was performed afterwards (third step) using the test set and additional 153 

datasets with experimental partition coefficients. 154 

3. Results and discussion 155 

3.1 DNN model development  156 

The curated dataset contained 6364 chemicals. Not all descriptor sets of these chemicals were 157 

complete. Thus, the number of chemicals included in the training of a particular solute 158 

descriptor differs (see SI 1). We developed two different types of deep learning models based 159 



on the respective datasets: singletask and multitask models. Singletask models are trained only 160 

for one variable (in our case one solute descriptor) and multitask models include various 161 

variables (in our case the set of all solute descriptors) in the training. The number of chemicals 162 

included in the development of multitask models is lower compared to all other models, because 163 

only complete datasets of solute descriptors could be used for multitask model development. 164 

We further applied data augmentation based on the generation of all tautomeric forms of a 165 

chemical as input to generate the graphs for the DNNs to improve the prediction outcomes of 166 

the models based on the relatively small chemical dataset. Thus, we developed four different 167 

models: singletask models with (DNNtaut) and without (DNNmono) data augmentation and 168 

multitask models with and without data augmentation. We optimized the hyperparameters for 169 

the training of the four different models, evaluating our optimization results based on the 170 

validation set. The root mean square errors rmses for the training of the models over epochs for 171 

the finally selected single- and multitask models are given in SI 2. Data augmentation, for 172 

example by the use of multiple SMILES strings for one molecule, increases dataset size and 173 

can thus improve model performance and robustness[37, 38]. 174 

3.2 Performance of the developed DNN models  175 

We used the test set as an independent set to compare the different models. The results for the 176 

predictions of the DNN models are given in Table 1 and SI 3. The multitask models performed 177 

worse than the singletask models for the E, S, A, and B descriptors. The rmse values for the L 178 

descriptor are lower for both multitask models. Since the solute descriptors are not entirely 179 

independent from each other and are determined as a complete descriptor set, we expected that 180 

multitask models would perform better compared to singletask models. But, only complete 181 

descriptor sets can be used for the training of multitask models. Thus, the number of chemicals 182 

in the training set was reduced to 3864 for the multitask DNN models. The reduction of the 183 

number of chemicals included in the training set for the multitask models is mainly caused by 184 

the L descriptor, which is only available for 4011 chemicals of the training set (compared to 185 

4582 chemicals where the S descriptor is available, e.g.). Thus, we would expect a positive 186 

impact on the rmse of the L descriptor using the multitask models compared to the singletask 187 

models, which is the case. At the same time, we see a negative impact for the other descriptors 188 

due to the substantial reduction of the number of chemicals in the training set. To confirm this, 189 

we also trained singletask models with the training set used for the multitask models (SI 3, 190 

Supplementary Table 1). The rmse values are in the same range or slightly better for the models 191 

trained on the reduced dataset of chemicals compared to the multitask models but still worse 192 



compared to the initial singletask models. Only for the L descriptor, the performance is worse 193 

which confirms our findings.  194 

DNNtaut and DNNmono perform equally well despite the increased dataset of DNNtaut due to data 195 

augmentation. The reason might be the well-curated dataset, which presumably already states 196 

the most likely tautomeric forms. One might suspect a bias in performance towards chemicals 197 

with several tautomeric forms for DNNtaut because these chemicals are overrepresented in its 198 

training. However, we detected no bias when analyzing the performance of chemicals with one 199 

and chemicals with multiple tautomers in the test set (SI 3, Supplementary Table 2). 200 

We further compared our results to two QSPR models for the prediction of solute descriptors: 201 

the QSPR of ACD/Absolv[26] and the QSPR of LSERD[24]. Both QSPR models are based on 202 

molecular fragment contributions, whereas ACD/Absolv is an optimized version of the group 203 

contribution approach by Platts et al.[39]. The group contribution approach of LSERD is an 204 

adapted version of the group contribution approach by T. N. Brown[40]. As can be seen from 205 

Table 1, the rmses of the singletask models for the solute descriptors are in the same range as 206 

the predictions based on the QSPR models from LSERD and ACD/Absolv. We performed a 207 

detailed analysis of the prediction error of the four different DNN models and the QSPR models 208 

(Figure 2). In general, the rmses of the solute descriptors depend on the range of values of each 209 

solute descriptor. For A, B, and E, the range is smaller than for the S and L descriptor. For 210 

chemicals with a larger number of non-hydrogen atoms NHA (>20), the corresponding rmse of 211 

the descriptor predictions is noticeably higher for all models (Figure 2A). The QSPR models 212 

predict the A descriptors more precisely since A is set to zero if no hydrogen bond acceptor is 213 

available in the structure, which is not the case for the DNN models. Thus, DNN models 214 

perform slightly worse. Nitrogen containing chemicals seem to be problematic for predicting A 215 

for all models (Figure 2B), but still, the errors are in a small range. Predictions of the B 216 

descriptor by the singletask DNN models and the QSPR/LSERD model are in a close range, 217 

and the QSPR model is slightly better for chemicals with NHA>25. Interestingly, DNNmono 218 

performs slightly better than DNNtaut. The QSPR ACD/Absolv performs slightly worse for 219 

oxygen containing chemicals. But, ACD/Absolv performs best in the prediction of the E 220 

descriptor. In fact, the E descriptor of the experimental datasets was often calculated using the 221 

ACD software. Thus, the performance of the QSPR ACD/Absolv should be better in this case. 222 

The QSPR LSERD is slightly worse in predicting the E descriptor of halogen containing 223 

chemicals. QSPR LSERD predicts negative E descriptors for polyfluorinated chemicals, 224 

resulting in larger prediction errors. The performance in predicting the L descriptor for 225 

chemicals with NHA >5 is also worse for QSPR LSERD. Rmse values of the predictions from 226 



QSPR LSERD are especially larger for oxygen and nitrogen containing chemicals and 227 

chemicals with various heteroatoms. While both QSPR models perform exceptionally well in 228 

predicting L for C, H containing, and halogen containing chemicals and worse for all other 229 

classes, the DNN models deliver stable prediction results for all classes of chemicals. For the S 230 

descriptor, QSPR LSERD performs worse than the other tools for oxygen and nitrogen 231 

containing chemicals and chemicals with various heteroatoms, while the singletask DNNs and 232 

QSPR ACD/Absolv are in a comparable range. Overall, there is no clear indication that one 233 

prediction tool delivers systematically better results on all descriptors than the other tools.  234 

Table 1 The root mean square error (rmse) and corresponding variance (sdev) are given for the 235 

predictions of the test set chemicals of the two different singletask DNNs (DNNmono and 236 

DNNtaut) and multitask DNNs compared to the QSPR model of LSERD and the QSPR model 237 

of ACD/Absolv. Note that the mean value and variance were estimated using bootstrapping 238 

according to Vorberg and Tetko[41].  239 

model 
number of 
chemicals 

in the test set 

singletask multitask LSERD ACD/Absolv 

DNNmono DNNtaut DNNmono DNNtaut QSPR 

solute 
descriptor  rmse sdev rmse sdev rmse sdev rmse sdev rmse sdev rmse sdev 

E 635 0.13 0.01 0.12 0.01 0.16 0.01 0.18 0.01 0.14 0.04 0.10 0.01 
S 636 0.21 0.01 0.22 0.01 0.24 0.01 0.26 0.01 0.28 0.02 0.23 0.01 
A 635 0.12 0.01 0.11 0.01 0.14 0.01 0.15 0.01 0.09 0.01 0.09 0.01 
B 607 0.13 0.01 0.14 0.01 0.18 0.01 0.19 0.01 0.13 0.01 0.16 0.01 
L 549 0.46 0.03 0.42 0.02 0.36 0.01 0.38 0.02 0.52 0.04 0.44 0.03 

 240 

 241 



 242 

Figure 2 Prediction errors for different groups of chemicals of the test set of the four DNN 243 

models and the two QSPR models. Rmse values are calculated for different groups of chemicals. 244 

Groups are generated based on the composition of the chemicals: A) chemicals grouped 245 

according to the number of non-hydrogen atoms NHA B) chemicals grouped according to 246 

different heteroatoms in the molecule.  247 

Since both QSPR models are trained on the Abraham Absolv dataset, we cannot be sure that 248 

the respective chemicals in our test set were not partially or fully included in the training of the 249 

two QSPR models and the partial better performance in descriptor prediction is evoked by this. 250 

We therefore used different datasets of experimental partition coefficients and retention 251 

parameters for a further evaluation of our models and comparison to the two QSPR models 252 

(Table 2, SI 4). We selected five independent datasets, three of these are datasets of partition 253 

coefficients, namely the Kow, Kwa, and Koa. The datasets are taken from Mansouri et al.[42], who 254 

curated the datasets with respect to the chemical identifier. The Kow dataset was further curated 255 

in a prior study concerning errors in the experimentally determined Kow values[38]. 256 

Additionally, we used retention data for liquid chromatography (LC) and gas chromatography 257 

(GC), both measured in solvent and temperature gradient mode, respectively. LC data are given 258 



as CHI values (chromatographic hydrophobicity index)[22], GC data are provided as Kováts 259 

retention indices KRI[43]. 260 

It can be seen that the DNNtaut performs equally well as the DNNmono. Again, the singletask 261 

DNN models perform better than the multitask DNN models. The predictions made by the 262 

QSPR models are in a similar range when comparing the rmse values. In some cases, like the 263 

log Kwa or the CHI, for example, the QSPR model of LSERD performs better, and in other 264 

cases, the QSPR model of ACD/Absolv is better (e.g., log Koa). However, the results do not 265 

indicate which model is the best choice for descriptor predictions.  266 

 267 

Table 2 The root mean square error (rmse) and corresponding variance (sdev) are given for the 268 

predictions of partition coefficients and retention data based on LSER equations of the different 269 

DNNs compared to the QSPR model of LSERD and the QSPR model of ACD/Absolv. Note 270 

that the units of Kow, Koa, and Kwa are [Lwater/Loctanol], [Lair/Loctanol], and [Lair/Lwater], respectively. 271 

Kwa values were originally given as HL values (air-water, [m³ atm/mole]) and converted 272 

according to Sander[44]. Note that the mean value and variance were estimated using 273 

bootstrapping according to Vorberg and Tetko[41]. 274 

dataset model DNNmono DNNtaut QSPR LSERD QSPR ACD 

 no. 

chemicals 

rmse sdev rmse sdev rmse sdev rmse sdev 

log Kow 

Eq. (1) 
12010 1.01 0.02 1.04 0.02 0.91 0.01 0.87 0.01 

log Kow 

Eq. (3) 
12010 0.86 0.01 0.89 0.01 1.11 0.01 0.90 0.01 

log Koa 

Eq. (1) 
270 0.60 0.04 0.63 0.05 0.49 0.07 0.59 0.07 

log Koa 

Eq. (3) 
270 0.59 0.04 0.61 0.05 0.50 0.08 0.59 0.07 

log Kwa 

Eq. (1)  
696 1.46 0.07 1.36 0.08 1.28 0.07 1.39 0.09 

log Kwa 

Eq. (3) 
696 1.36 0.05 1.24 0.07 1.20 0.07 1.34 0.12 

KRI 454 127 7 129 7 104 10 120 7 

CHI 204 4.58 0.29 4.49 0.29 5.52 0.55 3.19 0.14 

 275 

3.3 Restrictions in the application of the models  276 



We decided to have a closer look at the details of the predictions. First, we determined the NHA 277 

of the chemicals represented in the different datasets for descriptor prediction and the prediction 278 

of partition coefficients and chromatographic indices. We grouped the chemicals in the different 279 

datasets according to their NHA and determined the respective rmse values for specific NHA 280 

ranges. The results can be seen in Figure 3 for the predictions of the log Kow and in SI 5 and 6 281 

for the other datasets. Again, the rmse values increase for higher NHA. But still, there is no 282 

clear indication for one model performing better compared to the other tools. QSPR LSERD, 283 

e.g., performs best in predicting the KRI of chemicals with NHA >25 but performs worst in the 284 

prediction of CHI. For the log Kow dataset, the DNN and QSPR models do not differ in their 285 

performance for chemicals with NHA lower than 25. 286 

 287 

Figure 3 Rmses of the log Kow predictions based on the different DNN approaches and QSPR 288 

depending on (A) the number of non-hydrogen atoms NHA and (B) the composition of the 289 



molecule. The log Kow is predicted based on two different LSER equations (1 – left heat map, 290 

2 – right heat map). The respective ranges in the heat maps are given independently for (A) and 291 

(B). The heat maps of the other datasets are shown in SI 5 and 6. 292 

The reason for the larger rmses for chemicals with larger NHA is the Absolv dataset of 293 

experimental solute descriptors itself. Most of the chemicals included in this dataset are small 294 

chemicals with no or only one functional group and smaller NHAs (SI 7). As a result, DNN and 295 

QSPR models, both trained on the Absolv dataset, have a limited application domain. As can 296 

be seen in SI 7 (Figure S30), many chemicals of the external datasets lie well beyond this 297 

application range. 298 

The fragmental-based approaches of the QSPR models partially cover chemicals with NHA 299 

greater than 25. They perform, therefore, slightly better than the DNN models. Nevertheless, 300 

all the models should be used with care when applying them for chemicals with NHA greater 301 

than 25.  302 

Again, there is no clear trend in the rmse values when the chemicals are grouped according to 303 

different atom types in the molecules. For the log Koa and log Kwa, e.g., predicting partition 304 

coefficients for chemicals with various heteroatoms (which means multiple functional groups) 305 

is problematic. The DNN models show problems for the prediction of log Kow for oxygen 306 

containing chemicals. And QSPR LSERD shows larger rmse values on the predictions of the 307 

CHI dataset. There is no clear indication of which model should be used for predictions in 308 

general.  309 

Thus, we recommend applying different prediction tools (if available), like a direct prediction 310 

of the log Kow by a DNN approach[38], to reduce the prediction error. An extension of the 311 

Absolv dataset for chemicals with NHA greater than 25 is problematic from our perspective. 312 

Some of these chemicals are extremely hydrophobic chemicals, which are problematic in 313 

experimental setups for descriptor determination. Another problem is that these larger 314 

molecules often are chemicals with multifunctional groups, for which the measurement and the 315 

prediction of the pKas can be extremely erroneous. As a consequence the chemical might not 316 

be present in its neutral form during the measurement, but as an ion. The classical LSER 317 

approach cannot cover ionic chemicals.  318 

4. Conclusions 319 

In general, the error based on the LSER prediction models is relatively high, with an overall 320 

rmse of ~ 1 log unit (according to our selected datasets). The error results from errors in the 321 



prediction of each solute descriptor itself and the error of the LSER equations. DNN models 322 

are complementary prediction methods that overcome problems of the group contribution 323 

approaches such as predicting negative E descriptors for fluorinated chemicals. They, therefore, 324 

offer an independent prediction of the descriptors and partition coefficients. For chemicals with 325 

large NHA and multiple functionalities, users should be aware that the prediction error might 326 

be significant (independent of the tool used). The novel prediction methods do not solve these 327 

problems since the limitation is given by the available experimental dataset of the descriptors. 328 

If within their application domain, LSER models are nevertheless helpful for the prediction of 329 

partition coefficients especially where no other tools are available. 330 

Appendix A 331 

Supporting Information 332 

The supporting information is available free of charge at https:// 333 

Additional information on the dataset, DNN model development, performance of DNNs and 334 

QSPR models. (PDF) 335 
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SI 1 Dataset for DNN model development 
 

We did a preselection of the solute descriptors implemented in our study. We used the S 
descriptor for selection, because we believe it to be the most reliable descriptor. The solute 
descriptor L is often missing and cannot be used as criteria; the B descriptor cannot be 
determined by gas chromatography experiments, which are commonly used for the 
determination of solute descriptors. Thus, we cannot refer to this descriptor; the solute 
descriptor E is often calculated from molar refraction and not determined experimentally; and 
the A descriptor can be set to 0 in some cases (if no H-bond donors are available in a specific 
structure of a chemical) without any underlying experiments.  

 

Supplementary Table 1 Number of chemicals in training set, validation set, and test set. Note that the 
split of the dataset was performed for the S descriptor. 10% of the chemicals were assigned to the test 
set beforehand, the remaining chemicals were split 80/20 into training set and validation set. Due to 
missing descriptors in datasets of chemicals, the number of chemicals in each set of a descriptor varies. 
The dataset including all descriptors for the training of the multitask model contains less chemicals. In 
this case, only complete sets of solute descriptors are included. 

solute descriptor training set validation set test set 
E 4568 1144 635 
S 4582 1146 636 
A 4580 1144 635 
B 4396 1108 607 
L 4011 1012 549 
all (multitask) 3864 986 singletask test sets used 
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SI 2 Details on the development of the DNN models for the prediction 
of solute descriptors 
 

We tested different structures of neural networks with two and three layers and varied the 
number of neurons in the different layers as well as the learning rate. We used the rmse of 
the validation set to check which net is best performing. To choose the best performing 
parameters, we searched for the lowest validation rmses while avoiding overfitting and 
unstable models. If the model had a too high capacity, see Supplementary Figure 1a for the 
training curves of a three layer model, or if the learning rate was chosen too high, see 
Supplementary Figure 1b for a fivefold increased learning rate, the model became unstable. 
We plotted the rmse values of the training and the validation set over the epochs (see 
Supplementary Figure 1 - 4) and stopped training at the point where the validation set rmse 
no longer decreased significantly. Further training at that point would lead to overfitting, 
increasing the gap between training and validation rmse.  

 

 

 

Supplementary Figure 1 Training set and validation set rmses are given over the number of 
epochs as examples for unstable models. Training was performed using the canonical SMILES 
as input for graph generation in the singletask DNN models for the L descriptor for a high 
capacity net with three layers (a) and a net with a learning rate chosen too high (b). 

 

 

 



4 
 

 

Supplementary Figure 2 Training set and validation set rmses are given for each descriptor over 
the number of epochs. Training was performed using the canonical SMILES as input for graph 
generation in the singletask DNN models. 
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Supplementary Figure 3 Training set and validation set rmses are given for each descriptor over the 
number of epochs. Training was performed using all SMILES variants (including tautomers) as input for 
graph generation in the singletask DNN models. 
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Supplementary Figure 4 Training set and validation set rmses are given for each descriptor over the 
number of epochs. Training was performed using the canonical SMILES as input for graph generation 
in the multitask DNN models. 
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Supplementary Figure 5 Training set and validation set rmses are given for each descriptor over the 
number of epochs. Training was performed using all SMILES variants (including tautomers) as input for 
graph generation in the multitask DNN models. 
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SI 3 Solute descriptor prediction by the singletask and multitask DNN models 
 

Supplementary Table 1 Rmses for the predictions of the test set chemicals of the different DNNs. Additionally singletask DNNs are trained based on the multitask 
training dataset. Note that the mean value and variance were estimated using bootstrapping according to Vorberg and Tetko1. 

model number of chemicals 
in the test set 

singletask multitask singletask (trained on 
multitask dataset) 

DNNmono DNNtaut DNNmono DNNtaut DNNmono DNNtaut 
solute descriptor  rmse sdev rmse sdev rmse sdev rmse sdev rmse sdev rmse sdev 

E 635 0.13 0.01 0.12 0.01 0.16 0.01 0.18 0.01 0.13 0.01 0.15 0.01 
S 636 0.21 0.01 0.22 0.01 0.24 0.01 0.26 0.01 0.22 0.01 0.23 0.01 
A 635 0.12 0.01 0.11 0.01 0.14 0.01 0.15 0.01 0.11 0.01 0.3 0.01 
B 607 0.13 0.01 0.14 0.01 0.18 0.01 0.19 0.01 0.14 0.01 0.15 0.01 
L 549 0.46 0.03 0.42 0.02 0.36 0.01 0.38 0.02 0.45 0.03 0.51 0.04 
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Supplementary Table 2 Rmses for the predictions of the test set chemicals of the different DNNs compared to the QSPR model of LSERD and the QSPR model of 
ACD/Absolv, for compounds with only one and for compounds with more than one tautomeric form (tautomer count predicted using JChem). Note that the mean 
value and variance were estimated using bootstrapping according to Vorberg and Tetko1. 

model tautomer 
count 

number of 
chemicals 
in the test 

set 

singletask multitask LSERD ACD/Absolv 

DNNmono DNNtaut DNNmono DNNtaut QSPR 

solute 
descriptor 

  rmse sdev rmse sdev rmse sdev rmse sdev rmse sdev rmse sdev 

E  > 1 177 0.13 0.01 0.13 0.02 0.17 0.01 0.17 0.01 0.11 0.01 0.10 0.01 
E 1 458 0.13 0.01 0.12 0.01 0.16 0.01 0.18 0.02 0.15 0.05 0.10 0.01 
S  > 1 177 0.23 0.02 0.26 0.02 0.31 0.03 0.31 0.03 0.32 0.03 0.28 0.02 
S 1 459 0.20 0.01 0.21 0.01 0.20 0.01 0.23 0.01 0.26 0.02 0.21 0.01 
A  > 1 177 0.16 0.01 0.14 0.01 0.19 0.01 0.20 0.01 0.12 0.01 0.11 0.01 
A 1 458 0.09 0.01 0.09 0.01 0.11 0.01 0.12 0.01 0.08 0.01 0.07 0.01 
B   >1 175 0.15 0.01 0.15 0.01 0.20 0.01 0.20 0.01 0.15 0.01 0.10 0.01 
B 1 432 0.12 0.01 0.14 0.01 0.17 0.01 0.18 0.01 0.12 0.01 0.16 0.01 
L   >1 139 0.54 0.05 0.45 0.06 0.44 0.03 0.43 0.03 0.73 0.05 0.62 0.07 
L 1 410 0.43 0.03 0.40 0.02 0.34 0.02 0.36 0.02 0.42 0.06 0.36 0.02 
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Supplementary Figure 6 Predictions of the solute descriptors E (a), S (b), A (c), B (d), and L (e) for the 
test set by the singletask model DNNmono.  
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Supplementary Figure 7 Predictions of the solute descriptors E (a), S (b), A (c), B (d), and L (e) for the 
test set by the singletask model DNNtaut.  
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Supplementary Figure 8 Predictions of the solute descriptors E (a), S (b), A (c), B (d), and L (e) for the 
test set by the multitask model DNNmono.  
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Supplementary Figure 9 Predictions of the solute descriptors E (a), S (b), A (c), B (d), and L (e) for the 
test set by the multitask model DNNtaut.  
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Supplementary Figure 10 Predictions of the solute descriptors E (a), S (b), A (c), B (d), and L (e) for the 
test set by the QSPR of LSERD.  

 



15 
 

 

Supplementary Figure 11 Predictions of the solute descriptors E (a), S (b), A (c), B (d), and L (e) for the 
test set by the QSPR of ACD/Absolv.  
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Supplementary Figure 12 Comparison of the rmses for the solute descriptors E (a), A (b), B (c), S (d), 
and L (e) of the test set of the four different prediction tools DNNmono, DNNtaut, QSPR from LSERD, and 
the QSPR ACD/Absolv. 
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SI 4 Prediction performance of the four DNN models and the two QSPR models for various datasets 
 

Supplementary Table 3 The root mean square error (rmse) and corresponding variance (sdev) are given for the predictions of partition coefficients and retention 
data based on LSER equations of the different DNNs compared to the QSPR model of LSERD and the QSPR model of ACD/Absolv. Note that the units of Kow, Koa, 
and Kwa are [Lwater/Loctanol], [Lair/Loctanol], and [Lair/Lwater], respectively. Kwa values were originally given as HL values (air-water, [m³ atm/mole]) and converted 
according to Sander2. Note that the mean value and variance were estimated using bootstrapping according to Vorberg and Tetko1. 

model number of chemicals 
in the test set 

singletask multitask LSERD ACD/Absolv 
DNNmono DNNtaut DNNmono DNNtaut QSPR 

dataset  rmse sdev rmse sdev rmse sdev rmse sdev rmse sdev rmse sdev 
log Kow Eq. (1) 12010 1.01 0.02 1.04 0.02 1.36 0.03 1.41 0.04 0.91 0.01 0.87 0.01 
log Kow Eq. (3) 12010 0.86 0.01 0.89 0.01 1.20 0.02 1.25 0.03 1.11 0.01 0.90 0.01 
log Koa Eq. (1) 270 0.60 0.04 0.63 0.05 0.63 0.05 0.68 0.05 0.49 0.07 0.59 0.07 
log Koa Eq. (3) 270 0.59 0.04 0.61 0.05 0.62 0.05 0.68 0.05 0.50 0.08 0.59 0.07 
log Kwa Eq. (1) 696 1.46 0.07 1.36 0.08 1.46 0.07 1.84 0.07 1.28 0.07 1.39 0.09 
log Kwa Eq. (3) 696 1.36 0.05 1.24 0.07 1.37 0.07 1.76 0.07 1.20 0.07 1.34 0.12 

KRI 454 127 7 129 7 131 7 134 8 104 10 120 7 
CHI 204 4.58 0.29 4.49 0.29 5.42 0.29 5.14 0.28 5.52 0.55 3.19 0.14 
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Supplementary Figure 13 Predictions of the partition coefficients log Koa (a), log Kow (b), log Kwa (c), and 
the retention indices KRI (GC) (d) and CHI (LC) (e) by the singletask model DNNmono.  
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Supplementary Figure 14 Predictions of the partition coefficients log Koa (a), log Kow (b), log Kwa (c), and 
the retention indices KRI (GC) (d) and CHI (LC) (e) by the singletask model DNNtaut.  
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Supplementary Figure 15 Predictions of the partition coefficients log Koa (a), log Kow (b), log Kwa (c), and 
the retention indices KRI (GC) (d) and CHI (LC) (e) by the multitask model DNNmono. 
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Supplementary Figure 16 Predictions of the partition coefficients log Koa (a), log Kow (b), log Kwa (c), and 
the retention indices KRI (GC) (d) and CHI (LC) (e) by the multitask model DNNtaut. 
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Supplementary Figure 17 Predictions of the partition coefficients log Koa (a), log Kow (b), log Kwa (c), and 
the retention indices KRI (GC) (d) and CHI (LC) (e) by the QSPR model of LSERD.  
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Supplementary Figure 18 Predictions of the partition coefficients log Koa (a), log Kow (b), log Kwa (c), and 
the retention indices KRI (GC) (d) and CHI (LC) (e) by the QSPR model ACD/Absolv.  
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Supplementary Figure 19 Comparison of the rmses for the predictions of the partition coefficients 
log Koa (a), log Kow (b), log Kwa (c), and the retention indices KRI (GC) (d) and CHI (LC) (e) by the four 
different prediction tools DNNmono, DNNtaut, QSPR from LSERD, and the QSPR ACD/Absolv. 
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Supplementary Figure 20 Comparison of the rmses for the predictions of the partition coefficients 
log Kow (a and b), log Kwa (c and d), log Koa (e and f) according to the different LSER equations by the 
four different prediction tools DNNmono, DNNtaut, QSPR from LSERD, and the QSPR ACD/Absolv. 
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SI 5 Rmses of the dataset predictions depending on the number of non-
hydrogen atoms NHA 
 

 

Supplementary Figure 21 Rmses of the log Koa predictions based on the different DNN approaches and 
QSPR depending on the number of non-hydrogen atoms NHA. The log Koa is predicted based on two 
different LSER equations (1 – left heat map, 2 – right heat map). 

 

 

Supplementary Figure 22 Rmses of the log Kwa predictions based on the different DNN approaches and 
QSPR depending on the number of non-hydrogen atoms NHA. The log Kwa is predicted based on two 
different LSER equations (1 – left heat map, 2 – right heat map). 
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Supplementary Figure 23 Rmses of the KRI predictions based on the different DNN approaches and 
QSPR depending on the number of non-hydrogen atoms NHA. 

 

Supplementary Figure 24 Rmses of the CHI predictions based on the different DNN approaches and 
QSPR depending on the number of non-hydrogen atoms NHA. 
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Supplementary Figure 25 Rmses of the predictions of the partition coefficients log Koa (a), log Kow (b), 
log Kwa (c), and the retention indices KRI (GC) (d) and CHI (LC) (e) based on the two different DNN 
approaches and QSPR approaches depending on the number of non-hydrogen atoms NHA. The 
respective sdevs are given as shadow in the figure. 
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SI 6 Rmses of the dataset predictions depending on the composition of 
the chemicals 

 

 

Supplementary Figure 26 Rmses of the log Koa predictions based on the different DNN approaches and 
QSPR depending on the composition of the chemicals. The log Koa is predicted based on two different 
LSER equations (1 – left heat map, 2 – right heat map). 

 

Supplementary Figure 27 Rmses of the log Kwa predictions based on the different DNN approaches and 
QSPR depending on the composition of the chemicals. The log Kwa is predicted based on two different 
LSER equations (1 – left heat map, 2 – right heat map). 
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Supplementary Figure 28 Rmses of the KRI predictions based on the different DNN approaches and 
QSPR depending on the composition of the chemicals. 

 

Supplementary Figure 29 Rmses of the CHI predictions based on the different DNN approaches and 
QSPR depending on the composition of the chemicals. 
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SI 7 Histograms of chemicals according to their NHA for the different 
datasets 
 

 

 

Supplementary Figure 30 Histograms of chemicals according to their NHA for the datasets of the 
partition coefficients Koa (a), Kow (b), Kwa (c), and the retention indices KRI (GC) (d) and CHI (LC) (e) and 
our training set for DNN model development (f). 
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