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Risk mapping of Indian coastal districts using IPCC-AR5 framework and multi-1 

attribute decision-making approach 2 

Abstract 3 

Strategic location of coastal areas across the world causes them to be prone to disaster risks. 4 

In the global south, the Indian coast is one of the most susceptible to oceanic extreme events, 5 

such as cyclones, storm surge and high tides. This study provides an understanding of the risk 6 

experienced (currently as well as back in 2001) by the districts along the Indian coastline by 7 

developing a quantitative risk index. In the process, it attempts to make a novel contribution 8 

to the risk literature by following the definition of risk as a function of hazard, exposure and 9 

vulnerability as stated in the most recent (Fifth) assessment report of the   Intergovernmental 10 

Panel on Climate Change (IPCC).  Indicators of bio-physical hazards (such as cyclones, storm 11 

surge and tides), and socio-economic contributors of vulnerability (such as infrastructure, 12 

technology, finance and social nets) and exposure (space), are combined to develop an overall 13 

risk index at a fine administrative scale of district-level over the entire coastline. Further, the 14 

study employs a multi-attribute decision-making (MADM) method, Technique for Order 15 

Preference by Similarity to Ideal Solution (TOPSIS), to combine the contributing indicators and 16 

generate indices on hazard, exposure and vulnerability. The product of these three 17 

components is thereafter defined as risk. The results suggest that most districts of the eastern 18 

coast have higher risk indices compared to those in the west, and that risk has increased since 19 

2001. The higher risk can be attributed to the higher hazard indices in the eastern districts 20 

which are aggravated by their higher vulnerability index values. This study is the first effort 21 

made to map risk for the entire coastline of India — which in turn has resulted in a new 22 

cartographic product at a district-scale. Such assessments and maps have implications for 23 

environmental and risk-managers as they can help identify the regions needing adaptive 24 

interventions.  25 
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1. Introduction 30 

Coastal areas are some of the most heavily inhabited regions in the world. About 37% of the 31 

global population reside in these regions with a density twice the world’s average (UNEP, 32 

2019). These regions are also important centers of the economy. The coastal ecosystem 33 

contributed 1.5 trillion USD (<3% of the world's Gross Domestic Product) to the global 34 

economy in 2010 and it is projected to double by 2030 (OECD, 2016). However, coastal regions 35 

are prone to multiple hazards which include cyclones, storm surge and tides. In the past, 36 

cyclones have led to numerous fatalities and loss of human lives (Laurens and Bas, 2017). They 37 

have also led to substantial economic losses, for example, in 2018, tropical cyclones and 38 

storms accounted for 72 billion USD losses worldwide (Aon, 2019).  39 

India experiences almost 10% of the world’s tropical cyclones and is one of the most adversely 40 

impacted regions (Government of India, 2019). The country has an extensive coastline and 41 

has suffered several cyclones since the past century (Mohapatra, 2015). The cyclogenesis 42 

usually occurs during pre- and post- monsoon seasons at the Indian coasts, while ceasing 43 

during monsoon season because of the strong monsoon circulation along with strong wind 44 

shear (Evan et al., 2011; Evan and Camargo, 2011). During these periods though, the east 45 

coast of India usually experiences a higher frequency of cyclones than that of west coast 46 

(Figure 1a and b). Nonetheless, the recent decade shows a significant increase in the 47 

frequencies of cyclones in both the coastal regions, surprisingly slightly more in the western 48 

coast, i.e., the Arabian Sea regions (Figure 1c and d), concordant with previous studies 49 

(Balaguru et al., 2014; Evan et al., 2011; Evan and Camargo, 2011; Murakami et al., 2017). The 50 

large-scale atmospheric circulation responsible for these increases in the frequencies can be 51 

attributed to the decreased wind shear during both pre- and post- monsoon seasons (Figure 52 

1e and f), which provides a conducive environment for the formation and genesis of cyclones 53 

(Evan et al., 2011; Murakami et al., 2017). Disagreement exists in explaining the physical 54 

mechanism associated with this decrease in wind shear, with disjoint studies crediting to the 55 

increased aerosol emission (Evan et al., 2011) and also to the increased sea surface 56 

temperature over the south Atlantic Ocean (Hari et al., 2020; Zhang and Villarini, 2019). 57 

However, all these studies culminate in the similar conclusion that the atmospheric 58 

circulations which drove these cyclones will exacerbate in the near future, mainly due to 59 

anthropogenic forcings (Hari et al., 2020; Murakami et al., 2017). Additionally, coastal 60 
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populations face flooding from high tides and geomorphic characteristics. Thus, in the context 61 

of multiple and growing stress factors, it is only prudent to develop comprehensive coastal 62 

risk maps in order to design appropriate adaptation actions (IPCC, 2007, 2014a).  63 

 64 

Figure 1: Recent changes in the characteristics of cyclone over the coasts of India. (a) Frequencies of 65 

cyclones over the Arabian Sea (AS) and (b) Bay of Bengal (BB) basins for the decade 2000. We notice 66 

a swift increase in these frequencies over AS (c) and BB (d). These increase in cyclone frequencies can 67 

be attributed to a significant decrease in the vertical wind shear for both pre-monsoon (e) and post-68 

monsoon (f) seasons during 1990-2019. The black dots in the plot denotes the trends which are 69 

significant at 10% level.1  70 

                                                           
1 These plots are developed using the International Best Track Archive for Climate Stewardship (IBTrACS) cyclone 
data (Knapp et al., 2010) and NCEP-NCAR reanalysis large-scale atmospheric circulations information (Kalnay et 
al., 1996). 
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The Third and Fourth Assessment Reports of the Intergovernmental Panel on Climate Change 71 

(IPCC) (IPCC, 2007, 2001)   emphasized the need to examine the vulnerability to climate 72 

change. Hence, following their guidelines, many studies focused on assessing vulnerability of 73 

entities to climate variability and change.  Vulnerability was defined as “the degree to which 74 

a system is susceptible to, and unable to cope with, adverse effects of climate change, 75 

including climate variability and extremes” (IPCC 2007, p. 883).  It was also seen that indices 76 

offer a convenient quantitative representation of relative vulnerability and are quite 77 

beneficial while making policy decisions. Therefore, the literature on developing vulnerability 78 

indices is vast and various studies have proposed indices to understand vulnerability of 79 

communities and regions to environmental and climatic change (such as Cutter et al. 2003; 80 

Brien et al. 2004; Hahn et al. 2009; Malakar and Mishra 2017). Most of these regional studies 81 

are broadly based on the hazards of place model, which conceptualizes vulnerability as an 82 

interaction among characteristics of the place (Cutter, 1996).  83 

A number of studies have also developed indices to understand vulnerability specifically of 84 

coastal areas to hazards (Ahsan and Warner, 2014; Bahinipati, 2014; Balica et al., 2012; 85 

Bjarnadottir et al., 2011; Chakraborty and Joshi, 2016; Kumar and Tholkappian, 2006; Kumar 86 

et al., 2010; Kunte et al., 2014; Mafi-Gholami et al., 2019; Mani Murali et al., 2013; Mazumdar 87 

and Paul, 2016; McLaughlin et al., 2010; Patnaik and Narayanan, 2009; Rani et al., 2018; 88 

Rehman et al., 2020; Sahana et al., 2019a, 2019b; Sahana and Sajjad, 2019; Sahoo and 89 

Bhaskaran, 2018; Saxena et al., 2013; Sekovski et al., 2020; Serafim et al., 2019; Zhang et al., 90 

2021). These past studies on coastal vulnerability have included various climatic/hydro-91 

geological factors indicating exposure to hazard as well as socio-economic characteristics to 92 

understand overall vulnerability and develop an index for the same. However, it is observed 93 

that the measure of vulnerability is contextual and may vary with the objective of the study. 94 

For example, while some studies considered vulnerability arising only from physical (Kumar 95 

et al., 2010; Kunte et al., 2014; Rani et al., 2018; Sahana et al., 2019a; Sekovski et al., 2020) or 96 

socio-economic factors (Mazumdar and Paul, 2016), some studies included a mix of both 97 

types of attribute (Balica et al., 2012; Bjarnadottir et al., 2011; Chakraborty and Joshi, 2016; 98 

Kumar and Tholkappian, 2006; Mafi-Gholami et al., 2019; Mani Murali et al., 2013; 99 

McLaughlin et al., 2010; Patnaik and Narayanan, 2009; Rehman et al., 2020; Sahana et al., 100 

2019b; Sahana and Sajjad, 2019; Sahoo and Bhaskaran, 2018; Saxena et al., 2013; Serafim et 101 
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al., 2019; Zhang et al., 2021). The IPCC, in its Assessment Reports, has implied that 102 

vulnerability is a result of a variety of factors, including changes in the bio-physical 103 

environment (Turner et al., 2003) and socio-economic attributes (IPCC, 2012). Hence, the 104 

studies based solely on bio-physical or socio-economic variables are considered limited, and 105 

those which aggregate both are considered to be the most holistic. Next, the IPCC in its Fourth 106 

Assessment Report provided a framework wherein the factors responsible for vulnerability 107 

can be compartmentalized into three broad themes — exposure, sensitivity and adaptive 108 

capacity (IPCC, 2007). Hence, among the studies which consider both bio-physical and socio-109 

economic factors, many (Ahsan and Warner, 2014; Bahinipati, 2014; Chakraborty and Joshi, 110 

2016; Sahana et al., 2019b) have adopted this approach and have built an integrated measure 111 

of vulnerability.  112 

However, the Fifth Assessment Report of the IPCC suggests the examination of ‘risk’ rather 113 

than ‘vulnerability’ to hazards (IPCC, 2014a). Previous reports of the IPCC defined vulnerability 114 

as a function of exposure, sensitivity and adaptive capacity (IPCC, 2007). On the other hand, 115 

the Fifth report proposed risk to be a result of vulnerability, exposure, and hazard (IPCC, 116 

2014a). The new framework was introduced to bring convergence between the literature on 117 

disaster risk and climate change vulnerability (Jurgilevich et al., 2017). Earlier risk assessments 118 

pertinent to the literature on disaster management did not consider socio-economic variables 119 

that can determine exposure and vulnerability (Adger et al., 2018). Hence, the climate change 120 

vulnerability framework was merged with that of risk in order to obtain a common 121 

assessment regime that can be applied universally to disasters, extreme events and climate 122 

change. Nonetheless, the two approaches do not drastically vary and both seek to give an 123 

understanding of the degree of possible impacts of hazards. For example, in the earlier 124 

framework, ‘exposure’ consisted of factors indicating the current or future hazards (cyclones, 125 

floods, sea-level rise etc.) that a system may experience. Currently, these factors are directly 126 

considered as ‘hazards’. On the other hand, exposure now consists of factors indicating the 127 

presence of communities or any kind of asset which may be affected by the hazard (IPCC, 128 

2014b). Lastly, vulnerability is driven by sensitivity and lack of adaptive capacity of the system 129 

(IPCC, 2014b).  130 

In the near future, vulnerability studies based on the framework of earlier Assessment 131 

Reports (AR4) may soon become peripheral, and risk indices following IPCC’s latest directions 132 
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will be considered indispensable. However, since this approach is proposed in the most recent 133 

assessment report, a limited number of studies (Carter et al., 2018; Das et al., 2020; Satta et 134 

al., 2017, 2016) have adopted it to assess risk from hazards in regions or communities. 135 

Further, assessment of the literature shows that no study to date has adopted it for risk 136 

assessment (at district-level) for a country’s entire coastline. For example, the study by Carter 137 

et al. (2018) is not specific for coastal hazards and its application is limited to European 138 

regions. The risk indices in Satta et al. (2017, 2016) are for the Mediterranean region and 139 

considers relatively few socio-economic variables (e.g., six out of nineteen). Lastly, Das et al. 140 

(2020) has limited their analysis to a small region, that is, the Indian Bengal Delta and its 141 

selected variables may not be applicable/available for the entire Indian coastline. 142 

Following the new framework of the IPCC, this study aims to develop a comparative risk index 143 

for the coastal districts of India. It combines indicators representing hazard, exposure and 144 

vulnerability of the districts — which in turn are a mix of physical and socio-economic factors 145 

— in order to provide a comprehensive perspective of risk. As discussed earlier, previous 146 

studies focussed on calculating vulnerability rather than risk (Chakraborty and Joshi, 2016; 147 

Kumar and Tholkappian, 2006; Vittal et al., 2020). Hence, this is one of the first attempts to 148 

characterize the risk experienced explicitly by the Indian coast at the district-level. 149 

One of the crucial steps while building indices is the choice of aggregation method. The study 150 

by Sherly et al. (2015) provides an overview of the variety of techniques used in the literature 151 

to develop vulnerability indices. The methodologies range from simple weighted averaging, 152 

factor analysis to multi-attribute decision making (MADM) approaches such as Analytic 153 

Hierarchy Process (AHP), Delphi technique, Pareto ranking and Data Envelopment Analysis 154 

(DEA). However, there is another popular MADM method called the Technique for Order 155 

Preference by Similarity to Ideal Solution (TOPSIS), whose usage has been limited in the 156 

literature on coastal vulnerability despite its advantages.  TOPSIS is a useful MADM method 157 

known for its practicality and ease of application (Roszkowska, 2011).  TOPSIS has been 158 

applied in various MADM scenarios such as marketing management, supply-chain operations, 159 

and environmental management. It is preferred over other MADM techniques (Yadav et al., 160 

2019) because (i) it can efficiently accommodate a large number of criteria and alternatives; 161 

(ii) has logical and programmable actions; (iii) needs limited subjective inputs; and (iv) 162 

provides stable solution or consistency in the alternative ranking. Therefore, this study uses 163 
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TOPSIS to merge the indicators of each component, that is, hazard, vulnerability and 164 

exposure, instead of popular statistical approaches. 165 

Finally, the risk index is calculated as a product of the three components — hazard, 166 

vulnerability and exposure (IPCC, 2014a; Satta et al., 2017). Two temporal indices and their 167 

sub-components are calculated, one representing the current risk (mostly using data from 168 

2011) and the other characterizing the scenario back in 2001. Broadly, the index proposed in 169 

this study provides an assessment of the risk of coastal areas to multiple hazards, which can 170 

be significant for identifying the administrative zones in need of support and intervention. 171 

These indices also allow temporal comparison which enables visualization of changes in risk 172 

and its components. Further, the study can contribute to the latest literature on risk 173 

assessment which follows AR5 typology. 174 

The next section describes the study area. Section 3 explains the methodology. The results 175 

are presented in section 4, and are followed by a discussion in section 5. The article concludes 176 

in section 6. 177 

 178 

2. Study area 179 

India has a coastline of about 7500 kms. Its eastern coast borders the Bay of Bengal and its 180 

western coast is along the Arabian Sea. The tip of India touches the Indian Ocean. It has 13 181 

coastal states and union territories: Gujarat, Daman and Diu, Maharashtra, Goa, Karnataka, 182 

Kerala, Tamil Nadu, Puducherry, Andhra Pradesh, Odisha, West Bengal, Lakshadweep and 183 

Andaman and Nicobar Islands (Figure 2). Further, these states have 75 coastal districts (as per 184 

the Census of India 2011).  185 

Coastal India has a high probability of extreme rainfall events (Vittal et al., 2020) and is 186 

classified as having ‘high’ coastal flood hazard (GFDDR, 2020). Around 40% of India’s 187 

population are located within 100 km from the seashore and about 370 million people 188 

experience cyclones annually in India (Government of India, 2019). Table 1 shows the 189 

Maximum Sustained Wind (MSW) speed and the storm category experienced by the coastal 190 

states in India. It is seen that many eastern coastal states face high MSW speeds.  Also, India’s 191 

eastern coast has had greater cyclone occurrences (BMTPC, 2018), because of which almost 192 
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all of its districts are said to be high-damage zones (BMTPC, 2010). Some of the most recent, 193 

extremely and very severe tropical cyclones that have impacted the eastern coast of India are 194 

Phailin and Lehar in 2013, Hudhud in 2014, Vardah in 2016, Fani in 2019 and Amphan in 2020. 195 

Further, districts with greater cyclone occurrences may also be prone to risks from storm 196 

surges as both of them are associated, and high wind speeds usually result in bigger storm 197 

surges (Government of India, 2019).  198 

Table 1:  Maximum Sustained Wind (MSW) speed and storm category in Indian coastal 199 

states  (Adopted from (BMTPC, 2018)) 200 

Coast State Maximum 
Sustained Wind 

(MSW) speed 

Storm category 

East West Bengal, Odisha 
and Andhra Pradesh 

91 knots and 
more 

Extremely severe cyclonic storm, and  
super cyclonic storm when wind 
speeds are beyond 119 knots (IMD, 
n.d.; WMO, 2015) 

Tamil Nadu 48-90 knots Very severe and severe cyclonic 
storms 

Andaman and Nicobar 
Islands (located in the 
Bay of Bengal) 

64-90 knots Very severe cyclonic storm 

West Gujarat 64-90 knots Very severe cyclonic storm 

Maharashtra and Goa 48-63 knots Severe cyclonic storms 

Most districts of 
Karnataka and Kerala 

34-47 knots Cyclonic storms 

 201 

It is also observed that the tidal range of many of the northern coastal states is relatively 202 

higher than those in the south (Murali and Sundar, 2017). For example, almost all districts of 203 

the southern states of Kerala and Tamil Nadu have a tidal range of less than 1 meter. Districts 204 

of northern states of Maharashtra and West Bengal have a tidal range of 4-6 meters. Few 205 

districts in Gujarat have a tidal range of 10-12 meters. Such districts with a greater tidal range 206 

are prone to flooding from high tides. 207 

 208 

 209 

 210 
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 211 

 212 
Figure 2: Map of India (a) highlighting the coastal states (in grey) and districts (in green) and (b) with names of the coastal districts considered 213 

in the study 214 

Kerala 
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3. Methodology 215 

The building of the index, first, involves selecting indicators, and thereafter, their aggregation 216 

to obtain a composite value. Figure 3 provides a snapshot of the methodology of the study, 217 

and the following sub-sections present a description of the steps involved. 218 

3.1. Indicators of risk 219 

In this study (Figure 3), risk is considered to be a function of hazard, vulnerability and exposure 220 

in accordance to IPCC’s 5th Assessment Report (IPCC, 2014a). Both physical (indicating the 221 

hazard) and socio-economic factors (indicating vulnerability and exposure) are taken into 222 

consideration to construct the risk indices — representing the current scenario as well as that 223 

in 2001. The sub-components are described in detail in the following subsections and all the 224 

indicators considered are listed in Table 2. 225 

Hazard 226 

The IPCC considers any natural or climate-related event which can impact life and property 227 

as hazard (IPCC, 2014b). Extreme events such as cyclones, storm surge and high tides are 228 

common hazards associated with coastal regions. Thus, the physical indicators representing 229 

hazard used in the study are number of cyclones (between 1891-2018 for the current risk 230 

index and between 1891-2001 for the 2001 risk index), Probable Maximum Storm Surge 231 

(PMSS in meter), maximum of tidal range (in meter) and extreme precipitation exceedance 232 

probability in the districts. These indicators represent the physical events that may cause loss 233 

of life and property in the coastal districts, and have been used by previous studies focussing 234 

on coastal vulnerability (Kumar and Tholkappian, 2006; Kumar et al., 2010; Kunte et al., 2014; 235 

Mani Murali et al., 2013; McLaughlin et al., 2010).  236 

The data source of the number of cyclones, PMSS and tidal range is listed in Table 2. The 237 

fourth hazard variable, i.e., extreme precipitation exceedance probability, is calculated using 238 

the daily precipitation data at 0.25° resolution provided by the India Meteorological 239 

Department (Pai et al., 2014). To extract the precipitation extreme for the decades 1990-2000 240 

and 2001 – 2010, we use the 95th percentile as a threshold (Vittal et al., 2013) with the 241 

baseline period of 1960-1990, based on the suggestion of the Expert Team for Climate Change 242 

Detection and Indices (ETCCDI) (Alexander et al., 2006; Donat et al., 2013). We then fit a non-243 
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parametric kernel distribution to the extracted extreme intensities individually for the 244 

decades 1990-2000 and 2001 – 2010. The choice of non-parametric distribution is made as it 245 

overcomes the assumption that the sample of observations originates from a population with 246 

a known probability density function (Adamowski et al., 1998; Vittal et al., 2015); and also, 247 

the non-parametric estimation will always reproduce the sample characteristics in a better 248 

way (Karmakar and Simonovic, 2008). Moreover, studies such as Vittal et al. (2013) and 249 

Shashikanth et al. (2018) showed that the non-parametric distribution estimates the 250 

precipitation extreme more accurately and realistically. The non-parametric kernel 251 

distribution for a univariate sample (x1, x2, ..., xn) can be represented as: 252 

                                                                   𝑓(𝑥) =  
1

𝑛ℎ
∑ 𝐾 (

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1                                              (1) 253 

where K represents a Gaussian kernel function with a bandwidth h, which is estimated by the 254 

approach suggested by Bowman and Azzalini (1997); 255 

                                                                          ℎ = [
4

𝑛(𝑝+2)
]

1

𝑝+4
𝜎                                                    (2) 256 

where n is number of observations and p is number of variables (for univariate p=1) and σ is 257 

the standard deviation of the variable. Once the kernel distribution is fitted, we then estimate 258 

the cumulative distribution function (CDF; F(x)) for the same, and the exceedance probability 259 

is estimated for a potentially damaging event. Here, the 99.5th percentile, as obtained from 260 

the base period, is considered as the potentially damaging event for these two decades’ (i.e., 261 

1990-2000 and 2001 – 2010) extracted intensity and is represented as; 262 

                                                            𝑃{𝑋 > 𝑥99.5𝐵} = 1 − 𝐹(𝑥99.5𝐵)                                          (3) 263 

where 𝐹(𝑥99.5𝐵)  is the non-exceedance estimates of the 99.5th baseline percentile value 264 

obtained by fitting a kernel distribution to the extracted extreme precipitation intensities for 265 

the decade. All these analyses are initially performed at a 0.25° grids, which are further area-266 

aggregated to obtain the values for each coastal district. 267 

 268 

 269 

 270 
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Vulnerability 271 

IPCC suggests that vulnerability is a result of factors contributing to “susceptibility to harm 272 

and lack of capacity to cope and adapt” (IPCC 2014b, p. 1775). The present study follows 273 

Malakar and Mishra (2017) in selecting indicators representing vulnerability as it has provided 274 

an in-depth understanding of this construct in the Indian context. Malakar and Mishra (2017) 275 

take cue from previous studies on assessing socio-economic vulnerability to disasters (Cutter 276 

et al., 2003; Prashar et al., 2012) for proposing the contributing indicators. It shows that 277 

vulnerability may be a result of various sub-factors such as lack of infrastructure, technology, 278 

poor financial and social condition in India2. It argues that these indicators denote lack of 279 

adaptive capacity and sensitivity to adverse impacts of disasters, and hence contribute to 280 

vulnerability. Further, it was highlighted that the Indian Census is a rich source of information 281 

on a variety of socio-economic indicators of vulnerability for various administrative units. This 282 

can be highly useful while constructing a convenient and practical vulnerability index for 283 

regions in India. Thus, following this previous study (Malakar and Mishra, 2017), the 284 

vulnerability of the coastal districts is also measured through indicators on infrastructure, 285 

technology, finances and social set-up (Table 2). A variety of indicators are used. Among them, 286 

some, such as the percentage of dilapidated houses, population above 60 years of age and 287 

illiterates, can increase vulnerability. On the other hand, indicators such as percentage of 288 

households having water supply, electricity, internet and banking services can decrease 289 

vulnerability. Table 2 specifies whether an indicator contributes positively or negatively to 290 

vulnerability, and its data source. 291 

 292 

Exposure 293 

This construct consists of population and assets which may be impacted by hazards in a region 294 

(IPCC, 2014b; Qiang, 2019). Thus, indicators such as population growth rate, density, 295 

percentage of built-up area and length of coastline are taken as representative of ‘exposure’ 296 

in the districts. Similar indicators have also been adopted in past studies (Satta et al., 2017, 297 

                                                           
2 Since the present study is based on the latest IPCC typology of vulnerability being functions of adaptive capacity 
and sensitivity (IPCC 2014a), the space index (considered in Malakar and Mishra (2017))  is excluded from the 
‘vulnerability’ sub-index. The space index consisting of population growth rate, density and percentage of built-
up area is considered to be a part of ‘exposure’.   
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2016) as measures of exposure. Following the previous typology of the IPCC (where 298 

vulnerability is a function of exposure) (IPCC, 2007), the study by Malakar and Mishra (2017) 299 

also uses these indicators (except for coastline length) as contributors to spatial vulnerability 300 

(named as ‘space index’) of Indian cities (Data source in table 2).  301 
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 327 

Figure 3:  Methodology adopted in the study to calculate coastal risk and its components, i.e., 328 

hazard, vulnerability and exposure329 

Hazard (H) Vulnerability (V) Exposure (E) 

Infrastructure 

Technology 

Financial 

Social 

Component and sub-components of risk according to 
IPCC AR5 
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Table 2: Components, sub-components and indicators used for risk analysis of the districts  330 

Component of 
risk 

Sub-
components 

Indicators  Overall contribution to the 
components [Increase (+) 
or decrease (-)] 

Data source 

Hazard  Cyclones since 1891 to 2001/2018 Increase (+) Estimated based on Cyclone eAtlas of 
the India Meteorological Department 
(IMD, 2018) 

Probable Maximum Storm Surge (PMSS in meter) Increase (+) Mohapatra et al. (2012) 

Maximum of tidal range Increase (+) Murali and Sundar (2017) 

Extreme precipitation exceedance probability Increase (+) Derived in the present study 

Vulnerability Infrastructure  % of dilapidated houses  Increase (+) Census of India 2001 and 2011 
(Government of India, 2011, 2001) % of households having grass/thatch/bamboo/mud/ 

plastic/polythene/wood/no mortar stoned etc. wall  
Increase (+) 

% of households with drinking water facility within 
premises  

Decrease (-) 

% of households having electricity  Decrease (-) 

% of households having toilet facility within premise  Decrease (-) 

% of households having bathroom within the house  Decrease (-) 

% of households using LPG for cooking  Decrease (-) 

% of population having own (not rented) houses  Decrease (-) 

Hospital beds available per lakh population# Decrease (-) (Gangolli et al., 2005; Indiastat, 2009)  

Per capita expenditure# Decrease (-) (Government of India, 2015) 

Technology  % of the households having radio  Decrease (-) Census of India 2001 and 2011 
(Government of India, 2011, 2001) 
 
 
 
 
 
 
(Table continued on next page) 

% of the households having television  Decrease (-) 

% of the households having internet 
(only applicable for 2011, data unavailable for 2001 
as it was not widely used then) 

Decrease (-) 

% of the households having telephone  Decrease (-) 

% of the households having mobile phone (only 
applicable for 2011, data unavailable for 2001 as it 
was not widely used then) 

Decrease (-) 
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% of the households having mobile & telephone 
(only applicable for 2011, data unavailable for 2001 
as mobile was not widely used then) 

Decrease (-) 

Financial  Per Capita Net District Domestic Product (NDDP) at 
Current Prices*  

Decrease (-) Economic reports of respective states 

% of households having banking services  Decrease (-) Census of India 2001 and 2011 
(Government of India, 2011, 2001) % of main workers i.e. % of population having 

employment for more than 6 months of the year. 
Decrease (-) 

Social % of female population Increase (+) Census of India 2001 and 2011 
(Government of India, 2011, 2001) 
 
 
 

% of female headed households Increase (+) 

% of population in SC (Scheduled Caste) category**  Increase (+) 

% of population in ST (Scheduled Tribe) category** Increase (+) 

% of population below 6 yrs of age  Increase (+) 

% above 60 years of age  Increase (+) 

% of illiterates  Increase (+) 

% of disabled population  Increase (+) 

Exposure Space  Population growth rate  Increase (+) Census of India 2001 and 2011 
(Government of India, 2011, 2001) Population density  Increase (+) 

% of built-up area  Increase (+) (Bhuvan, 2013) 

Coastal length in kms Increase (+) District websites 

% indicates percentage 331 
#District-level data for these variables are not available, hence state-level data is used.  332 
*Districts of Gujarat, Goa and Daman & Diu did not have NDDP values, hence per capita state domestic product are used.  333 
Further, in case of variables not sourced from the census — If the most recent data for calculating current risk or that of 2001 are unavailable, the nearest 334 
available year's data are used.  335 
**People belonging to SC and ST communities are considered to be the underprivileged sections of the Indian society as they have been socially and 336 
economically repressed in history.337 
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3.2. Calculation of index 338 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), an MADM approach, 339 

is adopted to generate the components of risk index based on the various indicators listed in 340 

Table 2.  TOPSIS provides a relative quantitative measure based on the subject’s proximity to 341 

the ideal solution. This ideal solution is according to the best and worst value of each 342 

indicator. Thus, TOPSIS is unlike other statistical methods, such as factor analysis (which is 343 

also used widely to develop indices), which extract variability in data to obtain results and 344 

hence is not inclusive of insights of decision-makers or stakeholders. TOPSIS enables decision-345 

making based on criteria formulated by policy-makers or stakeholders, and may be more 346 

practical for aggregation of a variety of indicators with different criteria for their best/worst 347 

value. Thus, this method has been used by previous studies to develop flood vulnerability 348 

ranks of river basins (Jun et al., 2011; Lee et al., 2014, 2013; Yang et al., 2018), because of its 349 

ease of application, control and interpretation.  350 

The steps (also presented in Figure 3) followed to obtain the components on hazard, 351 

vulnerability and exposure in this study through TOPSIS are as follows (Mathew, 2018; Yadav 352 

et al., 2019): 353 

a) Decision matrix normalization: The indicators’ values are normalized according to 354 

equation 4. This helps in comparison of indicators having heterogeneous scales. 355 
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                                                     (4) 356 

where, 𝑥𝑖𝑗 is the value of ith district for jth indicator of the original score matrix; and 𝑉𝑖𝑗 357 

comprises the values of the normalized matrix. In the present study, the number (n) 358 

of districts is 65, and the number (m) of indicators is 3 for hazard, 27 for vulnerability, 359 

and 4 for exposure. 360 

The present study considers all indicators to be equally important and hence a 361 

weighted matrix is not required to be calculated hereafter. Due to the subjectivity of 362 

weightages, the literature has several studies that have given equal weightage and 363 

simply averaged the indicators to obtain vulnerability indices (Brien et al., 2004; 364 

Malakar and Mishra, 2017; McLaughlin et al., 2010). Few regional studies pertaining 365 
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to coastal districts in India have also adopted this approach (Bahinipati, 2014; Kumar 366 

and Tholkappian, 2006; Patnaik and Narayanan, 2009).  367 

b) Finding positive- and negative-ideal solutions: The positive ideal solution (ideal best) 368 

and negative ideal solution (ideal worst) of each indicator among the districts are 369 

identified. The aim of the resulting index is to represent greater hazard, vulnerability 370 

or exposure (denoted as ‘component’ hereafter) with its increasing value. Hence, in 371 

case of the factors which are increasing or positively (+) contributing to the 372 

component (Table 2), the ideal best or positive-ideal solution (
jV  ) is its maximum 373 

value among all the districts (n). The ideal worst or negative-ideal solution (
jV  ) is its 374 

minimum value among the districts. 375 

On the other hand, in case of the factors which are decreasing or negatively (-) 376 

contributing to the component, the ideal best or positive ideal solution (
jV  ) is its 377 

minimum value among the districts (n). The ideal worst or negative ideal solution (
jV 378 

) is its maximum value among the districts. 379 

c) Calculation of separation distance from ideal best solution: The separation measure 380 

of each district or the Euclidean distance value from the ideal best (Equation 5) and 381 

ideal worst (Equation 6) is calculated. 382 
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The TOPSIS renders an optimal solution that is closest to the positive-ideal solution 385 

and farthest from the negative-ideal solution. 386 

d) Relative closeness score calculation: A performance score, which is synonymous with 387 

the index pertaining to each component in this study, is calculated according to 388 

equation 7. Higher the value of the score, higher is the component- hazard, 389 

vulnerability or exposure. 390 
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where iC  represents the individual components of risk ( iR ), i.e., hazard ( iH ), 392 

vulnerability ( iV ) or exposure ( iE ) for the n number of districts (i). 393 

The final risk index ( iR ) is calculated as a product of the components hazard ( iH ), 394 

vulnerability ( iV ) and exposure ( iE ) according to equation 8 (IPCC, 2014a; Satta et al., 2017). 395 

                                                              V Ei i i iR H                                                      (8) 396 

The indices on risk and its components are then normalized  (normalized values denoted by397 

iZ ) according to equation 9. This results in index values lying between the closed interval [0, 398 

1] with higher values indicating greater risk and its component. This helps in eloquent 399 

comparison among the districts. 400 
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                                                 (9) 401 

where iY  represents indices on risk ( iR ), hazard ( iH ), vulnerability ( iV ) or exposure ( iE ) 402 

The above steps are applied to obtain the risk indices and their components for the current 403 

scenario as well as that in 2001 for total n districts. These two time-points are specifically 404 

chosen because of the ease of obtaining data on variables contributing to the risk index from 405 

the Indian censuses released at the beginning of each decade. This has led to the advantage 406 

of inclusion of common indicators for both decades, and making the indices comparable. 407 

Further, past studies are in consensus on considering two consecutive decades for 408 

comparative risk analysis (Sharma et al., 2020; Vittal et al., 2020).  409 

Next, the districts are ranked according to their index values, with districts having greater 410 

index values holding higher ranks (listed in Supplementary Material). The districts are also 411 

mapped and classified into five groups, namely, highest, high, medium, low and lowest, based 412 

on their index values (using QGIS, an open-source cross-platform desktop geographic 413 

information system application). The preferred method of classification of the indices is Jenks 414 

natural break as it can optimally classify the index values. This method enables the reduction 415 

of variance within a group and segregates groups by maximizing variance between them. 416 

However, applying this method on the current and 2001 indices separately will result in 417 
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different group ranges, which will hamper comparison between the years. In order to obtain 418 

uniform group ranges, first, the average values of all contributing indicators across 2001 and 419 

2011 are calculated for each district. Thereafter, equations 4-9 are applied to the averaged 420 

data to obtain indices. These indices are then classified using Jenks natural break. Finally, the 421 

group ranges obtained from this classification are used to categorize the current and 2001 422 

indices.  423 

Lastly, the differences between the current indices and those in 2001 are also calculated and 424 

mapped.  425 

It is to be noted that, in this study, districts belonging to the islands, that is Lakshadweep, 426 

Andaman and Nicobar, had to be dropped due to the unavailability of data on some of the 427 

indicators. Smaller districts of Puducherry with few kilometers of coastline, that is, Yanam, 428 

Mahe and Karaikal, also had to be excluded for the same reason. This resulted in a total of 65 429 

districts in mainland India for which risk indices and their components are calculated in this 430 

study.  431 

 432 

4. Results  433 

4.1. Indices for components of risk 434 

The following sub-sections describe the indices generated separately for the three 435 

components of risk — hazard, vulnerability and exposure. The indices are spatially mapped 436 

and presented alongside each section. However, the numeric values of the indices for each 437 

district are presented in Supplementary Material. 438 

4.1.1. Relative ranks of hazard prone districts 439 

The current indices (Figure 4a) for hazard show that Balasore district of the eastern state of 440 

Odisha has the highest rank among all. This district has experienced the highest number of 441 

cyclones and high storm surges in the past, which must have contributed to its highest rank. 442 

Two eastern coastal districts, Purba Medinipur3 (0.962) and South 24 Parganas (0.832), of 443 

West Bengal also have some of the highest hazard indices. This is a result of Purba Medinipur’s 444 

                                                           
3 This district was formed from the larger district called Medinipur in 2002 
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high cyclone frequency and storm surge, and South 24 Parganas’s high storm surge. 445 

Thereafter, Bhadrak (in Odisha) is also classified as a ‘highest’ hazard district.  Again, Bhadrak 446 

(in Odisha) ranks third in the number of cyclones and has high PMSS, which has resulted in its 447 

high hazard index (0.725). Thus, the districts' higher hazard ranking is mostly the outcome of 448 

high cyclone frequency and PMSS. 449 

The high-hazard category consists of thirteen districts, mostly (ten) from the eastern states, 450 

such as West Bengal, Odisha, Andhra Pradesh and Tamil Nadu. Gujarat is the only western 451 

coastal state whose districts (Anand, Rajkot and Bharuch) have high hazard indices. This 452 

shows that the eastern coast has comparatively severer experiences of hazards than the west. 453 

Thirteen districts are classified as medium hazard zones. This category has five districts from 454 

the western coastal states of Maharashtra and Gujarat. Out of five coastal districts of 455 

Maharashtra, four (including Greater Mumbai which is an important city and commercial 456 

center in India) are in this category. 457 

Twenty-two districts are part of the low hazard category. A majority (fourteen) districts from 458 

the west coast are in this group. All districts of the eastern state of Karnataka and most from 459 

Kerala (except for Thrissur and Kozhikode which are in the low category) are in the lowest 460 

hazard group, with Thiruvananthapuram (in Kerala) having the lowest rank. This is because all 461 

these districts have some of the lowest frequencies of cyclones. The city of Chennai (0.144) is 462 

also classified as having ‘lowest’ hazard index. The southern-most district of Tamil Nadu, that 463 

is, Kanyakumari (0.024), on the east coast also has one of the lowest hazard-indices. Thus, 464 

most districts of the western coast hold the lower ranks suggesting that it is comparatively 465 

calmer and experience less extreme events than the east. 466 

In 2001 (Figure 4b), the districts holding the highest seven and lowest two ranks were the 467 

same as the current scenario. The reasoning behind their ranking is the same as in the case of 468 

the current scenario, that is, these districts have high/low number of cyclonic events and 469 

PMSS which make their indices high/low. Balasore (1.00), Medinipur (0.929) and South 24 470 

Parganas (0.788) were grouped in the highest category. Nine districts, again mostly (seven) 471 

from the eastern coast, were part of the high group. Fifteen districts formed the medium 472 

category, out of which ten were again from the east. Seventeen districts were in the low 473 

category, however, in this case, most districts (twelve) belonged to the west coast. Lastly, 474 
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twenty-one districts were in the lowest category, again, out of which fifteen were from the 475 

west. 476 

The hazard index of most (54 out of 65) of the districts has increased since 2001 (Figure 4c). 477 

Vishakhapatnam, Nagapattinam, Bhavnagar, Cuddalore and Amreli are the districts that have 478 

experienced the highest increase in hazard since the beginning of the century. This increase 479 

is because of various changes in the contributing indicators for the districts. Vishakhapatnam 480 

and Cuddalore have seen an increase in cyclonic and extreme precipitation events, 481 

Nagapattinam has had increased cyclones, and Bhavnagar and Amreli have had more 482 

precipitation. Two districts, Balasore and Thiruvananthapuram, has shown no change in their 483 

hazard index. This is because Balasore and Thiruvananthapuram are the districts with the 484 

highest and lowest hazard indices, respectively, both in 2001 and currently. Only nine districts 485 

have seen a reduction in their hazard indices — mostly because of their reduced probability 486 

of having extreme precipitation events. These include Uttar Kannanda, Puri, Kasaragod, 487 

Nellore, Alappuzha, Kannur, Udupi, Kollam and North Goa. Thus, districts with reduced hazard 488 

mostly belong to the western coast.  489 
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 490 

Figure 4:  Map showing the hazard index of the coastal districts (a) currently, (b) in 2001 and (c) their change/difference491 
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4.1.2. Level of vulnerability 492 

According to the current index values (Figure 5a), a total of twelve districts are classified as 493 

having the highest vulnerability, out of which a majority (nine) of them are from the eastern 494 

coast. Balasore district of the eastern state of Odisha currently has the highest vulnerability. 495 

This is because of a number of socio-economic factors such as the district’s high percentage 496 

of dilapidated houses, socially-underprivileged population (SC and ST), low number of hospital 497 

beds and low percentages of households with electricity. Valsad (0.943) and Navsari (0.899) 498 

in Gujarat on the western coast has the second and third-highest vulnerability indices, 499 

respectively. Further, all other districts of Odisha - Bhadrak, Ganjam, Kendrapara, Puri and 500 

Jagatsinghpur - are part of the highest range, highlighting the severe vulnerability of the state. 501 

The rest of the districts in this group belong to the states of Andhra Pradesh, West Bengal and 502 

Gujarat. 503 

Twenty-five districts are part of the high vulnerability range, again majority (seventeen) 504 

belonging to the eastern coast. The medium, low and lowest vulnerability groups are 505 

populated by the western districts. It is also seen that the two of the most important 506 

metropolitan coastal cities of India, that is, Chennai (0.22) and Greater Mumbai (0.194), have 507 

low vulnerability. This shows that compared to other coastal districts of India, these cities are 508 

better equipped with the required infrastructure, technology, finance and social 509 

characteristics to adapt, which in turn reduce vulnerability. 510 

Overall, the ranking of the districts according to their vulnerability shows that most of the 511 

eastern and western districts hold the higher and lower ranks, respectively. This suggests that 512 

the eastern coast is more vulnerable compared to the west. The higher vulnerability of the 513 

eastern states is resultant of the lack of infrastructure, technology, finance and social set-up 514 

necessary to face and be resilient towards hazards. 515 

 In 2001 (Figure 5b), a total of eleven districts were classified to be in the highest vulnerability 516 

group. Similar to the current vulnerability indices, most (eight) districts in this group were 517 

from the eastern coast. In the high vulnerability group, comprising of 27 districts, most 518 

(nineteen) were again from the eastern coast. The rest of the groups, medium, low and lowest 519 

vulnerability, comprise majorly of western districts. Further, the cities of Chennai (0.307) and 520 

Mumbai (0.287) were categorized to have low vulnerability also in 2001.  521 
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The maps show that the vulnerability of the majority (42 out of 65) of coastal districts of India 522 

has declined since 2001 (Figure 5c). The number of districts undergoing an increase/decrease 523 

in vulnerability from the east and west coast is similar. That is, eleven districts each from the 524 

east and west have experienced an increase in vulnerability. Further, the vulnerability of 525 

twenty eastern and twenty-two western districts has decreased. It is to be noted that Balasore 526 

remains the most vulnerable among all districts currently as well as back in 2001. Hence, the 527 

Balasore (in Odisha) shows no change in its index. The districts that have experienced the 528 

most decline in vulnerability are Jagatsinghpur, South Goa and North Goa. The decrease in 529 

vulnerability of the districts suggests improvement in infrastructure, technology, financial 530 

ability and social structure since 2001. 531 

 532 

 533 
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 535 
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 540 

 541 

 542 

 543 
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 544 

Figure 5:   Map showing the vulnerability index of the coastal districts (a) currently, (b) in 2001 and (c) their change/difference545 
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4.1.3. Level of exposure  546 

A concerning finding emerges from the current exposure indices (Figure 6a). It shows that 547 

Chennai (1) and Greater Mumbai (0.779), which are two of the most important metropolitan 548 

cities in India, have the highest exposure indices. These two cities have the highest population 549 

density and built-up area which has resulted in their high exposure indices.  550 

Daman (0.553) and Kutch (0.446) in Gujarat are next in order and are part of the high exposure 551 

group. They are highly exposed to extreme coastal events because of their high population 552 

growth and long coastal length, respectively. A total of nine districts are categorized to be 553 

having high exposure, out of which five (mostly from Gujarat) belong to the west coast. Next, 554 

only three districts located on the east coast have medium exposure. 555 

A majority of the districts are part of the low (twenty-two) and lowest (twenty-nine) exposure 556 

group. The low group consists of almost an equal mix of districts from the east (twelve) and 557 

west (ten) coast. The lowest exposure group comprises mostly (17 out of 29) of western 558 

districts. However, the least exposed districts are from the east — West Godavari and 559 

Vizianagaram in Andhra Pradesh. This is an aggregate effect of the districts’ low population 560 

growth, density, and built-up area and coastal length.  561 

In 2001 (Figure 6b), Chennai, Greater Mumbai and Daman had the highest exposure and held 562 

the first three ranks. This is the same as the current ranking. The high exposure group 563 

consisted of only five districts, mostly from the western states of Gujarat and Maharashtra. 564 

Ten districts constituted the medium exposure group, mostly (seven) from the east coast. 565 

Similar to the current classification, majority of the districts were part of the low (eighteen) 566 

and lowest (twenty-nine) category in 2001. The low group comprised of ten districts from the 567 

east and eight from the west. The lowest group consisted mostly (16 out of 29) of districts 568 

from the west coast. Again, the least exposed districts belonged to the eastern states of 569 

Andhra Pradesh and Tamil Nadu. 570 

The exposure indices of twenty-two districts have increased (Figure 6c), with Kanchipuram, 571 

Thiruvallur and Villupuram of Tamil Nadu experiencing the highest increase. This is because 572 

of the increase in the districts’ population growth rate, density and built-up area. The districts 573 

of Chennai (in Tamil Nadu) and Vizianagaram (in Andhra Pradesh) show no change in their 574 
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indices as they hold the highest and lowest rank for exposure currently as well as in 2001. A 575 

majority (forty-one) of districts have experienced declining exposure since 2001, with 576 

Puducherry undergoing the most decrease. 577 
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Figure 6: Map showing the exposure index of the coastal districts (a) currently, (b) in 2001 and (c) their change/difference 604 
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4.2. Risk Analysis  607 

The current indices show that the most risk-prone districts lie on the eastern coast of India 608 

(Figure 7a, also see Supplementary Material). Four districts are categorized to have the 609 

highest risk. The eastern districts of Purba Medinipur (1) and South 24 Parganas (0.877) in 610 

West Bengal rank the highest, followed by Balasore (0.851) in Odisha. Greater Mumbai 611 

(0.693), lying on the western coast, which is the financial capital and an important 612 

metropolitan city of India, is the fourth riskiest district (mostly because of its high exposure).   613 

Seventeen districts, again ten of which are from the east, are a part of the high-risk category. 614 

The western districts which face high risk are mostly from the state of Gujarat and other upper 615 

districts such as Daman and Thane in Maharashtra. This group also includes Chennai (0.482) 616 

which is an important city located in Tamil Nadu (eastern coast). This is again because of its 617 

high exposure index. Thirteen districts are medium-risk regions, again eight of which are from 618 

the eastern states. Further, few districts from the western states of Gujarat and Maharashtra 619 

are classified as medium zones. 620 

Seventeen districts face low risk according to the classification, and fourteen districts have 621 

the lowest risk. It is observed that the lowest category comprises majorly (thirteen) of western 622 

coastal districts. All districts of Goa and most of Kerala are part of this category because of 623 

their low levels of hazard, vulnerability as well as exposure. Thiruvananthapuram in Kerala 624 

has the lowest risk. This must be a result of its low hazard and exposure (section 4.1). 625 

Kanyakumari in Tamil Nadu is the only eastern district in the lowest-risk category. 626 

Overall, it may be derived that the higher ranks of risk are held mostly by districts belonging 627 

to the eastern coast. The eastern districts have a high risk because of their high hazard indices 628 

as well as vulnerability, as discussed in section 4.1. Thus, eastern districts are susceptible to 629 

natural extreme events whose impacts are aggravated by their poor socio-economic 630 

condition. Among the many western states, Gujarat experiences high hazard (Rajkot district) 631 

and exposure (Kutch and Jamnagar), making its districts prone to high risk— which is 632 

comparable to districts on the eastern coast. 633 

In 2001 (Figure 7b), similar to current groupings, Medinipur, Greater Mumbai, Balasore and 634 

South 24 Parganas, were ranked to be the top four riskiest districts. Additionally, Chennai was 635 

a part of the highest-risk category and held the fifth place. Thus, the highest ranks of risk were 636 
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held by eastern districts. The high-risk group also comparatively had more number of eastern 637 

districts (9 out of 15) than the west. The districts from the west in this group belong to the 638 

three upper coastal states of Gujarat, Maharashtra and Daman. An almost equal number of 639 

districts from the east and the west (belonging to the north-western states of Gujarat and 640 

Maharashtra) formed the medium and low-risk group. Lastly, most south-western districts 641 

belonging to Goa, Karnataka and Kerala had the lowest risk.  However, the eastern district of 642 

Vizianagaram of Andhra Pradesh, because of its minimum exposure, had the least risk among 643 

all. 644 

Most (forty-five) districts have seen an increase in risk since 2001 (Figure 7c). This can be 645 

attributed to increasing hazards, as discussed in section 4.1.1. Kanchipuram, Jagatsinghpur, 646 

Anand and Villupurum have experienced the highest increase in risk. The risk of Purba 647 

Medinipur has not changed as it ranks the highest currently as well as in 2001. It is further 648 

noticed that the increase in the risk of the districts along the eastern coast is higher than those 649 

along the west. The risk of twenty-seven eastern districts has increased compared to only 650 

eighteen in the west. On the other hand, the risk of sixteen western districts has decreased 651 

compared to only three in the east. Thus, in total, only nineteen districts have decreased 652 

levels of risk. The risk of Greater Mumbai, Puducherry and Chennai have decreased the most. 653 

This is a result of their decreasing vulnerability and exposure (values in Supplementary 654 

Material). 655 
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 660 
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Figure 7:  Map showing the risk index of the coastal districts (a) currently, (b) in 2001 and (c) their change/difference664 
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5. Discussion  665 

This section presents a discussion of the empirical results. The findings are compared with 666 

previous indices, and the implications and limitations of the study are discussed elaborately.  667 

5.1. Comparison with earlier studies 668 

The indices show that most districts of the eastern coast rank high in terms of their experiences 669 

of hazards as well as vulnerability. Similar results were obtained by Rehman et al. (2020). 670 

However, the study had followed the earlier IPCC AR4 framework to calculate vulnerability and 671 

their results may not be directly comparable. Nevertheless, they too had found higher exposure 672 

(~comparable to hazard in new AR5 framework) and low adaptive capacity (~higher vulnerability 673 

in new AR5 framework) on the eastern coast. The indices obtained in section 4.2 show that most 674 

districts in the east have higher risk. Earlier studies (Kumar and Tholkappian, 2006; Rehman et 675 

al., 2020), which used the older IPCC framework, have also concluded the eastern coast to be 676 

more vulnerable (~comparable to risk in new AR5 framework and this study) than the west. 677 

However, they (Kumar and Tholkappian, 2006; Rehman et al., 2020) did not consider the exact 678 

variables as in the present study or segregate their variables into the three components of 679 

vulnerability, that is, exposure, sensitivity and adaptation according to IPCC AR4 (Kumar and 680 

Tholkappian, 2006). Owing to different variables and methods used, identifying the component 681 

responsible for the vulnerability and comparing with current indices becomes difficult. However, 682 

in spite of differences in the methodologies followed, it is found that there is similarity in the 683 

rankings of some districts given by the previous (Kumar and Tholkappian, 2006; Rehman et al., 684 

2020) and current study. For example, previous indices have also ranked the districts of Purba 685 

Medinipur, South 24 Parganas, North 24 Parganas and Balasore to be the most vulnerable 686 

(comparable to risk in the current study). Further, most districts of Kerala and Goa are ranked 687 

lower in the previous studies as well. This similarity in the ranking somewhat aids in 688 

substantiating the new IPCC AR5 framework for assessing risk in the coastal districts.  689 

 690 

 691 
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5.2. Implications for risk management 692 

The states, such as West Bengal, Odisha, Gujarat and Andhra Pradesh, which have high-ranking 693 

districts in terms of hazard, need policies that can lessen the physical impacts of extreme events. 694 

Therefore, equipping the districts with infrastructures, such as early warning systems, cyclone 695 

shelters and coastal defense/sea walls, can help. Such infrastructure is partly available in many 696 

coastal areas in India, for example, the literature shows the presence of early warnings in 697 

Maharashtra (Malakar et al., 2018), early warnings and cyclone shelters in Odisha (Wangchuk, 698 

2019) and Andhra Pradesh (Sharma et al., 2009) and sea walls in Odisha (PTI, 2016). Further, 699 

recently, a number of digital innovations have been piloted to avert disasters in parts of India. 700 

This includes usage of Artificial Intelligence (AI) to project flood maps and alert residents in an 701 

area, web and smartphone-based apps to provide real-time information and alerts, coordinate 702 

rescue activities and assess damage, AI-enabled drones to locate trapped people and social 703 

media for information dissemination (Srikanth, 2019). These initiatives, however, need to be 704 

strengthened, made reliable and extended to all risk-prone coastal areas. The National Science, 705 

Technology, and Innovation Policy should encourage and invest in the development of all such 706 

disaster-mitigating technologies. Further, policies to enable easy and wide access to these 707 

technologies by the communities and regional authorities are needed. This can significantly help 708 

in locally mitigating disaster risk. 709 

Districts with high vulnerability, such as those primarily in Odisha, West Bengal, Andhra Pradesh 710 

and Gujarat, need developmental interventions that assist the region in accessing better housing 711 

and related infrastructure, medical services, communication and technology, financial capital and 712 

social status. This would require long-term policies that can benefit generations and 713 

communities’ overall quality of life. Further, it would require collaboration and action from 714 

different government bodies responsible for these varied sectors. Programmes that can 715 

particularly improve the socio-economic well-being of coastal communities and reduce their 716 

vulnerability, such as those on providing resilient and economical housing and road connectivity, 717 

may be introduced. The SAPCCs (State Action Plans on Climate Change) of the vulnerable states 718 

of Odisha and Andhra Pradesh have also indicated similar policy measures, and have focussed on 719 
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improving housing, public infrastructure and livelihoods in coastal areas (EPTRI, 2012; 720 

Government of Odisha, 2018). The vulnerability of the coastal districts may also be lowered by 721 

tweaking the current policies and programmes to accommodate their special needs. For example, 722 

current government housing programmes such as the Pradhan Mantri Awas Yojana (PMAY) may 723 

consider providing cyclone-resilient residences to poor and vulnerable coastal populations. Past 724 

studies have given similar directives (Malakar and Mishra, 2020, 2019). They have shown that the 725 

socio-economic condition of communities can influence adaptive capacity and hence, reduce 726 

vulnerability. Factors such as education, poverty and housing quality impact adaptation, and 727 

policies aimed at overall socio-economic upliftment are required in vulnerable regions. In 2021, 728 

the Government of India has introduced a draft Blue Economy Policy which envisages to 729 

holistically develop the coastal economy and livelihoods including fisheries, aquaculture, tourism, 730 

shipping, mining, offshore energy, etc. (MoES, 2021). This may significantly improve the socio-731 

economic demography of the region and act as a co-benefit for coastal vulnerability reduction. 732 

Districts that are high on exposure are generally those which have high population density and 733 

built-up area. These districts, especially those which simultaneously rank high on the risk index 734 

(such as the metropolitan cities of Chennai and Mumbai), need programmes that prevent further 735 

construction and population influx. This would only be possible when areas near these districts 736 

are equally developed and made attractive to the population by creating better opportunities, 737 

lifestyle and access to resources. For example, areas in suburban districts of Raigad and Thane, 738 

especially those near Mumbai, have been developed in the last few decades to provide better 739 

housing and job opportunities, thereby creating new population hubs away from the main city 740 

(Anarock, 2018; Pol, 2018; ToI, 2019). Development of such suburban areas has possibly resulted 741 

in Mumbai’s lowering population growth rate (Government of India, 2011). However, as the 742 

results in this study have indicated, these cities/districts need further interventions to lower their 743 

exposure to hazards. Possibilities of relocating important businesses and commercial activities to 744 

inland areas need to be explored. 745 

Since risk is the resultant of three components (hazard, vulnerability or exposure), districts would 746 

require policy-makers to adopt multi-dimensional approach for Disaster Risk Reduction (DRR). All 747 
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states and districts would benefit by developing their local disaster management plans wherein 748 

specific actions are listed for addressing each of the three components (as described above). 749 

Further, all directives may be associated with a time horizon and described as short-, medium- 750 

or long-term plan. Such DRR plans can also become part of the currently revised SAPCC (State 751 

Action Plans on Climate Change), and following the proposed strategy-delineation will enable 752 

them to be in line with the new IPCC AR5 risk framework.  753 

5.3. Caveats of the study 754 

The present study, however, also has certain limitations.  These include few adjustments made 755 

to the data, that is, the usage of data from nearest years (to 2001/2011) for few variables, such 756 

as NDDP, and the usage of state-level data for few districts — applicable for variables, such as 757 

hospital beds per lakh population and per capita expenditure, which are not sourced from the 758 

census. However, this is a common challenge while building data-rigorous indices (Malakar and 759 

Mishra, 2016). Next, due to lack of district-level data on loss and damages resulting from various 760 

hazards (specifically, cyclone, storm surge, tides and extreme precipitation considered in this 761 

study), the indices could not be statistically validated. Availability of such detailed data would 762 

have enabled examination of the correlation between the losses and indices, and led to tangible 763 

index-validation.  764 

 765 

6. Conclusion  766 

Coastal regions and their communities are prone to risks from extreme events such as cyclones, 767 

storm surge and high tides.  In order to identify the regions requiring interventions for DRR, there 768 

is a need for studies that quantify such risk. The Indian coastline is one of the most vulnerable to 769 

extreme events in the world. Therefore, the present study proposes an index that quantifies the 770 

risk in the coastal districts of India. The index is developed by implementing the IPCC’s most 771 

recent typology of risk, which suggests that it is a product of three components — hazard, 772 

exposure and vulnerability  (IPCC, 2014a). In this study, these three components are generated 773 

by combining relevant indicators using TOPSIS, an efficient MADM technique, whose application 774 
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has been limited in the coastal risk literature. The study’s approach of implementing IPCC-AR5’s 775 

latest typology together with TOPSIS, to study the risk of India’s entire coastline at a district-scale, 776 

makes it a novel contribution to the literature on mapping risk and vulnerability to hazards.  777 

Further, the study calculates two temporal indices for all coastal districts — one quantifying the 778 

current risk and the other at the beginning of the century, i.e., in 2001. This is done to understand 779 

the changes in coastal risk and its components since the past decade.  The entire exercise has 780 

enabled the ranking of the coastal districts of India based on their hazard, exposure, vulnerability 781 

and risk at two time periods.  Furthermore, all the calculated indices are mapped, and hence this 782 

study also results in new cartographic products that can be useful for climate risk management.  783 

The results show that the eastern coast is more risk-prone because of greater hazard and 784 

vulnerability indices, implying risk to be a consequence of natural as well as socio-economic 785 

factors. The ranking of the districts (eastern or western) in terms of exposure is mixed. It is also 786 

seen that increasing hazards in the eastern districts has led to an increase in risk since 2001. 787 

However, the vulnerability and exposure in the districts have declined. Such observations, 788 

characterized by hazard-driven and vulnerability-driven risk, will help in monitoring progress in 789 

disaster management policies and identify areas needing attention. One such policy initiative 790 

which may benefit from the findings of the present study is the National Cyclone Risk Mitigation 791 

Project (NCRMP) by the Government of India (GoI, 2021), which aims at improving the adaptive 792 

capacity of coastal communities and mitigate risk. 793 

Overall, this study produces a data-intensive, comprehensive and easily reproducible coastal risk 794 

index by appropriately using publicly available data from census and other government sources 795 

(such as the India Meteorological Department). This makes it replicable in the future as and when 796 

data is available, thereby making it useful for policy-makers to make comparisons across decades 797 

and suggest risk-management interventions. The results help in identifying the risk-prone coastal 798 

districts of India, and may help policy-makers in directing initiatives towards addressing the 799 

specific factors—hazard, socio-economic attributes representing vulnerability and exposure—800 

contributing to the risk.  However, future studies may consider a different set of indicators in 801 

accordance with the type of risk it intends to measure. For example, the indicators representing 802 
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risk specifically of coastal livelihoods (e.g., fishing) may differ. Lastly, the results of the current 803 

study can act as a foundation for data-intensive sub-national studies in India on assessing coastal 804 

risk. The indices can help identify the districts in need of bottom-up research regarding their 805 

drivers of risk and such regional assessments can complement the findings of the present study. 806 
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Rank State District Risk Index_Current Rank State

1 West BengalPurba Medinipur 1.000 1 Odisha

2 West BengalSouth 24 Parganas 0.877 2 West Bengal

3 Odisha Balasore 0.851 3 West Bengal

4 MaharashtraGreater Mumbai 0.693 4 Odisha

5 West BengalNorth 24 Parganas 0.506 5 Gujarat

6 Tamil NaduChennai 0.482 6 Gujarat

7 Odisha Bhadrak 0.476 7 Odisha

8 Daman &  DiuDaman 0.454 8 West Bengal

9 Gujarat Kutch 0.443 9 Odisha

10 Tamil NaduRamanathapuram 0.436 10 Odisha

11 Odisha Puri 0.434 11 Andhra Pradesh

12 MaharashtraThane 0.384 12 Andhra Pradesh

13 Tamil NaduNagapattinam 0.378 13 Tamil Nadu

14 Andhra PradeshNellore 0.376 14 Gujarat

15 Gujarat Jamnagar 0.366 15 Tamil Nadu

16 Tamil NaduKanchipuram 0.356 16 Andhra Pradesh

17 Odisha Jagatsinghpur 0.347 17 Odisha

18 Gujarat Rajkot 0.345 18 Andhra Pradesh

19 Odisha Kendrapara 0.341 19 Maharashtra

20 Gujarat Bharuch 0.332 20 Maharashtra

21 Gujarat Surat 0.319 21 Andhra Pradesh

22 Andhra PradeshEast Godavari 0.289 22 Maharashtra

23 Gujarat Anand 0.288 23 Tamil Nadu

24 MaharashtraRaigad 0.276 24 Tamil Nadu

25 Gujarat Valsad 0.268 25 Maharashtra

26 MaharashtraRatnagiri 0.262 26 Tamil Nadu

27 Odisha Ganjam 0.257 27 Tamil Nadu

28 Andhra PradeshSrikakulam 0.249 28 Andhra Pradesh

29 Tamil NaduThiruvallur 0.238 29 Andhra Pradesh

30 Andhra PradeshPrakasam 0.237 30 Gujarat

31 Andhra PradeshKrishna 0.199 31 Gujarat

32 Tamil Nadu Thoothukkudi 0.183 32 Daman &  Diu

33 Gujarat Junagadh 0.181 33 Andhra Pradesh

34 PuducherryPuducherry 0.179 34 Gujarat

35 Andhra PradeshVisakhapatnam 0.177 35 Gujarat

36 Gujarat Bhavnagar 0.168 36 Gujarat

37 Andhra PradeshGuntur 0.167 37 Tamil Nadu

38 Tamil NaduPudukkottai 0.164 38 Daman &  Diu

39 Tamil NaduThanjavur 0.161 39 Gujarat

40 Tamil NaduThiruvarur 0.157 40 Gujarat

41 Tamil NaduCuddalore 0.146 41 Tamil Nadu

42 Tamil NaduViluppuram 0.144 42 Goa

43 Gujarat Porbandar 0.135 43 Andhra Pradesh

44 Daman &  DiuDiu 0.132 44 Maharashtra

45 Tamil NaduTirunelveli 0.127 45 Tamil Nadu

46 Gujarat Navsari 0.126 46 Tamil Nadu

47 Andhra PradeshWest Godavari 0.105 47 Kerala

48 Karnataka Uttara Kannada 0.103 48 Tamil Nadu

49 MaharashtraSindhudurg 0.087 49 Gujarat
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50 Kerala Kozhikode 0.082 50 Gujarat

51 Andhra PradeshVizianagaram 0.082 51 Kerala

52 Kerala Malappuram 0.076 52 Puducherry

53 Gujarat Amreli 0.076 53 Tamil Nadu

54 Tamil NaduKanyakumari 0.061 54 Karnataka

55 Kerala Thrissur 0.057 55 Goa

56 Karnataka Dakshina Kannada 0.050 56 Kerala

57 Karnataka Udupi 0.047 57 Kerala

58 Kerala Ernakulam 0.041 58 Karnataka

59 Goa North Goa 0.040 59 Karnataka

60 Kerala Kasaragod 0.037 60 Kerala

61 Kerala Alappuzha 0.032 61 Kerala

62 Kerala Kannur 0.030 62 Kerala

63 Goa South Goa 0.023 63 Kerala

64 Kerala Kollam 0.010 64 Tamil Nadu

65 Kerala Thiruvananthapuram 0.000 65 Kerala



District Hazard Index_Current Rank State District

Balasore 1.000 1 Orissa Balasore

Purba Medinipur 0.962 2 Gujarat Valsad

South 24 Parganas 0.832 3 Gujarat Navsari

Bhadrak 0.725 4 Orissa Bhadrak

Anand 0.631 5 Orissa Ganjam

Rajkot 0.627 6 Orissa Kendrapara

Puri 0.545 7 Andhra PradeshSrikakulam

North 24 Parganas 0.537 8 Orissa Puri

Jagatsinghpur 0.523 9 West BengalPurba Medinipur

Kendrapara 0.521 10 Andhra PradeshVizianagaram

Nellore 0.509 11 Gujarat Bharuch

East Godavari 0.506 12 Orissa Jagatsinghpur

Nagapattinam 0.467 13 Andhra PradeshNellore

Bharuch 0.455 14 West BengalSouth 24 Parganas

Ramanathapuram 0.449 15 Andhra PradeshPrakasam

Krishna 0.445 16 Tamil NaduVilupuram

Ganjam 0.445 17 Tamil NaduThiruvarur

West Godavari 0.428 18 Andhra PradeshEast Godavari

Thane 0.401 19 Andhra PradeshVisakhapatnam

Greater Mumbai 0.398 20 Tamil NaduRamanathapuram

Prakasam 0.394 21 Tamil NaduNagapattinam

Raigad 0.392 22 West BengalNorth 24 Parganas

Pudukkottai 0.355 23 Andhra PradeshWest Godavari

Thanjavur 0.352 24 MaharashtraSindhudurg

Ratnagiri 0.333 25 Andhra PradeshGuntur

Kanchipuram 0.332 26 Tamil NaduPudukkottai

Thiruvarur 0.320 27 Tamil NaduCuddalore

Guntur 0.302 28 Andhra PradeshKrishna

Vizianagaram 0.296 29 Tamil NaduThanjavur

Jamnagar 0.289 30 MaharashtraRatnagiri

Valsad 0.265 31 Gujarat Amreli

Daman 0.265 32 Karnataka Uttara Kannand

Srikakulam 0.264 33 Gujarat Bhavnagar

Kutch 0.258 34 Gujarat Junagadh

Junagadh 0.256 35 Gujarat Anand

Porbandar 0.254 36 Gujarat Porbandar

Tirunelveli 0.254 37 Tamil Nadu Thoothukkudi

Diu 0.250 38 Gujarat Kutch

Navsari 0.248 39 Tamil NaduTirunelveli 

Surat 0.245 40 Tamil NaduKanyakumari

 Thoothukkudi 0.243 41 Gujarat Jamnagar

North Goa 0.241 42 MaharashtraRaigad

Visakhapatnam 0.233 43 Gujarat Surat

Sindhudurg 0.221 44 Karnataka Udupi

Thiruvallur 0.209 45 Gujarat Rajkot

Cuddalore 0.208 46 Tamil NaduThiruvallur

Thrissur 0.195 47 Kerala Kasaragod

Viluppuram 0.190 48 Kerala Malappuram

Bhavnagar 0.185 49 Tamil NaduKanchipuram



Amreli 0.184 50 MaharashtraThane

Kozhikode 0.183 51 Kerala Kollam

Puducherry 0.178 52 Karnataka Dakshina Kannad

Chennai 0.144 53 Kerala Thiruvananthapuram

Uttara Kannada 0.138 54 Kerala Alappuzha

South Goa 0.137 55 Kerala Kozhikode

Alappuzha 0.132 56 Kerala Kannur

Malappuram 0.129 57 Daman and DiuDaman

Dakshina Kannada 0.119 58 Daman and DiuDiu

Udupi 0.117 59 Kerala Thrissur

Ernakulam 0.107 60 Kerala Ernakulam

Kollam 0.093 61 PuducherryPuducherry

Kasaragod 0.090 62 Tamil NaduChennai

Kannur 0.077 63 MaharashtraGreater Mumbai

Kanyakumari 0.024 64 Goa South Goa

Thiruvananthapuram 0.000 65 Goa North Goa



Vulnerability Index_Current Rank State District

1 1 Tamil NaduChennai

0.943 2 MaharashtraGreater Mumbai

0.899 3 Daman and DiuDaman

0.879 4 Gujarat Kutch

0.87 5 Gujarat Surat

0.866 6 Gujarat Jamnagar

0.843 7 Tamil NaduKanchipuram

0.842 8 PuducherryPuducherry

0.836 9 MaharashtraThane

0.808 10 West BengalSouth 24 Parganas

0.798 11 Tamil NaduThiruvallur

0.783 12 West BengalPurba Medinipur

0.745 13 West BengalNorth 24 Parganas

0.74 14 Tamil NaduRamanathapuram

0.733 15 Tamil NaduNagapattinam

0.721 16 MaharashtraRatnagiri

0.718 17 Gujarat Bhavnagar

0.695 18 MaharashtraRaigad

0.692 19 Orissa Balasore

0.678 20 Tamil NaduKanyakumari

0.674 21 Andhra PradeshSrikakulam

0.672 22 Gujarat Valsad

0.672 23 Orissa Puri

0.671 24 Tamil Nadu Thoothukkudi

0.67 25 Andhra PradeshNellore

0.664 26 Gujarat Junagadh

0.662 27 Daman and DiuDiu

0.623 28 Gujarat Rajkot

0.621 29 Gujarat Bharuch

0.605 30 Andhra PradeshVisakhapatnam

0.604 31 Orissa Jagatsinghpur

0.593 32 Karnataka Uttara Kannand

0.591 33 Tamil NaduCuddalore

0.587 34 Tamil NaduVilupuram

0.584 35 Orissa Bhadrak

0.582 36 Kerala Malappuram

0.577 37 Orissa Kendrapara

0.568 38 Andhra PradeshEast Godavari

0.563 39 Kerala Ernakulam

0.557 40 Andhra PradeshPrakasam

0.555 41 Kerala Kozhikode

0.524 42 Gujarat Porbandar

0.517 43 Andhra PradeshGuntur

0.497 44 Tamil NaduTirunelveli 

0.486 45 Gujarat Anand

0.467 46 Goa South Goa

0.44 47 Orissa Ganjam

0.436 48 Karnataka Dakshina Kannad

0.435 49 Goa North Goa



0.428 50 Kerala Kannur

0.419 51 Andhra PradeshKrishna

0.414 52 Tamil NaduThanjavur

0.413 53 Tamil NaduThiruvarur

0.395 54 Tamil NaduPudukkottai

0.378 55 Kerala Kasaragod

0.371 56 Kerala Thrissur

0.365 57 Karnataka Udupi

0.324 58 Gujarat Amreli

0.32 59 Kerala Thiruvananthapuram

0.226 60 Gujarat Navsari

0.223 61 MaharashtraSindhudurg

0.22 62 Kerala Alappuzha

0.194 63 Kerala Kollam

0.057 64 Andhra PradeshVizianagaram

0 65 Andhra PradeshWest Godavari
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Rank State District Risk Index_2001 Rank

1 West Bengal Medinipur 1.000 1

2 Maharashtra Greater Mumbai 0.938 2

3 Odisha Balasore 0.839 3

4 West Bengal South 24 Parganas 0.754 4

5 Tamil Nadu Chennai 0.577 5

6 Odisha Bhadrak 0.486 6

7 Maharashtra Thane 0.466 7

8 Gujarat Kutch 0.459 8

9 Odisha Puri 0.437 9

10 West Bengal North 24 Parganas 0.421 10

11 Tamil Nadu Ramanathapuram 0.420 11

12 Gujarat Jamnagar 0.386 12

13 Puducherry Puducherry 0.372 13

14 Andhra Pradesh Nellore 0.362 14

15 Tamil Nadu Nagapattinam 0.353 15

16 Maharashtra Ratnagiri 0.350 16

17 Gujarat Surat 0.331 17

18 Daman &  Diu Daman 0.322 18

19 Gujarat Bharuch 0.316 19

20 Odisha Kendrapara 0.313 20

21 Gujarat Rajkot 0.276 21

22 Gujarat Valsad 0.265 22

23 Andhra Pradesh East Godavari 0.261 23

24 Maharashtra Raigad 0.247 24

25 Andhra Pradesh Srikakulam 0.225 25

26 Odisha Jagatsinghpur 0.204 26

27 Odisha Ganjam 0.178 27

28 Tamil Nadu  Thoothukkudi 0.174 28

29 Andhra Pradesh Prakasam 0.170 29

30 Tamil Nadu Kanchipuram 0.166 30

31 Andhra Pradesh Krishna 0.163 31

32 Gujarat Junagadh 0.156 32

33 Gujarat Anand 0.150 33

34 Karnataka Uttara Kannada 0.128 34

35 Andhra Pradesh Visakhapatnam 0.124 35

36 Gujarat Bhavnagar 0.117 36

37 Maharashtra Sindhudurg 0.115 37

38 Gujarat Porbandar 0.107 38

39 Tamil Nadu Thiruvallur 0.106 39

40 Andhra Pradesh Guntur 0.104 40

41 Gujarat Navsari 0.080 41

42 Kerala Malappuram 0.056 42

43 Karnataka Udupi 0.056 43

44 Tamil Nadu Pudukkottai 0.055 44

45 Tamil Nadu Tirunelveli 0.055 45

46 Goa North Goa 0.053 46

47 Kerala Alappuzha 0.049 47

48 Andhra Pradesh West Godavari 0.045 48

49 Kerala Kasaragod 0.042 49



50 Tamil Nadu Thanjavur 0.041 50

51 Kerala Kozhikode 0.041 51

52 Karnataka Dakshina Kannada 0.037 52

53 Kerala Kannur 0.032 53

54 Tamil Nadu Thiruvarur 0.032 54

55 Goa South Goa 0.030 55

56 Tamil Nadu Cuddalore 0.026 56

57 Kerala Thrissur 0.020 57

58 Tamil Nadu Kanyakumari 0.016 58

59 Gujarat Amreli 0.011 59

60 Kerala Thiruvananthapuram 0.011 60

61 Tamil Nadu Viluppuram 0.009 61

62 Kerala Ernakulam 0.005 62

63 Kerala Kollam 0.004 63

64 Daman &  Diu Diu 0.002 64

65 Andhra Pradesh Vizianagaram 0.000 65



State District Hazard Index_2001 Rank State

Odisha Balasore 1.000 1 Odisha

West BengalMedinipur 0.929 2 Gujarat

West BengalSouth 24 Parganas 0.788 3 Odisha

Odisha Bhadrak 0.701 4 Odisha

Gujarat Anand 0.576 5 Odisha

Gujarat Rajkot 0.575 6 Gujarat

Odisha Puri 0.550 7 Odisha

Andhra PradeshNellore 0.519 8 West Bengal

Odisha Jagatsinghpur 0.512 9 Odisha

Odisha Kendrapara 0.506 10 West Bengal

West BengalNorth 24 Parganas 0.502 11 Gujarat

Andhra PradeshEast Godavari 0.458 12 Andhra Pradesh

Gujarat Bharuch 0.424 13 Andhra Pradesh

Tamil NaduRamanathapuram 0.411 14 Tamil Nadu

Andhra PradeshWest Godavari 0.396 15 Tamil Nadu

Tamil NaduNagapattinam 0.385 16 Tamil Nadu

Odisha Ganjam 0.385 17 Tamil Nadu

Andhra PradeshKrishna 0.384 18 Andhra Pradesh

MaharashtraRaigad 0.367 19 Tamil Nadu

Andhra PradeshPrakasam 0.364 20 Maharashtra

MaharashtraThane 0.362 21 Gujarat

MaharashtraGreater Mumbai 0.341 22 Andhra Pradesh

Tamil NaduKanchipuram 0.316 23 Maharashtra

Tamil NaduPudukkottai 0.316 24 Tamil Nadu

MaharashtraRatnagiri 0.314 25 Tamil Nadu

Tamil NaduThanjavur 0.313 26 Andhra Pradesh

Tamil NaduThiruvarur 0.302 27 West Bengal

Goa North Goa 0.274 28 Andhra Pradesh

Andhra PradeshGuntur 0.254 29 Tamil Nadu

Gujarat Jamnagar 0.242 30 Andhra Pradesh

Gujarat Valsad 0.235 31 Gujarat

Daman &  DiuDaman 0.235 32 Andhra Pradesh

Andhra PradeshVizianagaram 0.235 33 Tamil Nadu

Tamil NaduTirunelveli 0.234 34 Tamil Nadu

Gujarat Kutch 0.230 35 Karnataka

Tamil Nadu Thoothukkudi 0.230 36 Maharashtra

MaharashtraSindhudurg 0.215 37 Karnataka

Gujarat Surat 0.210 38 Gujarat

Andhra PradeshSrikakulam 0.209 39 Gujarat

Gujarat Junagadh 0.200 40 Kerala

Gujarat Porbandar 0.197 41 Kerala

Gujarat Navsari 0.195 42 Kerala

Daman &  DiuDiu 0.195 43 Andhra Pradesh

Tamil NaduThiruvallur 0.178 44 Kerala

PuducherryPuducherry 0.159 45 Gujarat

Tamil NaduViluppuram 0.153 46 Kerala

Kerala Thrissur 0.149 47 Tamil Nadu

Kerala Alappuzha 0.145 48 Gujarat

Andhra PradeshVisakhapatnam 0.145 49 Gujarat



Karnataka Udupi 0.144 50 Tamil Nadu

Karnataka Uttara Kannada 0.139 51 Kerala

Tamil NaduCuddalore 0.134 52 Gujarat

Kerala Kozhikode 0.124 53 Kerala

Kerala Kollam 0.120 54 Karnataka

Tamil NaduChennai 0.119 55 Kerala

Goa South Goa 0.119 56 Gujarat

Karnataka Dakshina Kannada 0.114 57 Maharashtra

Gujarat Amreli 0.114 58 Kerala

Gujarat Bhavnagar 0.106 59 Puducherry

Kerala Kasaragod 0.100 60 Tamil Nadu

Kerala Kannur 0.095 61 Maharashtra

Kerala Malappuram 0.094 62 Goa

Kerala Ernakulam 0.065 63 Goa

Tamil NaduKanyakumari 0.013 64 Daman &  Diu

Kerala Thiruvananthapuram 0.000 65 Daman &  Diu



District Vulnerability Index_2001 Rank State

Balasore 1.000 1 Tamil Nadu

Valsad 0.973 2 Maharashtra

Jagatsinghpur 0.941 3 Daman &  Diu

Kendrapara 0.924 4 Puducherry

Bhadrak 0.918 5 Gujarat

Navsari 0.903 6 Gujarat

Puri 0.885 7 Maharashtra

Medinipur 0.871 8 Gujarat

Ganjam 0.863 9 West Bengal

South 24 Parganas 0.824 10 Maharashtra

Bharuch 0.785 11 Tamil Nadu

Vizianagaram 0.751 12 West Bengal

Srikakulam 0.745 13 West Bengal

Viluppuram 0.740 14 Tamil Nadu

Thiruvarur 0.720 15 Andhra Pradesh

Pudukkottai 0.706 16 Gujarat

Nagapattinam 0.706 17 Gujarat

Nellore 0.695 18 Odisha

Ramanathapuram 0.690 19 Gujarat

Ratnagiri 0.677 20 Odisha

Surat 0.671 21 Andhra Pradesh

Prakasam 0.670 22 Karnataka

Sindhudurg 0.670 23 Maharashtra

Cuddalore 0.667 24 Tamil Nadu

Thanjavur 0.647 25 Gujarat

Visakhapatnam 0.646 26 Andhra Pradesh

North 24 Parganas 0.643 27 Odisha

East Godavari 0.634 28 Gujarat

Tirunelveli 0.630 29 Andhra Pradesh

Guntur 0.627 30 Tamil Nadu

Kutch 0.623 31 Tamil Nadu

West Godavari 0.609 32 Gujarat

 Thoothukkudi 0.599 33 Odisha

Kanyakumari 0.598 34 Maharashtra

Uttara Kannada 0.596 35 Kerala

Raigad 0.592 36 Andhra Pradesh

Udupi 0.583 37 Andhra Pradesh

Amreli 0.582 38 Goa

Anand 0.571 39 Andhra Pradesh

Kollam 0.571 40 Odisha

Thiruvananthapuram 0.568 41 Kerala

Kasaragod 0.567 42 Tamil Nadu

Krishna 0.562 43 Kerala

Malappuram 0.558 44 Karnataka

Bhavnagar 0.549 45 Karnataka

Alappuzha 0.544 46 Kerala

Kanchipuram 0.542 47 Kerala

Junagadh 0.538 48 Kerala

Porbandar 0.532 49 Goa



Thiruvallur 0.526 50 Odisha

Kozhikode 0.520 51 Gujarat

Jamnagar 0.518 52 Gujarat

Kannur 0.501 53 Kerala

Dakshina Kannada 0.479 54 Tamil Nadu

Thrissur 0.475 55 Daman &  Diu

Rajkot 0.460 56 Kerala

Thane 0.435 57 Tamil Nadu

Ernakulam 0.352 58 Gujarat

Puducherry 0.344 59 Tamil Nadu

Chennai 0.307 60 Tamil Nadu

Greater Mumbai 0.287 61 Kerala

North Goa 0.243 62 Andhra Pradesh

South Goa 0.229 63 Tamil Nadu

Daman 0.014 64 Tamil Nadu

Diu 0.000 65 Andhra Pradesh



District Exposure Index_2001

Chennai 1.000

Greater Mumbai 0.925

Daman 0.571

Puducherry 0.556

Kutch 0.436

Jamnagar 0.388

Thane 0.384

Surat 0.322

Medinipur 0.272

Ratnagiri 0.259

Ramanathapuram 0.252

South 24 Parganas 0.241

North 24 Parganas 0.222

Nagapattinam 0.218

Srikakulam 0.208

Bhavnagar 0.192

Valsad 0.192

Balasore 0.190

Junagadh 0.179

Puri 0.177

Nellore 0.176

Uttara Kannada 0.176

Raigad 0.173

 Thoothukkudi 0.172

Bharuch 0.169

Visakhapatnam 0.159

Bhadrak 0.154

Rajkot 0.149

East Godavari 0.146

Thiruvallur 0.137

Kanchipuram 0.136

Porbandar 0.129

Kendrapara 0.127

Sindhudurg 0.113

Malappuram 0.111

Krishna 0.111

Prakasam 0.109

South Goa 0.097

Guntur 0.094

Ganjam 0.091

Kasaragod 0.086

Kanyakumari 0.086

Thiruvananthapuram 0.086

Udupi 0.085

Dakshina Kannada 0.082

Kannur 0.081

Alappuzha 0.080

Kozhikode 0.080

North Goa 0.077



Jagatsinghpur 0.075

Navsari 0.069

Anand 0.065

Ernakulam 0.060

Tirunelveli 0.055

Diu 0.050

Thrissur 0.047

Cuddalore 0.047

Amreli 0.038

Pudukkottai 0.035

Thanjavur 0.028

Kollam 0.027

West Godavari 0.023

Thiruvarur 0.019

Viluppuram 0.019

Vizianagaram 0.000



State District Risk Index_Current Risk Index_2001 Risk Difference

Tamil NaduKanchipuram 0.356 0.166 0.191

Odisha Jagatsinghpur 0.347 0.204 0.142

Gujarat Anand 0.288 0.150 0.138

Tamil NaduViluppuram 0.144 0.009 0.135

Daman &  DiuDaman 0.454 0.322 0.132

Tamil NaduThiruvallur 0.238 0.106 0.131

Daman &  DiuDiu 0.132 0.002 0.130

Tamil NaduThiruvarur 0.157 0.032 0.125

West BengalSouth 24 Parganas 0.877 0.754 0.123

Tamil NaduCuddalore 0.146 0.026 0.120

Tamil NaduThanjavur 0.161 0.041 0.119

Tamil NaduPudukkottai 0.164 0.055 0.109

West BengalNorth 24 Parganas 0.506 0.421 0.085

Andhra PradeshVizianagaram 0.082 0.000 0.082

Odisha Ganjam 0.257 0.178 0.079

Tamil NaduTirunelveli 0.127 0.055 0.072

Gujarat Rajkot 0.345 0.276 0.069

Andhra PradeshPrakasam 0.237 0.170 0.067

Gujarat Amreli 0.076 0.011 0.064

Andhra PradeshGuntur 0.167 0.104 0.063

Andhra PradeshWest Godavari 0.105 0.045 0.061

Andhra PradeshVisakhapatnam 0.177 0.124 0.053

Gujarat Bhavnagar 0.168 0.117 0.051

Gujarat Navsari 0.126 0.080 0.046

Tamil NaduKanyakumari 0.061 0.016 0.045

Kerala Kozhikode 0.082 0.041 0.041

Kerala Thrissur 0.057 0.020 0.038

Andhra PradeshKrishna 0.199 0.163 0.037

Kerala Ernakulam 0.041 0.005 0.035

MaharashtraRaigad 0.276 0.247 0.029

Odisha Kendrapara 0.341 0.313 0.028

Gujarat Porbandar 0.135 0.107 0.028

Andhra PradeshEast Godavari 0.289 0.261 0.028

Gujarat Junagadh 0.181 0.156 0.025

Tamil NaduNagapattinam 0.378 0.353 0.025

Andhra PradeshSrikakulam 0.249 0.225 0.024

Kerala Malappuram 0.076 0.056 0.019

Gujarat Bharuch 0.332 0.316 0.016

Tamil NaduRamanathapuram 0.436 0.420 0.016

Andhra PradeshNellore 0.376 0.362 0.015

Karnataka Dakshina Kannada 0.050 0.037 0.013

Odisha Balasore 0.851 0.839 0.012

Tamil Nadu Thoothukkudi 0.183 0.174 0.009 18

Kerala Kollam 0.010 0.004 0.006

Gujarat Valsad 0.268 0.265 0.003

West BengalPurba Medinipur 1.000 1.000 0.000

Kerala Kannur 0.030 0.032 -0.002

Odisha Puri 0.434 0.437 -0.003

Kerala Kasaragod 0.037 0.042 -0.005



Goa South Goa 0.023 0.030 -0.007

Karnataka Udupi 0.047 0.056 -0.008

Odisha Bhadrak 0.476 0.486 -0.009

Kerala Thiruvananthapuram 0.000 0.011 -0.011

Gujarat Surat 0.319 0.331 -0.012

Goa North Goa 0.040 0.053 -0.014

Gujarat Kutch 0.443 0.459 -0.016

Kerala Alappuzha 0.032 0.049 -0.017

Gujarat Jamnagar 0.366 0.386 -0.019

Karnataka Uttara Kannada 0.103 0.128 -0.025

MaharashtraSindhudurg 0.087 0.115 -0.028

MaharashtraThane 0.384 0.466 -0.082

MaharashtraRatnagiri 0.262 0.350 -0.088

Tamil NaduChennai 0.482 0.577 -0.095

PuducherryPuducherry 0.179 0.372 -0.192

MaharashtraGreater Mumbai 0.693 0.938 -0.245



State District Hazard Index_Current Hazard Index_2001 Hazard Difference

Andhra PradeshVishakhapatnam 0.233 0.145 0.088

Tamil NaduNagapattinam 0.467 0.385 0.082

Gujarat Bhavnagar 0.185 0.106 0.079

Tamil NaduCuddalore 0.208 0.134 0.074

Gujarat Amreli 0.184 0.114 0.07

Andhra PradeshKrishna 0.445 0.384 0.061

Andhra PradeshVizianagaram 0.296 0.235 0.061

Orissa Ganjam 0.445 0.385 0.06

Kerala Kozhikode 0.183 0.124 0.059

MaharashtraGreater Mumbai 0.398 0.341 0.057

Gujarat Porbandar 0.254 0.197 0.057

Gujarat Junagadh 0.256 0.200 0.056

Gujarat Anand 0.631 0.576 0.055

Andhra PradeshSrikakulam 0.264 0.209 0.055

Daman and DiuDiu 0.250 0.195 0.055

Gujarat Navsari 0.248 0.195 0.053

Gujarat Rajkot 0.627 0.575 0.052

Andhra PradeshEast Godavari 0.506 0.458 0.048

Andhra PradeshGuntur 0.302 0.254 0.048

Gujarat Jamnagar 0.289 0.242 0.047

Kerala Thrissur 0.195 0.149 0.046

West BengalSouth 24 Parganas 0.832 0.788 0.044

Kerala Ernakulam 0.107 0.065 0.042

MaharashtraThane 0.401 0.362 0.039

Tamil NaduPudukkottai 0.355 0.316 0.039

Tamil NaduThanjavur 0.352 0.313 0.039

Tamil NaduRamanathapuram 0.449 0.411 0.038

Tamil NaduVillupuram 0.190 0.153 0.037

West BengalNorth 24 Parganas 0.537 0.502 0.035

Kerala Malappuram 0.129 0.094 0.035

Gujarat Surat 0.245 0.210 0.035

West BengalPurba Medinipur 0.962 0.929 0.033

Andhra PradeshWest Godavari 0.428 0.396 0.032

Gujarat Bharuch 0.455 0.424 0.031

Tamil NaduThiruvallur 0.209 0.178 0.031

Daman and DiuDaman 0.265 0.235 0.03

Andhra PradeshPrakasam 0.394 0.364 0.03

Gujarat Valsad 0.265 0.235 0.03

Gujarat Kutch 0.258 0.230 0.028

MaharashtraRaigarh 0.392 0.367 0.025

Tamil NaduChennai 0.144 0.119 0.025

Orissa Bhadrak 0.725 0.701 0.024

Tamil NaduTirunelveli Kattabo 0.254 0.234 0.02

MaharashtraRatnagiri 0.333 0.314 0.019

PuducherryPuducherry 0.178 0.159 0.019

Goa South Goa 0.137 0.119 0.018

Tamil NaduThiruvarur 0.320 0.302 0.018

Tamil NaduKanchipuram 0.332 0.316 0.016

Orissa Kendrapara 0.521 0.506 0.015



Tamil Nadu Thoothukkudi 0.243 0.230 0.013

Orissa Jagatsinghpur 0.523 0.512 0.011

Tamil NaduKanyakumari 0.024 0.013 0.011

MaharashtraSindhudurg 0.221 0.215 0.006

Karnataka Dakshin Kannad 0.119 0.114 0.005

Orissa Balasore 1.000 1.000 0

Kerala Thiruvananthapuram 0.000 0.000 0

Karnataka Uttar Kannand 0.138 0.139 -0.001

Orissa Puri 0.545 0.550 -0.005

Kerala Kasaragod 0.090 0.100 -0.01

Andhra PradeshNellore 0.509 0.519 -0.01

Kerala Alappuzha 0.132 0.145 -0.013

Kerala Kannur 0.077 0.095 -0.018

Karnataka Udupi 0.117 0.144 -0.027

Kerala Kollam 0.093 0.120 -0.027

Goa North Goa 0.241 0.274 -0.033



State District Vulnerability Index_Current Vulnerability Index_2001 Vulnerability Difference

Daman &  DiuDaman 0.365 0.014 0.352

Daman &  DiuDiu 0.324 0.000 0.324

Andhra PradeshSrikakulam 0.843 0.745 0.098

Andhra PradeshWest Godavari 0.672 0.609 0.063

Andhra PradeshPrakasam 0.733 0.670 0.063

Andhra PradeshKrishna 0.623 0.562 0.061

Andhra PradeshEast Godavari 0.695 0.634 0.061

Andhra PradeshVizianagaram 0.808 0.751 0.057

Gujarat Porbandar 0.582 0.532 0.050

Andhra PradeshNellore 0.745 0.695 0.049

Gujarat Junagadh 0.587 0.538 0.049

Andhra PradeshVisakhapatnam 0.692 0.646 0.046

Andhra PradeshGuntur 0.670 0.627 0.044

Gujarat Bhavnagar 0.591 0.549 0.041

Gujarat Jamnagar 0.555 0.518 0.037

West BengalNorth 24 Parganas 0.672 0.643 0.029

Gujarat Rajkot 0.486 0.460 0.026

Gujarat Amreli 0.604 0.582 0.021

Gujarat Anand 0.584 0.571 0.013

Gujarat Bharuch 0.798 0.785 0.013

Odisha Ganjam 0.870 0.863 0.007

MaharashtraSindhudurg 0.671 0.670 0.001

Odisha Balasore 1.000 1.000 0.000

Tamil NaduThiruvarur 0.718 0.720 -0.002

Karnataka Uttara Kannada 0.593 0.596 -0.003

Gujarat Navsari 0.899 0.903 -0.004

Tamil NaduCuddalore 0.662 0.667 -0.005

MaharashtraThane 0.428 0.435 -0.007

Tamil NaduRamanathapuram 0.678 0.690 -0.012

Tamil NaduViluppuram 0.721 0.740 -0.019

Tamil Nadu Thoothukkudi 0.577 0.599 -0.022

Tamil NaduThanjavur 0.621 0.647 -0.027

Gujarat Valsad 0.943 0.973 -0.030

Tamil NaduNagapattinam 0.674 0.706 -0.032

West BengalPurba Medinipur 0.836 0.871 -0.034

Odisha Bhadrak 0.879 0.918 -0.039

Tamil NaduKanyakumari 0.557 0.598 -0.041

Tamil NaduPudukkottai 0.664 0.706 -0.042

Odisha Puri 0.842 0.885 -0.043

Gujarat Kutch 0.568 0.623 -0.055

Odisha Kendrapara 0.866 0.924 -0.058

Tamil NaduThiruvallur 0.467 0.526 -0.059

Karnataka Dakshina Kannada 0.414 0.479 -0.064

Tamil NaduTirunelveli 0.563 0.630 -0.068

MaharashtraRaigad 0.524 0.592 -0.068

MaharashtraRatnagiri 0.605 0.677 -0.072

West BengalSouth 24 Parganas 0.740 0.824 -0.084

Karnataka Udupi 0.497 0.583 -0.086

Tamil NaduChennai 0.220 0.307 -0.087



MaharashtraGreater Mumbai 0.194 0.287 -0.093

Tamil NaduKanchipuram 0.435 0.542 -0.107

PuducherryPuducherry 0.223 0.344 -0.121

Kerala Malappuram 0.436 0.558 -0.122

Kerala Ernakulam 0.226 0.352 -0.126

Kerala Kasaragod 0.440 0.567 -0.127

Kerala Kannur 0.371 0.501 -0.130

Kerala Kozhikode 0.378 0.520 -0.142

Kerala Alappuzha 0.395 0.544 -0.149

Kerala Kollam 0.419 0.571 -0.151

Gujarat Surat 0.517 0.671 -0.154

Kerala Thrissur 0.320 0.475 -0.154

Kerala Thiruvananthapuram 0.413 0.568 -0.155

Odisha Jagatsinghpur 0.783 0.941 -0.159

Goa South Goa 0.057 0.229 -0.172

Goa North Goa 0.000 0.243 -0.243



State District Exposure Index_Current Exposure Index_2001

Tamil NaduKanchipuram 0.323 0.136

Tamil NaduThiruvallur 0.284 0.137

Tamil NaduVillupuram 0.119 0.019

Daman and DiuDiu 0.144 0.050

Tamil NaduKanyakumari 0.165 0.086

Tamil NaduCuddalore 0.12 0.047

Tamil NaduThiruvarur 0.069 0.019

Orissa Jagatsinghpur 0.123 0.075

Tamil NaduThanjavur 0.073 0.028

Kerala Ernakulam 0.104 0.060

West BengalSouth 24 Parganas 0.284 0.241

Tamil NaduPudukkottai 0.069 0.035

Tamil NaduTirunelveli Kattabo 0.089 0.055

Gujarat Anand 0.087 0.065

Kerala Kozhikode 0.099 0.080

West BengalNorth 24 Parganas 0.239 0.222

Kerala Thrissur 0.063 0.047

Gujarat Amreli 0.053 0.038

Gujarat Surat 0.335 0.322

Gujarat Kutch 0.446 0.436

MaharashtraRaigarh 0.177 0.173

Kerala Malappuram 0.114 0.111

Tamil NaduChennai 1 1.000

Andhra PradeshVizianagaram 0 0.000

Goa North Goa 0.076 0.077

Andhra PradeshGuntur 0.092 0.094

Karnataka Dakshin Kannad 0.077 0.082

Andhra PradeshPrakasam 0.104 0.109

Gujarat Rajkot 0.142 0.149

Kerala Kannur 0.073 0.081

Orissa Ganjam 0.08 0.091

West BengalPurba Medinipur 0.261 0.272

Kerala Kollam 0.013 0.027

Gujarat Bhavnagar 0.178 0.192

Tamil Nadu Thoothukkudi 0.157 0.172

Tamil NaduRamanathapuram 0.237 0.252

Goa South Goa 0.08 0.097

Daman and DiuDaman 0.553 0.571

Kerala Kasaragod 0.067 0.086

Orissa Kendrapara 0.108 0.127

Orissa Puri 0.157 0.177

Gujarat Navsari 0.047 0.069

Andhra PradeshNellore 0.153 0.176

Andhra PradeshWest Godavari 0 0.023

Orissa Balasore 0.166 0.190

Karnataka Udupi 0.061 0.085

Andhra PradeshVishakhapatnam 0.134 0.159

Tamil NaduNagapattinam 0.187 0.218

Gujarat Bharuch 0.137 0.169



Gujarat Valsad 0.16 0.192

Kerala Thiruvananthapuram 0.053 0.086

Gujarat Junagadh 0.145 0.179

Gujarat Porbandar 0.094 0.129

Andhra PradeshKrishna 0.073 0.111

Orissa Bhadrak 0.115 0.154

Andhra PradeshEast Godavari 0.106 0.146

Kerala Alappuzha 0.04 0.080

Andhra PradeshSrikakulam 0.161 0.208

Karnataka Uttar Kannand 0.122 0.176

Gujarat Jamnagar 0.33 0.388

MaharashtraSindhudurg 0.043 0.113

MaharashtraRatnagiri 0.178 0.259

MaharashtraThane 0.3 0.384

MaharashtraGreater Mumbai 0.779 0.925

PuducherryPuducherry 0.321 0.556



Exposure Difference
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