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Abstract 11 

Estimating extreme precipitation return levels at ungauged locations is key for hydrological applications 12 

and risk management, and demands improved techniques to decrease the large uncertainty of traditional 13 

methods. Here, we leverage the perks of the simplified Metastatistical extreme value (SMEV) approach 14 

with a twofold aim: we show how it can be effectively used in situations in which the ordinary daily 15 

precipitation events cannot be fully described using a two-parameter distribution, and we examine the 16 

performance of different interpolation techniques for the estimation of return levels in ungauged locations. 17 

SMEV proved adequate at representing at-site extremes for a set of 4000+ stations in Germany, with a 18 

general tendency to underestimate the probability of the largest annual maxima. At the same time SMEV 19 

tends to overestimate with respect to the design return levels currently adopted in the country, suggesting 20 

that these might actually underestimate the distribution tail. Among the investigated methods, the inverse 21 

distance weighted interpolation of SMEV parameters provides the most accurate estimates of extreme 22 

return levels for ungauged locations, with typical standard errors of 0.79 (0.83) for rain gauge densities of 23 

1/500 km-2 (1/1000 km-2). Albeit only less than 10% of the variance in estimation errors is explained by 24 

elevation, the correlation between SMEV parameters and orography (up to 43% explained variance) 25 

suggests that future applications should test the inclusion of such information in spatial estimates. 26 

Highlights 27 

- At-site and spatial Simplified Metastatistical Extreme Value in Germany  28 

- Light-tails for precipitation in Germany may lead to dangerous underestimation 29 
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- We identify a correlation between orography and parameters of daily rainfall 30 

- Inverse distance weighting of parameters minimizes error in ungauged locations 31 

 32 

1. Introduction 33 

Accurate estimates of extreme daily precipitation amounts associated to rare yearly exceedance 34 

probabilities, generally termed return levels, constitute the basis for hydraulic design, risk assessment and 35 

mitigation, environmental policies, and insurance/reinsurance business (Katz et al., 2002; Groenemeijer et 36 

al., 2015; Hailegeorgis and Alfredsen, 2017). Deriving such quantities requires observational records and 37 

statistical models able to reproduce the upper tail of the intensity distributions. The extreme value theorem 38 

shows that, under some general hypotheses, extremes (i.e., the maximum values recorded in each year or 39 

all the values exceeding a high threshold) may only converge to known classes of three-parameter 40 

distributions, independent of the distribution class describing the underlying ordinary events (Fisher and 41 

Tippett, 1928; Gnedenko, 1943). Three-parameter distributions are thus traditionally fitted to the observed 42 

extremes and used to extrapolate the information for low yearly exceedance probabilities (Jenkinson, 1955; 43 

Coles, 2001). Doing so, the large stochastic uncertainties characterizing the sampled extremes are inherited 44 

by the parameters, in particular by the shape parameter (Lu and Stedinger, 1992; Morrison and Smith, 45 

2002); this is highly undesirable because the estimated return levels are highly sensitive to it. Specific 46 

techniques are used to reduce this uncertainty and generally entail the a-priori choice of a shape parameter 47 

(of which the use of two-parameter distributions, such as the Gumbel distribution, is a particular case; 48 

Papalexiou and Koutsoyiannis, 2013), the use of a regionally-derived shape parameter (Hosking and Wallis, 49 

1997), or of prior distributions to restrict its value (Martins and Stedinger, 2000). As they are based on 50 

strong homogeneity assumptions, these methods do not permit to adequately capture small-scale variations, 51 

a problem which could become important in presence of local climatological gradients (e.g., orographic 52 

effects; Avanzi et al., 2015). 53 

The global need for local information collides with the sparseness of rain gauge networks worldwide (Kidd 54 

et al., 2017), a problem which is exacerbated by the need for long data records. Considering the direct 55 

hydrological implications of extreme precipitation, improving our ability to estimate extreme return levels 56 

at ungauged locations could contribute to addressing important open questions in the hydrological 57 

community, especially for what concerns our understanding of the variability of extremes (Blöschl et al., 58 

2019). However, the procedures currently available to estimate extreme return levels at ungauged locations 59 

are based on regionalization approaches or on the geospatial modeling of the distribution parameters 60 

(Hosking and Wallis, 1997; Wallis et al., 2007; Blanchet and Lehning, 2010; Ceresetti et al., 2012; Das, 61 
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2019); being based on the spatial representation of traditional estimates, they suffer from the uncertainties 62 

characterizing these quantities. Remotely sensed precipitation products are getting more and more attention 63 

as alternative to observations from rain gauges. On the one hand they can provide valuable information in 64 

ungauged regions with a quasi-global coverage, but some important issues remain still open, especially for 65 

what concerns the propagation of estimation errors to the estimated return levels, the availability of short 66 

time series, and the lack of suitable validation methods (Marra, Nikolopoulos, et al., 2019). 67 

Here, we address the problem of estimating extreme return levels in ungauged locations by evaluating the 68 

spatial representativeness of a novel statistical approach based on the distribution of the ordinary, as 69 

opposed to extreme, events (Marani and Ignaccolo, 2015). Differently from traditional methods, this 70 

metastatistical extreme value (MEV) approach assumes that the distribution class describing the ordinary 71 

events tail is known, and derives an extreme value distribution explicitly considering the occurrence 72 

frequency of ordinary events. Thanks to the use of a much larger amount of information (ordinary events 73 

versus extremes only) this approach proved to be highly accurate in representing rare return levels. This is 74 

the case of probabilities corresponding to return periods much longer than the record length (Zorzetto et al., 75 

2016; Marra et al., 2018). Clearly, the reasoning is valid whenever the basic assumption about the ordinary 76 

events distribution is met; when this does not hold, the method leads to biased estimates. In particular, it is 77 

worth recalling that the theoretical results by Wilson and Toumi (2005) only hold for the tail of the ordinary 78 

events distribution. In a preliminary study over Germany, Wang et al. (2020) showed that the two-parameter 79 

Weibull distribution, typically used to describe precipitation ordinary events in MEV approaches (e.g., 80 

Zorzetto et al., 2016), is not adequate to represent the full distribution of the ordinary events, and thus 81 

extremes, in the country. Conversely, they showed that thanks to the different handling of the available 82 

information, the Simplified MEV framework (SMEV, Marra et al., 2019) could better isolate independent 83 

events and, through left-censoring, reproduce extremes. We hence use here SMEV, which allows to (i) 84 

represent the tail of the ordinary events distribution under more general conditions (see details in Marra et 85 

al., 2020), thus extending the validity of the assumption and limiting the impact of the above issue, and to 86 

(ii) examine fine-scale variations of the distribution parameters by fully leveraging the at-site information 87 

(Marra et al., 2021). We refer to Marra et al. (2020) and Serinaldi et al. (2020) for a discussion of the 88 

differences between MEV, SMEV, and traditional approaches based on extremes.  89 

The method was previously tested in the context of spatial modeling (Schellander et al., 2019). Here, we 90 

extend upon Schellander et al. (2019) and Marra et al. (2019) by (a) demonstrating the use of SMEV in 91 

regions where the ordinary daily precipitation events are not well described by a two-parameter Weibull 92 

distribution, and (b) examining the performance of different interpolation techniques for the estimation of 93 
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SMEV parameters in ungauged locations under varying densities of available observations in a controlled 94 

Monte Carlo experiment. 95 

After a brief introduction about the data used and the theoretical framework, we explain the procedures 96 

developed for the evaluation of the suitability of SMEV for German daily precipitation extremes and for 97 

the spatial estimation of extreme return levels in ungauged locations; results for both the at-site and spatial 98 

estimations are then presented and discussed. A final section provides a short summary and the main 99 

conclusions. 100 

2. Data and methodology 101 

2.1 Study area and data 102 

We focus on the whole of Germany, a study area chosen for its dense daily rainfall station network (average 103 

density 1/60 km-2), along with the presence of diverse precipitation patterns and generating mechanisms. 104 

Precipitation in Germany mostly occurs due to westerly circulation patterns, whose influence decreases 105 

moving towards the east; topography significantly affects precipitation spatial patterns (Figure 1a). 106 

Extratropical cyclones of type “Vb” (first defined by Van Babber (1891); Nissen et al. (2013); Grams et al. 107 

(2014)) are a peculiar atmospheric phenomenon linked to extreme precipitation and flash floods in Central-108 

Eastern Europe. The characteristic pathway of the “Vb” cyclones originates in the Bay of Biscay, the 109 

Balearic Sea or the Ligurian Sea and then moves north-eastward around the Alps into eastern Europe and 110 

the Baltic Sea. These cyclones sometimes (around 2.3 events/year, Messmer et al., 2015) trigger heavy 111 

precipitation over the northern Alpine region and central and eastern Europe, affecting the distribution of 112 

extremes. In fact, about 40% of the “Vb” cyclones are associated with precipitation exceeding the 95th 113 

percentile of daily precipitation over Central Europe (Nissen et al., 2013). Considering the reference period 114 

1961-1990, the lowest annual precipitation amounts occur in north-east Germany (577 mm/year) and the 115 

highest in the Alps (1935 mm/year) (Deutscher Wetterdienst, 2017). 116 

We collected daily precipitation data from the Deutsche Wetter Dienst (DWD), which provides a network 117 

of about 6000 daily stations covering the whole Germany, from the year 1781. A first screening consists in 118 

the control of missing values: we retain only series with more than 10 complete years (i.e., including at 119 

least 330 days of observations), resulting in 5019 available stations (density of approximately 1/71 km-2). 120 

These are then further skimmed on the basis of the performance of the SMEV model (see Section 2.3).  121 

2.2 The Metastatistical Extreme Value (MEV) distribution and its simplified form (SMEV) 122 

The MEV distribution, originally introduced by Marani and Ignaccolo (2015), builds the distribution of the 123 

extremes considering all the so-called ordinary events, i.e., the all independent realizations of the variable 124 
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of interest. The cumulative distribution of maxima emerges from the full distribution of the ordinary events 125 

which is sampled a variable number of times, namely the number of occurrences of the events themselves. 126 

The discrete expression of the MEV cumulative distribution function 𝜁(𝑥) reads as follows:  127 

𝜁(𝑥) =
1

𝑀
∑[𝐹(𝑥; 𝜽𝐣)]

nj

𝑀

𝑗=1

                      (1) 128 

where M is the length of the available time series, 𝐹(𝑥; 𝜽𝐣) the yearly distributions of the ordinary events 129 

and 𝑛𝑗 their yearly number (in this formulation, the inter-annual variability is taken into account, as 130 

indicated by the subscript j). 131 

It is thus straightforward to notice that one of the greatest perks of the approach is the fact that it effectively 132 

uses most of the available data, and does not limit the estimation to a small subset of it (such as the annual 133 

maxima or the exceedances of a high threshold).  134 

Marra et al. (2019) proposed a simplified version of the MEV (SMEV) which neglects inter-annual 135 

variability (dependence of the parameters and events occurrences on j in Eq. (1)) in favor of parameter 136 

estimation accuracy, an approach that was also adopted by Schellander et al. (2019) and discussed in 137 

Miniussi and Marani (2020). Given the preliminary results obtained over Germany using MEV and SMEV 138 

(Wang et al., 2020), this is deemed as a crucial advantage as it allows to accurately estimate parameters 139 

describing only the portion of ordinary events which are well approximated by the chosen model (details 140 

in Marra et al., 2020). Here we will use SMEV considering one rainfall type; in these conditions, the 141 

cumulative distribution function describing yearly exceedance probabilities can be written as: 142 

𝜁(𝑥) = 𝐹(𝑥; 𝜽)n̅                     (2) 143 

where 𝐹(𝑥; 𝜽) is the distribution describing the portion of ordinary events of interest (see definition in Sec. 144 

2.3), 𝜽 is a set of two parameters describing the distribution, and 𝑛̅ is their average yearly number.  145 

2.3 Identification of wet periods and parameter estimation 146 

Many precipitation records in Germany are characterized by snow events, but to avoid dealing with two 147 

potentially different populations of events, a problem which could affect the quality of the estimates (Marra 148 

et al., 2018), we discard snow days (i.e., values flagged with 7 in the DWD archive, while mixed 149 

precipitation –flag 8– is here considered as liquid precipitation) as they do not significantly contribute to 150 

annual maxima. Following the unified approach presented in Marra et al. (2020), we define as storms the 151 

sequences of consecutive wet days (i.e., any day with a precipitation value greater than or equal to 0.1 mm, 152 

Marra et al., 2019) separated by at least one dry day. Ordinary events are then defined as the maximum 153 
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values observed within each storm. The same methodology was used by Miniussi et al. (2020) to identify 154 

cyclone-generated rainfall. 155 

Following theoretical reasoning (Wilson and Toumi, 2005) and previous MEV works on daily precipitation 156 

(e.g., Marani and Ignaccolo (2015)), we assume the high-intensity portion of the ordinary events is 157 

described by a two-parameter Weibull distribution, in the form: 158 

𝐹(𝑥; 𝐶, 𝑤) = 1 −  exp (−(
𝑥

𝐶
))𝑤                      (3) 159 

where C is the scale parameter and w the shape parameter. Distributions with larger shape parameter are 160 

characterized by lighter tails, and vice versa. We estimate the parameters by left-censoring the portion of 161 

ordinary events which is not well described by our two-parameter model and using a least-squares 162 

regression in Weibull transformed coordinates on the remaining data points (Marani and Ignaccolo, 2015); 163 

this means that the weight in the probability of the left-censored events is retained. The need of censoring 164 

the upper part of the distributions was also highlighted by Wang et al. (2020) when analyzing sub-daily 165 

precipitation in Germany. Following the procedure described in Marra et al. (2019) and Marra et al. (2020), 166 

which permits to maximize the ability of ordinary events to represent extremes in the area, we optimized 167 

the threshold for left-censoring to 90%. Although locally different thresholds may define the tail of the 168 

ordinary events distribution, we expect this to be a climatological characteristic of a region. In particular, 169 

we find that left-censoring 90% of the ordinary events allows for an accurate identification of the tail 170 

throughout the study region. To avoid stochastic uncertainties that would affect our results, we use this 171 

threshold for our parameter estimation procedure meaning that, at each station, the largest 10% of the 172 

ordinary events are used to estimate the parameters. Given the typical number of ordinary events in the 173 

region, the two parameters of the Weibull distributions are estimated using a number of points between 44 174 

and 1086 (median value 211), which is 3-6 times larger than the number of points used by traditional 175 

approaches to estimate three parameters. 176 

In order to evaluate the suitability of SMEV on the German dataset, we proceed by using the test presented 177 

in Marra et al. (2020): 1) we estimate the scale and shape parameters of the Weibull distribution on the 178 

ordinary events identified as explained above, while 𝑛̅ is directly computed as the mean of the wet days in 179 

the series; 2) given the parameters of SMEV (Weibull scale and shape, and 𝑛̅), we generate 1000 series of 180 

Weibull-distributed synthetic precipitation values M years long (with M indicating the original length of 181 

the time series) and with a number of rainy days equal to 𝑛̅; 3) if 90% of the original maxima is within the 182 

90% confidence interval of the maxima from the synthetic-generated time series, we consider SMEV a 183 

robust model for the station, otherwise we discard it. This procedure is performed by both retaining and 184 

explicitly censoring annual maxima for the estimation of the Weibull parameters, in order to provide also 185 
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a complete independent validation of the hypothesis. It is worth here to point out that synthetic experiments 186 

conducted using typical ordinary events tails (stretched-exponential such as Weibull, and power-type) show 187 

that the test is rather strict and applied to the generalized extreme value distribution as a model for annual 188 

maxima, rejects about 20–40% of the samples. 189 

2.4 Parameter estimation at the ungauged locations 190 

The algorithm for estimating parameters and, consequently, quantiles associated to specific return periods 191 

at ungauged locations consists in the following steps: 1) we select a target station (i.e., the station that is 192 

considered as ungauged); 2) we randomly select a subset of gauges modifying the station density 𝛿 between 193 

1/200 and 1/100000 km-2. To avoid the creation of clusters, we impose a minimum inter-distance between 194 

stations, set equal to 𝑑min =  (0.5𝛿0.5) (following Nikolopoulos et al., 2015, which used a network 195 

characterized by inter-gauge distances similar to ours) with δ = 200, 500, 1000, 2000, 5000, 10000, 20000 196 

and 100000 km2; 3) we estimate the SMEV parameters of the “ungauged” station using three widely used 197 

interpolation methods, namely two deterministic interpolation methods (nearest neighbor, NN and inverse 198 

distance weighting, IDW) and one geostatistical method (ordinary kriging, OK, with a spherical variogram) 199 

(details in Webster and Oliver, 2007). Finally, we compute the SMEV quantiles for the “ungauged” station. 200 

We iterate the procedure outlined above 100 times for each “ungauged” station, in order to have a full 201 

statistical description of the errors at each location.  202 

We chose these interpolation methods as they have been extensively applied in interpolation studies, and 203 

have been shown to provide different performances according to the objectives of the investigations. The 204 

NN method, despite being extremely simple, has been proved to be affected by smaller biases than more 205 

sophisticated methods in some applications (e.g., Nikolopoulos et al., 2015); IDW is an efficient 206 

methodology that allows to include information from many stations without a significant increase in the 207 

computation time; OK is a more sophisticated geostatistical method but presents  drawbacks like the higher 208 

computational time along with the higher sensitivity to the station network density (for example, Webster 209 

and Oliver, 2007, indicate the need of availability of at least 100 measurement locations –ideally 150- to 210 

adequately estimate the variogram). 211 

We focus on target return periods (where the return period Tr is defined as the inverse of the yearly 212 

exceedance probability, which we estimate using the Weibull plotting position: p(i) = 1-[i/(M+1)], with i 213 

= 1,2…M  being the rank of the value, and M the length of the times series) to compare the new estimations 214 

with the ones estimated in the at-site approach. 215 

2.5 Evaluation metrics 216 
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We evaluate the accuracy of the estimations for each interpolation method (m) and station density (d), 217 

computing the relative error on the parameters (Weibull shape and scale parameters and average number of 218 

rainy days) as: 219 

𝜀θ(𝑚, 𝑑) =
𝜃int(m,d)−𝜃est

𝜃est
                       (4) 220 

where 𝜃int(m,d) is the parameter estimated in the location considered as ungauged using the interpolation 221 

method m and with a station density d, and 𝜃est is the at-site estimated parameter, here used as a reference. 222 

To summarize with one single number the relative errors on the 100 iterations with respect to the reference 223 

return periods, we finally computed the fraction standard error (FSE) as: 224 

𝜀𝐹𝑆(𝑚, 𝑑) =  
1

𝑥Tr

(∑ (𝑥int(m,d)Tr

(j) − 𝑥Tr
)

2𝑁𝑟
𝑗=1 )

0.5

                      (5) 225 

where 𝑥int(m,d)Tr

(j) is the j-th quantile corresponding to the return period Tr computed for the ungauged 226 

location with the interpolation method m and a density d, and 𝑥Tr is the at-site estimated quantile for the 227 

same Tr.   228 

2.6 Assessment of tail heaviness 229 

We use here the obesity index (introduced by Cooke and Nieboer, 2011) to evaluate the heaviness of the 230 

tail of the distributions. It is a non-parametric measure based on order statistics and is defined as the 231 

probability that the sum of the smallest and largest value of a four values random sample is higher than the 232 

sum of the other two. Being a probability, it ranges between 0 and 1 and its formulation reads as follows: 233 

Ob(X) = P(X(4) + X(1) >  X(2) + X(3)| X(1) ≥  X(2) ≥ X(3) ≥ X(4))           (6) 234 

where X(k) are independent and identically distributed values randomly extracted 1000 times from the 235 

original sample (here, the series of ordinary events). Cooke and Nieboer (2014) showed that the obesity 236 

index for an exponential distribution is equal to 0.75, and that obesity index greater than 0.75 represent tails 237 

decreasing slower than the exponential ones. 238 

2.7 Benchmarking with the state of the art 239 

Finally, in order to provide a benchmark with previous research, we compare our results with the ones by 240 

Schellander et al. (2019), who implemented the smooth modeling method by Blanchet and Lehning (2010) 241 

originally devised for the generalized extreme value distribution parameters in the SMEV framework, but 242 

could not show significant improvements over the original approach. Mirroring the analysis presented in 243 
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Figure 9 in Schellander et al. (2019), we focus on the relative error 𝜀 = (𝑥int − 𝑥obs)/𝑥obs, between the 244 

interpolated and the observed 50-year quantile. 245 

3. Results and Discussion 246 

3.1 Evaluation of SMEV model and comparison with official design precipitation 247 

First, to evaluate the suitability and robustness of SMEV as an extreme value approach for precipitation in 248 

Germany, we perform the experiment described in Section 2.2, for which the left-censoring threshold was 249 

optimized in order to maximize the number of long stations with time series longer than 60 years to be 250 

retained in the analysis. The final number of stations (irrespective of their length) for which at least 90% of 251 

the annual maxima is within the 90% confidence intervals is 4015 out of 5019 (the median length of the 252 

time series is 37 years) resulting in an average density of approximately 1/90 km-2 (Figure 1b). This result 253 

is corroborated by a similar analysis in which the annual maxima were explicitly censored from the 254 

estimation of the Weibull parameters (red and yellow dots in Figure 1b represent stations in which less than 255 

90% of these maxima lie within the 90% confidence interval). Despite the fact that some stations could fail 256 

the test due to stochastic uncertainty, this choice allows us to be on the safe side. Especially when evaluating 257 

the spatial approaches, it would be extremely complicated to disentangle potential uncertainties related to 258 

sub-optimal choices of the left-censoring from errors due to the interpolation methods, thus decreasing the 259 

robustness of our results. 260 

Among the 1004 stations that we discarded, in the majority of the cases SMEV was underestimating the 261 

large annual maxima. When considering the upper tail of the distribution of the maxima –from 90th to 99th 262 

percentile- in about 50% of the stations at least one annual maxima was above the 95th percentile of the 263 

samples, while the opposite (maxima below the 5th percentile) occurred in a very small portion (1.8%) of 264 

the cases. 265 

Figure S1 in the Supporting Information shows results of the test run either using all the here-defined 266 

ordinary events for estimating the distribution parameters (Figure S1a), or using the traditional MEV 267 

approach (i.e., defining ordinary events as independent daily amounts greater or equal to 1 mm, and 268 

allowing inter-annual variability of the distribution parameters, as in Zorzetto and Marani, 2019 – Figure 269 

S1b). Results of the test show that (a) when all ordinary events are used (i.e., SMEV without left-censoring), 270 

the test is successful in only 27% of the stations (green filled circles in Figure S1); (b) this percentage drops 271 

to 0.5% when inter-annual variability of the parameters is allowed as in the standard MEV. This confirms 272 

what found by Wang et al. (2020) when analyzing sub-daily rainfall in the same region. 273 
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 274 

Figure 1 - Panel a): Topography of Germany with five main landscape units (the North German Plain, Central Uplands, South 275 

German Scarplands, and Alpine Foreland regions). Other minor natural areas in Germany are indicated, to ease the discussion. 276 

Panel b): The stations selected for the analysis are those for which the percentage of observed annual maxima that lie in the area 277 

where the 90% of the annual maxima are expected if they were sampled from SMEV (1000 times sampling procedure) is greater 278 

than 90%, when parameters are estimated considering annual maxima. The color scale represents the percentage of annual 279 

maxima within the 90% confidence interval of the 1000 times resampling procedure when parameters are estimated explicitly 280 

censoring the annual maxima (yellow and red colors show decreasing performance, 80-90% and <90% respectively, while green 281 

colors represents a percentage ≥90%). Note that the color of the dots in panel b) would be green for all the stations, when annual 282 

maxima are included in the parameter estimation. 283 

Figure 2 shows the distribution of the ordinary events in a Weibull plot for four example stations 284 

characterized by contrasting topographic and precipitation features (in eastern Germany, Northern German 285 

Plains, Central Uplands and in the Bavarian Alps). Note that in these coordinates Weibull distributions 286 

become linear. We can clearly see how the lower portion of the ordinary events detaches more or less 287 

markedly from the linear behavior which seems to characterize the high-intensity portion (the dashed lines, 288 

whose color matches the stations location in the map in the inset, show the Weibull distributions describing 289 

the largest 10% of the events, as done in this study), supporting the findings by Wang et al. (2020) in sub-290 

hourly rainfall in Germany. In all but the station in the East (purple color), highest values tend to align with 291 

the regression line, while in the latter case the less frequent rainfall depths tends to stay over it. In such 292 

situations, the slope of the regression line, whose inverse is the estimated Weibull shape parameter, should 293 

be higher (or, in other words, the distribution should be characterized by a heavier tail). 294 

 295 
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 296 

Figure 2 - Weibull plot (on the x axis p is the exceedance probability) of the ordinary events (small black dots) for four example 297 

stations characterized by contrasting topographic and precipitation features: the Berlin-Dahlem (Berlin, ID: 00403) station is 298 

located in Eastern Germany (purple), the Delmenhorst station (Lower Saxony, ID: 00936) is located in the Northern German 299 

Plains (green), the Berleburg, Bad-Wunderthausen station (North Rhine Westphalia, ID: 00392) is located in the Central Uplands 300 

(orange), and the Aitrang station (Bavaria, ID: 00063) is located in the Bavarian Alps (turquoise). Thicker black dots represent 301 

the largest 10% of the data used for parameter estimation, colored dots indicate annual maxima, dashed lines represent the Weibull 302 

distributions describing the 10% right tail, and gray shaded areas display the 90% sampling uncertainty (1000 random samples) 303 

from the Weibull distribution. Note that in the legend the colored thick dot and dashed lines are red to indicate a general color. 304 

With the aim of quantifying the error emerging from a wrong estimate of the Weibull shape parameter, in 305 

Figure S2 we compare the rainfall frequency curves (i.e., daily rainfall maxima as a function of the 306 

logarithm of the return period, black filled circles) for the four exemplary cases in Figure 2, obtained by 307 

SMEV without left censoring (red shaded area), the standard MEV (green shaded area) and the SMEV with 308 

left censoring that we found to be the best choice for German daily precipitation (blue shaded area). The 309 

most relevant case is surely the one presented in panel a of Figure S2, namely the daily precipitation maxima 310 

for the Berlin-Dahlem (Berlin, ID: 00403) station in eastern Germany, which we noted as an area where 311 

heavy tails emerge and the risk of underestimating extremes is therefore particularly critical. In general, 312 

Figure S2 allows for a straightforward evaluation of the error that can be caused if wrong assumptions (in 313 

this case, the whole distribution of ordinary events following the Weibull model) are taken. 314 
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We now extend the analysis of the Weibull parameters over the whole country. The spatial patterns that 315 

arise when estimating the parameters of the Weibull distribution visibly resemble the German landscape 316 

characteristics (Figure 3, compared to Figure 1a). Higher values of the scale parameter C along with higher 317 

values of the shape parameter w can be noticed in correspondence of higher elevated areas: in the central-318 

west part of the country (Central Uplands), in the centre (Harz), centre-east (Thuringian Forest), and in the 319 

south-west (low elevation mountains as the Black Forest are impacted by frequent precipitation). The 320 

southwestern Swabian Jura -lee side- is instead characterized by low precipitation rates (Sasse et al.,  2013), 321 

and does not indeed display higher values of C or w. The same behavior is highly marked in the south 322 

(Bavarian Alps) and south-east (in correspondence of the Bavarian Forest). This implies that these areas 323 

are generally characterized by larger typical wet days and lighter-than-exponential tails. Lower values of C 324 

and values of w significantly lower than 1, indicating the emergence of heavier-tails, characterize eastern 325 

Germany, coherently with studies focusing on the evaluation of heavy-tails behaviors, e.g. the recent global 326 

analysis by means of the mean excess function by Nerantzaki and Papalexiou (2019). As mentioned in 327 

Section 2.6, we employ the obesity index (Cooke and Nieboer, 2011) for assessing tail heaviness, which 328 

confirms the pattern shown in Nerantzaki and Papalexiou (2019) (Figure 4). Red dots in Figure 4 indicate 329 

stations for which a heavy tail behavior is expected (an obesity index equal to 0.75, white dots in Figure 4, 330 

indicates the tail of an exponential, while an obesity index greater than 0.75 represents tails that are 331 

decreasing slower than the exponential ones (Cooke and Nieboer, 2014)), which are mainly concentrated 332 

in eastern Germany. This area is characterized by lower precipitation rates and magnitudes in comparison 333 

to other German regions, but precipitation triggered by “Vb” cyclones contributes to events with large 334 

magnitudes, which tend to make the tail of the distribution of daily rainfall become heavier. Figure 3b and 335 

Figure 4 both highlight an extensive presence of heavy tails in Germany (red dots in the two figures indicate 336 

shape parameter values lower than 1 and obesity index values greater than 0.75, respectively), therefore 337 

distributions with exponential (or lighter) tails, such as the Gumbel distribution (Papalexiou and 338 

Koutsoyiannis, 2013), should be used carefully. Also SMEV, despite being able to better describe the tail 339 

of the distribution when heavy tails emerge, generally underestimates the largest extremes. The behavior 340 

highlighted in the example station for eastern Germany in Figure 2 (purple) is common in stations whose 341 

distribution of daily precipitation values has a heavy tail. Among the stations with an obesity index greater 342 

than 0.75 (2642, red points in Figure 4), in 544 the highest maxima are underestimated, while in only 45 343 

cases the tail of the distributions was overestimated. Regarding the parameter 𝑛̅ (Figure 3c), it is important 344 

to remind that it represents the average yearly number of storms (i.e., consecutive wet days, as defined 345 

above). In areas characterized by longer storms, for example where the elevation is higher with an average 346 

storm length of about 4 days, this number is thus considerably lower than the typical number of wet days 347 

which can exceed 150 wet days per year. On the other hand, regions characterized by shorter storms are 348 
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likely to display higher values of 𝑛̅ (notably, eastern Germany). Interestingly, elevation explains about 43% 349 

of the variance in the scale parameter (positive relation), 11% for the shape (positive), and 8% for the 350 

average number of yearly ordinary events (negative; insets in Fig. 3). 351 

 352 

Figure 3 - Maps showing the estimated SMEV parameters: scale (panel a) and shape parameter (panel b) of the Weibull distribution 353 

and average yearly number of ordinary events (panel c). The insets represent the value of the respective parameter plotted against 354 

elevation; red dashed lines show the regression line fitted on these points (R2 values for the three parameters are 0.43, 0.11 and 355 

0.08 for C, w and 𝑛̅ respectively).  356 

 357 

Figure 4 - Obesity index (Cooke and Nieboer, 2011) computed for the series of ordinary values of the 4015 stations analyzed. Blue 358 

(<0.75), white (=0.75) and red (>0.75) indicate light, exponential and heavy tails respectively. 359 

To quantitatively evaluate SMEV estimates, we compared them with the design precipitation gridded values 360 

provided by the DWD Climate Data Center (CDC), which is in charge of providing official design values 361 
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for Germany. The grid cell size is approximately 8km, the temporal coverage from 1951 and 2010 (see 362 

details in Malitz and Ertel, 2015) and the tolerance range is ±15% for return periods between 5 and 50 363 

years and ±20% for return periods greater than 50 years (see panels a and d in Figure 5 for the 50 and 100 364 

years return values of design precipitation estimates). The guidelines given by the German Association for 365 

Water, Wastewater and Waste (DWA, 2012) for the estimation of return levels of daily precipitation consist 366 

in fitting an exponential distribution on the partial duration series including the heaviest rainfall events, 367 

whose length is at least twice the length of the available time series. Thus, the derived extreme value 368 

distribution is characterized by an exponential tail. 369 

We estimated precipitation from SMEV for a return period of 50 and 100 years at each station for which at 370 

least 10 complete years in the 1951-2010 range (1046 stations) were available, and linearly interpolated 371 

them to match the grid provided by DWD-CDC (Figure 5b and e). Panels c and f in Figure 5 show the 372 

relative error between SMEV gridded values and the grid from DWD-CDC. Error values between ±0.15 373 

and ±0.20 for 50 and 100 years return periods (Figure 5c and f) indicate that SMEV estimates are within 374 

the uncertainty range provided. SMEV tends to overestimate the 50 years design precipitation in some high-375 

elevated areas (mainly in the Alps, slightly in the Black Forest and in the Bavarian Forest, more saturated 376 

red values in Figure 5c), but otherwise its estimations are between the lower and upper limits from DWD-377 

CDC. Things change when focusing on the 100 return period quantiles. In addition to the Alpine region, 378 

SMEV overestimates systematically (see the marked red pattern in eastern Germany, Figure 5f) with respect 379 

to DWD-CDC, especially where the emergence of heavy tails was indicated by the heavy-tail indicator and 380 

by the Weibull shape parameter (the Spearman correlation coefficient computed between the relative error 381 

and the shape parameter is -0.4, hinting to the fact that the higher differences between DWD-CDC and 382 

SMEV-based estimated are at least partially explained by the presence of heavier tails). This relative over-383 

estimation from SMEV is likely due to the approach used in the official German product that, being 384 

characterized by an exponential tail, might be locally too light. 385 

Remarkably, SMEV estimates accurately resemble the orographic patterns, highlighting the fact that the 386 

model is be able to capture small-scale variations, (e.g., orographic effects; Marra et al., 2021), a feature of 387 

primary importance when estimating precipitation extremes.  388 

So far, we found that the main drawback with the use of SMEV in Germany is a tendency towards 389 

underestimating the distribution tail heaviness. At the same time, we show that the design values currently 390 

in use in Germany seem to be even more affected by this issue as they rely on lighter-tailed distributions. 391 

The analyses presented up to now thus indicate SMEV as a more than adequate model for extreme daily 392 

precipitation in Germany. In the following, we evaluate the effect of the reduction of station density on high 393 

return period quantiles in ungauged locations. 394 
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 395 

Figure 5 - Comparison between 50 (a) and 100 (d) years return period design values over Germany provided by the official source 396 

(DWD Climate Data Center (CDC): Grids of return periods of heavy precipitation (design precipitation) over Germany (KOSTRA-397 

DWD), version 2010) and obtained with a linear interpolation of SMEV quantiles on the same grid (panels b and e). Panel c (f) 398 

shows the relative error between the SMEV and DWD-CDC gridded estimates for a return period of 50 (100) years. The spatial 399 

resolution is 8.15km×8.20km.  400 

3.2 SMEV for ungauged locations  401 

We now proceed with the SMEV estimates for ungauged locations, implemented as described in Section 402 

2.4. We will focus on errors on parameters and quantiles associated to target return periods when stations 403 

are considered as ungauged. We present results for three representative densities, 1/500 km-2, 1/1000 km-2 404 

and 1/10000 km-2, to evaluate to what extent the performance is degrading when the network becomes 405 

significantly sparser, which is an information of primary importance for real-world applications. In these 406 

cases, the number of stations used for estimating values in the “ungauged” station is respectively 714, 357 407 

and 35. 408 

Errors are computed as explained in Eq.(4) for what concerns parameters and following Eq.(5) to quantify 409 

the error on the estimation of high return period quantiles. We present here results for Tr = 100 years, but 410 

errors on other return periods show the same overall patterns and can be found in the supporting information 411 

(see Figures S3 and S4 for Tr = 50 and Tr = 500 years respectively). 412 
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 413 

Figure 6 - Relative error on the parameters of SMEV (C, w and average n) for the three interpolation methods evaluated (nearest 414 

neighbor in navy blue, inverse distance weighting in orange and ordinary kriging in green). The two rows differ for the presence 415 

of outliers and the columns for the station densities. Namely, panels a (c) and b (d) show the boxplots of the relative errors without 416 

(with) outliers and for a density of 500 1/km-2 and 10000 1/km-2 respectively.  417 

Boxplots in Figure 6 indicate the number of ordinary events as the parameter more accurately estimated by 418 

all three interpolation methods; its errors tend to remain fairly limited also when the density is significantly 419 

reduced (most of the density of the relative error distribution on the number of rainy days lies in the range 420 

-0.2, 0.2, as it can be seen in the third group of box plots in the first row of Figure 6). This indicates that, 421 

as expected, local conditions tend to affect precipitation intensity distributions more than storms occurrence. 422 

The distribution of the relative error on the shape parameter w shows fewer outliers than the one on 𝑛̅, but 423 

it is more likely to have higher errors (range -0.4, 0.4, second group of boxplots in the first row of Figure 424 

6). Moreover, differences between the three methods can be highlighted: NN displays a larger range of 425 

outliers with respect to the other two, which are instead comparable. The largest errors occur for the scale 426 

parameter C (see first group of boxplots in Figure 6), with their uncertainty being minimized by the inverse 427 

distance weighting method.  428 
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 429 

Figure 7 - Map of the fractional standard error (FSE) computed for the return period 100 years from three different stations density 430 

and different interpolation methods. Panels a)-b)-c) show the FSE for a station density of 1/500 km-2 and nearest neighbour, inverse 431 

distance weighting and ordinary kriging interpolation methods; panels d)-e)-f) show the FSE for a station density of 1/1000 km-2 432 

and nearest neighbour, inverse distance weighting and ordinary kriging interpolation methods; panels g)-h)-i) show the FSE for a 433 

station density of 1/10000 km-2 and nearest neighbour, inverse distance weighting and ordinary kriging interpolation methods.  434 
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 435 

Figure 8  – Distributions of the fractional standard error (FSE) for the return period 100 years computed for three different station 436 

densities for different interpolation methods (nearest neighbour in blue, inverse distance weighting in orange and ordinary kriging 437 

in green). Panels a)-b)-c) show the distribution of the FSE for a station density of 1/500 km-2 and nearest neighbour, inverse 438 

distance weighting and ordinary kriging interpolation methods; panels d)-e)-f) show the distribution of the FSE for a station density 439 

of 1/1000 km-2 and nearest neighbour, inverse distance weighting and ordinary kriging interpolation methods; panels g)-h)-i) show 440 

the distribution of the FSE for a station density of 1/10000 km-2 and nearest neighbour, inverse distance weighting and ordinary 441 

kriging interpolation methods. Tick labels on the x-axis indicate the lower limit (included) of the interval considered. 442 

Errors in the parameters affect the estimation accuracy: in Figure 7 we present the map of the fractional 443 

standard error (FSE) computed for each station on the 100 random extraction of the gauges used for 444 

parameter interpolation, for all the interpolation methods, a return period of 100 years and three different 445 

densities (1/500, 1/1000 and 1/10000 km-2). Figure 7 is complemented by Figure 8, which shows the 446 
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histograms of the frequency (in %) of stations displaying a FSE within specific ranges. Remarkably, the 447 

interpolation method displaying the lowest FSE is IDW (panels b-e-h in Figure 7 and Figure 8), also when 448 

the station density is reduced (almost 50% of the stations shows FSE lower than 1 when the density is 449 

1/10000 km-2, panel h in Figure 8). The FSE computed on 100 years return values estimated via NN 450 

manifests the highest values, also for the higher station densities (panels a and d in Figures 7 and 8, where 451 

about 80% of the stations have FSE greater than 1, and panel g, with FSE always greater than 1). Finally, 452 

the FSE from the OK is in between those from the other two interpolation methods (c-f-i and corresponding 453 

panels in Figure 8). The determination coefficients of the regression line between FSE and elevation are 454 

low (R2 less than 0.1) for all the cases, implying that little of the variability of the FSE can be explained by 455 

the variability of the elevation. 456 

The results described above indicate the IDW as the most stable interpolation method, at least for our study 457 

case. Even if geostatistical methods were often been proved to be superior to IDW, depending on the 458 

application of interest, other studies found similar performances between IDW and OK, mainly in 459 

dependence to the network density and the geographic region. For example, Wagner et al. (2012) 460 

highlighted comparable performances between IDW and OK methods, and in Ly et al. (2011) neither OK 461 

nor kriging with external drift were able to improve the IDW interpolation accuracy. 462 

As indicated in Section 2.7, as a last step we benchmark our approach with previous research (Schellander 463 

et al., 2019), namely by comparing the relative error between the interpolated and the observed 50-year 464 

quantile as in figure 9 in Schellander et al. (2019). We consider as target stations those with a time series at 465 

least 50 (100) years long, whose spatial distribution is shown in the first (second) row in Figure 9. The 466 

stations selected for this analysis are 1515 and 102 respectively, and we consider only our higher station 467 

densities (1/200 km-2 and 1/500 km-2), as they are the closest, albeit much sparser, to the 1/67 km-2 density 468 

of the calibration stations in Schellander et al. (2019). Notably, the most significant underestimation issues 469 

appear in eastern Germany, where tails tend to be heavier than those of our model. This is true despite the 470 

fact that our estimates are higher than the operational design values for Germany. In terms of comparison 471 

with Schellander et al. (2019), the range of the median relative error that we get is (-0.6,0.4) when 472 

considering the stations with the shorter records and (-0.4, 0.2) in the case of the longer, in contrast with 473 

their range which reaches 0.95; the fraction of stations with small relative error (range -0.05, 0.05) is 24% 474 

and 33% in our cases, as opposed to their 21%. These represent solid results, also in consideration of the 475 

denser calibration network used in Schellander et al. (2019). 476 

 477 
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 478 

Figure 8 - Relative error obtained by the IDW method computed on the empirical 50 years return value (for the series in which the 479 

exact empirical 50 years return period is not available, the closest one is considered) on the stations for which the time series 480 

available is at least 50 (100) years long in the first (second) row. Panels a (b) show the relative error from the IDW method for a 481 

time series at least 50 years long and a station density of 1/200 km-2 (1/500 km-2), while panels c (d) show the relative error from 482 

the IDW method for a time series at least 100 years long and a station density of 1/200 km-2 (1/500 km-2). Blue (red) dots indicate 483 

under- (over-) estimation of the empirical quantile.  484 

4. Summary and Conclusions 485 

We presented an at-site and spatial analysis of extreme daily precipitation return levels over Germany by 486 

means of the simplified Metatastatistical Extreme Value (SMEV) approach, an emergent methodology for 487 

the estimation of extremes from ordinary events. Here we leverage the enhanced flexibility of SMEV in the 488 

definition of the ordinary events to (i) avoid time-dependence issues and (ii) properly model ordinary events 489 

by left-censoring values which are not described by the same two-parameter distribution describing 490 

extremes. We found that SMEV with left-censoring 90% of the values is a robust extreme value method 491 

for Germany. Strict tests evaluating whether observed annual maxima are likely sampled from this model 492 

showed that this is the case for more than 80% of the examined stations, even when annual maxima are 493 

explicitly censored from the parameter estimation procedure. In general, our approach tends to 494 

underestimate the tail heaviness in some areas, but remarkably showed higher estimates of 50-year and 100-495 

year quantiles than the German official design precipitation values (DWD Climate Data Center (CDC)), 496 
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meaning that these values could be subject to even larger underestimation. The emergence of heavy tails in 497 

several regions of the country, mainly (but not limited to) the eastern part, hints to the fact that the use of 498 

the approach recommended by the official German guidelines, whose tail is equivalent to exponential, 499 

should be revised in some areas. Notably, the regions in which the SMEV (and DWD) underestimation is 500 

more marked are also characterized by a peculiar climatology, in which specific relatively rare events (the 501 

“Vb” cyclones) contribute to an important portion of the extremes. The presence of multiple types of 502 

ordinary events characterized by different distributions could easily explain the underestimation for these 503 

models based on one type of ordinary events only (e.g., Berg et al (2013);  Marra et al. (2018); Marra et al. 504 

(2019)). 505 

Interestingly, at-site Weibull parameters show spatial patterns which closely resemble the German 506 

orography. Notwithstanding the orographic enhancement of precipitation observed in many mountainous 507 

regions being a widely studied process, the orographic impact on the statistical properties of the 508 

distributions used to describe extremes has been studied less (e.g., Grieser et al. (2007); Allamano et al. 509 

(2009); Blanchet et al. (2009); Avanzi et al. (2015); Ragulina and Reitan (2017)). Here, we highlight a 510 

positive correlation between the scale and, to a lesser extent, the shape parameters of the Weibull 511 

distribution with the elevation, which aligns with recent results in 6-hour precipitation intensities on 512 

different climates (Marra et al., 2021).  513 

In the spatial approach, the inverse distance weighting method is the most robust, showing lower FSE values 514 

than those obtained with the other two methods. Only when the density decreases significantly (1/10000 515 

km-2, i.e., the parameter at each station in the country are estimated using only 35 other stations), high-516 

elevated stations are affected by the highest FSE, for example in correspondence of the Bavarian Alps and 517 

the Harz mountains. Comparison of our results with the pioneer investigations on the spatial use of SMEV 518 

by Schellander et al. (2019) showed that, despite the availability of a sparser calibration network, our 519 

methodology showed a smaller range of the errors as well as a larger fraction of stations with very-small 520 

error (around 0).  521 

These promising results indicate that the approach here proposed is both flexible and robust. It might hence 522 

be used for estimation of extremes in ungauged locations. Albeit a small fraction of the variance in 523 

estimation errors is explained by elevation, the correlation between SMEV parameters and orography (up 524 

to 43% explained variance) suggests that future applications should test the inclusion of such information 525 

in spatial estimates. Similarly, future applications should consider the use of multiple types of ordinary 526 

events to explain the underestimated extreme quantiles in regions where rare-type events dominate the 527 

distribution of extremes. 528 
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