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Abstract 19 

Urbanization has produced extremely diverse structures of buildings, including 20 

horizontal sprawl, vertical growth, and a transition from traditional to modern 21 

architecture. Although the influence of urban morphology on urban heat formation is 22 

unquestioned, previous research has relied just on the 2D building composition and its 23 

influence on diurnal land surface temperatures (DLSTs). However, it is not well known 24 

that the 3D building configuration affects nocturnal land surface temperatures (NLSTs) 25 

and seasonal variations. In a new approach, a set of 3D landscape metrics, based on 26 

both aspects of composition and configuration, is here proposed and tested for 27 

spatiotemporal associations to land surface temperatures (LSTs) in Beijing’s old city. 28 

The combination of classical and modern architecture styles makes this region an ideal 29 

laboratory for LST studies in highly different urban structures. Major findings include: 30 

1) 3D landscape metrics effectively and suitably describe the diversity, irregularity and 31 

spatial arrangement of buildings; 2) Denser and more compact building patterns result 32 

in higher DLSTs, whereas highest NLSTs occur around modern high-rise buildings; 3) 33 

3D landscape metrics have sensitive correlations to DLSTs, but in general NLSTs are 34 

closer associated with composition metrics rather than configuration metrics; 4) Both 35 

DLST and NLST are most importantly affected by building numbers and nearest 36 

distances between buildings; 5) The association between urban morphology and LSTs 37 

is fairly stable over all four seasons; with the variation that the summer relationship was 38 

relatively lower due to stronger solar radiation and evapotranspiration of urban 39 

vegetation.  40 

Keyword: 3D landscape metrics, urban building patterns, land surface temperature, 41 

multiple building styles, urban morphology  42 
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1. Introduction 43 

Urbanization is one of the most significant human activities since the 20th century, 44 

and lots of buildings have been built, remodeled and enlarged, which affects the urban 45 

heat environment significantly (United States Environmental Protection Agency, 2006; 46 

Chun and Guldmann, 2014; He et al., 2020). Buildings can alter the reflection and 47 

absorption of solar radiation, as well as the proliferation of heat in urban area (Huang 48 

and Wang, 2019). The surface roughness and irregularity caused by different height, 49 

arrangement and density of buildings lead to location dependent and time dependent 50 

temperature variations (Ng et al., 2012; Guo et al., 2016; Wang et al., 2017). Elevated 51 

urban temperatures can threaten the health of city dwellers and the living condition of 52 

flora and fauna (Voogt and Oke, 2003; Patz et al., 2005; Guo et al., 2020). Therefore, it 53 

is important for future urban planning and management to determine how building 54 

patterns influence temperatures in cities. 55 

Satellite remote sensing provides up-to-date and spatially explicit land surface 56 

temperatures (LSTs) with higher spatial coverage than in situ observations that are 57 

limited by low-density monitoring networks and uncertain observation accuracy (Ma et 58 

al., 2016; Berger et al., 2017). Remote sensing imagery is increasingly used in the 59 

literature to identify the spatiotemporal influences of urban buildings on urban heat (Ng 60 

et al., 2012; Guo et al., 2016; Wang et al., 2017). A weakness with these studies is that 61 

they mainly focused on the diurnal influence of buildings on LSTs on a specific date, 62 

while the nocturnal relationship and seasonal variations were rarely considered. The 63 

nocturnal temperature is highly related to the human comfort, and might arouse more 64 

power consumption for cooling, which in turn, raises air pollution and greenhouse gas 65 

emissions (Salamanca et al., 2014). Despite the undisputed importance of 3D spatial 66 

structures on LSTs, a comprehensive understanding and explanation are still lacking. 67 

Previous studies mostly relied on the two-dimensional (2D) features and three-68 

dimensional (3D) vertical features of buildings (e.g., buildings height, volume, and 3D 69 

surface area), rather than 3D spatial configuration. In this study, the characteristics of 70 

spatial configuration mainly refer to the compactness and arrangement irregularity of 71 
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buildings. A compact building structure is usually designed to meet the basic housing 72 

requirements for increasing urban population and ease up the conflicts between built-73 

up land and other land use as much as possible (Jim and Chen, 2010; Chun and 74 

Guldmann, 2014). Building irregularity is originated from the complexity of single and 75 

multiple buildings, and the combination type of building arrangements is directly 76 

related to the heat accumulation or heat removal by affecting the urban ventilation, 77 

radiation balance schemes, and sunshine conditions (Chun and Guldmann, 2014). 78 

Compared with the composition characteristics, the method for measuring 79 

configuration of urban building patterns in 3D space is less targeted and systematic, and 80 

particularly lacks a complexity evaluation of building arrangements (Jhaldiyal et al., 81 

2018; Kedron et al., 2019).  82 

Metrics for pattern recognition have been widely applied to provide more accurate 83 

ecological interpretations for the influence of land use/cover changes on LSTs during 84 

past decades (Ma et al., 2016; Wang et al., 2017; Guo et al., 2020; Yu et al., 2020). 85 

Traditional landscape metrics are usually calculated in 2D space without 3D vertical 86 

information, while the urban buildings actually refer to a 2.5D or 3D representation 87 

(Hoechstetter et al., 2008; Wu et al., 2017). Thanks to the progress in 3D information 88 

extraction technology (e.g., SAR, LiDAR, and oblique photogrammetry), several 3D 89 

landscape pattern metrics have been introduced by combining traditional 2D landscape 90 

metrics with 3D vertical features (Frazier and Kedron, 2017; Wu et al., 2017; Kedron 91 

et al., 2018). 3D landscape analysis has the advantage of incorporating internal 92 

heterogeneity within patches into the calculation and avoids the shortcoming of 93 

considering a patch as totally homogeneous in 2D space (Hoechstetter et al., 2008; 94 

Frazier and Kedron, 2017). However, these new metrics are rarely considered in 95 

describing the spatial configuration and composition of urban building patterns, and 96 

their efficiency and suitability are also uncertain. Before applying these new metrics to 97 

associate the urban buildings with LST, the following scientific questions need to be 98 

solved: 1) How to define the concept ‘patch’ and ‘class’ in building patterns, 99 

considering that landscape metrics are usually calculated based on a patch-mosaic 100 
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model? 2) How to interpret the ecological significance of these new metrics and what 101 

building characteristics can they reflect? 3) Which landscape metrics are more sensitive 102 

to the correlation between urban building morphology and LSTs? 103 

The originality of our approach is the incorporation of 3D urban morphology 104 

(composition and configuration of buildings) into studies of LSTs. During daytime, the 105 

landscape characteristics (Wu, 2004; McGarigal et al. 2009) in a high-rise building 106 

region might lead to less sky visibility and less direct solar radiation, which is conducive 107 

to a mitigation of high LSTs (Huang and Wang, 2019). At night, the buildings replace 108 

the sun in warming the surrounding areas. 3D features of buildings might affect the 109 

intensity and spatial variations of heat (Geros et al., 2005), and a 3D analysis of the 110 

built landscape can quantify and compare the heat release at night and heat storage 111 

during daytime.  112 

This paper aims to investigate the relationships between the 3D structure of 113 

buildings and LSTs and the main objectives include: 114 

• An evaluation of the effectiveness and suitability of a 3D landscape analysis 115 

for studying the spatial heterogeneity of urban building patterns, and its relevance to 116 

variations of LSTs. 117 

• The identification of diurnal and nocturnal impacts of urban buildings on the 118 

urban thermal environment during the four seasons. 119 

To this end, the experimental setup of this study included 14 remote sensing images 120 

over four seasons for extracting land surface temperatures, and 3D geographical data of 121 

Beijing’s old city. The results can contribute to a deeper understanding of the influence 122 

of urban morphology on urban heat and provide suggestions for the management and 123 

conservation of traditional buildings and the old city from the perspective of urban heat 124 

management. 125 

2. Study Area and Data 126 

2.1. Study area 127 

Beijing is one of the largest cities in the world, covers approximately 16000 km2 128 

with more than 20 million urban permanent populations. Beijing has been built as a city 129 
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3000 years ago, and taken as the national political center for 800 years. Beijing has a 130 

humid continental monsoon climate with severe, dry winters, hot summers and strong 131 

seasonality (Köppen-Geiger climate class Dwa = humid boreal climate, 593 mm yearly 132 

precipitation, 11.9 °C annual mean temperature, maximum temperature up to 40 °C, 133 

minimum temperature falling to - 20°C) in the North Temperate Zone. Our study area 134 

focuses on Beijing’s old city, located at the center of the metropolitan area (latitude 135 

39˚54ʹN, longitude 116˚23ʹE), covering a total area of about 40 km2 (Fig. 1), and 136 

comprising lots of royal architecture buildings and local-style dwelling houses (e.g., 137 

courtyard houses) with low building height and high-dense distribution. Generally, a 138 

courtyard house consists of several single buildings.  139 

Since 1950s, giant changes of building styles have been witnessed, including the 140 

introduction of high-rise buildings along the Second Ring Road and the demolition of 141 

partial courtyard houses due to the old city conservation and renewal policy (Fig. 1). 142 

The royal buildings, courtyard houses and modern buildings shape the typical multiple-143 

building landscape in Beijing’s old city compared with outside areas, where the 144 

buildings are mainly modern high-rise buildings. The complex building pattern in 145 

Beijing’s old city is an ideal laboratory for the studies of LSTs in highly different urban 146 

structures, which might supply new aspects for strategies balancing between the 147 

economic development and culture protection during urbanization. 148 
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 149 

Fig. 1. Study area (top-left corner: map of China; bottom-left corner: the location of main ring roads 150 

in Beijing and the old city is surrounded by Second Ring Road (R2); middle: Beijing’s old city in 151 

March 2002 from Google Earth; right: Beijing’s old city in April 2019 from Google Earth). 152 

To test the effectiveness and suitability of 3D landscape metrics in measuring urban 153 

building patterns, three samples were chosen according to the following standards: 154 

building height, building arrangement regularity, and buildings styles. Generally, urban 155 

buildings with modern style are moderate-rise or high-rise and designed with regular 156 

arrangement, while urban buildings of traditional styles tend to be low-rise and the 157 

spatial arrangement is a little irregular, particularly for the courtyard houses, which have 158 

been built over many years. Sample 1 (near Beijing’s Drum Tower) mainly consists of 159 

courtyard houses (low height and high density of buildings); Sample 2 (near Beijing’s 160 

railway station) mainly consists of residences with moderate building height and 161 

building density; Sample 3 (near central business district) mainly consists of high-rise 162 

buildings with relatively scattered spatial distribution of buildings (Fig. 2). 163 
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 164 

Fig. 2. The building classes in the study area and the location of three selected sample regions (Part 165 

A). The standard of buildings classification is seen in Section 3.1. The spatial distribution of 166 

buildings in the selected sample regions (Part B). 167 

2.2. Data 168 

For this study, satellite-based remote sensing images from Landsat 8 and Terra were 169 

downloaded from the USGS (https://earthexplorer.usgs.gov/) to retrieve LSTs over four 170 

seasons at a fine scale (Table 1). 7 Landsat 8 images with Thermal Infrared Sensor 171 

(TIRS) were used for the DLST inversion, while 7 Terra images with Advanced 172 
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Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used for the 173 

NLST inversion. The accuracy of LST products from Landsat 8 and ASTER might be 174 

1K under better atmospheric correction (Gillespie et al., 1999; Jiménez-Muñoz et al., 175 

2014; Berger et al., 2017), and significant positive relationships existed between 176 

inversed and measured temperatures on the weather station (Tiangco et al., 2008; Li et 177 

al., 2013). 3D building data were gathered from Baidu China Co., Ltd in 2016, which 178 

includes the building footprints and heights (Table 1). All data and remote sensing 179 

images were geometrically corrected to the WGS84 coordinate system. 180 

Table 1. Data Sources 181 

Data sources Data Local 
time 

Component-derived Spatial 
resolution  

Landsat 8 
OLI/ TIRS 

21 Jan 2019  10:53  Diurnal land surface 
temperature 

30 Meter 

26 Mar 2019 10:52  

13 May 2019 10:52  

17 Aug 2019 10:53  

02 Sep 2019 10:53  

20 Oct 2019 10:53  

04 Dec 2018 10:53  

Terra ASTER 13 Jan 2019 22:16  Nocturnal land surface 
temperature 

30 Meter 

04 Apr 2011 22:21  

19 Aug 2017 22:16  

01 Sep 2019 22:22  

08 Oct 2015 22:22  

02 Nov 2015 22:16  

22 Dec 2016 22:16  

Building data 2016 Building height and footprint  

3. Methods 182 

The data processing consists of three steps (Fig. 3): 1) 3D landscape metrics were 183 

calculated based on the footprint and height characteristics of buildings; 2) The DLST 184 

and NLST were retrieved using Landsat 8 OLI/TIRS and Terra ASTER remote sensing 185 

images, respectively; 3) the diurnal and nocturnal associations between 3D landscape 186 

metrics and LSTs were calculated using Pearson correlation coefficient, and their 187 

relative importance on affecting the LSTs was evaluated by the random forest algorithm 188 

(RF). 189 
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 190 

Fig. 3. Flow chart of the implementation and analysing methods. 191 

3.1. Computation of 3D Landscape metrics 192 

The concept ‘pattern’ in landscape ecology is usually defined based on a patch-mosaic 193 

model, which describes the landscape as a mosaic of discrete land use/cover types with 194 

certain boundary condition (McGarigal et al., 2009; Frazier and Kedron, 2017; Frazier, 195 

2019). Similarly, an urban building pattern can be seen as a mixture of multiple 196 

buildings within a certain area in 3D space (Wu et al., 2017; Frazier, 2019; Kedron et 197 

al., 2019). Four levels of heterogeneity are defined to analyze the characteristics of 198 

spatial composition and configuration in a building pattern: cell, patch, class, and 199 

landscape. The ‘cell’ is defined as single pixel belonging to urban buildings; the ‘patch’ 200 

is defined as individual 3D building; the ‘class’ is defined as the mixture of different 201 

buildings with the same or similar buildings height; the ‘landscape’ is defined as the 202 

mixture of buildings in the total study area. In this research, we adopted a new set of 203 

3D landscape metrics (composition metrics and configuration metrics) to characterize 204 

the complexity, compactness and spatial arrangement regularity of urban buildings 205 

(Table 2). The composition metrics are further divided into horizontal and vertical 206 

metrics depending on whether 3D vertical landscape elements were put into calculation. 207 

The building landscapes were classified into four classes: low buildings (below 10m), 208 

Landsat 8 
OLI/TIRS 

Terra ASTER 

Meteorological 
parameters 

DLST NLST 

Statistical Analysis 

Step 3: Correlation calculation 

Step 1: 3D landscape metrics calculation Step 2: Land surface temperature retrieval 

Building 
information 

Building 
height 

Building 
volume 

Building 
surface area 

2D landscape 
metrics 3D landscape 

metrics 
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sublow-rise buildings (10m-20m), middle-rise buildings (20m-60m), and high-rise 209 

buildings (over 60m). The selected 3D landscape metrics were computed using moving 210 

window methods with window size 200 m on the MATLAB platform (for full equations 211 

and relative description of landscape metrics see supplementary files).  212 

Table 2. Abbreviations and ecological significances of selected 3D landscape metrics.  213 

Metrics Abbreviation Type Measure of the … 

Number of patches NP Composition-
Horizontal 

number of urban buildings belonging to the 
same class. 

Patch density PD Composition-
Horizontal 

spatial heterogeneity and evenness of urban 
building pattern. 

Richness density  RD Composition-
Horizontal 

richness of urban buildings class within a 
certain area. 

Mean Height HMN Composition-
Vertical 

mean height of urban buildings. 

Mean Volume 
index 

VMN Composition-
Vertical 

mean volume of urban buildings. 

Root-mean-square 
deviation of height 

SQ Composition-
Vertical 

undulation of the urban buildings surface. 

Percentage of 
patch type 

PLAND Composition-
Vertical 

proportion of each buildings class in the urban 
building pattern. 

Largest patch 
index  

LPI Configuration largest space occupation of single building. 

Simpson's 
evenness index  

SIEI Configuration evenness of urban buildings landscape. 

Simpson's diversity 
index  

SIDI Configuration diversity of urban buildings landscape. 

Landscape shape 
index 

LSI Configuration deviation between patch shape and regular 
circle or square with same area. 

Landscape fractal 
dimension index 

LFI Configuration irregularity and complexity of urban buildings 
landscape shape. 

Landscape division 
index  

LDI Configuration fragmentation and aggregation of urban 
buildings landscape. 

Cohesion index  COI Configuration connectivity and aggregation of the urban 
building pattern. 

Euclidean nearest-
neighbor Mean 
Distance 

ENN Configuration isolation degree of each buildings class, and can 
be taken as indicator for measuring the road 
width. 

Contact index CNI Configuration effect of buildings forming ventilation paths, 
defined by the ratio between building height 

and road width (𝐻/𝑊) 

Sky view factor SVF Configuration sky visibility 
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3.2. The land surface temperature retrieval 214 

Current image processing methods for LST retrieval include the mono-window as 215 

well as split-window algorithms, single-channel, multi-channel, and atmospheric 216 

correct methods (Qin et al., 2001; Berger et al., 2017; Yu et al., 2020). This study applied 217 

the mono-window algorithm, which is proposed by Qin et al. (2001) aiming at LST 218 

retrieval from only a single thermal infrared band of remote sensing images.  219 

The DLST was retrieved from Landsat 8 images using the radiative transfer model: 220 

𝐿ఒ = 𝐿ఓ + 𝜏[𝜀𝐿் + (1 − 𝜀)𝐿ௗ], (1)

where 𝐿ఒ is the at-sensor radiance value; 𝜀 is the land surface emissivity; 𝐿ఓ and 𝐿ௗ are 221 

the upwelling and downwelling radiances, respectively; 𝐿் is the black-body radiance 222 

given by Planck's law, also known as surface-leaving radiance; 𝜏  is the total 223 

atmospheric transmissivity between sensor and surface. The atmosphere parameter 𝜏, 224 

upwelling radiance 𝐿ఓ, and downwelling radiance 𝐿ௗ can be calculated using a web-225 

based atmospheric correction parameter tool (https://atmcorr.gsfc.nasa.gov/). The 226 

Normalized Difference Vegetation Index (NDVI) can differentiate between vegetated 227 

and urban areas based on the continuous values of vegetation abundance, and was 228 

applied to calculate the land surface emissivity 𝜀 as follows: 229 

𝜀 = 0.02644𝐹௩ + 0.96356, (2)

where 𝐹௩ represents the vegetation fraction as expressed in Equation 3:  230 

𝐹௏ = ൬
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼௠௜௡

𝑁𝐷𝑉𝐼௠௔௫ − 𝑁𝐷𝑉𝐼௠௜௡
൰

ଶ

, (3)

and NDVI was calculated by: 231 

𝑁𝐷𝑉𝐼 =
𝑅ேூோ − 𝑅ோா஽

𝑅ேூோ + 𝑅ோா஽
, (4)

where 𝑁𝐷𝑉𝐼௠௜௡ and 𝑁𝐷𝑉𝐼௠௔௫ represent the minimum and maximum values of NDVI, 232 

respectively; 𝑅ேூோ  and 𝑅ோா஽  represent the reflection values of near-infrared and 233 

infrared bands, respectively. The NDVI-based method for emissivity calculation has 234 

the effect of reducing the pixel size of the thermal data caused by the Landsat 8 OLI for 235 



13 

 

the NDVI estimation with the resolution 30 meter. 236 

Then, the surface-leaving radiance 𝐿்  can be calculated using the following 237 

formula: 238 

𝐿் =
𝐿ఒ − 𝐿ఓ − 𝜏(1 − 𝜀)𝐿ௗ

𝜏𝜀
, (5)

Assuming that the Earth surface is a black body, the surface-leaving radiance is 239 

converted to at-sensor brightness temperature (𝑇௕) by inverting Planck’s law: 240 

𝑇௕ =
𝐾ଶ

𝑙𝑛 ቀ
௄భ

௅೅
+ 1ቁ

, (6)

where 𝐾ଵ and 𝐾ଶ  are two calibration constants. For Landsat 8 OLI, 𝐾ଵ =241 

774.8853 𝑊𝑚ିଶ𝑠𝑟ିଵ𝜇𝑚ିଵ and 𝐾ଶ = 1321.0789𝐾.  242 

The actual land surface temperature was calculated using the at-sensor brightness 243 

temperature (𝑇௕) value from Equation (6) as follows: 244 

𝐿𝑆𝑇 =
(𝑎(1 − 𝐶 − 𝐷) + 𝑇௕(𝑏(1 − 𝐶 − 𝐷) + 𝐶 + 𝐷) − 𝐷𝑇௔

𝐶
− 273.15 (7)

𝐶 = 𝜀𝜏, (8)

𝐷 = (1 − 𝜏)[1 + (1 − 𝜀)𝜏], (9)

where 𝑇௔ represents the atmosphere mean acting temperature; a and b are constants, 245 

and (for temperatures between 0 °C and 70 °C), a = −67.355351 and b = 0.458606. 246 

For the NLST retrieval from ASTER images, the conversion formulae are similar with 247 

those used for the Landsat 8 images. However, the lack of daytime ASTER remote 248 

sensing images makes that the land surface emissivity applied in the radiative transfer 249 

model cannot be derived directly from the same sensor type using the NDVI-based 250 

approach. Landsat 8 images were applied to supply the emissivity mask for the NLST 251 

retrieval. Due to less noise and atmospheric effects (Gillespie et al., 1999; Nichol, 2005), 252 

band 13 was selected from five thermal infrared bands for further use (Fig. 4). Higher 253 

DLSTs were mainly observed in traditional building regions, while higher NLSTs were 254 

mainly distributed around modern buildings and wider roads. 255 
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 256 

Fig. 4. DLST on January 21, 2019 (a), NLST on January 13, 2019 (b), and building height (c) in 257 

Beijing’s old city.  258 

3.3. Random forest method evaluating the relative importance of landscape metrics on 259 

LSTs  260 

The RF is a nonlinear statistical ensemble algorithm that builds sequential 261 

randomised, de-correlated decision trees for classification or regression, and the results 262 

are relatively stable for missing or non-stationary data (Hutengs and Vohland, 2016; Xu 263 

et al., 2020). RF first generates a training sample through bootstrap resampling, and 264 

then forms a random forest of decision trees from the training data. Compared with 265 

least-squares linear regression fitting, the advantages of RF are: 1) the inclusion of 266 

discrete variables in the regression; 2) nonlinear relationship identification between the 267 

predicted and multiple variables; 3) minimised risk of overfitting by averaging a large 268 
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number of de-correlated individual trees. The relative importance of variables can be 269 

calculated from the improvements in split-criterion at each split and in each tree, 270 

summing over all variables separately after re-attributing (Hutengs and Vohland, 2016).  271 

In this study, we selected 20 3D landscape metrics as the independent variables to 272 

predict the diurnal and nocturnal land surface temperatures (regression tree set-up: 273 

number of regression trees = 600, minimum number of observations per tree leaf = 5). 274 

After training and fitting the RF algorithm, the coefficient of determination (R2) 275 

indicated the accuracy, while the relative importance of variables represented the 276 

sensitivity of landscape metrics to the variations of DLST and NLST over four seasons. 277 

4. Results 278 

4.1. 3D landscape metrics for measuring the building patterns in the samples 279 

Significant differences in the building diversity, irregularity and compactness 280 

between selected regions were revealed by 3D landscape metrics. In the composition 281 

metrics (Table 3), the HMN in Sample 3 (14.301 m) exceeded that in Sample 1 (3.399 282 

m) and Sample 2 (9.707 m) as expected. The NP (1681) and PD (0.005) in Sample 1 283 

were both highest, but the RD (5.977) and volume (1137393 m3) were lowest, because 284 

traditional dwellings-courtyard houses account for the largest proportion in this region, 285 

and single buildings belonging to the courtyard house usually take less horizontal space 286 

compared with high-rise buildings. In Sample 1, there were no middle-rise and high-287 

rise buildings. With increasing mean height the fraction of low-rise buildings decreased 288 

from 0.973 to 0.444. The lowest SQ value (2.336) occurred in Sample 1, because the 289 

low-rise buildings usually have less height variations than high-rise region.  290 

Table 3. 3D landscape composition metrics in three samples (classification of the PLAND index: 291 

LB - low-rise, SB - sublow-rise, MB - medium-rise, and HB - high-rise buildings. 292 

 HMN (m) NP PD RD VMN (m3) SQ LB SB MB HB 

Sample 1 3.399 1681 0.005 5.977 1137393 2.336 0.973 0.027 0.000 0.000 

Sample 2 9.707 301 0.001 6.254 4656600 5.330 0.554 0.435 0.012 0.000 

Sample 3 14.301 271 0.001 7.256 7883505 10.369 0.444 0.260 0.169 0.127 

In the configuration metrics (Table 4), the LPI in Sample 3 (0.021) was higher than 293 

that in Sample 1 (0.015) and Sample 2 (0.018), caused by a larger occupation of 294 



16 

 

horizontal space and larger designed height for single high-rise buildings. The larger 295 

SIDI (1.339) and SIEI (0.966) in Sample 3 indicated a much more diverse and relatively 296 

even spatial distribution of buildings, and the results of LSI and LFI indicated that the 297 

building arrangements in Sample 1 were much more irregular than that in the modern 298 

building areas. Nowadays, most of courtyard houses in Beijing’s old city are relatively 299 

irregularly arranged with poor texture, while modern buildings are follow a certain 300 

street planning scheme. A much more subdivided and compact building pattern in 301 

Sample 1 was suggested by COI and LDI. The ENN in Sample 3 (16.921 m) exceeded 302 

that in sample 1 (9.052 m) and sample 2 (10.751 m), where open building patterns and 303 

wider distances among buildings were designed for better lighting conditions, 304 

ventilation effects and traffic convenience. Compared with the modern high-rise 305 

building region, the traditional houses had larger sky visibility, suggested by the SVF. 306 

Table 4. 3D landscape configuration metrics in three samples. 307 

 LPI SIEI SIDI LSI LFI COI LDI ENN CNI SVF 

Sample 1 0.015 0.078 0.054 41.764 3.304 95.387 0.998 9.052 0.386 0.831 

Sample 2 0.018 0.642 0.705 24.236 2.302 97.932 0.994 10.751 0.575 0.757 

Sample 3 0.021 0.966 1.339 26.508 2.096 98.533 0.992 16.921 0.609 0.785 

4.2. The diurnal and nocturnal correlation between composition metrics and LST 308 

Significant correlations between landscape composition metrics and LSTs were 309 

identified (Table 5), and the relationship during daytime was opposite from that at night. 310 

Except SB and MB, the correlation coefficients of other metrics were significant at the 311 

p=0.05 level. Among horizontal metrics, NP and PD were positively correlated with 312 

DLST, while RD was negatively correlated. Within a certain area, more buildings and 313 

higher building density mean more compact building arrangements, leading to lower 314 

emissivity and worse ventilation, and then causes a significant increase of DLST. At 315 

night, the negative relationship between horizontal metrics and LSTs was directly 316 

related to the building styles in Beijing’s old city. Based on previous results of our 317 

samples, low-rise buildings occupy less horizontal and vertical space than high-rise 318 

buildings, but the NLST near the former is much lower than that around latter.  319 

Among vertical metrics, both the HMN and PLAND metrics were negatively correlated 320 
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with DLST, but positively correlated with NLST. During daytime, the LSTs near high-321 

rise buildings were much lower than that near low-rise buildings, because high-rise 322 

buildings might generate more building shadow for cooling. After sunset, the high-rise 323 

buildings might release more heat to surrounding environment compared with low-rise 324 

buildings, and lead to obvious local high temperature zones. The volume can be the best 325 

predictor for revealing the temporal influence of buildings on the LSTs. The nocturnal 326 

correlation between volume and LSTs was much more significant than the diurnal 327 

correlation, because the volume cannot directly describe the variations of building 328 

height, but is the direct parameter for estimating the heat storage during daytime.  329 

Table 5. The diurnal and nocturnal correlation coefficients between composition metrics and LST. 330 

Blue and orange suggest higher negative and positive correlations, respectively, while white colour 331 

indicates lower correlation.  332 

 

Daytime  Night 

Jan 
21 

Mar 
26 

May 
13 

Aug 
17 

Sep 
02 

Oct 
20 

Dec 
04 

 
Jan 
13 

Apr 
04 

Aug 
19 

Sep 
01 

Oct 
08 

Nov 
02 

Dec 
22 

NP 0.76 0.83 0.77 0.72 0.77 0.74 0.70  -0.27 -0.59 -0.49 -0.31 -0.59 -0.55 -0.51 

PD 0.65 0.69 0.59 0.52 0.62 0.63 0.61  -0.43 -0.56 -0.44 -0.40 -0.45 -0.58 -0.48 

RD -0.46 -0.56 -0.60 -0.61 -0.54 -0.46 -0.41  -0.16 0.22 0.24 -0.11 0.36 0.13 0.26 

HMN -0.57 -0.61 -0.47 -0.42 -0.59 -0.60 -0.59  0.69 0.60 0.34 0.44 0.26 0.69 0.42 

LB 0.50 0.53 0.36 0.31 0.47 0.50 0.50  -0.58 -0.51 -0.35 -0.39 -0.17 -0.58 -0.45 
SB 0.05 0.00 0.04 0.07 0.05 0.07 0.08  -0.03 -0.01 0.12 -0.02 0.04 0.02 0.13 
MB -0.10 -0.11 0.02 0.00 -0.07 -0.09 -0.12  0.19 0.11 0.15 0.15 -0.11 0.09 0.21 
HB -0.59 -0.60 -0.48 -0.43 -0.58 -0.61 -0.61  0.64 0.58 0.28 0.41 0.25 0.66 0.37 
SQ -0.52 -0.56 -0.44 -0.38 -0.57 -0.55 -0.56  0.70 0.57 0.40 0.45 0.28 0.69 0.39 
VMN -0.25 -0.24 -0.07 -0.01 -0.20 -0.27 -0.33  0.67 0.35 0.10 0.34 -0.03 0.48 0.24 

  

4.3. The diurnal and nocturnal correlation between configuration metrics and land 333 

surface temperature 334 

Table 6 shows the diurnal and nocturnal correlations between landscape 335 

configuration metrics and LSTs. Except the SVF, SIDI and SIEI at night, the correlation 336 

coefficients of other metrics were significant at the 0.05 level. Similar to composition 337 

metrics, the diurnal and nocturnal correlations were opposite, but the configuration 338 

metrics responded better to the DLST than NLST.  339 

LPI was negatively correlated with the DLST, but there was no significant 340 
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correlation between LPI and NLST. It is caused by the fact that LPI is an indicator for 341 

space occupation of largest or highest single buildings, which hardly reflect the total 342 

3D features of buildings in the moving window. The lower coefficients of SIDI and 343 

SIEI indicated less sensitivity to describe the impacts of urban buildings on LSTs.  344 

The results of LSI and LFI reflected that a irregular building pattern might generate 345 

higher DLST. In Beijing’s old city, the regular building pattern is usually planned along 346 

the main road for better traffic conditions with the following characteristics: high-rise 347 

buildings for saving space and low-density for more sunshine mainly. Compared with 348 

irregular building patterns, more regular street patterns and spatial arrangements of 349 

buildings might create a better ventilation effect, which is conducive to accelerate the 350 

heat removal. 351 

The LDI and COI were significantly correlated with DLST. The former was 352 

positive, while the latter was negatively correlated with DLST. Higher LDI and COI 353 

indicate a more subdivided and fragmented building pattern with higher compactness, 354 

which lead to the accumulation of heat as well as higher LST during daytime. The ENN 355 

and CNI also showed similar relationships with DLST. ENN can be seen as a measure 356 

of road width and isolation of buildings, and the CNI is an important indicator for 357 

measuring direct solar radiation. Wider distances among buildings and higher ratios 358 

between buildings and road widths create a relative open building pattern, which 359 

accelerates the heat loss and generates more building shade. At night, the relationship 360 

turned to be opposite, high-rise buildings along the wide roads and the streets 361 

themselves serve as heat sources for warming the surrounding areas. Besides, the wide 362 

roads in Beijing’s old city are mostly covered by the asphalt with a high specific heat 363 

capacity, which might release more heat compared with other road surfaces at night. 364 

SVF was much more correlated with DLST than NLST, because sky visibility is directly 365 

related to the solar radiation during daytime. After sunset, the SVF was not sensitive to 366 

the influence of buildings on LSTs. 367 
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Table 6. The diurnal and nocturnal correlation coefficients between configuration metrics and LST. 368 

Blue and orange suggest higher negative and positive correlations, respectively, while white colour 369 

indicates lower correlation. 370 

  
Daytime  Night 

Jan 
21 

Mar 
26 

May 
13 

Aug 
17 

Sep 
02 

Oct 
20 

Dec 
04 

  
Jan 
13 

Apr 
4 

Aug 
19 

Sep 
01 

Oct 
08 

Nov 
02 

Dec 
22 

LPI -0.5 -0.51 -0.52 -0.49 -0.49 -0.5 -0.53  0.13 0.28 0.12 0.07 0.22 0.26 0.15 

SIEI 0.18 0.18 0.25 0.26 0.23 0.23 0.14  -0.04 -0.19 -0.04 -0.07 -0.14 -0.12 -0.03 

SIDI 0.18 0.2 0.28 0.3 0.25 0.22 0.13  0.04 -0.17 -0.04 -0.01 -0.2 -0.08 -0.04 

LSI 0.46 0.5 0.55 0.53 0.45 0.45 0.44  0.15 -0.24 -0.14 0.01 -0.37 -0.12 -0.04 

LFI 0.67 0.71 0.59 0.53 0.66 0.66 0.65  -0.56 -0.62 -0.46 -0.43 -0.4 -0.65 -0.54 

LDI 0.55 0.56 0.56 0.54 0.53 0.53 0.56  -0.14 -0.3 -0.15 -0.05 -0.24 -0.3 -0.21 

COI -0.69 -0.73 -0.61 -0.55 -0.66 -0.67 -0.65  0.54 0.61 0.43 0.39 0.42 0.65 0.5 

ENN -0.55 -0.62 -0.53 -0.46 -0.62 -0.55 -0.58  0.56 0.55 0.46 0.42 0.35 0.64 0.38 

CNI -0.34 -0.37 -0.21 -0.17 -0.34 -0.34 -0.33  0.6 0.44 0.31 0.42 0.15 0.53 0.42 

SVF -0.27 -0.33 -0.48 -0.50 -0.35 -0.28 -0.20 0 -0.40 0.07 0.08 -0.15 0.37 -0.07 -0.02 

  

4.4. Relative importance of landscape metrics for the variations of LSTs 371 

This study applied 20 landscape metrics to judge the spatiotemporal associations 372 

between urban buildings and LSTs. As multicollinearity might exist, it is difficult to 373 

determine which metric has a more dominant effect on the variation of LSTs. To this 374 

end, we analyzed the relative importance of 3D landscape metrics on affecting LSTs 375 

using RF (Fig. 5).  376 

During daytime, NP, ENN, and LDI took a higher proportion than the other 377 

indicators, which indicated that the buildings number, compactness degree, and road 378 

width have more significant influence on DLST. An interesting finding was that the 379 

relative importance of building height decreased from January to August, and then 380 

increased. The change of height importance is basically consistent to the intensity of 381 

solar radiation. For SVF, the relative importance increased until August, and then 382 

decreased. Compared with the building height, the SVF is more sensitive to the direct 383 

solar radiation. During summer, the solar radiation is quite strong, which directly affects 384 

the spatial distribution of urban ground temperature. Although high buildings might be 385 

conducive to a decrease of LST through generating massive buildings shades, the 386 
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influence is still relatively weak. At night, the relative importance of landscape metrics 387 

for LST variations did not show significant regularity, but the buildings number, height 388 

and road width in most months had higher contribution to NLST than others. Wider 389 

roads with asphalt cover, high buildings and large building numbers might act to store 390 

more heat during daytime and then release more after sunset.  391 

The R2 values between the regression results and LSTs indicated that the landscape 392 

metrics were more sensitive to the variations in LST during daytime than that at night. 393 

Over four seasons, at least 66.7% of variations in DLST can be explained by the 394 

regression model, while at most 67.8% of variations in NLST were explained by the 395 

landscape metrics. As for the temporal changes, the R2 value in March during daytime 396 

was highest, approximately 82.1%, and the diurnal regression results during summer 397 

were relatively higher than that during autumn and winter. The nocturnal values 398 

decreased from January (67.8%) to early September (42.2%), and then increased, which 399 

indicated that the influence of buildings on LST at night was weak during summer. 400 



21 

 

 401 

Fig. 5. The relative importance of 3D landscape metrics in the variations of LSTs over four seasons. 402 

The importance values tend to decrease with the colour changing from orange to red. The letter ‘D’ 403 

represents the daytime, ‘N’ represents the night, and the number represents the date of remote 404 

sensing images acquisition. For example, ‘D20190121’ represents the daytime LST on January 21, 405 

2019. 406 
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5. Discussion  407 

5.1. The efficiency of 3D landscape metrics measuring building patterns  408 

Knowledge about how to measure building patterns in 3D space is a key for further 409 

monitoring of urban dynamics and its relationship with urban heat (Ng et al., 2012; 410 

Jhaldiyal et al., 2018; Kedron et al., 2019). Traditional methods mainly relied on the 411 

building’s height, footprint and volume to describe the 3D building characteristics (Liu 412 

et al., 2017; Huang and Wang, 2019; Guo et al., 2020). These parameters aim at 413 

reflecting the horizontal and vertical information of single buildings, which are useful 414 

and simple but not sufficient. The influence of buildings on the urban heat environment 415 

is not a simple linear accumulation, but refers to the integrated effect of multiple factors, 416 

particularly the spatial arrangement of building patterns (e.g., open or compact pattern). 417 

Sky view factor (SVF) is another widely used parameter quantifying the extent of 3D 418 

open space, also taken as indicator for compactness of urban buildings (Guo et al., 2016; 419 

He et al., 2020; Yu et al., 2020). Chun and Guldmann (2014) applied SVF and other 420 

parameters to simulate the urban heat island in high-density central cities, but the 421 

influence of SVF on the LSTs is still uncertain and even contradictory. Positive, 422 

negative and insignificant relationships were all reported in previous studies (Hove et 423 

al., 2015; Berger et al., 2017; Huang and Wang, 2019). In this study, SVF was 424 

negatively correlated with the DLST, while the nocturnal relationship was not 425 

significant. The differences of SVF among multiple researches further proofed a 426 

complex relationship between urban morphology and LSTs, which can be hardly 427 

revealed by simple composition indices. Compared with traditional methods, 3D 428 

landscape metrics applied in this study can measure and compare the buildings 429 

characteristics targetedly and systematically. These metrics might suggest the degree of 430 

growth or sprawl of the built-up land in a city, which can be a useful tool that makes 431 

the research of relationships between building patterns and urban microclimate more 432 

convenient and comprehensive. Moreover, the composition and configuration metrics 433 

are related to socioeconomic phenomenon. For example, a compact buildings pattern 434 

with irregular spatial arrangement may affect the traffic congestion and lead to the 435 
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increase of difficulties of old city planning and management through lock-in effect. 436 

More energy is likely to be consumed around high-rise buildings, who have less light 437 

accessibility and limit the growth of urban vegetation.   438 

5.2. The sensitivity and relative importance of 3D landscape metrics indicating how 439 

building patterns affect LST 440 

3D landscape metrics were the first time applied for the identification of the 441 

relationship between urban buildings and LSTs, and significant correlations were 442 

revealed for both composition and configuration metrics with DLST. During daytime, 443 

the magnitude of solar radiation is much higher than other heat sources, and the indirect 444 

influence of urban buildings on LSTs exceeds their direct influence. The proposed 3D 445 

landscape metrics can supply merits to measure the spatial component and structure 446 

characteristics of buildings, which affect the local LSTs by changing the light condition, 447 

atmospheric moisture and ventilation effect. As an example, the ENN in this study is 448 

seen as an indirect measure of road width. The wider road in the buildings pattern with 449 

open arrangement is a better ventilation path, more heat is removed and less solar 450 

radiation is absorbed with the assistance of urban green belt and buildings shade. The 451 

correlation coefficients of mean building height and building density with LSTs are over 452 

0.6 in most months, indicating that an urban morphology of low building height, higher 453 

density and compact building yielded higher DLST level in old city.  454 

At night, composition metrics were more sensitive to the LSTs, while the 455 

configuration metrics showed relatively weaker association. This is caused by the 456 

differences of ecological significance. The urban buildings affect the NLST mainly 457 

through running as heat resources, and composition metrics, such as buildings number, 458 

height and volume can be seen as indicators quantifying the heat release at night to a 459 

certain extent. The configuration metrics focusing the spatial structure hardly compare 460 

the heating ability among different buildings pattern. The fragmentation and 461 

segmentation degree of buildings pattern can be measured by the landscape division 462 

index and cohesion index. These buildings characteristics are possible to affect the 463 

spread path of heat released from the buildings, but hardly reflect the ability how 464 
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buildings directly heat the surrounding area at night. Among the configuration metrics, 465 

some variations exist, and ENN were well associated with the surrounding temperature. 466 

CNI also showed similar relationship. These two metrics involves the reflection of road 467 

width and buildings height, which is directly related to heat release over the road and 468 

buildings. That’s also the reason why the horizontal metrics among composition metrics 469 

were more sensitive to reveal the influence of buildings on the DLST, but the vertical 470 

metrics responded better to NLST. 471 

The comparison between composition and configuration metrics through 472 

correlation coefficients is rough, and the linear analysis results might be affected by 473 

multicollinearity and nonlinearities in the data. In this context, random forest algorithm 474 

was applied to analyze the relative importance of buildings metrics for the variations of 475 

LSTs. The regression trees used in the random forest algorithm have the advantage that 476 

they can model complex relationships between predictor and response variables. The 477 

results showed that the R2 during daytime exceed that at night significantly, indicating 478 

a better response of buildings characteristics to the variations of DLST than that of 479 

NLST. More buildings, narrow road and fragmented buildings pattern affect the surface 480 

reflection greatly, lead to a much worser ventilation effect and thermal dissipation 481 

capacity during daytime. At night, the buildings number, road width and buildings 482 

height had stronger influence on the LSTs than others in most months. These parameters 483 

can be seen as a measure of diurnal heat storage and nocturnal heat release ability. After 484 

daytime exposure to sunlight, high-rise buildings may store more heat compared with 485 

low-rise buildings, leading to more release at night. And the roads among the high-rise 486 

buildings are mostly paved with asphalt, which undoubtedly further contribute to the 487 

high temperature status of the surroundings. 488 

5.3. Seasonal stability and variations of the relationship between buildings and LST 489 

The relationship between urban building patterns and LSTs exhibited a quite stable 490 

behavior over four seasons, with the standard deviation of correlation coefficients lower 491 

than 0.05 for most of metrics across all date. This relatively consistent relationship was 492 

also revealed by other studies in different cities (Berger et al., 2017; Huang and Wang, 493 
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2019). Nevertheless, there were a few variations where the correlation coefficients 494 

during daytime in August were relatively lower than in other months. A similar 495 

phenomenon also existed at night, particularly among the configuration metrics, which 496 

indicated that stronger solar radiation and evapotranspiration of vegetation might cause 497 

weaker association between urban buildings and ground temperature in Beijing’s old 498 

city. Such a conclusion still needs more verification in future, because the nocturnal 499 

data were collected from different years, which might have biased this study. Besides, 500 

the temporal variations of this relationship might vary with cities. Berger et al. (2017) 501 

analyzed how urban site characteristics affect LSTs over four seasons in Berlin and 502 

Cologne, where the results indicated a stronger association between urban buildings 503 

morphology and DLST during the summer. Huang and Wang (2019) found an increase 504 

in the magnitude of correlations between urban buildings and DLST in winter. The 505 

changing relationship over time might be not only related to the acquisition time of the 506 

remote sensing image, but also to the climate zones. Over different climate zones the 507 

solar radiation, building styles and urbanization are very different. More cities around 508 

the world might be considered to verify how the relationships change with climate 509 

zones over time, which can finally form a scientific basis for recommendations for 510 

urban planning and management. 511 

5.4. Implications for historic city protection and urban planning  512 

In Beijing’s old historic city, the multiple styles of buildings are a synthetic product 513 

of urbanization, local historical culture and climate conditions. Since the modernization 514 

starting in mid-20th century and before 2008 Olympic Games, many courtyard houses 515 

and other traditional buildings gave way to modern buildings and public facilities to 516 

satisfy the entertainment needs and living requirements of urban residents. The 517 

historical and cultural values of traditional buildings were not questioned. The present 518 

study indicated that these buildings have their own special role in urban cooling, 519 

particularly at night. In addition to urban geometrical features, the materials of building 520 

envelopes and street paving also have an important influence on the LSTs. In contrast 521 

to the reinforced concrete structure of modern high-rise buildings, the envelope of 522 
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traditional houses in the old city mainly consists of green bricks, grey tiles, and wood. 523 

Streets among traditional houses are usually covered by cement and green bricks, while 524 

modern buildings are mainly surrounded by asphalt roads. Differences in their specific 525 

heat capacity cause that the surface temperature over the latter increases slowly during 526 

daytime, but after sunset it releases more heat and yields a higher NLST level. The 527 

lower NLST in the low-rise regions supplies better environmental comfort compared 528 

with high-rise buildings. Temperature differences over the surface might cause air 529 

pressure differences between urban regions, which are conducive to wind formation, 530 

and thus play an important role in mitigating the nocturnal urban heat island. On the 531 

other hand, considering the high temperature zones mainly distributed in the low-rise 532 

buildings during daytime, targeted policies for old city planning and management 533 

should be considered to reduce the DLST in future together with the protection of 534 

historical old cities. Several suggestions are recommended based on our results: 535 

 Planned demolition of some traditional houses is necessary for obtaining more 536 

regular and open building patterns. This measure is not haphazard demolition, 537 

but aims at improving ventilation and green spaces, which is also useful to avoid 538 

urban waterlogging.  539 

 The roads among the traditional houses could be widened. In addition to 540 

improved ventilation paths, it is useful to avoid traffic congestion and reduce 541 

energy consumption as well as greenhouse gases emissions. Moreover, new 542 

pavement materials for heat loss and greenery covers along the street should be 543 

considered for facilitating the mitigation of high LSTs.  544 

 The roofs of buildings can be covered by vegetation or water, if possible, more 545 

solar radiation absorption would be avoided. This makes communities more 546 

environmentally friendly and livability. Boston ivy can be planted on building 547 

walls to provide shade and absorb heat.  548 

 For newly designed communities, an open arrangement is a good choice that 549 

has more green space improving the local urban heat environment and water 550 

cycle through evapotranspiration. Urban green infrastructure is an important 551 
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influencing factor maintaining physical and mental health of humans, 552 

particularly for the elderly and children. 553 

These suggestions are derived from the application of our concept to this urban 554 

hotspot. An application to the heat management of other old towns should reevaluate 555 

them according to the location’s peculiarities of terrain, climate and human 556 

environment. Actually, the thermal requirements of cities depend on their climate zones 557 

(Nichol and Wong, 2005; Berger et al., 2017; He et al., 2020). In cold regions, the heat 558 

accumulation within cities might be conducive to create a warm urban environment for 559 

the city dwellers, and can save a large amount of heating costs. But in tropical regions, 560 

higher LST levels might cause local abnormal airflow, air pollutants’ accumulation, and 561 

the decrease of comfort of city dwellers. Therefore, how to guide and make good use 562 

of this special energy might be one key research topic with significant economic and 563 

environmental value for the sustainable development of cities.  564 

5.5. Potential application of 3D landscape metrics and limitations  565 

3D landscape metrics connecting urban morphology with urban heat might become 566 

a new paradigm for urban ecology. Rapid urbanization has led to the emergence of 567 

urban agglomerations consisting of a megacity and several neighboring cities. Such a 568 

combination of cities might influence the direction of the development of urban heat. A 569 

3D landscape analysis not only can measure and compare the evolution of urban 570 

morphology, urban internal and external structures, but also can suggest effective 571 

indicators for monitoring these directional characteristics, and then help policy-makers 572 

searching for options to mitigate urban heat. 573 

In addition to the limited acquisition times of remote sensing images, a deficiency 574 

of this study is that the proposed 3D metrics did not consider any directional 575 

characteristics of urban buildings and roads. The texture of the arrangement of buildings 576 

affects the LSTs significantly by changing the wind velocity. An isotropic building 577 

pattern in 3D space might decrease ventilation and heat dissipation capacity and then 578 

cause massive heat accumulation. A spectral analysis based on statistical 579 

autocorrelation might be a useful tool for further studies of the influence of texture 580 
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characteristics of the built landscape on urban heat. Besides this, the size of the moving 581 

window measuring urban building patterns might have affected the relationship 582 

between urban morphology and LSTs, which actually refers to scale issues. Compared 583 

with the single correlation value under a given scale, multi-scale correlation 584 

characteristics may be more reliable and valuable for the identification of this 585 

relationship. In this study, the trees and greenery along streets and within buildings were 586 

not considered due to the lack of corresponding data sources. In the future, unmanned 587 

aerial vehicles with thermal infrared cameras might be used to create more precise 3D 588 

city data, including the urban green, which could be advantageous in studying the 589 

influence of varied urban site characteristics on LSTs. 590 

6. Conclusions 591 

Much research was been conducted over the past decade to understand how urban 592 

morphology affects urban heat, mostly focused on diurnal relationships and 2D building 593 

characteristics. Involving the urban 3D morphology, this study proposed a set of 3D 594 

landscape metrics that characterize the composition and configuration of urban 595 

buildings and were calculated from thermal infrared remote sensing images. From our 596 

results we conclude: 597 

 The suggested 3D landscape metrics measure and systematically compare the 598 

buildings characteristics. The high-rise buildings have a higher degree of 599 

isolation, regularity and spatial aggregation, while the diversity, compactness 600 

and connectivity are larger in low-rise buildings.   601 

 There are complex relationships between the 3D landscape metrics and the 602 

DLSTs and NLSTs. Local LSTs were significantly affected by the buildings 603 

design characteristics, such as buildings height, density and buildings styles. 604 

Higher building density, compact buildings pattern and irregular building 605 

arrangements yielded higher DLST, whereas the highest NLST occurred around 606 

modern high-rise buildings.  607 

 The responses and sensitivities of 3D landscape metrics describing the diurnal 608 

and nocturnal impacts of urban morphology on LSTs differed obviously due to 609 
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the differences of ecological significance. Both composition and configuration 610 

metrics were highly correlated with DLSTs, but the composition metrics 611 

responded better to NLSTs than configuration metrics.  612 

 DLST as well as NLST variations are significantly correlated with building 613 

numbers, road width, and fragmentation of buildings. The influence of building 614 

height on NLST was quite significant in most months. More buildings, narrow 615 

roads and fragmented buildings greatly affect the surface reflection, worsen the 616 

ventilation effect, and then cause massive accumulation of heat. 617 

 The link between urban morphology and LSTs was fairly consistent over all 618 

four seasons. The summer relationship was weaker for both DLST and NLST, 619 

which might be caused by stronger solar radiation and evapotranspiration of 620 

urban vegetation.  621 
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