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Abstract

Biogeochemical models of vegetation dynamics could potentially be used to complement empirical studies
on the effect of plant species richness. A key precondition is the simulation of species coexistence. While
community scale models regularly incorporate respective processes, models at the field or landscape scale
used for larger scale assessments, require additional model development. However, it is unclear how the
particular process description within these models affects simulations of species performance and resulting
ecosystem functions.

We compare simulations of two grassland models of different complexity for monocultures and two-species
mixtures in a grassland experiment in Jena, Germany. By providing an in-depth analysis of the models’
process descriptions, we evaluate their ability to simulate the response of different species, their interactions
and their joint performance to drought and mowing.

Both models simulated similar average above-ground biomass (AGB) but showed different intra-annual
variability. Generally, the models had difficulties representing a balanced species composition in multiple
species mixtures and competition for space was the main driver of community composition in both models.
The resulting communities were dominated by the more competitive species, while the weak competitor was
only marginally present in most mixtures independent of drought and mowing. The competitive strength
which we derived from the calibrated parameter sets of the species differed between the models and the
agreement on which species dominate specific mixtures was mixed. While both models simulated reduced
soil water content and above-ground biomass in response to drought, the strength and duration of these
responses differed. Despite these differences, simulated species interactions were barely affected, and strong
competitors remained dominant. Mowing had opposing effects on the competition for space in the models,
which could be attributed to the different representations of plants in the two models.

The models selected for the comparison are two representatives for local- and large-scale applications and
use widely applied approaches for which our comparison highlighted strengths and weaknesses. To enable
the investigated models (and those with similar complexity) to simulate coexistence of multiple species, niche
differentiation needs to be improved. This requires a stricter separation of access to different resources and
improved representation of different ecological strategies for which community scale models that are able
to simulate coexistence may be an inspiration. Our approach may serve as an example for other modellers
looking for ways to identify important model processes for further model development in the context of
species interaction.

Keywords: grassland model, model comparison, process based modelling, species interaction, species
traits, drought
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1. Introduction1

Grasslands are a key element of ruminant livestock production systems and provide multiple ecosystem2

services like carbon sequestration (Chang et al., 2015), erosion control (Zhu et al., 2015) and habitats for3

pollinators and other fauna (Dass et al., 2018; Tribot et al., 2018). They strongly affect biogeochemical4

cycles at different scales (Moinet et al., 2017; Zhou et al., 2017) and lately, their carbon storage potential5

has been controversely discussed in the context of climate change mitigation (e.g. Lorenz and Lal, 2018; Yang6

et al., 2019; Godde et al., 2020). The functions and services provided by grasslands are strongly controlled7

by the prevailing environmental conditions, but also by the specific management (Tilman et al., 2012). The8

response of a grassland ecosystem to changes in these drivers was shown to be mediated by species richness9

and community composition (Vogel et al., 2012; Craven et al., 2016; Yin et al., 2017). Consequently, a10

good understanding of the mechanisms driving grassland dynamics is essential to assess and project future11

productivity, ecosystem services and functions under different stressors, such as climate change (Van Oijen12

et al., 2020).13

1.1. Drivers of grassland dynamics14

In this study, we focus on the effect of two important drivers of grassland dynamics: decreased water15

availability resulting from meteorological droughts, which can result from climate change, and biomass16

removal by mowing, which is a common practice in livestock production.17

1.1.1. Water18

Water availability results from the local balance of inputs through precipitation and losses by transpira-19

tion, evaporation, seepage and runoff. During drought, precipitation is absent or below water requirements20

for a longer period, either within one season or across multiple years. A decrease in precipitation can sup-21

press ecosystem photosynthesis, soil respiration and carbon cycling (Wu et al., 2011; Beier et al., 2012) as22

well as key soil processes (Emmett et al., 2004). Additionally, an increase in inter-rainfall intervals can lead23

to reduced net primary production, flowering duration and soil CO2 flux in grasslands (Fay et al., 2000).24

Other severe impacts on grassland ecosystems include a rapid loss of biomass, plant cover, and even species25

(Weaver, 1942; Tilman and El Haddi, 1992; Carroll et al., 2021). In addition, droughts were shown to26

influence community composition and diversity patterns of grasslands (Buckland et al., 1997; Knapp et al.,27

2008; Jung et al., 2020). The response of an ecosystem to periods of drought depends on characteristics of28

the drought itself, such as its duration, its intensity and its frequency (Felton et al., 2020; Denton et al.,29

2017). It also depends on the characteristics of the grassland community, as grassland species have devel-30

oped several strategies to resist and survive droughts (Blair et al., 2014; Reich, 2014). While annual species31

often use an escape strategy by completing their life cycle outside the dry season (Kooyers, 2015; Norton32

et al., 2016), perennial species use dehydration avoidance or tolerance as a strategy (Zwicke et al., 2015) by33

regulating their leaf water potential (Ratzmann et al., 2019a,b). Dehydration avoidance is associated with34

an increase in water uptake or decrease of water losses, while dehydration tolerance ensures plant survival35

by maintaining cell integrity of meristematic tissue (Ludlow, 1989; Volaire et al., 2009; Zwicke et al., 2015).36

Additionally, species-rich communities often better buffer adverse effects of droughts in the long run than37

low-diverse communities, as they allow for shifts in their composition towards potentially better adapted38

species (Isbell et al., 2015; Hoover et al., 2018) but may also alter environmental conditions reducing drought39

stress of more vulnerable species (Wright et al., 2021). Species-rich communities may also benefit from com-40

plementarity effects that arise from the use of soil water stored in different soil depths by opposing rooting41

strategies (Kulmatiski and Beard, 2013; Guderle et al., 2018; Klaus et al., 2016).42
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1.1.2. Mowing43

In addition to drought, the frequent removal of above-ground plant biomass through mowing or cutting44

also affects the composition of grassland communities as well as their productivity, which in turn may45

affect the grassland’s resilience to drought events. The intensity of mowing is a result of the frequency46

of mowing and the applied cutting height. While the prevailing pedoclimatic conditions restrict grassland47

productivity via temperature, light, water and nutrient constraints, under similar conditions the highest48

grassland productivity has been found at intermediate mowing intensities, whereas very low or high mowing49

intensities often decrease productivity (Hopkins, 2000; Weigelt et al., 2009). At low mowing intensity,50

competition for limiting resources such as water and nutrients, drives the community dynamics, and thus51

more competitive species dominate the community (Smart et al., 2006). Therefore, the community is often52

shaped by fewer but larger plants compared to grasslands with higher mowing intensities. In contrast, in53

grasslands with a very high mowing intensity, biomass is removed so frequently, that fast growth and high54

stature traits associated with competitive species are not advantageous but lead to selective removal of these55

species instead (Yu et al., 2015; Yin et al., 2017). The resulting community often consists of a high number of56

small plants. This is accompanied by reduced shading and competition for nutrients and increased growth57

of less competitive species, promoting species richness (Peltzer and Wilson, 2001; Williams et al., 2007;58

Pecháčková et al., 2010).59

1.2. Plant species richness60

The grassland ecosystems’ responses to these two drivers, water availability and mowing, and the mech-61

anisms involved, as well as the role of plant species richness of grassland communities, have been studied62

using field observations and experiments along a diversity gradient (e.g. Craven et al., 2016; Tilman et al.,63

2014). Despite the large number of experiments the mechanistic understanding of the processes regulating64

community responses to drought and mowing, especially in species-rich communities is still limited (Weisser65

et al., 2017). While the patterns can be reproduced using mathematical models (e.g. Han et al., 2019), to66

dissect the underlying processes of ecosystem dynamics, biogeochemical models (BGMs) have the potential67

to complement empirical studies, as they can mechanistically analyze the interacting responses of biotic68

and abiotic components of grasslands to changing environmental conditions (Wilcox et al., 2020; Van Oijen69

et al., 2020). However, this requires that two preconditions are met: First, the models need to represent70

all relevant processes that shape the community under specific environmental and management conditions71

reasonably well. Second, the models need to represent different ecological strategies enabling the communi-72

ties to adapt if prevailing conditions change. However, BGMs have not yet been assessed sufficiently with73

respect to these two preconditions.74

1.3. Biogeochemical models75

BGMs of grasslands have been developed and applied to determine grassland dynamics since the end of76

the 1980s (e.g. Thornley and Verberne, 1989; Coffin and Lauenroth, 1990; Siehoff et al., 2011; Hunt et al.,77

1991; Schapendonk et al., 1998; Duru et al., 2009). These models have been developed for applications78

at multiple scales and with different levels of represented process detail. Models at the community scale79

simulating individual plants with different traits have been used to study the effect of resource availability80

and disturbance regimes on the community and its member species (e.g. May et al., 2009; Soussana et al.,81

2012). At the plot or field scale individual-based and other models distinguishing traits only between species82

or functional types have been used to assess productivity and yields for different environmental conditions83

and management (e.g. Taubert et al., 2012; Höglind et al., 2016). At the continental or global scale dynamic84

global vegetation models have been developed to assess element cycling commonly using only a small number85

of functional types to simulate grassland ecosystems (e.g. Rolinski et al., 2018; Vuichard et al., 2007). The86

level of detail and the number of resources that are considered for plant growth and competition vary not87

only with the spatial scale for which models have been developed, but also between models applied at similar88

scales (for an extensive review see Taubert et al., 2012).89

At the community scale, models that simulate the effects of plant species richness and the interactions90

between species have been developed (e.g. Clark et al., 2018; Turnbull et al., 2013; Weiss et al., 2014).91
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The high detail of the plant interactions is achieved at the expense of detail in biogeochemical process92

descriptions. We refer to these models as plant interaction models (PIM) to distinguish them from BGMs.93

The latter still need substantial development to incorporate plant species richness and species interaction.94

In order to enable these models to simulate differently diverse communities and quantitatively assess the95

effect of plant species richness, important processes need to be identified and the appropriateness of potential96

alternative approaches has to be evaluated. An in-depth analysis of the interactions between two species97

can be used to identify the important processes. Doing such an analysis for model representatives which98

exemplify a type of model (a number of models sharing similar approaches) and comparing the performance99

of multiple model representatives, may be used to identify the limitations of current model implementations100

as well as general knowledge gaps that can inform the next steps of model development. The approach can101

also uncover similarities and differences regarding the strengths and weaknesses of specific approaches. This102

knowledge can be used to inform on potential development options for the assessed models as well as other103

models of the same type.104

1.4. Model intercomparison studies105

While comparison studies are more common for models of cereal crops (e.g. Asseng et al., 2019; Durand106

et al., 2018; Müller et al., 2017) only comparably few studies for forage grasses have been published (Korhonen107

et al., 2018). Of these few grassland model intercomparison studies, some have used a large model ensemble108

and cover multiple sites (e.g. Sándor et al., 2017, 2020; Ehrhardt et al., 2018). While they quantify and109

discuss the uncertainty within the ensemble, a detailed analysis of the processes within each model is beyond110

their scope. In contrast, other studies have used a small number of models allowing for a more detailed111

analysis of model differences at one or multiple sites (e.g. Korhonen et al., 2018; Persson et al., 2019;112

Hurtado-Uria et al., 2013). These studies are, however, limited to one specific species, neglecting inter-113

specific competition and differences between parametrizations obtained for multiple species, which to our114

knowledge have only been assessed using PIMs (Crawford et al., 2021).115

1.5. Research question116

To expand on this for BGMs of different scales and to assess the role of how processes are represented117

in different models, we compared simulated grassland properties for two biogeochemical grassland models118

(GRASSMIND: Taubert et al. 2012, 2020a,b; LPJmL: Schaphoff et al. 2018; von Bloh et al. 2018; Rolinski119

et al. 2018) using different scenarios of water availability and management using simulations of monocultures120

and two-species mixtures. The GRASSMIND model follows an individual-based approach using fixed traits121

for each species and simulates photosynthesis using light response curves (Thornley and Johnson, 1990),122

while the LPJmL model follows an average individual approach and simulates photosynthesis using an123

adapted Farquhar approach (Haxeltine and Prentice, 1996; Prentice et al., 2000). Using data from a long-124

term biodiversity experiment (Weisser et al., 2017) — the Jena Experiment — we first calibrated and125

evaluated the models for four species for observed climatic conditions and management. Subsequently, we126

compared the models for scenarios with no, moderate and extreme drought conditions in combination with127

and without mowing. With this study we pursue the following objectives:128

(i) identify the relevant processes to explain the main similarities and differences between the models129

outcomes for our scenarios,130

(ii) assess the effects of mowing and drought in relation to calibrated parameters for the monocultures131

and the two-species mixtures and explain the differences using the processes identified in (i) and132

(iii) discuss our findings from (i) and (ii) in the context of other modelling approaches.133

2. Methods134

We used the vegetation models LPJmL (Schaphoff et al., 2018; von Bloh et al., 2018; Rolinski et al.,135

2018, see 2.1.1) and GRASSMIND (Taubert et al., 2012, 2020a,b, see 2.1.2) for our comparison. The models136

were first calibrated and evaluated for four monocultures and subsequently grassland dynamics were assessed137

for multiple scenarios of management and drought conditions for the monocultures as well as two-species138

mixtures (see 2.2).139
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2.1. Model description140

The GRASSMIND and the LPJmL models both simulate daily dynamics of grassland vegetation. While141

LPJmL is usually applied at large spatial scales, for this study, it is used as a point model, simulating small142

plots with no further spatial distinction. This plot level is the smallest spatial unit for which all dynamics143

represented in LPJmL are simulated, whereas in GRASSMIND the smallest spatial units are the single144

plants, which simulate the dynamics on 1 m2 to represent the plot. In both models, at each daily timestep,145

the amount of biomass gained by photosynthesis is calculated and allocated to the leaves and roots after146

subtracting losses from growth and maintenance respiration. Subsequently, the biomass losses from mortality147

and turnover of biomass into the litter layer are determined. The amount of new biomass gained depends on148

available space, soil and climate conditions and management. At optimal temperatures, sufficiently available149

space to grow and under adequate radiation, water and nitrogen supply, higher photosynthesis rates can150

be achieved, while suboptimal resource supply or high vegetation density limit photosynthesis and thus151

growth. This can results in altered competition and community composition. Both models can account152

for management measures by irrigation and application of fertilizer, can increase biomass gains. Biomass153

removal by mowing can be carried out at fixed dates, reducing the tissue available for photosynthesis after154

the mowing event.155

Each model considers the environmental factors space not already occupied by vegetation, temperature,156

radiation, water and nitrogen availability, and simulates similar processes to describe biomass gains and157

losses. Fig. 1 provides a condensed overview of the similarities and differences while a separate depiction158

is provided in Fig. SI A.1. However, the process implementations differ in specific aspects, e.g., in LPJmL159

overcrowding reduces the above-ground biomass depending on the excess cover, while in GRASSMIND the160

excess cover determines the number of individuals killed which are then randomly selected (SI B Tab. 1).161

While we use the term cover for the comparison of the models throughout this paper, it is defined differently.162

In LPJmL, plant geometry is not simulated and cannot be used to calculate the cover. Here, cover is the163

foliage projective cover (FPC) which is calculated from the leaf area index (LAI). In GRASSMIND, where164

plant geometry is simulated, cover is calculated as the sum of the individual plants’ base area. This is an165

important difference between the models and has to be kept in mind when reading sections 3 and 4.166

In addition, a key difference of the models is the representation of the vegetation itself. Grassland167

communities consist of several taxonomic groups, however, only graminoids, small, and tall herbs are rep-168

resented in the two models. For each modelled species or functional type, LPJmL simulates one average169

individual with a given set of traits. The dynamics of the average individual are then scaled up to the plot170

scale, neglecting differences between individuals of the same species. In contrast, GRASSMIND follows an171

individual-based approach explicitly simulating multiple individuals of the same species that have the same172

set of traits but can differ in size (e.g. plant height and base area). Both models distinguish the plant173

compartments leaves and roots, but in GRASSMIND leaf tissue is further divided into living and standing174

senescent tissue, while in LPJmL senescent tissue is directly added to the litter layer of the soil. For a175

detailed description we refer to Schaphoff et al. (2018); von Bloh et al. (2018); Rolinski et al. (2018) for the176

LPJmL model and to Taubert et al. (2020a,b, 2012) for the GRASSMIND model.177

2.1.1. LPJmL178

LPJmL is a process-based BGM of the carbon, water and nitrogen cycle, developed mainly for global-179

scale applications (Schaphoff et al., 2018; von Bloh et al., 2018) and has been extended to simulate different180

grassland management routines (Rolinski et al., 2018). However, as the model simulates processes for181

representative points without an explicit reference to space, it is also applicable at the plot scale (e.g Ehrhardt182

et al., 2018). LPJmL is representative for several related models (e.g. LPJ-GUESS Smith et al. 2001, LPJFit183

Sakschewski et al. 2015 or LPX Prentice et al. 2000) but also other DGVMs (e.g. JULES Clark et al. 2011 or184

ORCHIDEE Vuichard et al. 2007). The model simulates the dynamics of an average individual of a species185

or a plant functional type (PFT) with daily timesteps based on the following processes: (a) establishment186

of new species and reproduction of present species, (b) plant turnover, (c) biomass accumulation based on187

gross primary production (GPP) and autotrophic respiration, which is limited by environmental conditions188

and competition for resources between species. Direct biotic interactions are not simulated.189
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Figure 1: Processes and plant compartments simulated in GRASSMIND and LPJmL (see Fig. SI A.1 for an individual
representation of each model)

2.1.1.1 Photosynthesis190

LPJmL simulates GPP based on a simplification of the Farquhar approach in combination with a big191

leaf approach for which the optimum photosynthetic activity as a trade-off between light energy and Ru-192

BisCO availability is derived numerically (Farquhar and von Caemmerer, 1982; Collatz et al., 1991, 1992;193

Prentice et al., 2000; von Bloh et al., 2018). A crucial part of the photosynthesis is the fraction of absorbed194

photosynthetically active radiation (FAPAR) which is determined using a factor depending on snowcover, a195

biome-specific scaling factor and the PFT’s FPC, which is defined as the fraction of ground area covered by196

a vertical projection of the vegetation’s foliage, and determines how much of the photosynthetically active197

radiation (PAR) can actually be intercepted by the canopy. The FPC of each PFT is calculated from the198

PFT’s specific LAI and light extinction coefficient. Afterwards, the realised FPC of each PFT is weighted199

depending on LAI and FPC of all other PFTs present in the plot. Additionally, limitations due to water200

and nitrogen stress are accounted for by comparing resource demand and supply.201

2.1.1.2 Water and nitrogen stress202

LPJmL simulates soil water dynamics in six distinct layers, to which plants have access, depending on203

their root distribution (Schaphoff et al., 2018). Here, we focus on plant water demand, supply, and uptake,204

to analyse the impacts these processes have on each PFT and the entire community. In the computation of205

GPP, an estimated canopy conductance under unlimited water supply is used to calculate the atmospheric206

water demand following Monteith (1995). Even though plants share the same soil water supply on the plot,207

plant available soil water is calculated separately for each PFT, depending on its maximum water transport208

capacity, vertical root distribution, and FPC. If the atmospheric demand is not met, canopy conductance209

is reduced in accordance to the water supply. This reduced conductance rate is used to determine actual210

GPP.211

A similar approach is applied for the nitrogen stress in which the plant-available nitrogen supply is compared212

to the plant’s demand. In case the leaf nitrogen content is below a threshold, the carboxylation capacity is213
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reduced to match the actual nitrogen supply in the leaves. Since the carboxylation capacity is also used to214

determine water limitation, the actual water demand is updated and GPP is updated to account for both215

water and nitrogen limitations (see von Bloh et al., 2018, for a detailed description of the nitrogen cycle in216

LPJmL).217

2.1.1.3 Allocation, establishment and mortality218

The assimilated carbon is distributed between leaves and roots, considering the discrepancy between the219

actual and the aspired leaf-to-root-ratio of carbon. If the actual leaf-to-root ratio is larger than the aspired220

(more leaf carbon than root carbon) more carbon is allocated to the roots and the other way around. Under221

water limited conditions, additional carbon is allocated to the roots. Subsequently, the assimilated nitro-222

gen is distributed considering the prescribed range of carbon-to-nitrogen-ratios of leaves and roots. If the223

allocation of nitrogen would exceed the lower limit of these ranges, a part of the nitrogen is stored so it can224

be distributed at a later time. If not enough nitrogen is available and the upper limit of the ranges would225

be exceeded, leave and/or root carbon is reduced and the excess added to the litter layer. Afterwards, the226

FPC of all PFTs is updated.227

Each day, the model evaluates the present species and allows for establishment of new species if these can228

grow under simulated conditions. For all species (already present and newly established) reproduction is229

calculated based on the equal distribution of available space. The more space is available the more repro-230

duction is possible. If the total FPC exceeds 1.0, overcrowding mortality reduces the leaf biomass until the231

FPC is smaller 1.0.232

All these processes interact and lead to daily changes in the PFTs’ carbon and nitrogen pools. The process233

rates depend on a set of PFT specific parameters that resemble plant functional traits. It is possible to234

represent different strategies of particular species using observations of multiple functional-traits or mea-235

surements from experiments, that correspond to a subset of the parameters to calibrate the model. A full236

model description is available in Schaphoff et al. (2018) and von Bloh et al. (2018) and the open source237

version of the model is available at https://github.com/PIK-LPJmL/LPJmL. We use a consolidated version238

of LPJmL5 (von Bloh et al., 2018) extended to simulate daily establishment.239

2.1.2. GRASSMIND240

GRASSMIND is an individual- and process-based grassland model (Taubert et al., 2012, 2020a,b) where241

plant growth is based on the concept of light response curves that is also used in several other models (e.g.242

Seib-DGVM Sato et al. 2007). The model simulates the daily dynamics of individual plants of different243

species or PFTs at the plot scale (e.g., 1 to 100 m2) based on the following processes: (a) recruitment244

and emergence of plant seedlings, (b) plant senescence and mortality, (c) growth of plants (based on GPP245

and autotrophic respiration), which can be (d) limited by environmental conditions or reduced due to246

competition between plants. Interactions between plants encompass competition for the resources light,247

space, water and nitrogen. Plant competition depends on plant size and species identity, but does not248

account for the particular spatial locations of a plant (’gap approach’; Fischer et al., 2016; Botkin et al.,249

1972; Köhler and Huth, 2004; Shugart, 1998). Each plant species is described by a set of plant traits, which250

determines its performance in the above-mentioned processes and its growth form.251

2.1.2.1 Photosynthesis252

GRASSMIND first calculates a plant’s potential GPP using the concept of light response curves (Thorn-253

ley and Johnson, 1990), which is subsequently reduced to account for water, nitrogen and temperature254

limitations. The potential GPP is predominantly determined by the photosynthetically active radiation255

(PAR) that the plant receives, which is comparable to FAPAR in LPJmL. In GRASSMIND, this depends256

on the LAI and other factors such as shading by larger plants. Competition for light is modelled asymmet-257

rically, which means that larger plants receive more non-attenuated light than smaller plants. Dependent258

on species-specific traits, some species can cope better with lower light levels than others. Large plants with259

large leaf area can reach their potential GPP limit as a result of self-shading. The response of potential260

GPP to air temperature is similar for all plants, but reductions of potetenial GPP due to soil water deficits,261

nitrogen stress or competition are dependent on species-specific traits that control resource demand and262

supply.263
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2.1.2.2 Water and nitrogen stress264

Water, carbon and nitrogen dynamics are modelled in 20 equally large soil layers in GRASSMIND using265

a daily version of the Century soil model (Parton et al., 1988). Soil water stress is modelled using a linear266

reduction dependent on soil water content, permanent wilting point and field capacity (Granier et al., 1999).267

Species-specific differences in water uptake are a result of the water demand of plants (using the concept of268

water use efficiency) and their rooting depth in relation to the availability of water in different soil layers.269

A similar approach is used for plant nitrogen stress. Based on the potential NPP, which is a balance270

between possibly limited GPP and autotrophic respiration (modelled proportional to plant biomass), the271

plant nitrogen demand is calculated using C:N ratios of green and brown leaves and roots (species-specific272

model parameters). Again, the potential NPP of a plant is reduced linearly dependent on the ratio of273

nitrogen supply and demand. Leave senescence can add nitrogen resources to the supply via retranslocation274

from yellowing to still green leaves. The actual GPP is calculated from the potential GPP by accounting275

for the limitations from temperature, water and nitrogen stress using multiplicative factors. Subsequently276

the autotrophic respiration is accounted for to obtain the actual NPP.277

2.1.2.3 Allocation, recruitment and mortality278

The actual NPP is then distributed between shoots (stems and leaves), roots and reproductive biomass.279

A species-specific fraction is allocated to the shoots and the root biomass is updated dependent on this280

fraction and the shoot-root ratio. The remaining NPP is allocated to the reproduction pool. Corresponding281

nitrogen fluxes are calculated according to the respective C:N ratios. The growth of plants based on an282

increased net productivity results in an increased plant biomass, leaf area, rooting depth and root branch283

length, plant height and width, dependent on species-specific traits.284

Recruitment and mortality of plants determine, in turn, the density of plants on the simulated area. Recruit-285

ment can occur from three sources: migration from a surrounding meta-community as a constant inflow,286

sowing of seeds at specific times and local reproduction of plants depending on their fitness. Plants of a287

higher fitness are able to invest more of their NPP into reproduction and can produce more seeds. In this288

study, seed ingrowth from a meta-community and local recruitment are summarized in one model parame-289

ter. While seedlings can grow at any time and establish dependent on species traits (e.g. germination rate),290

plant mortality is modelled in terms of a background mortality and a crowding mortality. The background291

mortality is constant (but differs between seedlings and mature plants) and independent of environmental292

conditions and overcrowding. Plants that have reached their expected maximum age die immediately. If293

the total vegetation cover, which is calculated based on all plant’s width or lateral expansion, exceeds an294

area size (of one m2), crowding mortality reduces the number of individual plants (irrespective of size or295

plant age). A full model description of GRASSMIND can be found in Taubert et al. (2012, 2020b,a) and on296

www.formind.org/downloads.297

2.2. Site and scenario description298

Both models were applied to plots of the Jena Experiment, which is situated at the northern edge of Jena299

(Thuringia, Germany) on the floodplain of the Saale river (50◦55’N, 11◦35’E, 130 m a.s.l. Weisser et al.,300

2017). The annual mean temperature and mean annual precipitation between 1980 and 2010 were 9.9 ◦C301

and 610 mm/year, respectively (Hoffmann et al., 2014), and the soil is classified as Eutric Fluvisol (Roscher302

et al., 2004).303

For our simulations, we used gap filled daily weather data for temperature, precipitation, and shortwave304

radiation from 2002 to 2014 (MPI, 2019; Taubert et al., 2020a). Within this period, annual precipitation305

ranged from 368 to 784 mm/year with a mean of 526 mm/year which is below the 1980 to 2010 average. For306

the use in LPJmL we had to normalize leap years (2004, 2008, and 2012) to 365 days. We chose to remove307

December 31st in leap years to maintain the seasonality within the years. Since data on harvest events were308

only available at monthly resolution (Weigelt et al., 2010), we assumed harvests to occur in the middle of309

the month (15th). Data on soil bulk density, field capacity and permanent wilting point were measured in310

four blocks set up along a soil texture gradient perpendicular to the river Saale (Roscher et al., 2004). In311

addition to the measurements we derived porosity from soil texture. For our simulations we always used the312

data on soil properties from the block in which our selected species plots were located.313
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2.2.1. Species selection314

At the Jena site, several experiments were conducted in parallel. We use data from two experiments, the315

main experiment (Roscher et al., 2004), which was designed to compare the different diversity levels and the316

monoculture experiment (Heisse et al., 2007), which was established as a control, for example to compare317

mixture and monoculture yields. The species pool of the Jena Experiment consists of 64 species from four318

functional groups (grasses, small herbs, tall herbs, and legumes), that grow well under the site conditions319

(Weisser et al., 2017). Monocultures of all 64 species were established in the monoculture experiment,320

while in the main experiment monocultures of only 16 (four from each functional group) species were sown,321

limiting the number of species available for our study. We excluded the tall herb and legume species from our322

selection because we assumed the small herbs and grasses to be more suitable for usage in both models. Of323

the eight remaining species we excluded B. perennis because the experimental plots were strongly affected324

by the rust fungi Puccinia coronata and P. graminis, which led to a decrease in productivity and the325

abandonment of the plots in later years (Weisser et al., 2017). To reduce the complexity of our comparison326

we selected only four of the remaining seven species for our simulations. We selected three common fodder327

grasses (Poa pratensis, Festuca pratensis and Festuca rubra) and one very common small herb (Plantago328

lanceolata). For all selected species data was available in the two experiments allowing us to use the data of329

the main experiment for the calibration while evaluating the models against the data from the monoculture330

experiments.331

2.2.2. Calibration and evaluation332

For model calibration we used the data from the monoculture plots of the main experiment on above-333

ground biomass (AGB), leaf area index (LAI) and vegetation cover for both models, as well as vegetation334

height in addition for GRASSMIND (see 2.2.2). We evaluated the performance of both models, by using335

data on AGB from the monoculture experiment which consisted of small plots of monocultures of all species336

used in the main experiment (Heisse et al., 2007). For both calibration and evaluation, we used the daily337

weather data from 2002 to 2014 and the mowing frequency that was reported for the Jena Experiment,338

where plots were mown twice a year, usually in May and September. Plots of the main and the monoculture339

experiments were not fertilized, therefore, we did not add any fertilizer and excluded nitrogen deposition in340

our simulations.341

The model specific calibration procedures as well as the parameters selected for calibration are described342

in SI A. The observed data sets used for the calibration and the evaluation both show a decrease of mono-343

culture productivity over time (Marquard et al., 2013), which results in substantially lower values of AGB344

in the later years. Additionally, for some AGB observations, the variability of data for one sampling period345

was large, which was also found in other grassland experiments (e.g. Vuichard et al., 2007). For LPJmL,346

a spinup run was conducted, to obtain soil carbon, nitrogen, water and temperature values to initialize the347

calibration and evaluation simulations (spinup conditions are described in SI A).348

2.2.3. Simulation scenarios349

As we were interested in the effects of drought and mowing on modelled processes and on the performance350

of species in monocultures and the two-species mixtures, we run three precipitation scenarios (baseline,351

moderate drought, extreme drought), each with and without mowing. Each scenario was run for 28 years:352

for the first 14 years the baseline scenario was used in all scenarios as a spinup to obtain an equilibrium state353

of the plant community. In GRASSMIND, the scenario simulations could be started right away, while for354

LPJmL they were based on the initial spinup run also used for calibration and evaluation. For the baseline355

treatment, we simply repeated these 14 years. For our drought treatments, we excluded parts of the rain356

(see below) in year 16, but returned to the baseline scenario for years 17-28. All evaluations refer to the357

years 15 to 28 of our simulations. We first generated our baseline scenario, in which we reduced the effects358

of intra-annual rainfall variability that could otherwise mask the effects of droughts. To obtain the baseline359

scenario (Baseline Mow) time-series we grouped the data based on annual and spring precipitation sums into360

three clusters using euclidean distances and a Ward clustering algorithm (Murtagh and Legendre, 2014).361

The hierarchical cluster analysis was performed with R Version 3.5.3 using the hclust function from the stats-362

package (R Core Team, 2019). We selected the cluster with the medium annual and spring precipitation363
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which contained seven years. For the moderate drought scenario (ModD Mow) we used the same time-series364

but excluded precipitation in April and May of year 16. We extended the exclusion to March and June365

for the extreme drought (ExtrD Mow). By this, we reduced the annual precipitation by approximately 20366

and 40%, respectively. We ran simulations for Scenarios Baseline Mow, ModD Mow and ExtrD Mow with367

limited nitrogen supply and with mowing. Additionally, we ran simulations with the same environmental368

conditions but without mowing (Baseline NoMow, ModD NoMow and ExtrD NoMow).369

Table 1: Simulation scenario names, environmental conditions and management

Scenario weather data precipitation reduction management
calibration/evaluation observed none with mowing
Baseline/ModD/ExtrD Mow medium cluster none/moderate/extreme with mowing
Baseline/ModD/ExtrD NoMow, medium cluster none/moderate/extreme without mowing

3. Results370

We analysed model outputs on above-ground biomass (AGB), GPP, NPP, LAI, Losses (litterfall and371

mortality), cover and water uptake. We present the results for AGB in the main text and for the other372

variables (only for our baseline scenario Baseline Mow) in the SI. In section 3.1, we briefly present the373

results of the calibration and model evaluation. Subsequently, we analyze our results of AGB dynamics for374

monocultures and mixtures for both models for our scenarios in section 3.2.375

3.1. Model calibration and evaluation376

Model calibration was successfully conducted for both models following the procedures described in SI377

A. Overall both calibrated models reproduced the observed data from monocultures of the main experiment378

well for AGB (described as organic dry matter), LAI and (for GRASSMIND) height, but not for cover.379

Agreement with the experimental data varied between the models and for different species (Fig. SI A.2-4).380

We were able to calibrate LPJmL and represent four different species modifying only four parameters.381

The parameter sets of the four species were derived during the calibration starting from the same initial382

parameter values for all species. LPJmL showed good agreement with data on LAI (RMSE 0.53 to 1.18383

m2 m−2) and moderate agreement with AGB observations (RMSE 46.4 to 245.8 gDM m−2), but data on384

cover did not agree well (RMSE 0.24 to 0.59 m2 m−2). Simulated cover values of monocultures in the385

calibration of LPJmL were low compared to observations. In LPJmL, plant size is not explicitly simulated386

and cover is calculated as foliage projected cover (FPC) from the LAI assuming a strong connection of the387

two (see 2.1.1). Using both LAI and cover in the calibration results in a trade-off in favour of the one that388

leads to better results for AGB. Furthermore, since observed cover was estimated visually, we assume LAI389

observations to be more reliable and attribute only minor importance to the fit of cover for LPJmL.390

The calibration of GRASSMIND for the four monocultures required the fit of 13 species-specific parameters391

and also included the vegetation height, in addition to the observed LAI, cover and AGB. Good agreement392

of GRASSMIND was achieved for LAI (RMSE 0.47 to 0.71 m2 m−2) as well as for vegetation height (RMSE393

0.083 to 0.218 m) and AGB results agreed moderately with observations (RMSE 34.0 to 236.6 gDM m−2).394

As in LPJmL, GRASSMIND simulations did not agree well with the observed data on cover (RMSE 0.22 to395

0.46 m2 m−2), but in contrast to LPJmL, GRASSMIND overestimated vegetation cover. In the simulation of396

GRASSMIND, vegetation cover is derived from individual plant sizes and allowed to settle around 100%. For397

the model calibration, observed vegetation cover (excluding weeds and dead material) is therefore compared398

only with the cover of green leaves of the simulated plants (excluding standing senescent leaves). Note, that399

the calibration here differs from previous calibrations of GRASSMIND (Taubert et al., 2020a) to harmonize400

the study design and simplify the comparison of the two models (see SI A for a detailed description of the401

calibration procedure).402
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3.1.1. Deviations from observations403

Although AGB values agreed only moderately with the observations, the agreement with the majority404

of the data is significantly better, because a major share (LPJmL: 51 to 81% and GRASSMIND: 57 to 87%)405

of the sum of square errors (SE) can be attributed to only two of the twelve observation dates for each406

species (Fig. SI A.5-7). The observations can be partitioned into high AGB and low AGB observations.407

For all the plots we used, high AGB observations were sampled in the early years (2002 to 2004) of the408

experiment, while observations from the later years showed substantially lower AGB because of a decrease409

in productivity (Marquard et al., 2013). A large share of the sum of SEs is related to the high AGB410

observations in the early years. This high productivity at the beginning of the experiment cannot be411

reproduced by either model. This may be a results of the uncertain initial soil conditions (e.g. soil fertility)412

because of the unknown management history prior to the experiment in Jena but may also be related to413

the obtained parameterizations. For both models, selected parameter values are static and cannot change414

over time, therefore as long as the environmental conditions and management remain similar, the models415

do not simulate any temporal trends. To adequately simulate the high AGB levels in the early years of the416

experiment a different set of parameter values would be needed. However, since the majority of the data417

consists of low AGB samples collected after the decrease in productivity the calibration procedure returns418

a set of parameter values which reproduce this subset of the observations well. We were able to confirm419

this with our evaluation (Fig. 2) where we used the AGB observations from the monoculture experiments420

(Heisse et al., 2007). Here, the RMSEs of both models were very similar (e.g.: 81.7 gDM m−2 for LPJmL421

and 77.8 gDM m−2 for GRASSMIND for P. pratensis). The data from the monoculture experiment show422

the same productivity decrease as the main experiment and similar to the calibration, a major share of the423

SE (55 and 82 %) can be attributed to only two observations (Fig. SI A.8).424

3.2. Aboveground biomass dynamics and resource competition425

In our comparison we focus on the differences and similarities in the AGB dynamics of both models for426

the different scenarios. We ordered the description of the results so that differences in climatic conditions427

and management to the baseline scenario increase step by step. First, we present results for our baseline428

scenario, Baseline Mow (see 3.2.1), which — while already using climate data with reduced variability (see429

2.2.3) — is not subject to additional precipitation reduction and uses the standard management (as also430

used in the calibration and evaluation). Second, we compare the result from Baseline Mow to the drought431

scenarios (ModD Mow and ExtrD Mow see 3.2.2) in which precipitation reductions are prescribed. Third,432

we compare Baseline Mow, ModD Mow and ExtrD Mow to the scenarios without mowing Baseline NoMow,433

ModD NoMow and ExtrD NoMow (see 3.2.3).434

3.2.1. Simulated dynamics in the baseline scenario with mowing435

The monoculture simulation experiments under the baseline rainfall treatment with mowing (Fig. 3 a-d)436

show similar overall means in AGB in both models. AGB values are highest for F. rubra (LPJmL: 126437

gDM m−2 and GRASSMIND: 106 gDM m−2) and lowest for P. pratensis (LPJmL: 41 gDM m−2) and P.438

lanceolata (GRASSMIND: 36 gDM m−2). However, the intra-annual dynamics indicate strong differences439

between LPJmL and GRASSMIND: The variation of AGB between seasons is much more pronounced for440

GRASSMIND than for LPJmL, with lower AGB in winter but for most species higher AGB during the441

summer months. This is connected to the different process implementations in both models that are used442

to derive NPP from GPP and autotrophic respiration and AGB losses in the form of turnover and mortality443

(see 2.1 and 4.1). For the two-species mixture experiments (Fig. 3 e-j) the AGB dynamics are driven by the444

dominant species. The dominant species can either be the same (Fig. 3 e-g) with similar differences in mean445

values as in the monocultures or different (Fig. 3 h-j ) with larger discrepancies in mean values. In addition446

to NPP and AGB loss from turnover and mortality, competition between species affects the AGB dynamics.447

While these processes are sufficient to explain the off-season AGB dynamics, the additional reduction from448

mowing has to be considered for the dynamics within the growing season. The effect of mowing strongly449

differs between the two models (Fig. 3a-j) and is the underlying reason for the different AGB peaks during450

the growing season. In LPJmL, 47.6 to 207.0 gDM m−2 is on average removed by mowing. This amount451
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Figure 2: Simulated and observed AGB in gDM m−2 for P. pratensis (a), P. lanceolata (b), F. pratensis (c) and F. rubra
(d) for GRASSMIND (red) and LPJmL (blue). Coloured lines and labels show model results and RMSE, grey points show
observations used for the evaluation. Observations are the median of samples for each date and error bars show one standard
deviation. If three or less observations were available all observations were plotted and their range indicated with a line.
Outliers are highlighted with labels and arrows.
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Figure 3: Mean (µ) AGB in gDM m−2 for GRASSMIND (red) and LPJmL (blue) averaged over all simulation years for each
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is significantly smaller in GRASSMIND (1.4 to 31.3 gDM m−2). The large differences in biomass reduction452

are related to the different implementations of the mowing routines and the representation of the plants453

themselves.454

In both models, the dominant species exploit available resources more efficiently, which is related to455

the parameterization of the species. Higher parameter values for important traits are directly related to a456

higher competitive strength (Fig. 4). In LPJmL, this is related to the calibrated parameters via specific457

processes. While all parameters (Fig. 4) are important to calibrate the simulated AGB to the observations,458

the leaf to root ratio (lr) and stubble density (ρveg) are of minor importance for competition. Here, the459

light extinction coefficient (kbeer) and the specific leaf area (SLA) which are used to calculate FPC are460

most important. Higher values of these two parameters result in higher FPC values and the species utilize461

space more effectively. kbeer is highest for the most competitive species (F. rubra) and lowest for the least462

competitive species (P. pratensis). SLA is less important and only influences competitive strength for species463

with similar kbeer values (F. pratensis and P. lanceolata). In GRASSMIND, benefits of a species in the fast464

and successful establishment of seedlings, high germination rate (germ), short time of emergence (tem) and465

low seedling mortality (mseed), also determine the competitive strength of that species in mixtures (as for466

P. lanceolata). In this case, the larger mature plant mortality (mbasic) weighs less than the favourably low467

seedling mortality (mseed) because plants mature later (higher agerep). Highly productive species (higher468

maximum gross leaf photosynthesis pmax, higher SLA, higher shoot-root ratio sr) can be more competitive469

in mixtures which, however, can be altered by self-shading (high height-width ratio hw) or shading by470

other plants (low hw), by fast leaf senescence (low lls) or waterstress-related attributes. The latter are of471

specific importance as we show in section 3.2.2, while water use efficiency (WUE) and allocation rate of net472

productivity to shoot biomass (allocshoot) are only of minor importance (as for P. pratensis).473
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Figure 4: Normalized parameter values for GRASSMIND (red) and LPJmL (blue) for parameters important for species
competition. Full circles show parameters which are not comparable between the two models and half circles show parameters
used similarly in both models. The different species are ranked by competitiveness with the label size, ranging from most
competitive (large) to least competitive (small).

3.2.2. Effects of rainfall reduction474

In both models, the AGB decreased during the drought treatments with mowing (Fig. 5d and SI D.1-475

5d). Overall, effects were qualitatively the same for both the moderate and the extreme drought and just476

differed in their order of magnitude for both models. We compared the lowest AGB values during the477

drought (Fig. 5e and SI D.1-5e i.e. the maximum difference between the baseline and the drought scenarios)478

for both models. While the smallest differences between the baseline and drought scenarios are similar479

between the two models during the moderate and the extreme drought (LPJmL: -13.9 and -23.1 gDM m−2;480
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GRASSMIND: -11.5 and -12.0 gDM m−2), in GRASSMIND the largest differences are more extensive (-130.5481

and -170.7 gDM m−2) than in LPJmL (-77.2 and -110.5 gDM m−2). The decrease of AGB under drought482

is a result of the reduced water uptake (Fig. 5e and SI D.1-5e) after soil water resources in the first 20 cm483

of the soil are depleted. This depletion of soil water content is stronger in GRASSMIND (-20% Fig. 5b484

and SI D.1-5b). Here, the permanent wilting point is reached and no water is available for transpiration,485

leading to no plant growth (i.e. GPP) at all and a fast decline of AGB, caused by continued mortality and486

turnover. In LPJmL, the soil water depletion is less severe (-13 to -14%) but the reduced water supply also487

limits GPP. The balance of the reduced GPP, the respiration (which is not affected by the drought) and488

turnover becomes negative and AGB decreases. Compared to GRASSMIND, this results in a smaller and489

slower decline of AGB.490

After the end of the drought treatment, soil water resources are replenished. In both drought scenarios a491

similar soil water content compared to the baseline scenarios is reached shortly after the end of the drought492

(Fig. 5b and SI D.1-5b). However, in all scenarios, the soil water content remains below field capacity493

because of the low July precipitation which results in additional water stress (Fig. 5c and SI D.1-5c).494

After the end of the treatment, vegetation recovers at different speed in both models. In GRASSMIND,495

the recovery is fast and the AGB reaches a pre-treatment level soon after the soil water is replenished496

(Fig. 5d and SI D.1-5d). In LPJmL, recovery is slower and AGB two years after the treatment can still be497

substantially lower than the pre-treatment AGB. After a complete recovery, the AGB of the scenarios with498

rainfall reduction treatments and the baseline scenario are the same, because of identical environmental and499

management conditions. In LPJmL, all simulated species suffer from the drought and only start recovering500

after the end of the drought. In GRASSMIND, this is similar except for P. lanceolata which after a short501

period of AGB losses, already gains biomass (i.e. positive GPP) during the drought. This is the only deep502

rooting species with higher values of the parameters of the rooting depth power law relationship (rd1 and503

rd2). These ensure a good species performance and competition even during the precipitation reduction504

were P. lanceolata takes advantage of water in deeper soil layers (Fig. SI D.1,3 and 4) and benefits from505

the reduced crowding mortality.506

3.2.3. Comparison of mowing effects507

Mowing has very different effects in the two models in the monoculture and mixture simulations for the508

baseline scenario (Fig. 6a and SI E.1-5a). In GRASSMIND, mean AGB values are barely higher in the509

baseline scenario without mowing than with mowing (-1.5 to +4.5 gDM m−2), while in LPJmL these are510

considerably larger (+90.6 to +210.7 gDM m−2). As established in section 3.2.1, mowing plays an important511

role for AGB dynamics. In GRASSMIND, the amount of biomass reduced is not pre-determined but linked512

to the plant height structure of the community (i.e., frequency of large and small plants). Because only a513

few individuals exceed the mowing height (here 0.1 m) the reductions from mowing are small. In contrast,514

in LPJmL vegetation height is not simulated and mowing directly reduces AGB to a predefined threshold.515

The effect of mowing on mean AGB also alters the effect of the moderate and extreme precipitation516

reduction, increasing the differences between the models (Fig. 6b,c and SI E.1-5 b,c). Losses during the517

reduction treatment are similar to those in the scenarios with mowing in GRASSMIND (-7.2 to -160.1518

gDM m−2), but strongly increase in LPJmL (-70.8 to 156.5 gDM m−2), because the generally higher AGB519

leads to higher turnover and respiration (Fig. SI C.11). As in the scenarios with mowing, community520

composition was barely affected in the scenarios without mowing, regardless of the precipitation reduction521

treatment (Fig SI C.6,14,15).522
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Figure 5: Simulated and observed (Fischer et al., 2019) fractional soil water content at the Jena Experiment site (a), relative
changes of soil water content in m3 m−3 (b), absolute changes of soil water content in m3 m−3 as well as daily precipitation
in mm with reduction for ModD (light grey) and ExtrD (light and dark grey) (c), absolute changes in AGB (d) in gDM m−2

and relative changes in transpiration (e) caused by the moderate (dotted) and extreme (dashed) droughts for LPJmL (blue)
and GRASSMIND (red). Simulation results of mixture of P. pratensis and F. pratensis using observed weather data (a) and
average climate (b-e).
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Figure 6: Mean (µ) AGB in gDM m−2 for GRASSMIND (red) and LPJmL (blue) for the sum of the two-species mixture of
P. pratensis and F. pratensis (a). Coloured ribbons show µ± σ. Horizontal lines show overall mean for Baseline Mow (dot-
dashed) and Baseline NoMow (solid). Difference between Baseline Mow and ModD Mow (dot-dashed) and ModD NoMow
(solid, b) and ExtrD Mow (dot-dashed) and ExtrD NoMow (solid, c) between April and October of the drought year.

4. Discussion523

Differences in simulated responses of monocultures and two-species mixtures to drought and mowing524

can be related to process representations of above- and below-ground resource competition, as well as of525

water dynamics and community representation. Even though we could not test the relevance of individual526

processes, the differences between model results and implemented features can shed some light on the527

importance of different mechanisms and model features for simulated dynamics.528

4.1. Above-ground biomass seasonality529

The two models show substantially different intra-annual AGB dynamics for which we identified several530

underlying mechanisms. Strongest differences were found during the off-season, where no data is available531

from the Jena Experiment for calibration or evaluation of the models, suggesting that the calibration process532

helped to reduce differences between models.533

4.1.1. Processes determining AGB534

Our simulations show that GPP and NPP have higher average and peak values for GRASSMIND (Fig.535

SI C.1,2). Gains in biomass are resulting from NPP, which is dependent on GPP. Both are controlled by LAI536

and cover, which also show higher average and peak values for GRASSMIND (Fig. SI C.3,4), and together537

with the amount of absorbed radiation determine the rate of photosynthesis. Here, the models use different538

process realisations: In GRASSMIND, vegetation height and LAI of each individual determine its GPP539

from which respiration losses are subtracted to obtain NPP. In LPJmL, cover (calculated as FPC using540

LAI) is used to determine the amount of absorbed radiation and resulting GPP. Similar to GRASSMIND,541

autotrophic respiration is subtracted to obtain NPP. Both models account for the effect of shading differently:542

GRASSMIND directly via interactions between individuals and LPJmL indirectly within the calculation of543

cover. While the high LAI values for GRASSMIND result in high productivity, the lower LAI values for544

LPJmL lead to low cover values and lower productivity. The higher productivity of GRASSMIND can545
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only lead to the similar average value of AGB we observed for the two models, if it is counteracted by546

higher losses. These result from age- and overcrowding-related mortality and turnover, as well as mowing547

during the growing season (Fig. SI C.5). Turnover and in the case of GRASSMIND also age mortality548

constantly contribute to these losses (independent of environmental conditions and management), but with549

different magnitudes in both models. Losses from overcrowding are linked to total plant cover and describe550

competition for space, which can lead to decreased establishment and increased mortality in both models.551

In GRASSMIND, cover includes alive and standing senescent biomass. Here, available space is always fully552

occupied, leading to a constant loss of biomass from overcrowding. This loss arises from the number of553

individuals that die from overcrowding which is dependent on the number of individuals present and the554

total cover of the plot (Tab. SI B.1). In GRASSMIND, competition for space occurs between conspecifics555

(individuals of the same species) and heterospecifics (individuals of different species) and is therefore also556

effective in monocultures, whereas in LPJmL competition for space occurs only between different species,557

so that losses due to overcrowding do not occur in monocultures and observed losses result from turnover558

(Fig. SI C.4 a-d).559

4.1.2. AGB dynamics outside and during the growing season560

The higher winter AGB in LPJmL compared to GRASSMIND originates in the model-specific repre-561

sentation of the leaves. In both models, AGB is the entire amount of standing biomass. In LPJmL, a562

distinction between photosynthetically active (green) and already senescent leaves (yellow) is not made, but563

a constant proportion of the total leaf biomass is transferred to the litter pools each day of the year. In564

GRASSMIND, such a distinction is made, but yellow AGB is constantly transferred to the litter so that565

AGB consists predominantly of green leaf biomass. This results in a larger reduction of the AGB during566

the off-season. Therefore, AGB shows high values during the growing season, but low values during the567

off-season in GRASSMIND, while in LPJmL despite similar GPP and NPP, AGB values are higher.568

These differences are sufficient to explain the off-season deviations between the models, where biomass569

losses from overcrowding lead to the lower AGB of GRASSMIND. However, to fully explain the differences570

within the growing season, the additional reduction of AGB from mowing has to be considered. The effect of571

mowing strongly differs between the two models (Fig. 3a-j). In GRASSMIND, the vegetative height of the572

individuals is explicitly simulated, and during mowing events only larger individuals are reduced. Because573

the simulated height distribution of the community is often skewed towards smaller individuals, biomass574

reductions are small. In LPJmL, height is not simulated explicitly and the amount of extracted biomass575

is determined as the difference between total AGB and a predefined residual biomass. This results in the576

different AGB during the peak growing season.577

We are aware that monocultures and two species mixtures are not representative for the diversity of578

grassland communities and are thus difficult to compare to observations from other grassland ecosystems.579

Nevertheless, empirical studies that support both types of AGB seasonality exist. AGB dynamics of LPJmL580

are comparable to observations of total AGB (e.g. Poyda et al., 2020) while the dynamics in GRASSMIND581

are similar to observations of green AGB (e.g. Inoue et al., 2015).582

4.1.3. Processes controlling drought response583

The comparison to the scenarios with a moderate and extreme drought showed an effect of the drought584

on AGB during and after. Although water became limiting during the drought, competition for space585

remained strong and the community compositions of the two-species mixtures were barely affected. In none586

of the mixtures the subordinate species gained a substantial advantage in either of the models (Fig. SI587

C.12,13). Both the moderate and the extreme drought lead to short term reductions of AGB followed by a588

full recovery. The drought effect was stronger in GRASSMIND, where water uptake is only limited by the589

available soil water. If this falls below a threshold, water stress occurs regardless of plant water demand,590

which in reality might still be fulfilled even under a reduced water supply. On the contrary, in LPJmL591

plant water demand is calculated depending on the potential canopy conductance (which is derived from592

the productivity of the AGB) and compared to the supply. Therefore, even if the soil water content is low,593

especially species with a low AGB may not suffer from water stress even under a reduced soil water content.594

The water stress during the drought directly inhibited growth of new biomass. However, the losses depicted595
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in section 4.1.1 are only indirectly affected by the environmental conditions through the reduced amount596

of available biomass or covered area and remain substantial (Fig. SI C.16-18). This changes the balance597

between biomass gains and losses and leads to an overall decline of above-ground biomass.598

In GRASSMIND, the drought affects the community structure which consists of different individuals,599

leading to different productivity and mortality patterns compared to the baseline scenario. In contrast,600

in LPJmL the average individuals adjust to the changing conditions and become similar to the baseline601

scenario after a full recovery.602

4.1.4. Recovery after drought603

While recovery from drought in GRASSMIND was fast, it took up to two years in LPJmL. Drought604

recovery depends on a number of factors and evidence from observational studies exists, supporting the605

fast recovery (e.g Hofer et al., 2016) as well as the slow recovery (e.g. Sala et al., 2012). However, the606

different model responses to similar conditions suggest drought recovery is not well captured by the models607

and additional research is needed. For this, we provide some insight on the mechanisms implemented in608

both models: In GRASSMIND, the fast recovery is possible, firstly because water stress is only dependent609

on supply. As soon as the soil water supply is replenished, while the demand is still lower than before the610

drought, the water stress penalty is removed which allows optimal growth of newly established seedlings.611

Secondly, plants in GRASSMIND do not change or adapt specific traits in response to drought events, like612

the allocation of NPP to above- or below-ground biomass or the water-use efficiency. In LPJmL, recovery613

takes longer because of two reasons. First, the loss of vegetation during drought reduces the water demand614

and limits productivity even after soil water is replenished. Second, water stress triggers an increased615

resource allocation to the roots, i.e. below-ground biomass (BGB), which is not reversed instantaneously616

when carbon assimilation or vegetation carbon is low. The additional allocation to BGB during and shortly617

after the drought results in a lower AGB implying also reductions of FPC. As FPC is used as an estimate of618

the covered part of the plot and therefore controls the access to resources, the calculation of plant-available619

water is reduced to the covered share of the plot.620

4.2. Species interaction and community assembly621

We identified competition for space as the main driver of species interactions in both models (see 4.1).622

Despite the differences in AGB, the competition for space shows a weak seasonality in both models. In623

LPJmL, this depends on the LAI, which shows a weak seasonality and therefore, the competition for space624

is similar within and outside the growing season. In GRASSMIND, the AGB and LAI seasonality are more625

pronounced but both have no effect on the competition for space, which is determined from the cover.626

This is high within and outside the growing season and so is competition for space. Coexistence between627

species without one species being strongly dominant occurred in GRASSMIND and LPJmL only in rare628

cases of mixtures, when species showed similar competitiveness. Stable coexistence has to be achieved to629

assess the effects of plant species richness, because it is a precondition for long-term maintenance of diversity630

(Turnbull et al., 2013). To achieve this, fitness as well as niche differences have to be simulated appropriately631

(Chesson, 2000) and process representations need to be improved. For GRASSMIND, additional insights on632

community dynamics could be gained through the extraction of density dependence functions of the different633

species mixtures (Han et al., 2019). However, for LPJmL the density dependence functions would always634

be constant because only one average individual is simulated to represent an entire species. Therefore, we635

did not pursue this further but instead focused on identifying key processes by assessing the role of specific636

parameters (4.2.1) and responses to changes in environmental or management conditions (4.2.2).637

4.2.1. The role of specific model parameters638

In both models, the species that grow fast (higher SLA) and intercept light more efficiently (higher kbeer)639

are more competitive. These two parameters have a strong influence on simulation results which is in line640

with findings from sensitivity analyses (see SI A and Forkel et al., 2019; Zaehle et al., 2005; Taubert et al.,641

2020b; Hetzer et al., 2021; Schmid et al., 2021). Even though the different shoot:root ratios between species642

lead to different overall root carbon, competition for below-ground resources does not play a major role.643
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However, in LPJmL only the assumed species-specific vertical distribution of roots and in GRASSMIND644

the maximum rooting depth, are considered for water uptake, neglecting the horizontal branching of root645

networks. In LPJmL, the vertical root distributions are similar for the simulated species, as is the maximum646

rooting depth in GRASSMIND, except for P. lanceolata which had access to deeper soil layers than the647

other species. Nevertheless, competition for space outweighed that for below-ground resources.648

4.2.2. The effect of drought and mowing on competition649

A moderate or extreme drought leads to major reductions in biomass but does not or only barely change650

the interaction between the species. In neither model, root biomass is considered for the calculation of water651

supply. Instead LPJmL determines the access to soil layers based on the vertical root distribution and uses652

cover to distribute available water between species. GRASSMIND determines access depending on rooting653

depth assuming roots are equally distributed among accessed layers and uses potential GPP to calculate the654

individual plants’ water demand which is reduced by a multiplicative factor under water stress to determine655

uptake. This underpins that competition is driven by above-ground processes and emphasizes the necessity656

to focus future model development on below-ground plant organs and processes. This may be a challenging657

task since knowledge on root traits, below-ground processes and driving forces are distinctively harder to658

obtain from field experiments and observations (Polomski and Kuhn, 2002; Delory et al., 2017). Recent659

efforts to build a global database for root traits (Guerrero-Ramı́rez et al., 2021) may help to better inform660

parametrization of root distributions and access to soil resources. Comparing the scenarios with and without661

mowing revealed not only substantial differences in the effect of mowing on AGB but controversially showed662

that mowing affects competition for space differently for both models. In LPJmL, mowing increases the663

competition for space. This is best illustrated using the mixture of P. lanceolata and F. pratensis. Here,664

stable coexistence of two species emerges in the scenarios without mowing, but F. pratensis dominates in665

the mown scenarios. In LPJmL, these two species have similar competitive strength (see 3.2.1). Following666

this, we hypothesize that mowing increases competitive pressure in LPJmL and the stronger competitor is667

dominant even at small differences between two species. Mowing in LPJmL reduces the AGB to a species668

specific residual. However, this residual is scaled with the species FPC to constrain the total residual669

biomass of the community. When the species have similar AGB, they constitute a similar FPC and the670

species with the higher species specific residual (ρveg) has an advantage in the scenario with mowing but671

not in the scenario without mowing. If the competitive strength of the two species differs, the dominant672

species with the higher FPC always has an advantage. In GRASSMIND on the other hand, competition673

for space is stronger in the scenarios without mowing, because mowing shifts the individuals’ height to674

width relationship, which leads to increased investments into height growth after a mowing event and a675

reduced investment into area growth and competition for space between conspecifics and heterospecifics.676

Without mowing, the individuals can continuously invest more of their productivity into expansion leading677

to an increased competition for space and overcrowding mortality. While we did not observe any changes678

in community composition in our simulations, these can occur if the species have different geometrical679

properties. For example, a species producing smaller and wider individuals would outcompete a species680

producing tall and thin individuals in the scenario with mowing and vice versa in the scenario without681

mowing.682

4.3. Limitations683

Our model comparison focused on differences and similarities of two grassland models. To compare the684

models, we developed a calibration setup using only observation data from monocultures. The rare emergence685

of coexistence between two species in GRASSMIND simulations results from this constraint to monoculture686

observations included in the calibration and the fixed non-adaptive behaviour of plant traits. Results from a687

recent study with GRASSMIND (Taubert et al., 2020b) showed coexistence of P. pratensis and P. lanceolata688

similar to observations, calibrating on observational data of monocultures and mixed patches. In contrast,689

we only used monoculture data for calibration. As plant traits in GRASSMIND are fixed and do not change690

in response to species interactions, the calibration of this study captures predominantly intra-specific plant691

interactions rather than inter-specific interactions. Further, we here prescribed similar seed recruitment rates692
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for the analyzed monocultures and mixtures which already changes the competitive strength of some species693

(in contrast to Taubert et al., 2020b). The better reproduction of coexistence of species in Taubert et al.694

(2020b) in comparison to our setup suggests that calibration should be done against data that include inter-695

species interactions, which may otherwise be lost in the simulations. The more balanced species composition696

in GRASSMIND may emerge because the individual based approach and the explicit simulations of plant697

geometry generally allows a broader representation of different ecological strategies. Competition for space698

between conspecifics and heterospecifics is simulated depending on the geometry, while competition for other699

resources is more dependent on functional traits. In LPJmL, plant geometry is not simulated and the FPC700

is extensively used, not only in the competition for space, but also for other resources such as light and701

water. This contains the assumption that an investment in increased AGB (leading to an increased FPC)702

will improve both above- and below-ground resource exploitation similarly, while investments in BGB do not703

yield any advantage. This assumption may be valid for productive habitats, where only radiation but not704

below-ground resources are limiting and increased investment in BGB has no advantages. In these habitats,705

species following a competitive strategy with a fast exploitation of available resources are dominant. In706

other habitats (e.g. where below-ground resources are limited) a mix of species following different ecological707

strategies may emerge. However, controlling the resource exploitation for multiple resources using the same708

traits, precludes the trade-offs between different strategies and leads to the dominance of competitive species709

in all habitats. Here, different resource exploitation strategies and the trade-off between resource exploitation710

and stress tolerance have to be considered. The data available from observations additionally limited the711

calibration setup (see 3.1). Only two observations per year, both within the growing season, were available712

and therefore the seasonality can not be inferred from the data. Data for all monocultures show a strong713

decrease in soil fertility and AGB a few years after the start of the experiment (Weisser et al., 2017). This714

decrease cannot be captured by the models, which only capture the low values well.715

Additional limitations were introduced by our scenarios. First, the simulated drought does not consider716

changes in radiation, humidity, wind speed and temperature which covary (Wilhite, 2000; Mishra and Singh,717

2010) and is therefore comparable to a rainfall exclusion experiment (Reynolds et al., 1999; Yahdjian and718

Sala, 2002) instead of a real world drought. Second, mowing was conducted at a height of 10 cm at the719

Jena Experiment. However, while in GRASSMIND the height is explicitly simulated and, therefore, the720

mowing height can be defined as an input, in LPJmL this is not possible, and the residual biomass after721

mowing is used as a proxy for mowing height. Since no data on residual biomass was available from the Jena722

Experiment, we cannot evaluate whether the mowing simulated in the models is a realistic approximation723

of the mowing conducted at the Jena Experiment.724

Both models did not reproduce the variability of the observed soil water content (see Fig. 5a and Fig.725

S2.1), which for LPJmL is in line with a recent study on nitrogen emissions (Lutz et al., 2020). However, the726

importance of these discrepancies for the observed responses of AGB and community composition remains727

unclear and we see the need for an in-depth study of soil water dynamics, especially considering that other728

recent studies suggest that the drought response is not well captured in terrestrial biosphere models (Bastos729

et al., 2020; Paschalis et al., 2020).730

4.4. Fields of model development731

Our comparison highlighted fields to consider for future model development. While the inclusion of732

other models of grassland dynamics was beyond the scope of our analysis, GRASSMIND and LPJmL are733

representative of specific types of models (see 1.3) for which comparable model representatives may show734

similar or additional challenges but also potential solutions when applied to the same research questions and735

settings as pointed out here. The core of numerous models is the productivity in the form of photosynthesis.736

The simplified Farquhar photosynthesis model (e.g. in LPJmL, Farquhar and von Caemmerer, 1982) has a737

great depth of biochemical detail, while the single-leaf photosynthesis model (e.g. in GRASSMIND, Thorn-738

ley and Johnson, 1990) uses a more aggregated calculation integrated over the individuals projected area739

(Taubert et al., 2012). An even simpler approach just uses light-use efficiency (e.g. LINGRA, Schapendonk740

et al., 1998). In all of these approaches, water stress is considered by a reduction of productivity at optimal741

water supply by either a reduction factor (GRASSMIND, LINGRA) or an adjustment of the maximum742
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carboxylation rate Vmax (LPJmL). Our study shows that both options simulate a response to drought, how-743

ever this is mediated by the interaction with the representation of soil water dynamics, which can strongly744

impact onset, duration and recovery time of the drought response. Additionally, the current representation745

of photosynthesis is aggravating realistic simulations of rainfall exclusion experiments or droughts and fu-746

ture model development should include non-stomatal limitation of photosynthesis (e.g. reduced RuBisCo747

activity, Medrano et al., 1997; Parry et al., 2002) during drought (Zhou et al., 2013).748

Furthermore, in both models, transpiration response to water stress is modelled linearly and transpiration749

reduction is overestimated for soil water levels close to field capacity. Experimental data however suggest a750

nonlinear relationship (see Verhoef and Egea, 2014, for a collection of experiments). A variety of nonlinear751

approaches exist, however since we did not test their suitability for the different model types, we do not give752

a recommendation but refer to Dewar (2002); Egea et al. (2011) and Verhoef and Egea (2014) for further753

reading.754

Competition was focused on space and light, while below-ground processes played a minor role. So far,755

only the distribution but not the amount of BGB is used for resource competition and trade-offs between756

higher investments in AGB or BGB cannot be represented. This may be attributed to the original devel-757

opment for a temperate climate. However, this missing strategy trade-off is one reason why the simulated758

drought had little impact on competition dynamics. Additionally, drought response could be improved by759

systematically testing and incorporating drought escape (Kooyers, 2015; Norton et al., 2016) and tolerance760

(Zwicke et al., 2015; Ratzmann et al., 2019a,b) strategies in the existing model structures or implement761

hydraulic failure of severely stressed vegetation (see e.g. Kennedy et al., 2019; Sperry et al., 2016). The Hur-762

ley pasture model (Thornley, 1997, 1998) follows a resistance approach considering root mass, root density763

and the resistance in the bulk soil (Thornley, 1996; Thornley and Verberne, 1989) that could be feasible764

for models using a light-response function and can likely be adapted for a Farquhar approach. Drought765

response is not only dependent on the soil hydrology models used but also depends on the models capacity766

to simulate specific strategies for (i) water use efficiency, (ii) carbon allocation, (iii) root distribution and767

(iv) regeneration of different species after drought (van der Molen et al., 2011). While numerous approaches768

to improve soil hydrology exist (Vereecken et al., 2019, 2016; Deckmyn et al., 2020), the simulation of coex-769

istence of multiple species and their specific strategies remains challenging (see 4.2). To further improve the770

models and enable the simulation of stable coexistence and therefore plant species richness, plant interaction771

models, which were explicitly designed to assess biodiversity effects may serve as additional inspiration for772

model development. A key limitation was the simulation of niche differences, which are a necessary condi-773

tion for stable coexistence. In addition to the process improvements suggested above, adding a hierarchy774

that determined resource access for each species and resources was shown to be a feasible approach (Clark775

et al., 2018). To separate above and below-ground niches, the below-ground space has to be distributed776

between species or individuals in addition to the above-ground space. In GRASSMIND, a refinement of777

the below-ground geometry (non-uniform vertical root distribution per plant) and hierarchically modelled778

resource access could be beneficial. For LPJmL, the root biomass within each soil layer and a species specific779

lateral distribution could be combined to distribute below-ground resources.780

5. Conclusion781

Recently, empiricists as well as modellers have suggested biogeochemical models as a potential tool to782

complement empirical research to increase the knowledge on interacting responses of biotic and abiotic com-783

ponents of grasslands to changing environmental conditions and the underlying mechanisms (Wilcox et al.,784

2020; Van Oijen et al., 2020). Currently, approaches that prescribe the species’ share within the community785

based on environmental factors, phenology and management exist (Confalonieri, 2014; Movedi et al., 2019).786

However, these do not consider the underlying mechanisms explicitly. To enable process-based models to787

simulate differently diverse communities and quantitatively assess the effect of plant species richness, sub-788

stantial model development is needed. We compared two grassland models that have been developed at789

different scales, under different assumptions and for different purposes but which are representative of sev-790

eral other models. Despite the differences, the models showed similar weaknesses. Already at low diversity791
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levels (monocultures and two-species mixtures), the models had difficulties to simulate a balanced commu-792

nity. In the majority of our scenarios, one species contributed almost the entire biomass of the mixture.793

While this can partially be attributed to the study design, a considerable part is related to the process794

representations in the models. Substantial improvement of these processes is needed to enable models to795

also simulate communities that are only weakly dominated by one species. We identified several responsible796

processes and suggested potential solutions based on our findings and available literature. Additionally, we797

found that the outcome of competition in the models was determined by the same processes independent798

of resource availability (Drought did barely affect species presence), which shows that the representation of799

trade-offs between different ecological strategies also needs improvement. As LPJmL and GRASSMIND can800

be seen as typical representations for particular types of models, this reveals potential pathways of model801

development to improve the interaction between species and drought response for similar models. For other802

model types, our study may serve as an example for a structured assessment of implemented processes, that803

can be used to identify and address the key parts of the model hindering a more realistic representation804

of multi-species communities or species interaction in a structured way. In cases where empirical data is805

needed to improve the models, knowing the specific processes that should be developed further is useful to806

inform field researchers.807
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Sack, L., Shipley, B., Tedersoo, L., Valladares, F., van Bodegom, P., Weigelt, P., Wright, J.P., Weigelt, A., 2021. Global947

root traits (GRooT) database. Glob. Ecol. Biogeogr. 30, 25–37. doi:10.1111/geb.13179.948

Han, Z.Q., Liu, T., Liu, H.F., Hao, X.R., Chen, W., Li, B.L., 2019. Derivation of species interactions strength in a plant949

community with game theory. Ecological Modelling 394, 27–33. doi:10.1016/j.ecolmodel.2018.12.018.950

Haxeltine, A., Prentice, I.C., 1996. BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints,951

resource availability, and competition among plant functional types. Glob. Biogeochem. Cycles 10, 693–709. doi:10.1029/952

96GB02344.953

Heisse, K., Roscher, C., Schumacher, J., Schulze, E.D., 2007. Establishment of grassland species in monocultures: Different954

strategies lead to success. Oecologia 152, 435–447. doi:10.1007/s00442-007-0666-6.955

Hetzer, J., Huth, A., Taubert, F., 2021. The importance of plant trait variability in grasslands: A modelling study. Ecological956

Modelling 453, 109606. doi:10.1016/j.ecolmodel.2021.109606.957

Hofer, D., Suter, M., Haughey, E., Finn, J.A., Hoekstra, N.J., Buchmann, N., Lüscher, A., 2016. Yield of temperate forage958
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