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Abstract6

This paper proposes a diffused approach to approximate failure at interfaces that physically occupy7

negligible space compared to the bulk material. For an interface diffused over a certain length,8

we derive an effective interface fracture toughness based on the diffused length and the fracture9

toughness of the bulk and the interface. Our derivation ensures the energetic equivalence between10

the sharp and the diffused representations of interface.11

We verified the critical energy release rates in a steadily propagating tensile fracture example
as well as the critical fracture pressure and the crack length evolution in toughness dominated
hydraulic fracturing. The proposed model does not require any changes in existing implementation
of phase-field models. The only requirement is to assign the analytically calculated effective interface
fracture toughness over a diffused sub-domain.

Keywords: phase-field; interface failure; hydraulic fracture; natural fracture; OpenGeoSys12

1. Introduction13

Phase-field models for fracture have become one of the most standard methods for simulation of14

fracturing which enjoy wide applicability from brittle [12, 61, 62], ductile [1, 3, 46, 85], dynamic [10,15

14, 53, 66], fatigue [18, 73], dessication [17, 40, 58], environment assisted [23, 57, 72] and to hydraulic16

fracturing [11, 20, 28, 39, 71, 81] to list just a few. This popularity is attributed by their capability17

to model complex evolution of an arbitrary number of cracks without restricting their propagation18

to any specific grid.19

Weak or strong, interfaces impact fracture evolution. Failure tends to concentrate at interfaces20

in fiber reinforced cement (FRC) composites [26, 51] and composite laminates [89]. For geological21

materials, pre-existing interfaces (e.g. natural fractures or faults) alter hydraulic fracture paths22

in many ways [84] (Fig. 1). Like fractures, such material interface occupies essentially negligible23

domain. Thus, diffused treatment of fracture in the phase-field models have also been applied to24

interface modeling.25

Existing studies may be categorized into two approaches. One approach is to use a phase-26

field order variable to represent interfaces. Natural fractures in geological materials have been27

represented by the phase-field variable that denotes the very state of the material damage assuming28

that the natural fractures have no cohesive strength [47, 67, 86]. The other approach is to represent29

interfaces by modifying their surface energy. Nguyen et al. proposed a model to account for30

interactions between interfacial damage and bulk fracture with micro-structural heterogeneities in31
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(a) (b)

Figure 1: (a) Hydraulic fracture (marked by yellow proppant) offsetting while it crosses the natural fracture, and (b)
hydraulic fracture interacts and crosses a mineralized fracture zone [44].

plaster and concrete [64, 65], and elastoplastic composites [52]. They combined the brittle phase-32

field approach for the bulk and the cohesive interface. The surface energy at the interfaces was then33

modified based on a level-set function and an additionally introduced phase-field order variable. This34

model was revisited by [69] for pre-existing adhesive interfaces in which the authors implemented35

a new interface finite element to map the jump discontinuity across the crack face instead of the36

level-set approach. Hansen–Dörr et al. proposed a non-invasive approach by assigning the modified37

fracture toughness over a diffused length to account for interfaces estimated from the surface energy38

equivalence [36, 37].39

If an interface is represented by the phase-field variable, it will impact the stress and strain40

profiles around the interface and their profiles will depend on a choice of the strain energy de-41

composition [5, 31, 62, 75, 76]. On the other hand, altering the surface energy gives us a greater42

flexibility. It can represent interfaces that are weaker or stronger than the bulk depending on the43

assigned surface energy.44

While the approaches proposed in [64, 65, 69] compare well with experimental observations,45

the implementation requires substantial changes in the existing phase-field formulation such as46

an additional phase-field variable or interface elements. On the contrary, the diffused interface47

approach proposed in [36, 37] is not implementation invasive and only requires to pre-compute the48

effective interface fracture toughness. However, the analytically derived effective interface fracture49

toughness in their studies underestimate the theoretical surface energy [36, 37], which need to be50

compensated by the empirical correction curves from a series of numerical simulations with various51

settings.52

Our objective in this study is to derive an effective interface fracture toughness that does not53

require empirical compensation. We first revisit the formulation in [36, 37] considering the optimal54

phase-field profile and discretization effects. We then derive an effective interface fracture toughness55

that ensures the energy equivalence in closed form. The newly derived expression is verified to56

accurately reproduce the theoretical energy release rates in well known examples. The proposed57

approach is simple to use as it only needs to assign appropriate fracture toughness field and does58
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not require changes in the formulation or use of special elements. Still, it can reproduce fracture59

impingement into an interface as predicted by the theory and effectively simulate hydraulic fracture60

interactions with natural fracture.61

This paper is structured as follows. Section 2 shows the construction of the effective interface62

fracture toughness. We go through verification examples in Section 3. Section 4 highlights the63

capabilities in practical examples followed by conclusions in Section 5.64

2. Construction of effective interface fracture toughness65

2.1. Phase-field models for fracture66

We consider a brittle-elastic medium Ω ⊂ RN with a crack set Γ (Fig. 2(a)). For the sake67

of simplicity, the body force and the external loading are considered absent. Then the potential68

energy is given as:69

P =

∫
Ω\Γ

W (u) dΩ, (1)

where W (u) is the strain energy density. Francfort and Marigo [29] recast Griffith’s criterion as the70

minimization of the total energy, which is the sum of the potential and the fracture surface energy71

defined as:72

F := P +

∫
Γ

Gc dΓ, (2)

where Gc is the critical elastic energy release rate.73

It is challenging to evaluate the crack surface energy for non-trivial crack geometry as it involves74

the surface integral over an evolving discrete crack set Γ. To overcome this challenge, the varia-75

tional phase-field model proposed in [12] follows the approximation of [4] via Γ-convergence [16].76

Introducing a scalar phase-field variable, v : Ω 7→ [0, 1] and a regularization length parameter ` > 0,77

the surface integral is approximated as:78 ∫
Γ

Gc dΓ ≈
∫

Ω

Gc

2

(
(1− v)2

`
+ `|∇v|2

)
dΩ. (3)

Alternatively, the phase-field model proposed in [62] is constructed from a geometrical approx-79

imation. Considering an infinite 1D bar B = [−∞,+∞]× Γ with a crack at x = 0, the state of the80

material approximates the sharp fracture with the following profile:81

v(x) = 1− e−|x|/`. (4)

Accepting this profile, the followings are noticed:82

1. (4) is the solution of the differential equation:83

1− v + `2v′′ = 0, with v(0) = 0 and v(±∞) = 1. (5)

2. Then (5) is the Euler-Lagrange equation associated with the variational problem of:

J(v) :=
1

2

∫ +∞

−∞

(1− v)2

`
+ `|v′|2 dx.
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This 1D analysis is extended to a multi-dimensional domain Ω ⊂ RN where the surface energy84

density function is approximated using the phase-field profile of (4):85

S(v,∇v) :=
1

2

(
(1− v)2

`
+ `|∇v|2

)
. (6)

Using this density, the surface energy is approximated as:86 ∫
Γ

Gc dΓ ≈ Gc

∫
Ω

1

2

(
(1− v)2

`
+ `|∇v|2

)
dΩ. (7)

The only difference between these two approaches amounts to the assumed profile of (4), which87

imposes the spatial uniformity on Gc. In other words, the profile of (4) is a special case when Gc88

is spatially uniform. We discuss the implications of this assumption in the next sub-section.89

2.2. Interface model90

To account for interfaces in phase-field models, [37] proposed to compute the effective interface91

fracture toughness G̃int
c diffused over a certain length b (Fig. 2(a)). The effective interface fracture92

toughness is assigned in this subdomain and the bulk toughness outside (Fig. 2(b)). The surface93

fracture energy dissipated at the interface is given as Gint
c

∫
Γ

dΓ. Seeking the effective interface94

fracture toughness, we equate Gint
c

∫
Γ

dΓ to the approximated surface energy (3) using the diffused95

interface as:96

Gint
c

∫
Γ

dΓ = G̃int
c

∫
ξ(Γ)<b

S(v,∇v) dΩ +Gbulk
c

∫
ξ(Γ)>b

S(v,∇v) dΩ, (8)

where ξ(Γ) is the shortest distance from the crack Γ. In the followings, we look into the two different97

approaches above to compute the effective interface fracture toughness in a 1D setting ([0,+∞]×Γ).98

2.2.1. Phase-field approach99

In [37], the energy equivalence in (8) was considered in the 1D setting. First, the surface energy100

expended at the interface is approximated as:101

Gint
c

∫
Γ

dΓ ≈ Gint
c

∫ ∞
0

S(v,∇v) dx (9)

Using the profile of (4), (8) becomes102

Gint
c

∫ ∞
0

e−2x/`

`
dx = G̃int

c

∫ b

0

e−2x/`

`
dx+Gbulk

c

∫ ∞
b

e−2x/`

`
dx. (10)

Solving for G̃int
c , we obtain1:103

G̃int
c =

Gint
c −Gbulk

c e−2b/`

1− e−2b/`
. (11)

As noted in [37],
2b

`
must be greater than ln

Gbulk
c

Gint
c

so that G̃int
c > 0.104

1In the original notation in [37], ` = 2`c.
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(a) Diffused representation of a discontinuous interface and a crack set Γ.

(b) Surface energy profile.

Figure 2: Diffused interface model: (a) schematic of diffused representation of a discontinuous and a crack set Γ, (b)
Step-wise surface energy assigned over the subdomain ξ < b.
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2.2.2. Variational approach105

Here, we first construct the phase-field profile by seeking the optimal profile of v that mini-106

mizes (8) in the 1D setting:107 ∫ ∞
0

Gc(x)S(v,∇v) dx :=

∫ ∞
0

Gc(x)

(
(1− v)2

`
+ `|v′|2

)
dx (12)

where108

Gc(x) =

{
G̃int

c for x < b,

Gbulk
c for x > b.

(13)

If Gc(x) were uniform in x, (4) would be the optimal profile. The Euler-Lagrange equation in this109

case is:110

∂Sb
∂v
− d

dx

(
∂Sb
∂v′

)
= 0, (14)

where Sb := GcS. Because of the discontinuity of Gc(x) at x = b, Sb depends on x. Thus, the111

Weierstrass-Erdmann corner conditions need to be ensured ([56], p. 167), which read:112

∂Sb
∂v′

∣∣∣∣
x=b−0

=
∂Sb
∂v′

∣∣∣∣
x=b+0

, (15)

113 (
Sb − v′

∂Sb
∂v′

)∣∣∣∣
x=b−0

=

(
Sb − v′

∂Sb
∂v′

)∣∣∣∣
x=b+0

. (16)

Then the phase-field profile yields (see Appendix 6.1):114

v =

{
1− α1e

−x/` − (1− α1)ex/` for 0 ≤ x ≤ b,
1− α2e

−x/` for b ≤ x,
(17)

where

α1 =
(G̃int

c +Gbulk
c )eb/`

(G̃int
c +Gbulk

c )eb/` + (G̃int
c −Gbulk

c )e−b/`
,

α2 =
2G̃int

c eb/`

(G̃int
c +Gbulk

c )eb/` + (G̃int
c −Gbulk

c )e−b/`
. (18)

Remark 1. The phase-field profile (4) proposed in [62] implicitly assumes a spatially uniform Gc.115

If Gc is not uniform in Ω, the optimal phase-field profile would differ such as in (17).116

To compute G̃int
c , we assume that the fracture surface energy at the interface can be approxi-

mated by (9). Using (5) and (17), we have

Gint
c

∫ ∞
0

2e−2x/`

`
dx = G̃int

c

∫ b

0

(
(1− v)2

`
+ `|v′|2

)
dx+Gbulk

c

∫ ∞
b

(
(1− v)2

`
+ `|v′|2

)
dx. (19)

After performing the integrals, we arrive at

Gint
c = G̃int

c

{
α2

1

(
1− e−2b/`

)
−
(
1− α2

1

) (
1− e2b/`

)}
+Gbulk

c α2
2e
−2b/`. (20)
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(19) and (20) recover Gint
c → Gbulk

c and G̃int
c → 0 as b→ 0. Also, from (18) and (20), we have that117

Gint
c → G̃int

c as ` → 0 or b/` → ∞ (See Appendix 6.2). Fig. 3 compares G̃int
c from (20)2 against118

(11). As reported in [37], G̃int
c computed from (11) underestimates the theoretical value.119

Figure 3: Comparison of 1D G̃int
c normalized by Gint

c vs. b/`. We set Gint
c /Gbulk

c = 0.5.

2.2.3. Variational approach - AT1 model120

The approximated surface energy given in 3 is typically called the AT2 model as opposed to the121

AT1 model proposed more recently by [70]. Tanné et al. [79] performed thorough analyses comparing122

these two models in terms of crack nucleation and propagation. Their study found that the AT1123

model, which posses an elastic phase prior to the failure, is superior over the AT2 model especially124

when there is no strong stress singularity. Given the increasing popularity of the AT1 model, here125

we expand our derivation of the effective interface toughness to the AT1 model.126

The AT1 model approximates the surface energy as [15]:127 ∫
Γ

Gc dΓ ≈
∫

Ω

3Gc

8

(
(1− v)

`
+ `|∇v|2

)
dΩ. (21)

For a constant Gc, the optimal phase-field profile is:128

v =

1−
(

1− |x|
2`

)2

, for |x| ≤ 2`

1, for |x| > 2`.

(22)

Unlike the AT2 model, the phase-field profile for AT1 has a finite transition length (= 2`). If129

we diffuse an interface beyond this transition length, then (8) ends up with Gint
c = G̃int

c , which is130

equivalent to no interface. Therefore, we need to limit the diffused length b to be smaller than the131

2As α1 and α2 contain G̃int
c , solving (20) for G̃int

c requires an iterative root finding scheme such as fsolve function
in python. The same goes for solving AT1 equivalence (27).
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transition length 2` in AT1. With this constrain (b < 2`), similarly we can derive the optimal profile132

for the piecewise constant Gc(x) in (13) as (see Appendix 6.1):133

v =


− 1

4`2
x2 + β1x, for 0 ≤ x ≤ b,

− 1

4`2
x2 + β2x+ b(β1 − β2), for b ≤ x ≤ 2`2β2,

1, for x ≥ 2`2β2,

(23)

where

β1 =
Gbulk

c

G̃int
c

(
− b

2`2
+ β2

)
+

b

2`2
, (24)

β2 =
1

2`2G̃int
c

−b(Gbulk
c − G̃int

c

)
+Gbulk

c

√√√√b2 −

(
G̃int

c

Gbulk
c

)2

b2 + 4

(
G̃int

c

Gbulk
c

)2

`2

 . (25)

Note that the transition length (2`2β2) is now dependent of the fracture toughness. Again, we
equivalence the surface energies as:

Gint
c

∫ 2`

0

2

`

(
1− x

2`

)2

dx

= G̃int
c

∫ b

0

(
(1− v)

`
+ `|v′|2

)
dx+Gbulk

c

∫ 2`2β2

b

(
(1− v)

`
+ `|v′|2

)
dx. (26)

Then we obtain134

4

3
Gint

c = G̃int
c γ1 +Gbulk

c γ2 (27)

where

γ1 =
1

6`3
b3 − β1

`
b2 +

(
`β2

1 +
1

`

)
b, (28)

γ2 = −2

3
`3β3

2 + 2`β2 − 2`bβ2(β1 − β2)− b3

6`3
+
β2b

2

`
−
{
`β2

2 +
1

`
− b

`
(β1 − β2)

}
b. (29)

Similarly in AT1, we recover Gint
c → Gbulk

c and G̃int
c → 0 as b → 0. Since b is bounded by 2`, the135

upper limit of b/` is obtained as b→ 2`, Gint
c → G̃int

c (See Appendix 6.2).136

3. Verification examples137

Although often neglected in phase-field analysis, the fracture toughness in simulation needs to
account for the corresponding mesh discretization3 relative to the theoretical value [13, 30, 87].

3The “numerical” toughness is given by Gc(1 + h/2`) for AT2 and Gc(1 + 3h/8`) for AT1 in phase-field models.
Without accounting for this, the material toughness would vary with ` (h/` to be precise). We refer to [13] (p. 103)
or [87] for details.
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Following this treatment, we consider the following numerical phase-field profile for AT2 for element
discretization of size h in the 1D setting considered in (20)4:

v =


0 for x ≤ h/2,
1− α1e

−(x−h/2)/` − (1− α1)e(x−h/2)/` for h/2 < x < b′ + h/2,

1− α2e
−(x−h/2)/` for b′ + h/2 ≤ x,

(30)

where b′ = b− h/2. With this phase-field profile, (20) becomes

Gint
c

(
h

2`
+ 1

)
= G̃int

c

{
h

2`
+ α2

1

(
1− e−2b′/`

)
− (1− α1)2

(
1− e2b′/`

)}
+ Gbulk

c α2
2e
−2b′/`. (31)

Similarly, for AT1, the numerical phase-field profile is:138

v =



0 for x ≤ h/2,

− 1

4`2
(x− h/2)2 + β1(x− h/2) for h/2 ≤ x ≤ b′ + h/2,

− 1

4`2
(x− h/2)2 + β2(x− h/2) + b(β1 − β2) for b′ + h/2 ≤ x ≤ 2`2β2 + h/2,

1 for x ≥ 2`2β2 + h/2.

(32)

Then (27) becomes139

Gint
c

(
h

2`
+

4

3

)
= G̃int

c

(
h

2`
+ γ1

)
+Gbulk

c γ2. (33)

Remark 2. We recover (20) (resp. (27)) by setting h→ 0 in (31) (resp. (33)), but for a finite mesh140

size h, the numerical fracture toughness is dependent on h (or rather the ratio h/`). Therefore, if141

the ratio h/` varies in the domain, so does the numerical fracture toughness.142

In the following verification examples, we compute the effective interface fracture toughness G̃int
c143

using (31) for AT2 and (33) for AT1. We refer to Appendix 6.3 for detailed implementation of the144

model.145

3.1. Surfing boundary example146

We first verified the phase-field profile under non-uniform Gc in (17) using the surfing ex-147

ample [41]. Consider a computational domain, Ω = [0, L] × [−H/2, H/2] with an edge crack,148

Γ = [0, a0] × {0}, and a diffused interface [0, L] × [−b, b] (Fig. 4(a)) which is subjected to a time149

dependent crack opening displacement:150

u(x, y, t) = U(x− vt, y) on ∂ΩD, (34)

where v is an imposed loading velocity; and U is the asymptotic solution for the Mode-I crack151

opening displacement152

Ux =
KI

2µ

√
r

2π
(κ− cosϕ) cos

ϕ

2
,

Uy =
KI

2µ

√
r

2π
(κ− cosϕ) sin

ϕ

2
, (35)

4 We consider a crack is represented by v = 0 in an entire element rather than by a node because, in simulation,
a crack propagates through elements not the element boundaries (i.e., nodes).
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where KI is the stress intensity factor, κ = (3 − ν)/(1 + ν) and µ = E/2(1 + ν); (r, ϕ) are the153

polar coordinate system, where the origin is crack tip. Also, we used Gint
c = K2

Ic(1 − ν2)/E as154

the fracture surface energy under plane strain condition. Table 1 lists the material properties and155

geometry of the numerical model. The domain was meshed with uniform quadrilateral elements to156

avoid varying h/`.157

(a) (b)

Figure 4: (a) Schematic view of surfing boundary condition benchmark where an interface exists. Geometry and
boundary conditions. (b) Phase-field profiles obtained from varying Gc at t = 0.2tf . We set l = 2h, and b/` = 0.75.
The white arrow, {0.5} × [0, 0.1], illustrates the line where we plot the phase-field profile in Fig. 5.

Table 1: Phase-field profile and surfing boundary example: Material properties [37] and geometrical parameters.

Name Symbol Value Unit
Young’s modulus E 210 ×103 MPa
Critical energy release rate of bulk Gbulk

c 5.4 MPa·mm
Critical energy release rate of interface Gint

c 2.7 MPa·mm
Poisson’s ratio ν 0.3 −
Effective element size h 5× 10−3 mm
Regularization parameter ` 1× 10−2 mm
Imposed loading velocity v 1.5 mm/s
Length L 2 mm
Height H 1 mm
Initial crack length a0 0.5 mm

Simulated phase-field profiles were taken along the orthogonal line indicated in Fig. 4(b) and158

match closely with (30) (Fig. 5) for AT2 and with (32) (Fig. 6) for AT1. The profiles exhibit a kink159

at ξ = b and deviate from the well known exponential form (4) for AT2 and from the quadratic160

form (22) for AT1 more profoundly with smaller b/`.161

We computed the energy release rate using Gθ method [27, 53] with various b/` ratios and plot162

the errors against the theoretical numerical toughness i.e. (Gc)num = Gc(1 + h/2`) for AT2 and163

(Gc)num = Gc(1 + 3h/8`) for AT1 [13, 87] in Fig. 7. The effective interface fracture toughness164

G̃int
c computed from (31) with various h/` ratios are in an excellent agreement with the theoretical165

10



(a) b/` = 0.75 (b) b/` = 1.25

(c) b/` = 1.75 (d) b/` = 2.25

Figure 5: Phase-field profiles obtained from varying Gc in AT2. We set l = 2h and plot the phase-field profile over
{0.5} × [0, 0.1], at t = 0.2tf . The slope of the phase-field profile at y = b changes due to the discontinuities of Gc at
interface.
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(a) b/` = 0.75 (b) b/` = 1.25

(c) b/` = 1.75

Figure 6: Phase-field profiles obtained from varying Gc in AT1. We set l = 2h and plot the phase-field profile over
{0.5} × [0, 0.03], at t = 0.2tf . The slope of the phase-field profile at y = b changes due to the discontinuities of Gc

at interface.
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critical energy release rates despite the 1D consideration in its construction. In all the settings, the166

errors are within 2% and even less for AT1 (Fig. 7).167

(a) Gθ comparison AT2 (b) Gθ relative error AT2

(c) Gθ comparison AT1 (d) Gθ relative error AT1

Figure 7: The computed energy release rate vs. time under plane strain condition. We used virtual perturbation of
θ to compute energy release rate using Gθ [27]. The θ value is 1 inside of Br(P ), 0 outside, and a linear interpolation
in between. We set r = 4` and R = 2.5r (see [54]).

3.2. Sneddon’s problem - 2D168

We verified the model with plane-strain hydraulic fracture propagation in a toughness dominated169

regime based on Sneddon’s solution [74], a widely used verification example in hydraulic fracturing170

simulation [11, 25, 32, 34, 45, 48, 63]. The problem was solved in an infinite 2D domain with171

a line crack [−a0, a0] × {0}. To account for the infinite boundaries in the closed-form solution,172

a finite domain [−L/2, L/2] × [−L/2, L/2] with a diffused interface [−L/2, L/2] × [−b, b] (Fig. 8)173

was embedded in a larger domain [−5L, 5L] × [−5L, 5L] in the computations. The sub-domain174

[−L/2, L/2]× [−L/2, L/2] was meshed with uniform quadrilateral elements to ensure invariant h/`.175

176

The critical volume for crack propagation is given as Vc :=

√
4πGca

3
0

E′
and the corresponding177
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Figure 8: Schematic view of Sneddon’s problem with a finite strip of compensated interface.

pressure and the crack length evolutions are given as follows:178

p(V ) =


E′V

2πa2
0

V < Vc[
2E′G2

c

πV

] 1
3

V ≥ Vc,
(36)

179

a(V ) =


a0 V < Vc[

2E′V 2

4πGc

] 1
3

V ≥ Vc.
(37)

To account for the hydraulic force on the crack lips, we need to add the work done by the fluid180

pressure to the total energy. We refer to Appendix 6.4 for this extension. Taking advantage of the181

linearity of the system, the simulations were run with the dimensionless properties listed in Table 2.182

Table 2: Parameter values for the Sneddon benchmark.
Name Symbol Value
Young’s modulus E 1.0
Critical energy release rate of bulk Gbulk

c 2.0
Critical energy release rate of interface Gint

c 1.0
Poisson’s ratio ν 0.15
Effective element size h 1× 10−3

Regularization parameter ` 2× 10−3

Length L 0.6
Initial crack length a0 0.1
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From (19) and (26), we can retrieve the crack length a as:183

a =

∫
Ω

Gc

4cn

(
(1− v)n

`
+ `|∇v|2

)
dΩ

Gint
c

(
h

4cn`
+ 1

) . (38)

where n = 1 corresponds to AT1 (cn = 1/2) and n = 2 to AT2 (cn = 2/3). Computed pressures and184

retrieved crack lengths are in a close agreement with the closed form solutions (Fig. 9).185

(a) Fracture pressure AT2 (b) Fracture length AT2

(c) Fracture pressure AT1 (d) Fracture length AT1

Figure 9: Comparison of the fracture pressure (a, c) and the length (b, d) against the closed form solution.

3.3. Sneddon’s problem - 3D186

As our last verification example, we applied our approach to penny-shape hydraulic fracturing in187

3D. The analytical solution is developed in an infinite 3D domain with a circular crack [0, a0]×[0, 2π]188

in the polar coordinate. All the parameters are the same as the 2D example except that we ran189

only the AT1 model and the mesh size is h = 2.5× 10−3.190
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Applying the symmetry, we extruded the 2D mesh only in the positive z-direction by 5h with191

the same resolution and then by 0.5 with a 10 times coarser (10h) resolution (Figure 10(a)). The192

reason for this first extrusion of 5h is that the AT1 model has a finite support (2` = 4h) and its193

numerical fracture toughness is not impacted by varying h/` beyond this length.194

(a) Initial penny-shape crack. (b) Penny-shape crack growth in 3D.

Figure 10: Sneddon’s problem in 3D: (a) Initial penny-shape crack. (b) Penny-shape crack growth at V = 0.37Vc.

Using Sneddon’s closed form solution [74], we obtain the critical volume as Vc :=
8

3

√
πGca

5
0

E′
195

and the following pressure and crack length evolutions [78]:196

p(V ) =


3E′V

16πa3
0

V < Vc[
π3E′2G3

c

12V

] 1
5

V ≥ Vc,
(39)

197

a(V ) =


a0 V < Vc[

9E′V 2

64πGc

] 1
5

V ≥ Vc.
(40)

Note that the crack radius can be recovered from:198

r =


∫

Ω

Gc

4cn

(
(1− v)n

`
+ `|∇v|2

)
dΩ

Gint
c

(
h

4cn`
+ 1

)
π


1/2

. (41)

Figure 10(b) shows a simulated penny-shape crack at V = 0.37Vc. Computed pressures and crack199

radii are plotted against the closed form solution in Figure 11. The agreements are not as close200

16



as the 2D examples. This is because of the coarser element size used (2.5 times bigger) in the 3D201

examples for tractable computational time5.202

(a) Fracture pressure AT1 (b) Fracture radius AT1

Figure 11: Comparison of the fracture pressure (a) and the radius (b) against the closed form solution.

4. Numerical examples203

This section demonstrates the capabilities of the model through examples where a weak interface204

is located away from an initial crack with some inclination. In such configurations, an interface205

ahead of the propagating fracture experiences compressional loading. Therefore, the strain energy206

in (65) needs to be decomposed depending on the state of the strain as originally pointed out207

by [5]. In the following examples, we employed the approach proposed by Miehe et al. [62] based208

on a spectral decomposition of the strain.209

4.1. Static crack impinging on an interface210

This example aims to investigate the competition between deflection and penetration of a crack211

that impinges into an interface. Consider a computational domain, Ω = [0, L] × [−H/2, H/2],212

with an edge crack Γ = [0, a0]× {0} and an interface with an inclined angle, β under plane strain213

condition (Fig. 12). The materials are homogeneous on either side of the interface. The specimen214

has the edge length L = 2 and H = 1.8. We set b = 1.25`. Also, the computational domain is215

subjected to the surfing boundary conditions (Section 3.1). The remaining input data can be found216

in Table 1.217

He and Hutchinson et al. [38, 42] have studied a crack that impinges on an interface joining218

bi-material that is subjected to remote static loading. For the homogeneous case, the ratio of219

the mode-I static crack energy release rate (GI) and the deflected crack tip (Gint) is a function of220

interfacial angle, β [6, 83]:221

5The total number of nodes is 5,621,772. The simulations were distributed to 960 cores over 20 nodes with 2×24
cores. The computational times were between 20 to 24 hours in the 3D examples.
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Figure 12: Schematic view of crack impinging on an interface.

Gint

GI
=

1

16

[(
3 cos

β

2
+ cos

3β

2

)2

+

(
sin

β

2
+ sin

3β

2

)2
]
. (42)

For a deflecting crack at an interface, we consider the maximum energy release rate criterion222

which is to find a propagation angle θ that maximizes the energy release rate [19, 50]:223

max
θ∈[0,2π)

G(θ)

Gc(θ)
. (43)

Using (42) and (43), the condition for crack penetration into the bulk is given as:224

Gint

GI
<

Gint
c

Gbulk
c

. (44)

Otherwise it deflects into the interface [38, 42]. As predicted by this criterion, the crack deflects into225

the interface for
Gint

GI
>

Gint
c

Gbulk
c

while the crack penetrates into the bulk for
Gint

GI
<

Gint
c

Gbulk
c

(Fig. 13).226

Both AT1 and AT2 results depict the identical deflection/penetration behaviors.227

4.2. Hydraulic fracturing with a natural fracture228

In this example, we simulated hydraulic fracture interactions with a pre-existing natural fracture229

which has a weaker toughness (partially cemented) than the bulk material, using the AT2 model.230

Consider a natural fracture with a length of l = 0.2 placed a0/2 away from the initial fracture with231

an inclination angle of α in the same setting as in Fig. 8 except that a0 = 0.05 (Fig. 14). We consider232
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(a) β = 30◦-AT1 (b) β = 30◦-AT2

(c) β = 45◦-AT1 (d) β = 45◦-AT2

(e) β = 70◦-AT1 (f) β = 70◦-AT2

Figure 13: Phase-field profile for crack impinging on an interface with different interfacial angle, β. (a) - (d) show

the crack deflecting into the interface

(
Gint

GI
≥
Gint

c

Gc

)
, while (e) and (f) show that the crack penetrating into the

bulk

(
Gint

GI
<
Gint

c

Gc

)
. The black line indicates the interface.
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two different angles, α = 90◦ and 165◦, and two different interface toughness of Gint
c /Gbulk

c = 0.2233

and 0.5, which imply that the natural fractures respectively have 20% and 50% of the bulk fracture234

toughness. The other material properties are the same as in Section 3.3.235

Figure 14: Schematic view of hydraulic fracturing with a natural fracture.

Fig. 15 shows hydraulic fracture profiles at the initial condition, and at the injection vol-236

ume of 0.35 (V = 0.35) for Gint
c /Gbulk

c = 0.2 and 0.5 with α = 90◦. The hydraulic fracture237

in the Gint
c /Gbulk

c = 0.2 case (Fig. 15(b)) branches into two fractures. On the contrary, for the238

Gint
c /Gbulk

c = 0.5 case (Fig. 15(c)), the hydraulic fracture does not “see” the natural fracture and239

keeps propagating in the original direction.240

With α = 165◦, the natural fracture impacts the hydraulic fracture paths significantly and241

changes the direction for both Gint
c /Gbulk

c = 0.2 and 0.5 cases (Fig. 16). Even though the hydraulic242

fractures end up along the natural fracture in both cases, a careful observation can reveal that243

the inflection angles towards the natural fracture are slightly different. The smaller Gint
c /Gbulk

c ,244

the earlier the hydraulic fracture is attracted to the natural fracture (Figs. 16(b) and 16(c)). This245

attraction towards the weak interface is possibly due to both numerics and physics. With the246

smeared representation of crack, the crack tip can “feel” the presence of interfaces a little earlier247

than the sharp representation counterpart. At the same time, as the crack approaches, the weaker248

interface can start forming damage before the bulk material and thus can deform more, which249

attracts the crack tip.250

The question in practice would be whether we see any signatures on the pressure response [49,251

68]. Turning our attention to the pressure responses, we see that in all the cases, the pressure first252

builds up to the critical value and declines as the fracture grows (Fig. 17).253

Though the natural fracture does not seem to impact the hydraulic fracture propagation path254

for the α = 90◦ and Gint
c /Gbulk

c = 0.5 case (Fig. 15(c)), the pressure drops slightly when the255

hydraulic fracture crosses the natural fracture (Fig. 17(a)). In other three cases, the pressures256

drop substantially when the hydraulic fracture turns into the natural fracture, which agrees with257
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(a) initial (b) Gint
c /Gbulk

c = 0.2

(c) Gint
c /Gbulk

c = 0.5

Figure 15: Phase-field profile for hydraulic fracturing interacting with a natural fracture: (a) the initial crack is
represented by the phase-field and the physical location of the natural fracture with α = 90◦ is indicated by the
black line, (b) shows the Gint

c /Gbulk
c = 0.2 case with fracture propagation along the natural fracture and (c) shows

the Gint
c /Gbulk

c = 0.5 case where the hydraulic fracture bypassed the natural fracture.
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(a) initial (b) Gint
c /Gbulk

c = 0.2

(c) Gint
c /Gbulk

c = 0.5

Figure 16: Phase-field profile for hydraulic fracturing interacting with a natural fracture: (a) the initial crack is
represented by the phase-field and the physical location of the natural fracture with α = 165◦ is indicated by the
black line, (b) shows a Gint

c /Gbulk
c = 0.2 and (c) the Gint

c /Gbulk
c = 0.2 case. Both cases show the hydraulic fracture

turning into the natural fracture but with different angles.
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experimental observations [55, 60]. Once the fracture tip is out of the natural fracture, the higher258

pressure is required to fracture the bulk rock.259

One distinguished response is the double dip in the case for α = 90◦ and Gint
c /Gbulk

c = 0.2260

(Fig. 17(a)). The first small drop occurs immediately before the hydraulic fracture hits the natural261

fracture, then the second when branching preceded by a small build up.262

(a) α = 90◦

(b) α = 165◦

Figure 17: Pressure responses from all four cases of Section 4.2.
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5. Conclusion263

In this study, we proposed an approach to approximate the effective interface fracture tough-264

ness for a diffused interface by equating the diffused surface energy to the sharp representation.265

In deriving the effective interface fracture toughness, we demonstrated that the widely accepted266

exponential phase-field profile (AT2) applies only for a spatially uniform fracture toughness and the267

optimal phase-field profile takes a different form otherwise. The optimal phase-field profile needs268

to meet the Weierstrass-Erdmann conditions at the discontinuity for a spatially varying fracture269

toughness considered in this study.270

Our approach to model the interface is very simple compared to previously proposed methods271

because:272

1. the effective interface fracture toughness is computed from a closed-form equation without273

the need of running extra simulations and274

2. it does not require any changes in the existing phase-field implementation.275

Despite its simplicity, the approach accurately reproduced the critical energy release rates in two276

well known examples.277

As our final remarks, we note two possible future studies.278

1. If a crack propagates towards a stronger interface, the maximum energy release rate crite-279

rion [19, 50] will exclude the propagation along the interface. Quantitative investigation of280

energy expenditures may be needed in such scenarios.281

2. Hydraulic fracture interaction with natural fractures have been studied experimentally [43,282

60], analytically [22] and numerically [24, 59, 80, 82]. Although some semi-analytical criteria283

have been proposed in [33, 88], further studies may be needed to establish a unified criterion284

that includes the interface (natural fracture) toughness and behaviors of kinking and branching285

as observed in this study.286
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6. Appendix301

6.1. Optimal phase-field profiles302

In a general setting in 1D, we seek for v that minimizes303 ∫ ∞
0

Gc(x)S(v,∇v) dx :=

∫ ∞
0

Gc(x)

4cn

(
(1− v)n

`
+ `|v′|2

)
dx (45)

where cn is the normalizing parameter given by cn :=
∫ 1

0
(1− ω)n/2dω. In the followings, we derive304

the optimal profile of v for AT1 (n = 1) and AT2 (n = 2) when Gc(x) is a piecewise constant as305

defined in (13).306

6.1.1. Optimal profile for AT1307

We follow the procedures outlined in [32] closely in this construction. As discussed in 2.2.3, the308

diffused length b needs to be within the transition length 2`. For b < 2` and x ∈ (0, b), a general309

solution to the Euler-Lagrange equation is given as:310

v(x) =


− 1

4`2
x2 + β1x+ β3 for 0 ≤ x ≤ b,

− 1

4`2
x2 + β2x+ β4 for b ≤ x.

(46)

To solve for β1, β2, β3, and β4, we use: (1) v(x) = 0 at x = 0, (2) the continuity of v(x) at x = b,311

(3) the first Weierstrass-Erdmann corner condition6, (4) the inequality conditions v(x) ≤ 1, and312

(5) v′(x) ≥ 0.313

From the boundary condition v(0) = 0, we have314

β3 = 0. (47)

For the continuity at b, v(b− 0) = v(b+ 0), we get315

β4 = b(β1 − β2). (48)

Substituting (48) into (46) gives

v(x) = − 1

4`2
(x− 2`2β2)2 + `2β2

2 + b(β1 − β2). (49)

This is a negative parabola attaining the maximum abscissa of `2β2
2 + b(β1 − β2) at x = 2`2β2.316

Since x > 0, we have317

β2 ≥ 0. (50)

As the inequality condition requires that v(x) ≤ 1, we have `2β2
2 + b(β1− β2) ≤ 1. Furthermore, to318

meet the inequality v′(x) ≥ 0, we need the parabola to reach the maximum value of 1 at x = 2`2β2.319

Thus we have the limit case of:320

`2β2
2 + b(β1 − β2) = 1. (51)

Finally, applying the first Weierstrass-Erdmann corner condition, G̃int
c v′|x=b−0 = Gbulk

c v′|x=b+0, we321

get β1 as in (24). Then from (50), (51) and (24), we obtain β2 as in (25).322

6The second condition is required when b is unknown.
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6.1.2. Optimal profile for AT2323

Similarly to the AT1 case, a general solution for the phase-field profile is given by:324

v(x) =

{
1− α1e

−x/` − α3e
x/` for 0 ≤ x ≤ b,

1− α2e
−x/` − α4e

x/` for b ≤ x.
(52)

We can solve for α1, α2, α3, and α4, using the boundary conditions of (1) v = 0 at x = 0 and325

(2) v = 1 with x→∞, (3) the first Weierstrass-Erdmann condition, and (4) the continuity of v.326

From v(0) = 0, we have327

α3 = 1− α1. (53)

Applying v(∞)→ 1 yields328

α4 = 0. (54)

The first Weierstrass-Erdmann condition provides329

G̃int
c

{
α1e
−x/` − (1− α1)ex/`

}
= Gbulk

c α2e
−x/`. (55)

Finally the continuity of v at x = b imposes330

α1e
−x/` + (1− α1)ex/` = α2e

−x/`. (56)

From (55) and (56), we obtain (18).331

6.2. Limits of the effective interface fracture toughness332

The effective interface fracture toughness proposed in this study are bounded in (0, Gint
c ) with333

the limits of b/`.334

For AT1, as b→ 0 (b/`→ 0), we have that335

β1 →
Gbulk

c

G̃int
c

β2 and β2 →
1

`
. (57)

Applying (57) to (28) and (29) gives336

γ1 → 0 and γ2 →
4

3
. (58)

Therefore, we obtain Gint
c → Gbulk

c and G̃int
c → 0.337

For the upper bound (b/` → ∞ or ` → 0), since b < 2`, it is given as b/` → 2. As we send338

b→ 2`, we get339

β1 →
1

`
and β2 →

1

`
. (59)

Similarly, applying (59) to (28) and (29), we have340

γ1 →
4

3
and γ2 → 0. (60)

Therefore, from (27), we obtain Gint
c → G̃int

c .341
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For AT2, as we send b→ 0, we have342

α2
1

(
1− e−2b/`

)
→ 0 and

(
1− α2

1

) (
1− e2b/`

)
→ 0, (61)

and343

α2
2e
−2b/` → 1. (62)

Substituting (61) and (62) into (20), we have Gint
c → Gbulk

c and G̃int
c → 0.344

In the upper bound (b/`→∞), we have345

α2
1

(
1− e−2b/`

)
→ 1 and

(
1− α2

1

) (
1− e2b/`

)
→ 0, (63)

and346

α2
2e
−2b/` → 0. (64)

Putting (63) and (64) into (20) yields Gint
c → G̃int

c .347

6.3. Implementation of the variational phase-field model348

The phase-field profiles discussed are the optimal profiles that minimize the surface energy349

without the presence of the strain energy. In a variational phase-field model for fracture, u and v350

are obtained through minimization of the Francfort-Marigo energy and no profile of v is imposed a351

priori. Following [12], the energy functional is regularized as:352

F` :=

∫
Ω

v2W (u) dΩ +

∫
Ω

Gc

4cn

(
(1− v)n

`
+ `|∇v|2

)
dΩ. (65)

The strain energy is computed using a linearized strain, ε(u) := (∇u +∇uT)/2, as:353

W (u) =
1

2
C : ε(u) : ε(u), (66)

where C is the fourth order linear elastic tangent operator.354

Although the importance of splitting the strain energy into tension and compression parts have355

been discussed by [5, 31, 62, 75, 77], the isotropic strain energy as in the original model [12]356

is sufficient to recover the closed form solutions for tensile dominant fracture in the verification357

examples in Section 37.358

In a discrete time series, we obtain ui and vi at a given time ti by minimizing:359

(ui, vi) = argmin {F`(u, v) : u ∈ U(ti), v ∈ V(ti, vi−1)} , (67)

where U is the kinematically admissible displacement set:360

U(ti) =
{
u ∈ H1(Ω) : u = 0 on ∂ΩD

}
. (68)

The kinematically admissible set of v requires an irreversible condition. We adopt the irreversible361

condition introduced by [12, 13] where we set v(x) = 0 in:362

CR(ti−1) := {x ∈ Ω : vi−1 ≤ η} , (69)

7In Section 4, as the pre-scribed interface undergoes compression, we applied the strain energy split based on a
spectral decomposition [62].
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where η is a threshold. η = 1 corresponds to a strict irreversibility i.e. 0 ≤ v(x) ≤ vi−1 whereas363

η ' 0 corresponds to a “soft” irreversibility which allows the material to heal unless fully broken.364

Thus we have:365

V(ti, vi−1) =
{
v ∈ H1(Ω) : v = 0 on CR(ti−1)

}
. (70)

Taking advantage of the bi-convexity of (65), we solve the system by alternatively minimizing (65)366

with respect to u and v. As the solution of v requires a variational inequality, we use a non-367

linear solver provided by PETSc [7, 8]. Alternative ways to impose the irreversibility include an368

augmented Lagrangian approach [81], use of history variable [2, 62], or a penalty based method [32].369

The present model is implemented in an open source code, OpenGeoSys [9]. Further information370

on the code and simulation examples are freely accessible at https://www.opengeosys.org/.371

6.4. Variational phase-field model for hydraulic fracture372

We extend the total energy function by adding the work done by the fluid pressure,
∫

Γ
pf Ju · nK dΓ,

where pf is the “net” pressure defined as the excess pressure above the minimum stress and n is
the normal vector to Γ. The jump quantity over Γ can be approximated as [11, 21]:∫

Γ

pf Ju · nK dΓ ≈
∫

Ω

pf u · ∇v dΩ.

As the toughness dominated hydraulic fracturing regime considers no pressure loss in the crack, our373

total energy yields as:374

E` :=

∫
Ω

v2W (u) dΩ +

∫
Ω

Gc

4cn

(
(1− v)n

`
+ `|∇v|2

)
dΩ + pf

∫
Ω

u · ∇v dΩ. (71)

Unlike boundary load driven fracture where the boundary displacement is controlled with time375

(e.g. the surfing example), hydraulic fracture is driven by fluid volume changes in the system.376

Without fluid leak-off from the crack, the injected volume Qi at t = ti is equal to the crack volume377

V :=
∫

Ω
u · ∇v dΩ. Thus we minimize (71) with this mass balance constrain as:378

(ui, vi; pf ) = argmin

{
E`(u, v; p) : u ∈ U(ti), v ∈ V(ti, vi−1), Qi =

∫
Ω

u · ∇v dΩ

}
. (72)
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