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ABSTRACT
The physical mechanisms behind correlations of earth observations and remote sensing prod-
ucts are of vital importance. The so-called ’near-infrared reflectance of vegetation’ (NIRV) and
gross primary production (GPP) show high correlations among different ecosystems and tem-
poral scales but the underlying relationship is still poorly understood. NIRV is defined as the
product of normalized difference vegetation index (NDVI) and near-infrared (NIR) canopy re-
flectance (RNIR). We examined this relationship in the case of a temperate deciduous forest in
Germany. GPP, RNIR and NIRV all exhibited a strong rise during leaf development in spring and
a continual decline after the maximum in early summer. The decline of NIRV in late summer

was mainly driven by the decline of RNIR, since NDVI remained saturated.
Here we tested the attributions of the decline of RNIR to changes in leaf area index, leaf

optical properties, canopy structure, sun-sensor geometry, or understory vegetation bymeasuring
seasonal variations of those factors of the temperate deciduous forest. Leaf area was nearly
constant between May and mid September, leaf albedo decreased slightly, leaf angles increased
over time towards more vertical leaves, and understory reflectance decreased considerably.

We simulated the seasonal decline of RNIR of the forest using the radiative transfer model
FRT and quantified the sensitivity of the decline to variations in the measured parameters. FRT
captured well the observed seasonal decline of RNIR by Sentinel 2 using the measured optical and
structural properties. Decreasing understory reflectance alone explained 43% of the simulated
decrease of RNIR, while leaf angle variations explained 31%, the solar zenith angle (SZA) 21%,
leaf albedo 7%, and LAI 0%. The effect size of the SZA depended on the viewing angle and
would hence be different for different satellites and for local instruments. The results may help to
better understand and help to track seasonal changes in forest structure and leaf optical properties
using remote sensing techniques. They also suggest that the proposed link between the seasonal
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evolution of GPP and NIRV may be weaker than expected.

1. Introduction1

The so-called ’near-infrared reflectance of vegetation’ (NIRV) was defined by Badgley et al. (2017) as the product
of the normalized difference vegetation index (NDVI) and near-infrared (NIR) canopy reflectance (RNIR)

NIRV = NDVI ⋅ RNIR (1)

where

NDVI = RNIR − Rred

RNIR + Rred (2)

and Rred is the red canopy reflectance. Light absorbance of leaves is relatively low in the NIR for dry matter, water and2

brown pigments are the main absorbing components and high in the red wavebands due to photosynthetic pigments3

(Feret et al., 2008). This results in high RNIR, low Rred, high NDVI, and high NIRV for vegetated surfaces. NIRV has4

recently been proposed as a proxy for photosynthesis or plant productivity at ecosystem scale (Badgley et al., 2017;5

Butterfield et al., 2020). NIRV shows higher correlation to gross primary productivity (GPP) on monthly time scales6

compared to other proxies, namely NDVI, fPAR and the MODIS GPP product (Badgley et al., 2017), especially for de-7

ciduous forests (Badgley et al., 2019). On shorter time scales of half hours to days the so-called ’near-infrared radiance8

of vegetation’ (NIRV,rad), which may be defined as the product of NIRV and upwelling photosynthetic active radia-9

tion, outperformed NIRV in predicting GPP for a wide set of functional, structural and weather conditions (Baldocchi10

et al., 2020), and even outperformed solar-induced fluorescence in case of soy bean and corn (Dechant et al., 2020).11

Newest developments include, e.g. a nonlinear NDVI generalization (Camps-Valls et al., 2021), which improves the12

GPP monitoring accuracy.13

14

We hypothesize that NIRV correlates well with GPP for deciduous forests due to the RNIR decline in late summer.15

This decline is a well-known phenomenon, but the underlying mechanisms are still poorly understood (Reaves et al.,16

2018) and was observed for broadleaf, coniferous, deciduous, and evergreen forests (Blackburn and Milton, 1995; Jiao17

et al., 2014; Keenan et al., 2014; Reaves et al., 2018; Butterfield et al., 2020), croplands (Butterfield et al., 2020), and18

grasslands (Jiao et al., 2014). Other vegetation indices indicated a similar seasonal decline, for example the enhanced19

vegetation index (EVI) (Zhang et al., 2004; Nagai et al., 2010a,b; Keenan et al., 2014; Yang et al., 2014), green vegeta-20

ORCID(s):
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tion fraction from spectral mixture analysis (Fisher et al., 2006; Reaves et al., 2018) and the green chromatic coordinate21

(GCC) (Keenan et al., 2014; Yang et al., 2014; Liu et al., 2020).22

RNIR change may be related to tree adjustments in order to optimize whole canopy light interception (Niinemets,23

2010; Raabe et al., 2015; Badgley et al., 2017). Canopy reflectance is controlled by multiple factors: LAI (overstory24

and understory), leaf albedo (sum of leaf reflectance and transmittance), leaf angle distribution, clumping of leaves25

into shoots, branches and crowns, understory reflectance, and bark and branch reflectance (Ross, 1981). These factors26

exhibit differences in their seasonal variations as well as their effect on RNIR. The seasonal RNIR decline is probably27

caused by simultaneous changes of several of those factors, possibly also by interactions between the factors. Main28

drivers of declining RNIR in simulation studies were total LAI (understory + overstory) (Rautiainen et al., 2009; Su-29

viste et al., 2007), understory LAI (Häusler et al., 2016) and the SZA (Suviste et al., 2007).30

31

Generally, variations of both leaf albedo and LAI may have large effects on RNIR. During spring leaves thicken32

and the growing amount of intercepting and absorbing leaf tissues increases leaf reflectance and decreases leaf trans-33

mittance. However, during summer variations of leaf albedo (Demarez, 1999; Mõttus et al., 2014; Hovi et al., 2017;34

Reaves et al., 2018) and LAI (Wang et al., 2005; Keenan et al., 2014; Croft et al., 2015; Reaves et al., 2018) of temperate35

deciduous forests are small and their contribution to the change in RNIR should hence be small too. There have been36

only few observations of a high seasonal decline of NIR leaf albedo, e.g. for white oak (Yang et al., 2016) or shaded37

oak leaves (Demarez, 1999).38

The leaf angle distribution (LAD) of vegetation is an important determinant of spectral canopy reflectance and39

transmittance, and hence absorption and photosynthesis (Jacquemoud, 1993; Vicari et al., 2019). LADs may vary40

between species, heights, light regimes, and throughout the growing season. In high light conditions trees may avoid41

leaf damage from excessive light exposure by orienting leaves more vertically or rolling them (Niinemets, 2010). A42

vertical orientation of leaves in the top allows light to penetrate deeper into the canopy, increasing light interception in43

the lower canopy and reducing canopy reflectance. In low light conditions leaves tend to be more regularly dispersed,44

horizontally oriented, flat, thin, and large in order to maximize light interception (Raabe et al., 2015).45

46

LADs are often assumed to be constant and given by basic distributions (e.g. spherical) while Reaves et al. (2018)47

highlighted the importance of seasonal LAD changes to the seasonal RNIR decline. They found the highest decline at48

sites with high vegetation cover and species with high leaf angle variations. Still, seasonal LAD LADs have rarely49

been measured due to labor intensive retrieval methods (Ryu et al., 2010). Novel automated methods may facilitate50

LAD measurements in the future using terrestrial LIDAR scanning in case of small canopies (Liu et al., 2019; Vicari51

et al., 2019) or UAV for higher canopies (McNeil et al., 2016).52

53
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The understory (also called background or forest floor) may also be an important driver of RNIR changes, due54

to its potentially strong seasonal variations and its high effect on canopy reflectance in the near infrared (Eriksson55

et al., 2006; Pisek et al., 2016; Pisek, 2018; Pisek et al., 2021). The fraction of light transmitted through the canopy56

(upwards or downwards) is much higher in the NIR than in the visible waveband. In the red spectral region, leaves57

appear dark (leaf albedo below 0.15), since most light is absorbed by photosynthetic pigments and leaf transmittance58

is nearly zero. In the NIR spectral region, leaves are semi-opaque and scatter most of the light (leaf albedo 0.85-0.98).59

Strong seasonal variations of forest understory reflectance were found for hemiboreal forests (Rautiainen et al., 2011;60

Nikopensius et al., 2015; Pisek et al., 2016), open and dense black spruce forests (Pisek et al., 2016), open Aleppo pine61

plantations (Pisek et al., 2016) and for open Mediterranean cork oak woodlands (Häusler et al., 2016). Understory62

development was higher for fertile soils (Pisek et al., 2016) and lower in case of water limitation (Pisek et al., 2016;63

Häusler et al., 2016). Understory reflectance not only affects NIRV but also other vegetation indices such as NDVI64

(Pisek et al., 2016), EVI and LAI products (Eriksson et al., 2006).65

66

The sun and viewing angles may have large effects on RNIR due to the anisotropy of forest canopy reflectance67

(Ross, 1981; Middleton, 1991; Syren, 1994; Roy et al., 2017; Ma et al., 2019). The sun angle varies diurnally and68

seasonally. The viewing angle may vary between different instruments and sites from narrow angle sensors in nadir69

direction to hemispherical sensors. SZA controls the influence of the understory on canopy reflectance, depending on70

canopy cover and the contrast between the understory and canopy. With decreasing SZA towards summer solstice, the71

gap fraction in the beam direction increases, more light is intercepted and reflected by the understory (Huete, 1987).72

Similarly, with decreasing viewing zenith angle (VZA) the gap fraction in the viewing direction increases and the73

fraction of understory seen by the observer increases (Rautiainen et al., 2008). A surge in canopy reflectance is caused74

by the hot spot effect, in case the viewing direction and the illumination direction coincide (Hapke et al., 1996).75

76

The SZA dependency of RNIR varies with respect to the contrast between overstory and understory. For a cotton77

canopy, for example, this dependency was substantially influenced by the underlying soil (Huete, 1987). Hemispheri-78

cal RNIR of a spruce-hemlock forest increased slightly with increasing SZA (Deering et al., 1994). Conversely, nadir79

RNIR of young spruce, pine and hardwood stands decreased with increasing SZA (Kimes et al., 1986; Syren, 1994).80

Little variation in RNIR was found for SZAs from 31° to 71° for shinnery oak in near-nadir viewing angles due to little81

contrast between leaves and the sandy soil in these wavelengths (Deering et al., 1992).82

83

The goal of the study presented here was to identify the drivers behind the seasonal RNIR decline of a temperate84

deciduous forest in Germany. We hypothesised that this decline is caused by seasonal variations of the SZA, LAI, leaf85

albedo, leaf angles, and understory reflectance. We expected interactions between the SZA and understory reflectance,86
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a low contribution of the understory for a high SZA, and a decreasing influence of the understory with increasing SZA.87

We tested our hypothesis conducting a seasonal measurement campaign in 2018 combined with radiative transfer88

simulations using the Forest Reflectance and Transmittance (FRT) model (Kuusk and Nilson, 2000)). The innovation89

of our approach was to isolate the effects of individual drivers on the seasonal decrease of RNIR using a forest radiative90

transfer model and measured seasonal changes of the most relevant factors simultaneously as input. Previously mostly91

isolated factors were considered and measured time series of some of the relevant factors were scarce.92

2. Materials and Methods93

To identify the drivers of the seasonal decline ofNIR canopy reflectance RNIR of the deciduous forest at HohesHolz,94

wemeasured optical and structural variables and quantified their effects on canopy reflectance using the forest radiative95

transfer model (FRT, (Kuusk and Nilson, 2000)). We parametrised FRT according to our repeated measurements and96

to inventory data (see below). We complemented the forest observations with frequent measurements at an arboretum97

because of the difficulty of accessing leaves in the upper canopy layer.98

2.1. Field Sites99

The measurement campaign was conducted in a deciduous forest at Hohes Holz (Saxony-Anhalt, Germany) as well100

as the arboretum of Leipzig University. Inventory data on locations, species, heights, and diameters at breast height101

in the forest were recorded once in 2018 while measurements of optical forest properties (reflectance of leaves and102

understory) and forest structure (leaf angles, leaf area, gap fraction) were collected repeatedly. The leaf reflectance103

measurements in the forest were complemented by measurements in the arboretum since due to logistics sunlit leaves104

could not be sampled for all tree species in the forest. The measurement frequency was every three weeks at the forest105

and weekly in the arboretum.106

The forest Hohes Holz is located in Saxony-Anhalt near the Harz Mountains (52.08 °N, 11.22 °E, 193 m above sea107

level) in a temperate climate. The measurements were conducted within a fenced area of 1 ha size with a tree density108

of 260 trees per ha (Holtmann et al. (2021), c.f. Figure 1).109

Elevations do not differ more than 10 m in the study area, ensuring robust flux recordings. As the dominant tree110

species in the fenced area were F. sylvatica (beech), C. betulus (hornbeam), Q. robur (oak), and B. pendula (birch),111

these species were selected for all measurements. While the basal areas of F. sylvatica, C. betulus and Q. robur were112

similar (10.6 m2, 12.5 m2 and 12.5 m2, respectively), there were very few B. pendula trees in the fenced area (basal113

area 1.2 m2, c.f. Table 1).114

An eddy covariance tower of 50 m height is located within the fenced area, which was used for leaf angle mea-115

surements and leaf sampling for leaf reflectance measurements (Figure 2). GPP was derived from NEE (net ecosys-116

Hase et al.: Preprint submitted to Elsevier Page 5 of 37



Identifying the main drivers of the seasonal decline of near-infrared reflectance of a temperate deciduous forest

32652150 32652200 32652250 32652300

57
72

94
0

57
72

98
0

57
73

02
0

57
73

06
0

0
5
10
15
20
25
30
35

a
b

57
72

94
0

57
72

98
0

57
73

02
0

57
73

06
0

32652150 32652200 32652250 32652300

0.38

0.40

0.42

0.44

Figure 1: Tree height and NIR reflectance at Hohes Holz: left, tree heights and crown projection shapes at the deciduous
forest Hohes Holz. The blue polygon encloses the fenced area. Right, mean canopy NIR reflectance from Sentinel 2, band
8a, from June to Sept 2018. The blue polygon encloses the fenced area and the black circle marks the position of the
50 m-high eddy covariance tower. Coordinates are given in UTM 32.

Table 1
Number of trees (absolute numbers and in percent), mean tree height and basal area (absolute numbers and in percent)
of the four dominant tree species at the deciduous forest Hohes Holz within the fenced area of 1 ha.

species count mean height basal area

# % m m2 %
F. sylvatica 94 36 24.0 10.6 29
C. betulus 87 33 17.5 12.5 34
Q. robur 72 28 29.5 12.5 34
B. pendula 7 3 28.0 1.2 3

tem productivity) measured with an eddy covariance system at 49 m tower height consisting of a CSAT-3 ultrasonic117

anemometer (Campbell Scientific Inc., Logan, UT, USA) and a LI-7500 infrared gas analyser (Li-Cor Inc., Lincoln,118

NE, USA). High-frequency data (20Hz) were acquired with a Campbell data logger and the Eddymeas data acquisition119

software (Kolle and Rebmann, 2007). Half-hourly fluxes were processed from high frequency raw data with the Eddy-120

Pro®software (v. 7.0.6). Flux partitioning of NEE into GPP and ecosystem respiration was subsequently performed121

according to (Wutzler et al., 2018) with the REddyProc package.122

The arboretum is located in Großpösna in Saxony (51.25 °N, 12.48 °E, 150 m above sea level) and is managed by123

the Leipzig University, Germany. The trees in the arboretum were planted as seedlings in 2012 and are widely spaced124

with a minimum distance of three meters between trees. Most leaves were exposed to sunlight during the day as the125

trees were between 1.5 m and 4 m high.126

2.2. Observations127

2.2.1. Sentinel 2 satellite data128

Seasonal near-infrared canopy reflectance measurements were retrieved from Sentinel 2 satellite data (band 8a) at129

20 m spatial resolution. We selected a rectangular area of 7×4 Sentinel pixels covering the fenced area (xmin = 652160,130
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Figure 2: The eddy covariance tower and surrounding forest at the study site Hohes Holz. The picture taken by a drone
in October 2016 is facing west and shows also forest stands beyond the fenced area.

xmax = 652300, ymin = 5772960, ymax = 5773040, UTM32, Figures 3 and 1). In total 53 Sentinel 2a/b observations131

from tile T32UPC (radiances) of the year 2018 were downloaded from the ’Copernicus Open Access Hub’. These132

were converted to bottom of atmosphere reflectances using ESA’s processor Sen2Cor (Louis et al., 2016) in a (semi-133

)automatic processing routine. Sen2Cor produced accurate results in the red and moderate accuracy in the NIR in134

Atmospheric Correction Inter-Comparison exercise (Doxani et al., 2018). Sen2Cor also produces a so-called scene135

classification (SCL) image, identifying pixels contaminated by clouds or haze. We used only pixels that were assigned136

to the classes ’vegetation’ (number of pixels n=3410) or ’bare soil’ (n=283) in the SCL image and thus identified as137

cloud-free.138

2.2.2. Leaf Albedo139

Leaves were sampled at several heights in the forest and in the arboretum at heights between 1 m and 2 m in all140

four cardinal directions on two to three trees (Table 2). In the forest, leaves were cut either by hand or by using a141

6 m tree pruner (Fiskars Germany GmbH, Erlangen). The collected leaves were stored in plastic bags, cooled and142

reflectance spectra were measured within 2 hours after collecting. In the arboretum leaves were sampled at the tree143

without cutting them. Leaf reflectance was measured using the Field Spec 4 attached to a plant probe (Analytic Spectral144

Devices, Boulder, Colorado, USA).White referencemeasurements were performed by using diffuse reflective synthetic145

material (ODM98-F03, Gigahertz-Optik GmbH, Türkenfeld, Germany), which was calibrated against a calibrated146

white reference panel (Spectralon , SphereOptics GmbH, Herrsching, Germany). Reflectance spectra were averaged147

over five leaves from each sampling point.148
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Table 2
Sampling heights for leaf albedo at the forest site Hohes Holz and number of sampled trees at the arboretum in Großpösna.

Hohes Holz arboretum
species heights [m] # of trees

F. sylvatica 2, 17, 24 3
C. betulus 2 2
Q. robur 3, 25, 28 3
B. pendula 13, 24 3

Leaf albedo was calculated as the sum of measured leaf reflectance and simulated leaf transmittance. For each149

leaf reflectance measurement, the PROSPECT parameters were determined inverting the leaf optical properties model150

PROSPECT (version 5B, Feret et al. (2008); Jacquemoud and Baret (1990)) and consequently used as input parame-151

ters for PROSPECT to simulate leaf transmittance. PROSPECT was inverted following the approach of Dechant et al.152

(2017) using DEoptim (Mullen et al., 2011), an implementation of the differential evolution algorithm in the R pro-153

gramming language (R Core Team, 2018). The performance of the leaf parameter inversion was evaluated comparing154

measured and inverted leaf dry matter content and leaf water content at 9 sampling points, where 5 spectra from 5155

leaves were collected on June 16th. We measured fresh weight and dry weight of leaves. The leaves were oven dried at156

70 °C for 48 hours. Leaf area was measured using a flatbed scanner and the software ImageJ (Schneider et al., 2012).157

2.2.3. Understory Reflectance and Greenness158

Understory nadir reflectance (ground + vegetation) spectra were measured according to the procedure described159

by Rautiainen et al. (2011). Along two transects of 50 m length each, an understory spectrum and a white reference160

spectrum were recorded every 8 m. For the understory spectra the nadir downward-pointing fiber optic of the Field-161

Spec 4 ASD spectroradiometer was held at the outstretched hand at approximately 1 m height. The sampled area162

corresponds to a circle with a diameter of about 44 cm. The white reference spectra were recorded by holding the163

downward-pointing fiber optic 10 cm above the calibrated white Spectralon panel, which was held horizontally. In164

case of direct sunlight conditions an umbrella was used to shade the panel and the understory within the field of view165

of the fibre optic.166

Understory greenness was quantified via the green chromatic index (gcc, Keenan et al., 2014) from digital photos of167

the understory taken at 108 points (data not shown here). At each point four photos were taken with a Canon PowerShot168

D10 digital camera (Canon Inc., Tokyo, Japan) mounted on a rack at 1.5 m height facing the four cardinal directions169

with an downward facing field of view and an off-nadir view angle of 37.5°.170

2.2.4. Leaf Angles171

Leaf angle measurements were derived from leveled digital photographs (Ryu et al., 2010) of trees near the tower172

at heights below 32 m. Leaf angles of leaves whose lamina was aligned perpendicular to the view were measured as173

Hase et al.: Preprint submitted to Elsevier Page 8 of 37



Identifying the main drivers of the seasonal decline of near-infrared reflectance of a temperate deciduous forest

the angle between the zenith and the normal (orthogonal) of the leaf surface using the software ImageJ.174

2.2.5. Gap Fraction, LAI and Canopy Transmittance175

Gap fraction was estimated from digital photography at 104 points according to Piayda et al. (2015). 79 of the 108176

points were arranged on a regular grid with 10 m distance between points and 24 points were arranged on 3 finer grids (8177

points each) with 5 m distance between points. Photos were taken with a Canon PowerShot D10 digital camera (Canon178

Inc., Tokyo, Japan) mounted on a rack oriented at 0° zenith angle and at 57.3° zenith angle facing north. Among all179

zenith angles, digital photography taken at 57.3° zenith angle are least affected by the leaf angle distribution (Wilson,180

1960). Gap fraction was calculated as the ratio of gap pixels to the total number of pixels for each photo. The number181

of gap pixels was estimated using the eCognition software (Trimble Germany GmbH). The camera has a 1/2.3 inch182

(ca. 6.16×4.62 mm) CCD sensor and a focal length of 6.2 mm enclosing a horizontal and vertical viewing angle span183

of 53° and 41°, respectively.184

Leaf area index (LAI) of the overstory was estimated from hemispherical fisheye photography (EOS 100D, Canon)185

at 36 sampling points at 1.5 m height above the ground between May and November. The processing of the images186

and estimation of LAI was performed by ICOS-ETC (Viterbo, Italy).1 Binarisation of the sky pixels for gap fraction187

calculation was performed via Ridler et al. (1978). The LAI was inverted from the gap fraction with the ellipsoidal188

leave angle distribution (Thimonier et al., 2010). Clumping was estimated using Lang and Xiang (1986) with 45°189

segments. Additionally, litter traps were used to estimate LAI. Leaves were collected 8 times using 25 litter traps190

(0.5 m2) distributed in 5 continuous plots (CPs) according to the ICOS standard procedures for Class 1 Ecosystem191

stations (Gielen et al., 2018). After separation in fractions and species, their dry mass was determined.192

193

Canopy transmittance was measured via a mobile wireless sensor network (Mollenhauer et al., 2017) consisting of194

nine nodes. One node was mounted at 50 m height on the tower and eight nodes were distributed at the forest floor at195

2 m height. The positions of the eight sensors at the forest floor were chosen among the 104 gap fraction measurement196

points using latin hypercube sampling such that the nadir gap fraction measured at the sensor positions in 2017 corre-197

sponded to a representative sample of the gap fraction distribution at all points. The mean gap fraction measured at198

the position of the 8 nodes via the method described above in 2017 from May 23rd to August 30th was in 0.025, 0.039,199

0.040, 0.046, 0.079, 0.084, 0.086, 0.117. The maximum gap fraction of all measurements was 0.698 on 23rd of May200

and of all considered nodes 0.135 on 1st of August. Each node consisted of two multispectral (4 wavelengths), nadir-201

oriented sensors: one sensor was looking downward, measuring upwelling radiance, and the one sensor was looking202

upward, measuring downwelling irradiance. The measurement frequency of sensors was simultaneously every 5 min-203

utes. The center wavelengths of the sensors were 665 nm, 705 nm, 740 nm, and 865 nm. Canopy transmittance was204

1https://etc-ua.github.io/LeafAreaIndex.jl/LAI.html
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calculated as the mean ratio of irradiance at the forest floor and irradiance at 50 m height between 11 am and 2 pm205

CET under diffuse sky conditions. Only diffuse sky conditions were selected to exclude the effect of the sunangle. Sky206

conditions were defined as diffuse for a diffuse to total shortwave downward radiation (SWDR) ratio higher than 0.8.207

SWDR was measured using a sunshine pyranometer (SPN1, Delta-T Devices Ltd., Cambridge, U.K.)208

2.2.6. Auxiliary Measurements209

Branch reflectance was measured with an ASD plant probe (Analytic Spectral Devices, Boulder, Colorado, USA)210

without the leaf-clip for all species at 1 m height. White reference measurements where performed the same way as211

for leaf albedo. The number of sampled spectra were 6, 5, 6, 8 for F. sylvatica, C. betulus, Q. robur, and B. pendula,212

respectively. Branch reflectance was computed as basal area weighted mean of species mean bark reflectance. Rainfall213

was measured at 50 m height above the ground using a tipping bucket rain gauge (Adolf Thies GmbH & Co. KG,214

Göttingen, Germany). Precipitation measurements from 1971-2000 were taken from a DWD (Climate Data Center:215

Historische tägliche Niederschlagsbeobachtungen für Deutschland, Version v007, 2019) station close by at 52.10 °N,216

11.23 °E. Incoming PARwasmeasured at 50 m height with a QuantumPARSensor (LI190R; LI-CORBiogeosciences,217

Lincoln NE, USA). NIR canopy reflectance at 860 nm was measured from the top of the tower with a hyperspectral218

sensor: QE65000 (Ocean Optics, Dunedin, FL, USA) with 1 min temporal resolution (Lange et al., 2017).219

2.3. Simulations220

We simulated radiative fluxes within the canopy in the visible and the near-infrared using a radiative transfer model.221

Modelled NIR reflectance RNIR was compared to canopy reflectance observations from Sentinel 2.222

2.3.1. Forest Radiative Transfer Model223

We used the Forest Reflectance and Transmittance model FRT (Kuusk and Nilson, 2000), which is well suited224

to interpret multispectral remote sensing data of forest canopies at a wide range of sun and viewing angles (Kuusk225

et al., 2014). FRT is a one-dimensional radiative transfer model, including tree and crown geometry sub-models.226

It includes the model of leaf optical properties spectra PROSPECT (Feret et al., 2008), and includes routines for227

automated estimation of model parameters. FRT distinguishes direct and diffuse radiative fluxes as well as single and228

multiple scattering. Single scattering is the sum of specular and diffuse scattering using directional gap probabilities229

from the geometrically modeled trunk and crown shapes. FRT can hence account, for example, for the hot spot effect230

of the sun. Directional understory reflectance is calculated in FRT with a thin layer approximation (Kuusk, 2001).231

Good performance of FRT was demonstrated during the RAdiation transfer Model Intercomparison (RAMI) exercises232

(Widlowski et al., 2015).233
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Table 3
FRT parameters for the forest Hohes Holz in 2018 retrieved from the measurement campaign and inventory data. Re-
flectance and albedo values are listed for the 860 nm wavelength. For parameters with seasonal variations, minimum and
maximum values are given. See the text for explanations of the parameters.

Parameter Unit Value

stand density trees ha−1 260
tree height m 23.5
DBH m 0.32
crown radius m 3.1
crown form - elliptical
leaf eln3a - 4.5-5.3
leaf modal angle ° 8-16
leaf albedo - 0.94-0.96
leaf area index m2 m−2 3.0-5.3
branch area index m2 m−2 0.7
branch reflectance - 0.47
shoot length m 0.1
shoot shading coefficient - 0.95
understory reflectance - 0.40-0.51
tree distribution parameter - 2.3
crown length m 4
a eln3 = − ln(1− "), where " is the eccentricity of the
leaf angle distribution.

2.3.2. Model Parametrisation234

Repeated measurements of optical and structural properties of the forest in 2018 were used for the parametrisation235

of the model. These translated into a total of 16 parameters (Table 3) where values for tree density, tree height and236

DBH were taken from forest inventory data. Mean optical and geometrical properties of the different tree species were237

averaged, weighted by basal area. The crown radius was estimated from DBH for each tree species following Bohn238

et al. (2014, , suppl. Eq. (3)). Crown form was set elliptical.239

The leaf angle distribution was parametrised with the elliptical leaf angle distribution in FRT [Eq. (A1) in Kuusk240

(1995)]. The elliptical distribution has two parameters, eccentricity and leaf modal angle, and was fitted to the tree241

density weighted leaf angle distributions of the measured leaf angles of the four species. Leaf albedo was given as242

direct input to FRT (not PROSPECT parameters), calculated as weighted mean by basal area. Mean leaf albedo did243

not include measurements from sunlit leaves of C. betulus, because those trees were smaller than the other species at244

Hohes Holz so that sunlit leaves were mainly from F. sylvatica and Q. robur. Overstory leaf area index (LAI) was245

measured repeatedly (Section 2.2.5).246

Branch area of trees was estimated assuming cylinders with mean tree height and DBH. Branch reflectance was247

calculated as the area weighted mean. Branch reflectance for individual tree species was 0.476, 0.480, 0.466, and 0.503248

for F. sylvatica, C. betulus, Q. robur, and B. pendula, respectively. Shoot length was set to 0.1 m and shoot shading249

coefficient to 0.95.250
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Nadir reflectance observations of the understory (ground and vegetation) were fed into the two-layer radiative251

transfer sub-model of FRT for simulating the directional understory reflectance.252

The wavelength dependent fraction of direct to total incoming radiation is calculated inside FRT via the radiative253

transfer model 6S (Vermote et al., 1997). At minimum solar zenith angle in June and July the fraction of direct to total254

incoming radiation is 0.90, 0.87 on September 19th and 0.82 on October 25th.255

In the last step, the tree distribution parameter and the crown length parameter were estimated simultaneously256

from gap fraction measurements. The radiative transfer within forests is affected by the tree distribution and crown257

lengths which alter the directional gap fraction. Gap fraction increases with increasing clumping and with decreasing258

crown length, where the effect of crown length is larger at high viewing zenith angles. The tree distribution parameter259

describes whether trees are distributed regularly (cj < 1), random (cj = 1) or clumped (cj > 1). We minimised the260

absolute value of the difference between measured and simulated gap fraction at 0° and 57.3° viewing angle. The tree261

distribution parameter, cj , was estimated as 2.3 and the crown length was estimated as 4 m. Simulated and measured262

gap fractions were 0.16 and 0.14 at 0° viewing angle and 0.07 and 0.07 at 57.3°, respectively. To compare gap fraction263

estimates from digital photography and simulated directional gap fraction, simulated gap fraction was integrated over264

the field of view of the digital camera.265

The effects of measurement uncertainties on FRT simulation outcomes was quantified for leaf albedo, understory266

reflectance and LAI by repeating FRT simulations after adding or subtracting the standard deviation to the mean of the267

measurements. This analysis was not performed for leaf angles, since the leaf angles parameters were derived from268

the distribution of leaf angles, not only from the mean.269

2.3.3. Simulation Runs270

The literature review identified five variables (v1, ..., v5) as potentially important for the development of NIR canopy271

reflectance: leaf albedo, understory reflectance, leaf angle, SZA, and LAI. Factorial model experiments were designed272

following the idea of first-order and total-order Sobol’ sensitivity indexes (Saltelli et al., 2008). The experiments were273

implemented by conducting three types of simulation runs, which we termed all constant except vi, vi constant, and274

default.275

For the all constant except vi runs all variables except vi were kept constant using the respective measurement of276

Aug 18th, while vi was changed according to observations in 2018. For all constant except leaf angle all variables were277

kept constant except the two leaf angle variables eln3 and the leaf modal angle variable. For the vi constant runs the vi278

was set constant using the respective measurement of Aug 18th but all other variables changed over time according to279

the observations. If a specific variable was set constant, e.g. leaf albedo, the simulation run was appropriately called280

leaf albedo constant. These runs were compared to the default run, where all variables changed with time (according281
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to observations). We defined the direct effect (�d,i for i = 1, ... , 5) as:282

�d,i =
RNIR
all constant except vi (Sept 19

th) − RNIR
all constant except vi (May 23rd)

RNIR
default(Sept 19th) − RNIR

default(May 23rd) (3)

where RNIR
all constant except vi

(t) and RNIR
default(t) are the NIR canopy reflectance at date t for the all constant except vi and283

default simulation runs, respectively. The all constant except vi runs measured hence the direct effect (�d,i) of variable284

vi on the NIR reflectance output. The default runs included the effects of all variables and showed the highest NIR285

reflectance change over time.286

All other variables but the variable vi varied in the runs named vi constant, which includes interactions and cor-287

relations between the varying variables. The total effect (�t,i for i = 1, ..., 5) including interactions and correlations288

between variables can hence be calculates as:289

�t,i = 1 −
RNIR
vi constant(Sept 19th) − RNIR

vi constant(May 23rd)
RNIR
default(Sept 19th) − RNIR

default(May 23rd) (4)

where RNIR
vi constant

(t) is the NIR canopy reflectance at date t for the vi constant simulation runs.290

This resulted in eleven simulations: one default simulation with all variables changing, and two simulations per291

target variable vi (vi constant and all constant except vi, i = 1, ..., 5).292

2.3.4. Further simulations293

We assessed the validity of our understory measurements at Hohes Holz by also simulating RNIR replacing our294

measurements in the simulations with the understory measurements from on open cork oak woodland of Häusler et al.295

(2016). We compared the effect of the two time series of seasonal understory reflectance using the FRT model.296

We quantified the interaction between understory reflectance, solar zenith angle and viewing zenith angle by cal-
culating the contribution of understory to simulated RNIR (i.e. the fraction of upwelling radiation above the canopy
that was scattered by the understory). The contribution of understory to RNIR (�s) was calculated for different viewing
zenith angles (�v) and solar zenith angles (�s) as

�s ∶=
RNIR(�s, �v, �s) − RNIR(�s, �v, �s = 0)

RNIR(�s, �v, �s)
, (5)

where understory reflectance (�s) was either set to the measured value from August 16th or to 0.297
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We analyzed the effect of the viewing zenith angle on the seasonal decline of NIR canopy reflectance. Seasonal298

trajectories of FRT simulated RNIR were compared for different viewing zenith angles and for hemispherical field of299

view for the measured optical and structural parameters.300

We analyzed the effect of LAI on the seasonal decline of RNIR by comparing simulated seasonal trajectories of301

RNIR for constant LAI values (LAI= 0, 1, ..., 5), while all other parameters varied according to the measured values.302

3. Results303

3.1. GPP and RNIR at Hohes Holz304

The correlation between GPP and NIRV at Hohes Holz was higher (R2 = 0.65) than between GPP and NDVI305

(R2 = 0.4) due to the seasonal decline of RNIR. Satellite seasonal RNIR devolution is almost identical with local306

canopy RNIR: R2=0.95 between Juni-November (on respective cubic spline smoothings). GPP, RNIR and NIRV all307

exhibited a strong rise during leaf development in spring and a continual decline after the maximum in early summer308

while the NDVI remained constant until senescence (Figure 3). It is hence very likely that the decline of NIRV in late309

summer was mainly driven by the decline of RNIR. The NDVI remained constant since a) the seasonal changes of red310

canopy reflectance (Rred) were small compared to the absolute values of RNIR (c.f. eq. (2)) and b) the seasonal changes311

of RNIR had little effect on NDVI since RNIR is much larger than Rred.312

3.2. Leaf Albedo313

Differences of leaf albedo between the four cardinal directions were small for all species and dates at the arbore-314

tum. The seasonal mean of the difference between maximum and minimum NIR leaf reflectance of the four different315

directions over all measurement dates was below 0.017 for all species (standard error of the mean (SEM) ≤ 0.02).316

We consequently only show and analyse the mean values per species and measurement date. The performance of the317

inversion procedure for estimating the PROSPECT leaf parameters from measured leaf reflectance spectra was good,318

as we found a high correlation between measured and inverted leaf dry matter content (R2 = 0.96, RMSE = 0.0023,319

n=9) and leaf water content (R2 = 0.98, RMSE = 0.0017, n=9).320

Leaf reflectance measurements increased during the season for all species with the highest values for B. pendula321

(≈0.46-0.49) and lowest for C. betulus (≈0.43-0.46) (Figure 4). Only F. sylvatica exhibited a slightly decreasing322

leaf reflectance within the top measurements. We found elevated leaf reflectances with increasing measurement height323

within the canopy, most notably for F. sylvatica (+0.07). Leaf reflectance was similar between the arboretum and sunlit324

top measurements at the forest, except for oak, where derived transmittance values were very low for the forest. Again,325

measurements of the four different directions at the arboretum were similar for all species and therefore averaged.326

Leaf transmittance simulations decreased during the season for most species and heights, except for middle and top327
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Figure 3: Satellite canopy reflectance products from Sentinel 2 at the deciduous forest at Hohes Holz, Germany in 2018:
a) normalized difference vegetation index NDVI, b) NIRV and gross primary productivity (GPP), and c) near-infrared
reflectance (RNIR, center wavelength = 865 nm, bandwidth = 33 nm) and red reflectance (center wavelength = 664 nm,
bandwidth = 38 nm). Lines are smoothed using a cubic spline.

measurements of F. sylvatica which showed no clear trend or increased, respectively. Absolute values of leaf transmit-328

tance differed ranging from ≈0.57 for C. betulus to ≈0.4 for Q. robur (bottom). We found lowered leaf transmittance329

with increasing measurement height within the canopy, most notably for Q. robur. Leaf transmittance was similar330

between the arboretum and top simulations in the forest for F. sylvatica and B. pendula, while values for Q. robur331

where much lower in the top of the forest than in the arboretum.332

Leaf reflectance measurements are more coherent than leaf transmittance simulations between arboretum and Ho-333

hes Holz and also between top and bottom measurements in the latter. The resulting seasonal variations of leaf albedo334

(sum of leaf reflectance and leaf transmittance) were small for most species and heights at both study sites. Leaf335

albedo values largely correspond to leaf transmittance simulations regarding the seasonal evolution, differences be-336

tween top/bottom canopy measurements, and also regarding species specific differences. Absolute values and sea-337

sonal evolution of leaf albedo differed mostly between different heights in the forest and between the forest site and the338

arboretum. Leaf albedo increased with canopy depth, since leaf transmittance increased more than leaf reflectance de-339

creased. For B. pendula in the arboretum and in the top measurement at the forest, mean leaf albedo remained constant340

throughout the measurement period (May 23rd to Sept 19th) at around 0.94. For the other species leaf albedo slightly341

decreased at the arboretum, most notably for C. betulus (down to ≈0.91). Leaf albedo at the forest site Hohes Holz342

showed a slightly different picture. At species level, only B. pendula exhibited similar magnitudes across both heights,343
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Figure 4: Seasonal variations of leaf reflectance (a-d), leaf transmittance (e-h) and leaf albedo (i-l), which is the sum of
leaf reflectance and transmittance, at the forest site Hohes Holz and the arboretum in Großpösna in 2018. In the forest,
leaf reflectances were measured at different heights in the canopy with sunlit leaves at the top (≥ 24 m) of the canopy
and completely shaded leaves at the bottom (< 16 m) of the canopy (c.f. Table 2). The error bars denote the standard
deviation (SD) for reflectance and transmittance, and the square root of the squared sum of SD of reflectance and SD of
transmittance for albedo.

comparable to the respective mean arboretum values. Most other species showed substantially higher albedo at the344

bottom (C. betulus, ≈0.98) and even at the top (F. sylvatica) with the exception of Q. robur where albedo decreased345

down to below 0.9.346

3.3. Understory Reflectance347

Mean understory NIR reflectance (860 nm) decreased almost linearly from 0.52 in April down to 0.43 in September348

2018 (Figure 5b). We observed the highest measurement variance of all months in June. From September onwards349

reflectance values exhibited an increase to up to 0.47. This mean seasonal evolution and magnitude is largely reflected350

in the example transect given in Figure (5a).351

Understory reflectance in the Hohes Holz is - dependent on the measurement position along the transects and plant352

phenology - a mixture of soil and/or vegetation reflectance. Consequently, reflectance values vary considerably within353

a transect, between the visible and NIR part of the electromagnetic spectrum, and also over the measurement period354

(Figure 5a). At the beginning of the measurement period (April 2018) the soil was relatively dry and understory355
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forest Hohes Holz at different times of the year. Bottom b) Seasonal development of understory reflectance at 860 nm at
point 4 of transect 1 and the mean reflectance of all sampling points on both transects (N = 14, error bars denote the
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vegetation had not started to develop. Consequently, the reflectance spectrum resembled a monotone increasing line356

from the visible into the NIR part. With the development of the understory in May the spectrum exhibited clear357

vegetation characteristics: a local maximum at around 500 nm (chlorophyll absorption is low between 500 nm and358

600 nm) and a steep increase at around 700 nm (the so-called red edge) with a plateau thereafter. Towards the end359

the vegetation period soil characteristics started to dominate again. Yet at slightly lower overall reflectance value (ca.360

−0.1) was observed due to increased soil moisture after a number of precipitation events.361

3.4. Leaf Angles362

Figure 6 shows leaf angle distributions (LADs) for the four species at different heights at Hohes Holz in June and363

August 2018. 0° leaf angle means planophile, horizontal leaves, and 90° leaf angle means erectophile, vertical leaves364

(Raabe et al., 2015). Leaves with a distribution around 45° are called plagiophile.365

In the bottom layer (below 16 m height) all species had more horizontal leaves compared to the middle or top366

(above 24 m height) layers of the canopy. F. sylvatica, Q. robur and B. pendula all exhibited modal values below 30°367

at the bottom of the canopy with rather peaked distributions. Leaf angle distributions flattened in the top layer of the368
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Figure 6: Distributions of leaf normal zenith angles and number of leaf angle measurements (n) for the F. sylvatica (a,
e, i), C. betulus (b,f,j), Q. robur (c, g, k) and B. pendula (d, h, l) in the top (≥ 24 m, a-d), middle (e-h) and bottom
(< 16 m, i-l) layers in the forest Hohes Holz on June 14th (black) and Aug 16th (orange) in 2018.

Table 4
Whole canopy mean and standard deviation (SD) of leaf zenith angle measured distribution in degree. References: 1 Pisek
et al. (2013), 2 Raabe et al. (2015), 3 Liu et al. (2019).

species date mean SD site

F. sylvatica June 14th 12.9 10.4 Hohes Holz
F. sylvatica Aug 16th 21.6 13.4 Hohes Holz
F. sylvatica3 Jul 17th-Aug 9th 39.7 Bavaria
C. betulus June 14th 14.4 10.5 Hohes Holz
C. betulus Aug 16th 25.3 15.9 Hohes Holz
Q. robur June 14th 19.5 14.4 Hohes Holz
Q. robur Aug 16th 22.6 16.4 Hohes Holz
Q. robur 1 Oct 11th 35.8 19.4 garden, Sweden
Q. rubra2 June 14th 21.7 13.5 Harvard Forest
Q. rubra2 Aug 11th 22.7 14.0 Harvard Forest
B. pendula June 14th 37.5 18.7 Hohes Holz
B. pendula Aug 16th 41.6 18.3 Hohes Holz

canopy, which means that more leaves were oriented vertical instead of horizontal.369

Between June 14th and August 16th for all species whole canopy mean leaf zenith angle increased (Table 4) and370

LAD changed towards more plagiophile distributions. At all heights modal values increased slightly and distributions371

flattened for all species. The changes towards more vertical leaves were little higher for C. betulus than for B. pendula372

and F. sylvatica and lowest for Q. robur and little higher in the middle compared to the bottom and top layers.373

3.5. Gap Fraction, LAI and Canopy Transmittance374

The variations in canopy structure and transmittance were highest in spring and autumn and small in-between.375

From April to May, gap fraction dropped from 0.60 to 0.14 (Figure 7) with the onset of leaf unfolding. Between June376

and mid September, LAI, canopy transmittance and gap fraction remained nearly constant at values around 5.5, 0.22377

Hase et al.: Preprint submitted to Elsevier Page 18 of 37



Identifying the main drivers of the seasonal decline of near-infrared reflectance of a temperate deciduous forest

0
2

4
6

8

Apr May Jun Jul Aug Sep Oct Nov

LA
I [

m
2/

m
2]

,
le

av
e 

m
as

s 
fr

om
 li

tte
r 

tr
ap

/1
0 

[g
]

LAI
LAIe
cum. sum litter trap

a

Apr May Jun Jul Aug Sep Oct Nov0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cl
um

pi
ng

 fa
ct

or
, g

ap
 fr

ac
tio

n,
ca

no
py

 tr
an

sm
itt

an
ce

clumping factor
canopy transmittance
gap fraction 0°
gap fraction 57°

b
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and 0.14, respectively. Betweenmid September and beginning of October overstory LAI started to drop simultaneously378

with the onset of increased leaf littering. About half a month to a month later, canopy transmittance and gap fraction379

simultaneously started to increase in the second half of October as a consequence of leaf fall of the dominant tree380

species.381

3.6. Simulated Driving Factors of NIR Canopy Reflectance Changes382

Simulated canopy reflectance are well in line with Sentinel 2 canopy reflectance in all visible and NIR bands383

(Figure 8), especially for the NIR band at 864 nm: R2 > 0.9 for the NIR, but lower for the VIS due to the missing384

seasonality. Mean absolute differences are less than 1 % for both VIS and NIR. Simulated diffuse canopy transmittance385

was about 0.1 higher than measured canopy transmittance.386

We simulated the development of NIR canopy reflectance RNIR at the forest Hohes Holz from mid May to the end387

of October with the forest radiative transfer model FRT.388
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Leaf optical properties changed little in our observations (Figure 4) and leaf albedo also had little effect on simulated389

RNIR (total effect �t,1 = 0.07, Figure 9a, b). Leaf angle distributions were measured twice at Hohes Holz in 2018390

(Figure 6). We took the first observations on 14th June 2018 up to end of July and the second observations on 16th391

August 2018 from August on to parameterise FRT (Figure 9d). This resulted in a step change of RNIR of 0.02 in the392

simulations (Figure 9c, run all constant except leaf angle). Simulated RNIR was hence too low by this amount at the393

beginning of the season if the leaf angles measured in August were set constant for the whole season (Figure 9c, run394

leaf angle constant vs. default). The total effect of leaf angle �t,2 = 0.31 was the second highest of all total effects.395

Understory reflectance changed by 25% fromMay to September (Figure 9f). This had the largest effect on RNIR (to-396

tal effect �t,3 = 0.43). Especially RNIR levelling off in October comes mainly from the change of understory reflectance397

(Figure 9e, run understory reflectance constant vs. default).398

The solar zenith angle (SZA) decreased slightly from 31.5° on May 23rd to 29.0° on June 16th and increased to399

50.7° on September 19th and 64.2°on October 25th for our study area (Figure 9h). The change in SZA angle adds 0.02400

to the simulated decline of RNIR with a total effect of �t,4 = 0.21 (Figure 9g, run solar angle constant vs. default).401

LAI decreased by about 0.5 between May and September 19th (Figure 9j) and had the smallest total effect among402

the five considered variables (�t,5 = -0.01, Figure 9i, dotted line).403

Accordingly the combined effect of the seasonal changes of leaf albedo, leaf angle, understory reflectance, solar404

zenith angle, and LAI explains the observed seasonal decline of NIR canopy reflectance RNIR.405

4. Discussion406

4.1. Limitations407

Limitations of the given data set and analysis are discussed below.408

The model validation showed high agreements between seasonal Sentinel 2 and simulated visible and NIR canopy409

reflectance (Figure 8), while discrepancies between simulated and measured diffuse canopy transmittance of ca. 0.1410

remained. Canopy transmittance is mainly driven by albedo and effective area of leaf and woody material and gap411

fraction. The highest uncertainty for those parameters in our analysis remains for woody area and reflectance. Bark412

reflectance was only measured at heights below 2m. Simulations with respective values from the literature decreased413

canopy transmittance slightly, decreased RNIR far below Sentinel 2 values and had little effects on direct and total414

effects. We conclude, that the general relationship between canopy NIR reflectance and the driving factors is described415

by the model although simulated and measured fluxes don’t agree fully.416

Due to limitation in available measurement equipment, we estimated leaf transmittance from the hyperspectral417

reflectance measurements by adapting the parameters of the model of leaf optical properties PROSPECT (Feret et al.,418
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Figure 9: Direct (�d,i, Eq. (3)) and total (�t,i, Eq. (4)) effects of single variables on the seasonal development of NIR canopy
reflectance RNIR at the forest Hohes Holz using the FRT model. The first column (a, b) shows the effect of leaf albedo
on canopy reflectance, the second column (c, d) the effect of leaf angle, the third column (e, f) the effect of understory
reflectance, the fourth column (g, h) the effect of the solar angle, and the fifth column (i, j) shows the effect of overstory
LAI on NIR canopy reflectance RNIR. The upper row (a, c, e, g, i) shows NIR canopy reflectance, the direct effect, and
the total effect. The lower row (b, d, f, h, j) shows the input values for the specific variable of the corresponding column
in the vi constant run and in the other runs (default, all constant except vi). The error bars in the lower row (b, d, f, h, j)
show the standard deviation (SD) of the respective variable. The error bars in the upper row (a, c, e, g, i) show the FRT
outcome for the same input as the normal run, except the given variable is reduced or increased by its SD, respectively.

2008). We believe that using an integrating sphere would not have changed the results of our study, since a small bias419

in the absolute value of leaf transmittance would not alter the overall outcome of our analysis, with respect to the effect420

of the individual parameters on the seasonal decline of RNIR.421

Even if the study site is relatively small, it can be regarded as somewhat representative of deciduous forest in Europe422

with respect to species composition, age, and management. The study area of 1 ha size covers about 25 Sentinel 2 20m423

pixels, which we think is enough to provide meaningful and robust results. However, more studies like ours at other424

sites are needed to check our results.425

We investigated drivers of the change in near-infrared (NIR) seasonal canopy reflectance RNIR of a temperate426

deciduous forest (Hohes Holz) by repeatedly measuring optical and structural properties to parameterise the Forest427

Reflectance and Transmittancemodel FRT.We discuss in the following themain drivers of RNIR, their seasonal changes428

and their contributions to changes in RNIR.429
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4.2. Understory Reflectance430

The few existing studies on the effect of understory reflectance on canopy reflectance support our findings, which431

state that changing understory reflectance contributed most (�t,3 = 43%, Figure 9) to the simulated decline of NIR432

canopy reflectance RNIR. Understory NIR reflectance and respective seasonal changes have rarely been studied (Rauti-433

ainen et al., 2011; Pisek et al., 2016; Pisek, 2018). Measurement of understory reflectance is hindered by multiple is-434

sues, e.g. by highly variable irradiance under the top canopy, weak signal in some parts of the spectrum and high spatial435

variability of understory composition (Pisek et al., 2016). Pisek et al. (2016) could estimate understory reflectance for436

open canopies from multiangular Moderate Resolution Imaging Spectroradiometer (MODIS) bidirectional reflectance437

distribution function data. For dense forest, where understory LAI is usually lower (Majasalmi and Rautiainen, 2020),438

the signal of the understory is much attenuated. Rautiainen et al. (2009) simulated seasonal variations of understory439

reflectance of a birch site, where the decline was similar to our measurements at Hohes Holz for a fertile soil, and much440

lower and with little variations for an infertile soil. Eriksson et al. (2006) found strong effects (up to 10%) of variable441

understory LAI on near-infrared canopy reflectance RNIR for sparse stands, also using the FRT model. The effects442

were lower (2.2% on average) for dense stands (overstory LAI ≥ 3). At one of their sites estimates of LAI and the443

effect of understory on RNIR where similar to our results. A more detailed comparison of both results would require444

understory vegetation spectra from Eriksson et al. (2006) or understory LAI estimates for our results.445

Häusler et al. (2016) also found a close link between the seasonal evolution (decline) of understory and canopy446

reflectance in an open cork oak woodland in Portugal. They observed a monotone decrease of understory reflectance447

with lower absolute values (0.34 on July 25th and 0.29 on Oct 3rd). The herbaceous understory was substantially448

stressed due to water limitation within this period. This was most likely also the case at Hohes Holz as the summer449

2018 was among the driest and hottest on record. Mean monthly precipitation above the canopy in 2018 (mean 1971-450

2000) was 13 mm (50 mm) in May, 18 mm (69 mm) in June, 23 mm (53 mm) in July, 9 mm (55 mm) in August and451

24 mm (42 mm) in September.452

Simulated canopy reflectance at Hohes Holz with the understory reflectance measurements from Häusler et al.453

(2016), instead of our understory reflectance measurements at Hohes Holz, was on average 0.03 lower and decreased454

by 0.07 from 0.36 onMay 23rd to 0.28 on Sept 19th. Our data outperformed those of Häusler at explaining the observed455

decline in RNIR by Sentinel 2. This engenders confidence in our observations and reaffirms the large impact of the456

understory on canopy reflectance.457

We found substantial spatio-temporal variations of understory reflectances, especially in early summer (Figure 5).458

On the contrary Jiao et al. (2014) found little variation in understory reflectance between May and September of de-459

ciduous forests retrieved from multiangular satellite data. But here, understory (background) reflectance was purely460
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derived from theoretical assumptions (linear combination of proportional reflectances) and not from in situ measure-461

ments and also on a global scale. The lowest magnitudes at Hohes Holz were observed in the middle of September462

(0.40), slightly higher than dry litter reflectances of deciduous tree leaves at 860 nm (0.35, wet 0.30) measured by463

Nagler et al. (2000). We hence concluded that in mid September the understory was mainly composed of senescent464

leaves and litter.465

The spatio-temporal variations of understory reflectance may be caused bymultiple factors. The understory surface466

heterogeneity is high and small positional shifts of the sampled area between different dates cannot be avoided. Also,467

the relatively low solar zenith angle (SZA) around summer solstice supports frequent changes of sunlit and shaded468

areas, whereas at higher SZAs, diffuse light conditions dominate, resulting in more homogeneous measurements.469

However, the seasonal variations may be induced by progressive water limitations throughout the hot and dry summer470

resulting in leaf area decrease or a comparably early end of vegetation activity. Understory rooting depth is usually471

limited to the upper soil and therefore prone to prolonged dry weather periods.472

The contribution of understory to NIR canopy reflectance RNIR (�s, eq. (5)) decreased slightly with increasing SZA473

in our simulations (Figure 10). The decrease of �s with increasing SZA was weakest for the nadir viewing direction,474

where the increase of the SZA from 32° to 51° between May 23rd and Sept 19th caused a small decrease from 32% to475

30%. For viewing zenith angles of 20°and 40° �s decreased also slightly with increasing SZA. The fractional vegetation476

cover was 0.84 (=1-gap fraction in nadir direction). Only for high viewing zenith angles (e.g. 60°) the contribution477

of understory to RNIR was slightly lower and its decrease with increasing SZA little higher. Accordingly we rejected478

the hypotheses that the contribution of the understory to RNIR is much lower for high than for low SZAs and that the479

influence of changing understory reflectance on RNIR should decrease with increasing SZA. On the contrary, the high480

contribution of the understory to RNIR can be explained by the low leaf absorption in the NIR (below 10%).481

The fraction of single scattering by the understory, i.e. the fraction of incoming direct light reflected by the un-482

derstory without any interaction with the canopy, was low (below 1%) already at low SZAs and converged to 0 with483

increasing solar zenith angle in our simulations. This may be caused by low gap fractions or the isotropic character484

of direct light, scattered by the understory. For forest stands with higher gap fractions this fraction of single scattered485

light from understory may be much higher and thus cause a higher interaction between SZA and understory reflectance486

(c.f. Section 4.6).487

4.3. Leaf Angles488

Our simulations indicated that seasonal changes of leaf angles have the second highest contribution (�t,2 = 31%)489

among the five tested variables to the seasonal decline of NIR canopy reflectance RNIR. This is despite the fact that490

the observed changes towards more vertical leaves during the growing season seemed relatively small. Leaf angle dis-491
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Figure 10: The contribution of the understory to NIR canopy reflectance RNIR (�s, eq. (5)) simulated with the FRT model
for different solar and viewing zenith angles in the antisolar azimuthal direction.

tributions are important determinants of radiative transfer in vegetation canopies since they determine the gap fraction492

via the leaf area projection on a plane perpendicular to the view direction (also known as G-function Ross (1981)).493

The contribution of variable leaf specular reflectance to variations of RNIR due to changes in LAD or SZA should be494

negligible. In the NIR most light is scattered diffusely at the leaf interior and the contribution to leaf reflectance of495

light reflected specularly at the leaf surface is only significant in the chlorophyll absorption regions and only for high496

leaf normal illumination angles (Grant, 1987; Bousquet et al., 2005).497

The effect of leaf angles on RNIR was still high for LAI=2 but lower for LAI=1 in our simulations. This can be498

seen in Figure 11c where the slope between July 31rd and August 16th is mainly caused by changes in leaf angles499

(c.f. Figure 9c). The LAI=0 case in Figure 11c shows again the high effect of all non-overstory-leaf variables on the500

seasonal decline of RNIR.501

The steepening of leaves during summer might be driven by several drivers. For low SZAs more vertical leaves502

in the top layers increase total canopy absorption, since light penetrates deeper into the canopy due to a decrease in503

effective leaf area illuminated by the sun (Jacquemoud, 1993). At high SZAs, prevalent at Hohes Holz in late summer,504

vertical leaves can inrcease whole canopy light interception, e.g. for eucalyptus trees at high latitudes in Australia505

(King, 1997). The changes of leaf angles towards more vertical leaves in late summer may thus indirect be caused by506

an increase of the solar zenith angle. This would suggest that the seasonal change in the solar zenith angle has direct507

and indirect (via leaf angles) effects on canopy NIR reflectance RNIR. The variations of leaf angles may also be caused508

by increases in lamina mass and area and lengthening or weakening of the petiole with increasing leaf age (Raabe et al.,509

2015).510

Leaf zenith angle measurements of Q. robur from Pisek et al. (2013) in a botanical garden in Sweden on Oct511
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11th was higher compared to our measurements on Aug 16th (Table 4). The tree in Sweden might have more vertical512

oriented leaves due to potentially higher exposure of light. Park grown individuals of B. pendula had e.g. more vertical513

oriented leaves, especially at lower heights, compared to individuals in closed canopies (Raabe et al., 2015). The LAD514

of Q. robur at Hohes Holz might be more similar to the LAD of Q. rubra at Harvard forest, due to more similar forest515

structures. The steepening of leaves was higher for Q. robur at Hohes Holz than for Q. rubra at Harvard Forest (Table516

4).517

In a Bavarian national park mean leaf zenith angles of F. sylvatica measured via terrestrial LiDAR scanning (Liu518

et al., 2019) were about 17° higher compared to Hohes Holz (Table 4). At Hohes Holz LAD in the upper canopy was519

mostly planophile compared to a rather uniform LAD (all leaf angles) in the upper canopy in Bavaria. LAD at Hohes520

Holz, however, had much smaller tails, which means fewer leaves with high leaf angles, most probably originating521

from a higher leaf area index at Hohes Holz than in Bavaria (Cailleret et al., 2014). The differences may be negligible522

or stem from the different measurement techniques with the LiDAR allowing a larger sample size and hence a better523

statistic but with less precision per individual leaf compared to the method explained in section 2.2.4.524

Observed seasonal variations of leaf inclination in the literature also tend to be largest in spring and early summer525

and small during the rest of the growing season (e.g. Pisek et al., 2013; Reaves et al., 2018). At Hohes Holz seasonal526

differences in leaf angle changes could not be identified as the leaf angle distributions were determined only twice.527

4.4. Solar and Viewing Angle528

Forest canopy reflectance is highly anisotropic and seasonal variations of the sun angle and the viewing angle can529

have large effects on the measured NIR reflectance. Accordingly, our simulations demonstrated a substantial effect530

of the solar zenith angle (SZA) — total effect �t,4 = 0.21 — on the seasonal decline of RNIR for the nadir viewing531

direction (Figure 9g).532

However, simulated RNIR was strongly linked to changing viewing zenith angle (VZA, Figure 11a). Different VZA533

would result in different trajectories of seasonal declining RNIR. For small VZA (< 40°), simulated RNIR decreased534

with increasing solar zenith angle for most viewing azimuth angles. For high viewing zenith angle (> 60°) simulated535

RNIR increased with increasing SZA for all view azimuth angles.536

In our simulations the hot spot effect and forward scattering caused large differences between the seasonal course537

of canopy NIR reflectance for low and high VZA. The hot spot is a surge in surface brightness in the back scatter538

direction (if the directions of the observer and the sun coincide, Figure 11b).539

For scatterers which are large compared to the wavelength of incident light, the hot spot is caused by shadow-hiding540

(Hapke et al., 1996). For low VZA the angle between observer and sun are small in summer at Hohes Holz (Figure 9h)541

and increases during the season, which causes a decrease of the hot spot effect, i.e. a decrease in RNIR (Figure 11a).542
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Figure 11: Simulated seasonal NIR canopy reflectance decline at Hohes Holz for (a) different viewing zenith angles
(forward scattering in the antisolar direction), (b) bidirectional canopy reflectance in the principal plane, and (c) for
constant overstory LAI values at 0° viewing zenith angle.

For high VZA forward scattering is high for high SZA (Figure 11b), which causes an increase RNIR in late summer.543

The hot spot effect might be even underestimated by FRT due to underestimated backward scattering by FRT (Kuusk544

et al., 2014).545

We also found an increase in RNIR with increasing SZA in the tower based RNIR measurements from the multispec-546

tral sensor. For clear sky conditions, minimum NIR reflectance RNIR values were recorded around solar noon (data547

not shown), but such high viewing zenith angles (> 60°) are extremely rare for any kind of sensor systems, except for548

hemispherical view setting (e.g. applied by Baldocchi et al. (2020)). For hemispherical view, which has contributions549

from all view zenith and azimuth angles, simulated RNIR was lower then for nadir viewing direction and the decrease550

was also lower (Figure 11a). Viewing zenith angles from most satellite observations are between 0-15° (e.g. MODIS551

Terra/Aqua, Landsat, Sentinel-2 A/B). Still, Roy et al. (2017) found a mean absolute reflectance difference between552

Sentinel-2A forward and backward scattering of NIR surface reflectance of 0.078 in January, where the maximum553

observed view zenith angle was 11.93°. Therefore, this effect can most likely be neglected when using data from the554
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above mentioned satellite missions.555

4.5. Leaf Albedo556

Average NIR leaf albedo of the forest Hohes Holz changed only marginally between May and September 2018557

(Figures 4i-l and 9b) and had little effect on the simulated NIR canopy reflectance RNIR (�t,1 = 7%, Figure 9a). Until558

late summer leaf reflectance at Hohes Holz remained either constant or increased slightly. At Fontainebleau leaf559

reflectance increased until June or July and decreased slightly afterwards (Demarez, 1999). The earlier decrease at560

Fontainebleau might be explained by a later onset of leaf senescence at Hohes Holz or a relative higher sampling of561

brown leaves. Leaf reflectance of Q. robur, F. sylvatica, and C. betulus at Hohes Holz were similar to measurements562

at Fontainebleau, while leaf transmittance was about 0.08 to 0.10 lower at Fontainebleau.563

To understand why only leaf transmittance differed between Hohes Holz and Fontainebleau we compared leaf564

mass per area (LMA) measurements at both sites. As mentioned above, NIR leaf transmittance is strongly influenced565

by leaf thickness (PROSPECT’s N parameter) and hence LMA. LMA measurements between June and August were566

similar for Hohes Holz and Fontainebleau (Demarez, 1999) for most species and heights (for C. betulus bottom, Q.567

Robur bottom, F. sylvatica bottom and top) except for Q. robur top, where LMA was slightly higher at Hohes Holz568

(105 gm−2) than in Fontainebleau (92 gm−2). Our leaf reflectances were measured with the Field Spec 4 attached569

to a plant probe and used to estimate leaf transmittance via PROSPECT. Demarez (1999) measured leaf reflectance570

and transmittance directly in the lab. They then also used PROSPECT to determine leaf traits such as chlorophyll571

content from the transmittance spectra, and noted very good accordance with independent measurements of the leaf572

traits. It is hence surprising that our reflectance measurements agree well with the values determined by Demarez for573

the forest at Fontainebleau, France, while leaf transmittances are partially different. This could be due to different574

versions of PROSPECT, where we used PROSPECT in its revision 5B (Feret et al., 2008) while Demarez probably575

used the original PROSPECT code (Jacquemoud and Baret, 1990).576

Leaf reflectance varies only little between the top and the bottom of the canopy at Hohes Holz (Figure 4a-d)577

while leaf transmittance varies up to 0.1 between top and bottom of the canopy (Figure 4e-h). Leaves in the upper578

canopy receive more light, tend to be thicker and have higher leaf mass per area (LMA) than leaves lower down in579

the canopy (Demarez, 1999; Davi et al., 2008). LMA affects mostly leaf transmittance, which is consequently lower580

for thicker leaves. LMA affects less leaf reflectance, which depends in the visible spectrum more on leaf pigments581

(e.g. chlorophyll) and in the near infrared on dry matter and water content and leaf interior structure (Feret et al.,582

2008). Although variations of leaf transmittance were higher than of leaf reflectance, seasonal changes in the leaf583

phase function (here given as the ratio transmittance/albedo) were small between June and September for all species.584

Transmittance/albedo was lower at the top (≈0.45-0.5) and higher (≈ 0.5-.58) at the bottom due to higher leaf mass at585

the top of the canopy. We guess that effects of variations in leaf phase function on canopy transmittance are marginal586
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compared to the effects which we considered, since variations in transmittance/albedo were small and since the effects587

of albedo on RNIR were small.588

However, replacing the observed and estimated NIR leaf reflectances and transmittances by the values from the589

literature in the FRT simulations decreased the mean leaf albedo by as little as 0.11 between May and September590

and decreased NIR canopy reflectance RNIR by an average of 0.06 moving the simulation far away from the satellite591

observations (results not shown). We hence think that our estimates of leaf transmittance may be realistic for the forest592

Hohes Holz. In addition, the simulation with leaf properties from literature values showed the same seasonal decline593

of about 0.1 in RNIR as the satellite observations and our default run. The strong decrease of RNIR of 0.06 by changes594

in leaf albedo of 0.11 demonstrates the large sensitivity of canopy albedo to leaf optical properties. They do, however,595

only marginally influence the seasonal decline of NIR canopy reflectance RNIR at the forest Hohes Holz.596

4.6. Gap Fraction, LAI and Canopy Transmittance597

Overstory LAI was nearly constant from mid May to end of September and had little effects on simulated NIR598

canopy reflectance (RNIR, total effect �t,5 = -0.01), gap fraction and canopy transmittance in our simulations. In599

general, variations of LAI have large effects on RNIR, but the largest seasonal variations of overstory LAI, which600

happen during leaf unfolding in spring and leaf littering in autumn, were either before or after the investigated period601

at Hohes Holz in 2018. Additionally, during summer when LAI is highest the sensitivity of RNIR towards changes602

of LAI
(

ΔRNIR
ΔLAI

)

was lowest in our simulations (Figure 11c). Similarly to RNIR, the gap fraction in nadir direction603

saturated at LAI 2-3 in our simulations. This explained the time offset of about half a month between the onset of604

the decline of overstory LAI (second half of September) and the of increase of gap fraction and canopy transmittance605

(second half of October).606

Although overstory LAI remained constant during the growing season, total LAI (i.e., the sum of overstory and607

understory LAI) may still have declined due to a decrease in understory LAI and contribute to a decline of RNIR
608

(Rautiainen et al., 2009). The seasonal course of total LAI at Hohes Holz in 2018 might have been similar to that609

by Rautiainen et al., since understory NIR reflectance decreased and RNIR reflectance correlates well with LAI (e.g.610

all constant except LAI in Figure 9i or Jacquemoud (1993)). Another indicator for declining understory LAI was the611

decline of the understory greenness quantified by the green chromatic index (GCC) (Keenan et al. (2014), data not612

shown here).613

Gap fraction at Hohes Holz seems to be a driver of RNIR rather on the spatial scale than on the temporal scale.614

RNIR was lower at locations with higher gap fraction (Figure 1) but gap fraction was stable during the main growing615

period (Figure 7b). We guess the reasons for decreasing RNIR with increasing gap fraction are that first, soil absorbs616
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more light than leaves in the NIR (c.f. Table 3) and second, the probability for light to escape the canopy is lower for617

light reflected by the soil, than for light reflected by leaves or woody material higher in the canopy.618

4.7. Implications for GPP estimation from remote sensing619

Several studies reported strong correlations between GPP and NIRV or one of its modifications to account for radi-620

ation (NIRV ⋅ PAR or NIRV, rad) in different ecosystems, also including forests (Badgley et al., 2017, 2019; Baldocchi621

et al., 2020; Dechant et al., 2020; Jiang et al., 2020; Wong et al., 2020; Wu et al., 2020). The results of Dechant et al.622

(2020) in crops suggest that the relationship between NIRV ⋅ PAR and GPP goes beyond the light absorption compo-623

nent and is partly due to a correlation between the photosynthetic light use efficiency (LUE) and the escape fraction of624

NIR radiation from the canopy (fesc).625

Although the exact mechanism underlying the correlation between NIRV and GPP is still unkown, canopy structure626

parameters such as LAI, leaf angles and clumping were identified as important factors (Badgley et al., 2019; Dechant627

et al., 2020; Zeng et al., 2019). In this study, we confirmed the importance of leaf angle changes for the seasonal628

dynamics of NIR reflectance, and hence, NIRV (Figures 3, 9). However, we also identified two additional important629

factors that were not directly considered in previous literature on NIRV: the understory reflectance and the SZA.630

Understory GPP reduction, e.g. via decreasing LAI, might be reflected in decreasing understory NIR reflectance.631

However, since forest GPP is typically dominated by the contribution of the overstory (Misson et al., 2007), the large632

understory effects on NIRV (Figure 9) appear disproportionate compared to expected effects on GPP. This is further633

substantiated also by (Sampson et al., 2006), which found that understory contributed 10-20 % to overall GPP. Our634

findings may therefore indicate a weak link in the NIRV-GPP relationship at the level of the total canopy in ecoystems635

with complex, multi-layer canopies.636

637

The statistical correlation between GPP and NIRV with respect to SZA is just to some extent driven by a causal638

relationship. This mainly stems from corresponding irradiance changes. However, factors like temperature or water639

availability directly influence GPP and are largely independent of SZA. Incoming PAR is reduced with declining SZA640

towards autumn which proportionally reduces GPP but does effect NIRV , but it directly affects the product NIRV ⋅641

PAR which was suggested to be a better proxy for GPP (Dechant et al., 2020). An indirect effect of solar angle on642

GPP might be mediated by leaf angles (see section 4.3), which affects both the fraction of absorbed PAR (fPAR) and643

the escape fraction, and hence NIRV. Such changes in leaf angles might go together with changes in biochemical leaf644

traits related to photosynthesis (Ollinger, 2011). Therefore, the decline in NIRV (fesc) may partly reflect physiological645

changes although via structural effects related to the solar angle and the leaf angles.646

647

The global-scale findings of Badgley et al. (2019) suggest robust performance of NIRV for forest GPP estimation648
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at monthly time scales. Also, Wong et al. (2020) found that NIRV captured the seasonal decline (summer-autumn) of649

GPP in a temperate mixed forest ecosystem rather well. As the links between NIRV and GPP beyond light absorption650

are indirect and not due to strong mechanistic coupling, however, they might not hold in all situations or ecosystems.651

For example, Baldocchi et al. (2020) found evidence of lag effects between NIRv, rad and GPP in corn and a wetland652

ecosystem. Our study identified potential weaknesses in the relationship betweenNIRV andGPP in temperate broadleaf653

forests at seasonal time scales. To better understand the limitations of NIRV as GPP proxy as well as identify potential654

mechanisms of covariation of leaf physiological and canopy structural traits (Ollinger, 2011), further detailed studies655

are needed.656

5. Summary and Conclusions657

We used both field observations and radiative transfer modelling to identify the main factors underlying the phe-658

nomenon of seasonally declining NIR reflectance in a temperate broadleaf forest. We found that understory reflectance659

had the largest effect on the simulations of NIR canopy reflectance RNIR, expressing the dynamic development of un-660

derstory vegetation over the season and varying soil moisture levels. Leaf angles became more vertically oriented in661

summer compared to late spring throughout the whole canopy. This had the second strongest effect on RNIR. The662

solar zenith angle changes gradually over the seasons while the satellite’s viewing angle varies but with no embedded663

trend. This sun-view geometry had the third largest effect on RNIR in our simulations. The effect size does, however,664

depend on the viewing angle and might hence be different for other satellite missions or local instruments. Leaf optical665

properties did change only marginally throughout the season at Hohes Holz and leaf reflectance and transmittance had666

hence only minor effects on changes of RNIR. LAI variations were small between May and September and had the667

smallest effect on changes of RNIR during that period.668

Given our results, more extensive knowledge of seasonal changes of leaf angle distributions (LAD) is required,669

maybe facilitated by novel retrieval methods. LADs are assumed to be constant over the season in most land surface670

models. The influence of changing leaf angles should be assessed if these models are used to retrieve bio-physical671

parameters from satellite observations, for example. Most canopy radiative transfer schemes assume a nadir viewing672

angle of ingested satellite data. Our results indicate that even using maximal off-nadir Sentinel 2 a/b viewing angles673

(22.5°), observations still provide very similar results compared to nadir view. Our results also suggest that assuming674

constant leaf optical properties after the initial darkening of new leaves in spring might be sufficient to capture seasonal675

dynamics even when using the NIR waveband.676

Our findings indicate a considerable complexity of the phenomenon of seasonally declining NIR reflectance as677

several different factors are involved. Apart from highlighting the need for more studies on seasonal understory and leaf678
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angle dynamics, our study indicates potential weaknesses in the relationship between the NIR reflectance of vegetation679

canopies (NIRv) and GPP that should be investigated in more detail in the future.680
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