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Abstract 17 

Climate and land management are important environmental drivers that affect the structure of 18 

terrestrial plant communities worldwide. Demographic studies allow a mechanistic understanding of the 19 

pathways in which environmental factors change population size. Climate and land management might 20 

interactively influence vital rates and growth rates of populations, however, demographic studies have 21 

not heretofore considered both factors in combination. We used the Global Change Experimental Facility 22 

as a platform to study the effect of climate (ambient climate conditions vs. future climate conditions) 23 

and land management (sheep grazing vs. mowing) on the demography of the common grass, Bromus 24 

erectus growing in semi-natural grassland communities. We found positive population growth rates for 25 

B. erectus under all treatment combinations, and an interactive effect of climate and land management. 26 

Under ambient climate conditions, population growth of B. erectus was higher in mowed than grazed 27 

grassland plots, while population growth rates were similar across both management types under future 28 

climatic conditions. This interaction was primarily due to changes across treatments in seedling 29 

recruitment, a vital rate the population growth rate was particularly sensitive to changes in. The 30 

interaction found in this study highlights the importance of considering multiple environmental drivers in 31 

demographic studies, to better predict future plant population dynamics and ultimately changes in 32 

community structure. 33 

 34 

Keywords: integral projection model, life table response experiment, grazing, mowing, grassland 35 

management, climate change experiment, plant population dynamics, elasticity analysis 36 

 37 

  38 
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Introduction 39 

Grasslands cover 40% of the Earth's ice-free terrestrial surface (Blair, Nippert & Briggs 2014), and 40 

provide vital ecosystem services, such as housing high biodiversity and producing fodder for animals 41 

(Sala & Paruelo 1997). Grasslands are threatened by habitat loss, management intensification, and land 42 

abandonment (Hejcman, Ceskova, Schellberg & Paetzold 2010; Janssens, Peeters, Tallowin, Bakker, 43 

Bekker et al. 1998; Klimek, Richter gen. Kemmermann, Hofmann & Isselstein 2007; Socher, Prati, Boch, 44 

Mueller, Klaus et al. 2012; Wesche, Krause, Culmsee & Leuschner 2012). The composition of plants in 45 

semi-natural grasslands (moderately used in agricultural landscapes that contain high biodiversity) is 46 

largely influenced by management practices (Cousins & Eriksson 2001; Tscharntke, Klein, Kruess, Steffan-47 

Dewenter & Thies 2005). Mowing management with low to moderate frequencies is linked to high 48 

biodiversity through releasing subdominant species from competition and facilitating germination and 49 

seedling recruitment (Foster & Gross 1998; Hansson & Fogelfors 2000; Klein, Harte & Zhao 2004; Talle, 50 

Deak, Poschlod, Valko, Westerberg et al. 2016). Grazing management can similarly promote biodiversity, 51 

but creates more heterogeneous disturbances through preferential biomass removal and soil 52 

disturbances by animals (Klimek et al. 2007; Olff & Ritchie 1998).  53 

Semi-natural grasslands will be altered by climate change, as climate has strong influences on 54 

the demographic vital rates of plants that ultimately determine plant population dynamics and the 55 

structure and function of terrestrial plant communities. Global surface temperature and precipitation are 56 

projected to change in the next 30 years (IPCC 2014; Stocker, Qin, Plattner, Tignor, Allen et al. 2013). In 57 

Europe, an increase in temperature of 0.8 to 1.3 °C is predicted for the next 30 years, with the strongest 58 

warming occurring in winter and autumn (Wagner et al. 2013). These increases in temperature will be 59 

accompanied by a decrease in summer precipitation, and an increase in spring and fall precipitation 60 

(Rajczak, Pall & Schaer 2013; Schaedler, Buscot, Klotz, Reitz, Durka et al. 2019).  61 
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It is still poorly understood how climate and land management will affect plant populations in 62 

European grasslands (Ehrlén 2019; Maron & Crone 2006). Management practices are known to strongly 63 

influence plant demography and population growth. Seedling germination and establishment increase in 64 

grasslands that are grazed and mowed (Brys, Jacquemyn, Endels, Blust & Hermy 2004; Ehrlén, Syrjänen, 65 

Leimu, Begona Garcia & Lehtilä 2005; Lennartsson & Oostermeijer 2001), whereas reproduction is 66 

decreased by repeated removal of above-ground biomass by grazing and mowing (Lennartsson et al. 67 

2001), particularly when it occurs early in the season (Brys et al. 2004). Climate change and management 68 

might interactively influence plant demography (Klein et al. 2004; Martorell 2007), but the effects cannot 69 

be easily predicted (Bütof, von Riedmatten, Dormann, Scherer‐Lorenzen, Welk et al. 2012). On one hand, 70 

these treatment combinations might lead to high combined pressure for plants, and have additive or 71 

multiplicative effects on plant vital rates (Selwood, McGeoch & Mac Nally 2015). On the other hand, 72 

appropriate management might stabilize grassland communities facing climate change and buffer plant 73 

vital rates from change (Post 2013). 74 

Structured population models such as Matrix Projection Models and Integral Projection Models 75 

are commonly used methods to link the demography of plant and animal species to their asymptotic 76 

(long-term) population growth rate (λ)(Caswell 2001; Easterling, Ellner & Dixon 2000). A mechanistic 77 

understanding on the effects of treatments (e.g. climate change and land management) can be gained 78 

using Life Table Response Experiments (LTREs, which decompose the role of individual vital rates on the 79 

observed difference in λ across treatments. Vital rates that have a high contribution to the observed 80 

change will be those that change dramatically between treatments and/or those that λ is sensitive to 81 

changes in. 82 

We quantified the interplay of climate and management on the demography and population 83 

dynamics of the common grass, Bromus erectus, in a full-factorial experiment. Our experiment platform, 84 

the Global Change Environmental Facility, is unique in that it experimentally manipulates realistic future 85 
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climates for our region (Korell, Auge, Chase, Harpole & Knight 2020a; Korell, Auge, Chase, Harpole & 86 

Knight 2020b) in combination with different land management types (Schaedler et al. 2019). To our 87 

knowledge, we perform the first demographic study that experimentally quantifies the interaction of 88 

these two important environmental drivers on plant population dynamics. Before the start of our study, 89 

B. erectus was more abundant in mowed than in grazed extensively-used grassland communities and 90 

thus, we hypothesized that population growth rates under ambient climate would mirror this pattern. As 91 

B. erectus is a drought-tolerant species (Perez-Ramos, Volaire, Fattet, Blanchard & Roumet 2013), we 92 

hypothesized that its population growth rate might increase under future climate treatments. 93 

Specifically, we asked the following questions: (1) How do the treatment combinations of climate change 94 

and grassland management affect the vital rates and population growth rates of B. erectus? (2) Which 95 

changes in vital rates is the population growth rate of B. erectus most sensitive to? (3) Which life stages 96 

contribute most to the differences in population growth rates of B. erectus across climate and grassland 97 

management treatments? 98 

 99 

Methods 100 

Study species 101 

Bromus erectus Huds. (Poaceae, Syn. Bromopsis erecta (Huds.) Fourr.) is a common grass of 102 

nutrient poor calcareous grasslands (Ellenberg 1996). It became increasingly common across Europe since 103 

the Modern Age (Poschlod & WallisDeVries 2002). Bromus erectus grows well in mown sites (Moog, 104 

Poschlod, Kahmen & Schreiber 2002; Wells 1968, but see Catorci, Ottaviani, Ballelli & Cesaretti 2011) and 105 

while its young shoots are grazed by sheep, older individuals are avoided (Wedl & Meyer). Bromus erectus 106 

can contribute a large share to the above-ground community biomass (Steinger, Stephan & Schmid 2007) 107 

and is thus economically important for extensively used meadows and pastures. This species can cope with 108 
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high rates of dehydration, has a comparatively high survival after severe droughts (Perez-Ramos et al. 109 

2013) and is considered a stress-tolerant competitor (Grime, Hodgson & Hunt 2014). This erect brome is 110 

a perennial and polycarpic grass species which forms no persistent seed bank (Thompson & Grime 1979). 111 

B. erectus is wind pollinated and self-incompatible (Zeiter & Stampfli 2008). It can reproduce vegetatively 112 

via rhizomes, but it predominantly grows in small tussocks consisting of clumping ramets. We defined a 113 

tussock that is comprised of one genet as an individual, and we did not observe the split of such a unit. 114 

Study site 115 

We carried out this study at the Global Change Experimental Facility (GCEF). This climate change 116 

experiments was established in 2014 and is part of the field station of the Helmholtz Centre for 117 

Environmental Research – UFZ, at Bad Lauchstädt, Central Germany (51°23′29.47″N, 11°52′27.76″E). The 118 

study site is a former arable field with temperate climate and mean annual precipitation of 489 mm a-1 119 

and mean annual temperature of 8.9 °C (Schaedler et al. 2019). The experimental setup of the GCEF follows 120 

a split-plot design in which climate (ambient vs. future) is a main plot factor and land use (including 121 

extensively used grasslands) is a subplot factor (Schaedler et al. 2019). The experiment comprises ten main 122 

plots with a size of 80 x 24 m, half of which were randomly chosen to be subjected to current local climate 123 

conditions (henceforth called “ambient climate”). The remaining five plots are subjected to a future 124 

climate scenario for the years 2070 – 2100 based on regional dynamic climate models (henceforth called 125 

“future climate”). In future climate plots, a combination of changes in the precipitation pattern and 126 

increases in temperature are applied.  Spring and autumn precipitation is increased by ~10% via irrigation 127 

systems, and summer precipitation is partially blocked to decrease precipitation by ~20%. The predicted 128 

surface temperature increase is realized through automated roofs and side panels. Passive night-time 129 

warming increases mean temperature by ~0.55°C (Schaedler et al. 2019). Nested within each main plot, 130 

we considered two grassland management treatments, each spanning 24 x 16m. Non-intensive meadows 131 

were mown in June 2018 and 2019 and non-intensive pastures were grazed in late April / early May and 132 
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in June 2018 and 2019. In total we had five replicates per climate x grassland management treatment 133 

combination.  134 

 135 

Demographic data collection 136 

In 2018, we established a nine-meter transect in each extensively used grassland plot (meadows vs 137 

pastures) nested within the 10 main plots exposed to an experimental climate treatment (ambient vs. 138 

future climate) (2 climate x 2 land management x 5 replicates = ∑ 20 transects). Along each transect we 139 

established six to eight permanent subplots of 0.25 m2. Three subplots were located at predefined 140 

intervals, the remaining subplots were established at areas with higher abundances of the focal species. 141 

We surveyed individuals within subplots and, when sample sizes were not sufficient, we tagged additional 142 

individuals outside of subplots, but within the transects. Tags consisted of small plastic labels with 143 

numbered IDs that were secured to the ground with needles of 4 cm length. In all transects we surveyed 144 

at least 10 individuals of B. erectus (tussocks consisting of one genet) with more than three shoots. We 145 

established this as the minimum appropriate sample size (N > 50 individuals per treatment) to 146 

parameterize the IPM.  147 

We performed all measurements in the years 2018 and 2019. In April 2018, we recorded the XY-148 

location of each individual within each subplot. We defined B. erectus plants with less than 3 shoots as 149 

seedlings (Fig. 1). Before the first grazing event in 2018 and 2019, we measured the longest side of 150 

individuals (length), and the longest side perpendicular to the longest side (width) with a measuring stick. 151 

Our measure of individual size was basal area, calculated as length x width. Individuals present in April 152 

2018 but not April 2019 were marked as dead, and all new individuals in subplots were recorded and 153 

measured. To quantify reproduction, we estimated the number of seeds produced per individual. To do 154 

so, we first counted the number of fruiting ramets per individual before and after every management 155 
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event (four times a year). Then, we sampled two fully developed fruiting ramets of B. erectus just outside 156 

of each transect and counted the number of seeds per ramet. We estimated the number of seeds produced 157 

per individual by multiplying the mean number of seeds per ramet in the according treatment combination 158 

to the number of fruiting ramets per individual. Finally, we counted seedlings in the first three subplots of 159 

each transect in April 2018 and 2019 before the first management event, and in November 2018, as 160 

germination of B. erectus occurs in autumn and spring (Zeiter et al. 2008). 161 

 162 

Life-cycle stages and vital rates 163 

We modeled the year-to-year life-cycle of Bromus erectus as comprised of one continuous, and one 164 

discrete stage class. The continuous class is represented by “plants” and the discrete class is represented 165 

by “spring seedlings” (Fig. 1). B. erectus has a short-lived transient seed bank, thus we treated seeds from 166 

year t as either germinated or dead in year t +1.  167 

We modeled the vital rates associated with the continuous stage class as a function of the natural 168 

logarithm of individual size by fitting generalized linear models. Plant survival, Si,t+1 described whether an 169 

individual plant (i) observed in year t was alive or dead in year t + 1. We modeled survival as a Bernoulli 170 

process with probability of survival Ŝt+1 (Table 1, Eq. 1). We modeled the probability of survival as a 171 

function of log size in year t, using a logit link function (Eq. 2),  172 

 [1]  𝑆𝑖,𝑡+1 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (�̂�𝑡+1) 173 

[2]  𝑙𝑜𝑔𝑖𝑡(�̂�𝑡+1) =  𝛼𝑡
𝑆 + 𝛽𝑆 𝑙𝑜𝑔𝑒(𝑠𝑖𝑧𝑒𝑡) 174 

where αS is the intercept, βS is the slope (the effect of size), and the superscripts, S, are not an exponent, 175 

but refer to survival. 176 
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Plant growth, Gi,t+1 describes the normally distributed change in log transformed size of a 177 

surviving individual plant (i) from year t to year t + 1 (Eq. 3). We modeled log size at year t+1 as a linear 178 

function of plant log size in year t, with intercept α
G, slope βG (Eq. 4) and standard deviation σG (Eq. 3): 179 

[3]   𝐺𝑖,𝑡+1 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝐺𝑡+1, 𝜎𝐺)  180 

[4]  𝐺𝑖,𝑡+1 =  𝛼𝑡
𝐺 + 𝛽𝐺  𝑙𝑜𝑔𝑒(𝑠𝑖𝑧𝑒𝑡). 181 

The reproduction probability Pi,t described whether an individual plant (i) observed in year t 182 

produced flowers in year t. We modeled reproduction probability as a Bernoulli process (Eq. 5) 183 

dependent on log transformed plant size in year t, with intercept αP and slope βP using a logit link 184 

function (Eq. 6), 185 

[5]  𝑃𝑖,𝑡 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (�̂�𝑡) 186 

[6]  𝑙𝑜𝑔𝑖𝑡(�̂�𝑡) =  𝛼𝑡
𝑃 + 𝛽𝑃 𝑙𝑜𝑔𝑒(𝑠𝑖𝑧𝑒𝑡). 187 

Seeds per reproductive plant, Fi,t, described the number of seeds produced by a reproductive 188 

plant (i) in year t. We calculated the number of seeds by rounding the product of multiplying the number 189 

of fruiting ramets Fi,t by the mean number of seeds per fruiting ramet of the according treatment 190 

combination Li,t (Eq. 7). We modeled the product as a Poisson distributed process via a linear function of 191 

plant size in year t with intercept αF and slope βF (Eq. 8), 192 

[7]  𝐹𝑖,𝑡 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(�̂�𝑡) 193 

[8]  �̂�𝑡 =  𝛼𝑡
𝐹 + 𝛽𝐹 𝑙𝑜𝑔𝑒(𝑠𝑖𝑧𝑒𝑡). 194 

Fall (θf,j,t) and spring (θs,j,t) recruitment described the proportion of emergent seedlings per total 195 

number of seeds produced at the subplot level, where θ is recruitment, f is fall, s, is spring, j is the transect, 196 
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and t refers to 2018. We calculated the seeds produced per subplot as 𝐹𝑗,𝑡 = ∑ 𝐹𝑖,𝑡
𝑛
1 , where i refers to all 197 

the individuals that produced seeds in subplot j in year t. We divided the number of emerging seedlings in 198 

the subsequent fall 2018 (Rfj,k,t) and spring 2019 (Rsj,t+1) by the number of seeds per subplot:  199 

[9]  𝜃𝑓,𝑡 =  �̂�𝑓𝑡/ 𝐹𝑡. 200 

[10]  𝜃𝑠,𝑡+1 =  �̂�𝑠𝑡+1/ 𝐹𝑡. 201 

We calculated seedling survival at the subplot level. Seedling survival, 𝐵,𝑘, was the proportion of seedlings 202 

emerged in year t in subplot j, 𝑅𝑠𝑢𝑚𝑗,𝑡, that survived to year t+1,𝑅𝑠𝑢𝑚𝑗,𝑡+1. We calculated the number of 203 

emerging seedlings at time t, in subplot j, 𝑅𝑠𝑢𝑚𝑗,𝑡, by summing the fall, Rfj,t, and spring, Rsj,t, recruitment 204 

in year t. Hence: 205 

[11]   𝐵𝑏,𝑗 =  𝑅𝑠𝑢𝑚𝑗,𝑡+1/𝑅𝑠𝑢𝑚𝑗,𝑡  206 

Finally, we modeled the log size distribution of new plants, η, as the normally distributed size of 207 

surviving seedlings entering the continuous plant stage in year t + 1 (Eq. 14). We calculated the mean 208 

(𝑙𝑜𝑔𝑒(η̂𝑡+1)) and standard deviation (𝜎η) of this size distribution:   209 

[12]  𝑙𝑜𝑔𝑒(η𝑖,𝑡+1) ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝑙𝑜𝑔𝑒(η̂𝑡+1), 𝜎η)) 210 

 211 

Effects of treatments on vital rates 212 

We fit these vital rate models to identify substantial differences between treatments using a model 213 

selection approach. First, we fit baseline models on plant survival, growth, reproduction probability and 214 

seeds per reproductive plant which only included plant size at year t (fixed factor). Then, we fit more 215 

complicated models including climate (ambient vs. future; fixed factor) and management (meadow vs. 216 

pasture; fixed factor) and their interactions. We fit a total of five models for each vital rate, and we 217 
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compared them using Akaike Information Criterion (AIC, Burham & Anderson 2002). We used corrected 218 

AIC weights to select the best among these 5 models.  219 

 220 

Integral projection model 221 

We used an Integral Projection Model (IPM) to quantify the influence of the treatments on the population 222 

dynamics of B. erectus. IPMs are used to project populations whose structure contains at least one 223 

continuous trait in discrete time (Easterling et al. 2000; Ellner, Childs & Rees 2016; Metcalf, McMahon, 224 

Salguero‐Gómez & Jongejans 2013). In our case, the IPM describes the dynamics of two stages: one 225 

continuous stage (plants), and one discrete stage (seedlings, Fig. 1). From now on, we follow the notation 226 

suggested by Ellner et al. (2016). When describing the dynamics of the continuous stage, this IPM considers 227 

all possible transitions from size z at time t, to size z’ at time t+1. The change in the number of plants from 228 

one year to the next is described by: 229 

[15]  𝑛(𝑧′, 𝑡 + 1) = 𝑀(𝑡)𝐵η(z′) + ∫ 𝑆(𝑧)𝐺(𝑧′, 𝑧) + 𝑃(𝑧)𝐹(𝑧)𝜃𝑓𝐵𝜂(𝑧′)𝑛(𝑧, 𝑡)𝑑𝑧
𝑈

𝐿
 230 

The vector n(z’, t + 1) describes the number of plants at size y at time t + 1. The first term represents 231 

recruitment of spring seedlings to the size distribution of adult plants, based on the number of spring 232 

seedlings at time t, M(t), the seedling survivorship, B, and the size distribution of new plants η(z′). The 233 

second term is a kernel (or a surface) that describes the transition from plants of size z at time t, n(z,t), to 234 

plants of size z’ at time t+1, n(z’,t+1). This kernel is an integral defined between the lowest, L, and upper, 235 

U, size observed in our population. We evaluated this integral across 200 equally spaced size bins using 236 

the midpoint rule as a 200 x 200 matrix. The integral describes size-dependent plant survivorship S(z), 237 

plant growth G(z’,z), reproduction probability P(z), seeds per reproductive plant F(z), fall recruitment 𝜃𝑓, 238 

seedling survivorship B, and the size distribution of new plants η(z′). Note that in this IPM, we assume 239 
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survivorship, B, is the same for both fall and spring seedlings. The recruitment of spring seedlings from 240 

one year to the next is described by:  241 

[16]  𝑀(𝑡 + 1) = ∫ 𝑃(𝑧)𝐹(𝑧)𝜃𝑓𝑛(𝑧, 𝑡)𝑑𝑧
𝑈

𝐿
. 242 

 243 

Effects of climate and grassland management on the population dynamics of B. erectus 244 

We created four IPMs, one for each treatment combination of management and climate, to test 245 

the effects of treatments on the population dynamics of B. erectus. We first tested the effect of treatments 246 

on asymptotic population growth rate (λ). Then, we quantified the relative contribution of separate vital 247 

rates to these differences via elasticity analysis, and a life table response experiment (LTRE). Our treatment 248 

combinations were grazing – ambient, grazing – future, mowing – ambient, and mowing – future. We built 249 

these four IPMs, using four separate datasets, each referring to one of the four treatment combinations. 250 

Moreover, to quantify the uncertainty in these estimates, we created 1000 replicate IPMs using a 251 

bootstrap procedure We randomly drew data referred to one individual at a time, with replacement, for 252 

as many times as the number of individuals included in the original dataset (grazing – ambient: 95, grazing 253 

– future: 80, mowing – ambient: 88, mowing – future: 88). These 1000 IPMs allowed us to produce 95% 254 

confidence intervals around the response variables of our tests. We tested whether differences in λ 255 

between pairwise treatment combinations were significant using a permutation (randomization) test 256 

(N=1000 permutations).  257 

 258 

Life table response experiments  259 

To further understand the influence of each life-cycle stage (Table 1, survival, growth, reproduction, 260 

recruitment and establishment) on the observed difference in population growth rates between pairwise 261 
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treatment combinations, Life Table Response Experiments (LTREs) were conducted with all treatment 262 

combinations (mowing ambient – mowing future, grazing ambient – grazing future, mowing ambient – 263 

grazing ambient and mowing future – grazing future). We calculated differences in population growth 264 

rates as:  265 

[17]  𝛥𝜆𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 =  𝜆𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 1 −  𝜆𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 2   266 

Where 𝛥𝜆𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 estimates the effect of the climate or management treatment on the population 267 

growth rate of two populations that share the other treatment (management or climate consecutively). 268 

The contribution of each vital rate to the 𝛥𝜆𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡  was calculated as: 269 

[18]  𝛿 ̃𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 =  ∑ (𝛼𝑖
𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 1 − 𝛼𝑖

𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 2) 
𝜕𝜆

𝜕𝛼𝑖
   14

𝑖   270 

where αi is one of the fourteen vital rates included in the IPMs, and the term 
𝜕𝜆

𝜕𝛼𝑖
 describes the sensitivity 271 

of the population growth rate to each vital rate. Vital rates that strongly influence differences in population 272 

growth rates between treatments are those that display great change between treatments and / or those 273 

that 𝜆 is sensitive to. We calculated this LTRE with respect to five demographic processes which combined 274 

the effect of multiple parameters: survival, growth, reproduction, recruitment, and establishment. The 275 

LTRE results on survival and growth represented the combined effects of the intercept and slope of survival 276 

and growth, respectively. Reproduction combined the parameters of reproduction probability and seeds 277 

per reproductive plants. Recruitment combined the parameters of fall and spring recruitment and thus 278 

describes total seedling recruitment. Establishment summarizes the seedling survival and the size 279 

distribution of newly established plants. We aggregated LTRE results at the level of these demographic 280 

processes to facilitate the biological interpretation of our results. Finally, to display the proportional 281 

influence of each life-cycle stage on the difference between population growth rates, we scaled 282 

𝛿 ̃𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 to 1. This allowed us to interpret the results referring to each vital rates as the percent 283 

contribution of each life-cycle stage to the change in 𝜆. 284 
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Data and code availability  285 

All analyses and visualizations were performed in R (version 3.5.1; R Core Team 2018). The data and code 286 

that produce the results of this study are available in GitHub 287 

(https://github.com/Martin19910130/Bromus_IPM_publication.git). 288 

 289 

Results 290 

Treatment effects on vital rates 291 

Vital rates were all influenced by plant size at time t and best described by models that included climate 292 

(Table A.1; Fig. 2; plant survival), management (plant growth and seeds per reproducing plant) or the 293 

interaction of both (reproduction probability). However, additive models of climate and management for 294 

plant survival, growth and seeds per reproductive plant and interactive models for plant growth had 295 

similarly high weighted AICc as the best model (Table A.1). Visualization of vital rates differences between 296 

all treatment combinations show that vital rates respond in different directions (Fig. 3). For example, under 297 

ambient climate, the intercept of reproduction probability (P) was higher in the grazed treatment, whereas 298 

the slope of reproduction probability (P), seedling survivorship (𝐵) and Fall (θf) and spring (θs) recruitment 299 

were all higher in the mowing treatment (Fig. 3).  300 

 301 

Treatment effects on population growth rates 302 

Population growth rates (and lower confidence intervals) of B. erectus were above one for all treatment 303 

combinations, implying a positive population growth (Fig. 4). Climate and management interactively 304 

influence the population growth rate of B. erectus (Fig. 4): under ambient conditions population growth 305 

rates were higher in mown compared to grazed grassland communities (λ = 2.66 vs. λ = 1.55; permutation 306 
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test, p=0.026), whereas under future climate conditions population growth rates did not differ between 307 

management regimes.  308 

In all treatments, population growth rates of B. erectus were most sensitive to reproduction, establishment 309 

and particularly recruitment (Fig. 5). While relative differences in fall and spring recruitment between 310 

treatments were large (up to 6-fold change), differences in absolute values were very small (Fig. 3). B. 311 

erectus population growth in all treatments was relatively insensitive to changes in survival and growth 312 

(Fig. 5). 313 

 314 

Life table Response experiments  315 

The LTREs show that in all pairwise treatment comparisons, differences in population growth rates were 316 

primarily due to changes across treatments in reproduction, recruitment and / or establishment of new 317 

individuals (Fig. 6). For example, in ambient climate, higher population growth rates of B. erectus in the 318 

mowed compared to the grazed treatment were primarily explained by higher reproduction, recruitment 319 

and establishment (Fig. 6a). In future climate, increases in the reproduction of plants in the mowing 320 

treatment were counteracted by higher recruitment and establishment rates of grazed population (Fig. 321 

6b).  322 

 323 

Discussion 324 

As expected, population growth rates of B. erectus under ambient climatic conditions were higher in mown 325 

vs. grazed grassland communities (increase by 64%) and thus mirrored current abundances. Population 326 

growth rates were significantly growing under both ambient and future climatic conditions, which we 327 

expected as B. erectus is a drought-tolerant species. The population growth rate of B. erectus was 328 

particularly sensitive to reproduction, recruitment and establishment of new individuals. These sensitive 329 
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parameters responded differentially to the climate and grassland management treatments, creating a 330 

significant interactive effect of these treatments on population growth rates. Specifically, under ambient 331 

climate conditions the higher population growth rate of B. erectus in mown compared to grazed grassland 332 

communities was mainly explained by higher rates of reproduction, recruitment and establishment in 333 

meadows. In contrast, under future climate conditions, higher rates of reproduction were counteracted 334 

by lower rates of recruitment and establishment in mown compared to grazed treatments.  335 

 336 

Spring and fall seedling recruitment, the vital rates to which the population growth rate was most sensitive 337 

to, declined under future compared to ambient climate conditions in both management regimes. This 338 

could have been due to reduced germination rates under future climate conditions if temperatures 339 

exceeded the optimum conditions for germination (Lonati, Moot, Aceto, Cavallero & Lucas 2009). Drought 340 

events are known to negatively affect germination of B. erectus (Moser, Fridley, Askew & Grime 2011). 341 

Mowing might have benefitted fall and spring seedling recruitment through lower above-ground 342 

competition, as vegetation cover was lower in mown compared to grazed grassland communities (mean 343 

vegetation cover including dead and living biomass in August 2018: mowing 64% vs. grazing 82% , 344 

unpublished data).  345 

 346 

Grazing tended to increase the establishment (in particular, the seedling survival) of B. erectus under 347 

future climate conditions. Seedlings of B. erectus that germinate in spring and fall are highly sensitive to 348 

drying out (Bertiller, Zaixso, Irisarri & Brevedan 1996; Soriano & Sala 1986). As precipitation is increased 349 

in spring and fall under future climate conditions, this treatment should be generally beneficial for 350 

seedlings. However, the positive effect of future climate conditions on establishment was much smaller in 351 

mown compared to grazed grasslands, which might be due to other limiting resources such as light and 352 
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nutrients (Liu, Mao, Wang & Han 2008, Newingham, Vidiella & Belnap 2007). Compared to mowing, 353 

grazing results in lower vegetation density in early summer (mean vegetation cover of living biomass in 354 

June 2018: mowing 96% vs grazing 73%), which has been shown to positively influence seedling survival 355 

(Newingham, Vidiella & Belnap 2007). Furthermore, sheep manure may provide increased nutrient 356 

availability to seedlings. 357 

 358 

So far, most demographic studies are observational and investigate the impact of climate on population 359 

growth rates by comparing the effects of inter-annual climate variations (Bialic‐Murphy & Gaoue 2018; 360 

Martorell 2007) or through transplant experiments along climate gradients (Topper, Meineri, Olsen, 361 

Rydgren, Skarpaas et al. 2018). There are only a handful of studies that experimentally change climate and 362 

follow changes in the population growth rate of focal species (Compagnoni & Adler 2014; Gornish 2014; 363 

Prevey & Seastedt 2015; Williams, Wills, Janes, Schoor, Newton et al. 2007). Climate change experiments 364 

have the advantage of altering specific environmental parameters while all others remain constant – thus 365 

they can disentangle the effects of certain climate drivers from other environmental conditions. In contrast 366 

to many other climate change experiments the climate treatment in the GCEF is based on realistic, region 367 

specific model projections (Korell et al. 2020a; Schaedler et al. 2019) and is combined with different land-368 

use scenarios, including the extensively used grasslands (Schaedler et al. 2019), allowing a better 369 

understanding of our future ecosystems based on realistic climate change and management scenarios. 370 

 371 

Several demographic studies have considered the effect of grazing or herbivory (García & Ehrlén 2002; 372 

Martorell 2007; Rydgren, De Kroon, Okland & Van Groenendael 2001), competition (Fréville & Silvertown 373 

2005) and burning (Emery & Gross 2005; Hoffmann 1999; Kesler, Trusty, Hermann & Guyer 2008) on 374 

population growth rates, and these studies consider biotic and abiotic changes that are comparable to 375 
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those altered by our management treatments. Grazing typically has negative effects on population growth 376 

rates of other grassland species (Hansen and Wilson 2006; Jacquemyn, Brys, Davison, Tuljapurkar and 377 

Jongejans 2012, van der Meer, Dahlgren, Milden and Ehrlen 2014). Two other studies have found that the 378 

effect of grazing on plant population growth will depend on climate (Martorell 2007), suggesting that 379 

interactions between climate and management might be a common phenomenon. Population growth 380 

rates of the genus Bromus are known to be responsive to many environmental gradients and their 381 

interactions, including warming, precipitation, and management (Compagnoni et al. 2014; Prevey et al. 382 

2015; Zelikova, Hufbauer, Reed, Wertin, Fettig et al. 2013). These results, combined with ours, highlights 383 

the importance of considering multiple environmental drivers in future demographic studies (see also 384 

Williams et al. 2007). 385 

Non-intensive grazing and mowing are important management regimes of grasslands in Europe that help 386 

conserve species richness. While B. erectus is already common in nutrient poor, calcareous grasslands it 387 

might become even more dominant in non-intensively used pastures. Because older B. erectus individuals 388 

are avoided by grazers, climate change could decrease the grazing value of these grasslands. Additionally, 389 

non-intensively used grasslands are important biodiversity hotspots in Europe and an increased 390 

dominance of B. erectus could pose a threat to species with a lower competitive ability (Poniatowski, 391 

Hertenstein, Raude, Gottbehuet, Nickel et al. 2018). 392 

 393 

Conclusion 394 

Our results support the idea that the impact of climate change depends on the management regime 395 

(Ehrlén 2019). To our knowledge, this study is the first one to provide experimental evidence of an 396 

interactive effect of climate change and grassland management on the population growth rate of a 397 

common grassland species, Bromus erectus. This interaction was mainly caused by differences in 398 
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reproduction, seedling recruitment and establishment, which are sensitive stages in the life-cycle of our 399 

population. Demographic studies are an underutilized tool that can provide a mechanistic understand of 400 

treatment effects and can project how populations will develop under future conditions. Our results show 401 

that under ambient climate conditions, the abundance of B, erectus can be regulated via changes in the 402 

management regime. 403 
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Figure legends  

Fig. 1: Life-cycle diagram of Bromus erectus with all parameters included in the IPM and their 

abbreviations. 

Fig. 2: Visualization of parameter estimates of all vital rates included in the IPMs based on the original 

data. Logistic (a & c) and linear (b) and poisson (d) functions describe individual based and size-dependent 

processes, while bar charts (e – g) show the mean and standard error for plot-based calculations, and the 

boxplot (h) displays the median and the size distribution of new plants, an individual-based, non-size-

dependent vital rate. 

Fig. 3: Differences in vital rates between pairwise treatment combinations. Displayed are the changes in 

mean, intercept (Int), slope and standard deviation (SD) to vital rates caused by the management 

treatment under (a) ambient and (b) future climatic conditions and changes caused by the climate 

treatment in (c) mowing and (d) grazing. The direction of bars indicate higher vital rates in the according 

climate or management treatment. For abbreviations and according vital rates see Tab. 2.   

Fig. 4: Mean population growth rates of Bromus erectus under ambient and future climate treatments in 

mown (triangle) or grazed grasslands (dots). Error bars encompass bootstrapped 95% confidence intervals.  

Fig. 5: Sensitivity of pairwise treatment combinations to all vital rates included in the IPM. 

Fig. 6: Life table response experiments (LTREs) showing the percentagewise effect of the five life-cycle 

stages on differences between pairwise treatments in population growth rate. LTREs were calculated for 

pairwise comparisons of treatment combinations: management influence under (a) ambient and (b) future 

climatic conditions and climate influence under (c) mowing and (d) grazing management conditions. To 

obtain the total impact of a life-cycle stage on the population growth rate LTRE results of vital rates that 

contribute to the same life-cycle stage were summed. The direction of the bars indicates the direction of 

the contribution of the according climate or management treatment for each life-cycle stage. 
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Table Legends  

Table 1: Parameters of vital rates included in the IPM and their abbreviations and distributions. Recruitment stands 

for the number of seedlings per seeds in November or April. 

Table A.1: Corrected Akaike Information Criterion (AICc) weights for size dependent parameters included in the 

IPM. Tested were the Null-model with log size at t as the only explaining variable, effects of the climate treatment, 

management treatment, their interactive effects, and their additive effects. Larger numbers indicate a better fit. 

Tables 
 

Table 1 

Vital rates Abbreviation Life-cycle stage Parameters Distribution 

Plant survival S Growth Intercept, slope Bernoulli 
Plant growth G Survival Intercept, slope, SD Normal 
Reproduction 
probability 

P Reproduction intercept, slope Bernoulli 

Seeds per 
reproductive plant 

F Reproduction Intercept, slope Poisson 

Fall recruitment θf Recruitment Mean Poisson 

Spring recruitment θs Recruitment Mean Poisson 

Seedling survival B Establishment Mean Bernoulli 
Size distribution of 
new plants 

η Establishment Mean, SD Normal 

 

Table A.1 

 
Parameter 

 
Null-model 

 
Climate 

 
Management 

Climate * 
Management 

Climate + 
Management 

Plant survival 0.093  0.506  0.047 0.092 0.262 
Plant growth 0.001  0.001  0.473  0.219 0.307 
Reproduction 
probability 

0.151  0.092 0.386 0.128 0.243 

Seeds per 
reproductive 
plant 

0.000  0.000 0.000 0.974 0.026 

 

 

 


