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Abstract30

Travel time distributions (TTDs) provide an effective way to describe the
transport and mixing processes of water parcels in a subsurface hydrological
system. A major challenge in characterizing catchment TTD is quantifying
the travel times in deep groundwater and its contribution to the streamflow
TTD. Here, we develop and test a novel modeling framework for an inte-
grated assessment of catchment scale TTDs through explicit representation
of 3D-groundwater dynamics. The proposed framework is based on the link-
age between a flux tracking scheme with the surface hydrologic model (mHM)
for the soil-water compartment and a particle tracking scheme with the 3D-
groundwater model OpenGeoSys (OGS) for the groundwater compartment.
This linkage provides us with the ability to simulate the spatial and tempo-
ral dynamics of TTDs in these different hydrological compartments from grid
scale to regional scale. We apply this framework in the Nägelstedt catchment
in central Germany. Simulation results reveal that both shape and scale of
grid-scale groundwater TTDs are spatially heterogeneous, which are strongly
dependent on the topography and aquifer structure. The component-wise
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analysis of catchment TTD shows a time-dependent sensitivity of transport
processes in soil zone and groundwater to driving meteorological forcing.
Catchment TTD exhibits a power-law shape and fractal behavior. The pre-
dictive uncertainty in catchment mean travel time is dominated by the uncer-
tainty in the deep groundwater rather than that in the soil zone. Catchment
mean travel time is severely biased by a marginal error in groundwater char-
acterization. Accordingly, we recommend to use multiple summary statistics
to minimize the predictive uncertainty introduced by the tailing behavior of
catchment TTD.

Keywords: Travel time distribution, Flux tracking, Particle tracking,31

Coupled model, Predictive uncertainty32

1. Introduction33

Characterizing the travel or transit time (TT) of a water parcel is im-34

portant for the assessment and management of global and regional water35

resources. Travel time distributions (TTDs) provide a statistical represen-36

tation of this property by accounting for the storage, mixing, and transport37

processes in a hydrologic system (Niemi, 1977; McGuire and McDonnell,38

2006; Botter et al., 2010; McDonnell et al., 2010). Analysis of water parcel39

TTs is, therefore, of high relevance to the groundwater recharge estimation40

(Cartwright et al., 2017; McCallum et al., 2017), the vulnerability of wa-41

ter resources (Molnat and Gascuel-Odoux, 2002; Benettin et al., 2015), and42

the assessment of nonpoint-source agricultural contamination (Böhlke and43

Denver, 1995; Eberts et al., 2012; Kumar et al., 2020).44

Water TTs are typically not measured directly. Instead, they are inferred45

using models constrained by hydrological and geochemical data (McCallum46

et al., 2014; McGuire et al., 2007; Benettin et al., 2019). Such models of47

TTDs can be classified into lumped parameter models, dynamic StorAge Se-48

lection (SAS) functions, flux tracking models, and particle tracking models49

(Sprenger et al., 2019). Among them, the SAS approach is a state-of-art50

technique to characterize the temporal dynamics of TTDs and mixing pro-51

cesses of water parcels (Botter et al., 2011; Rinaldo et al., 2015; Harman,52

2015). It distinguishes between the TTDs and residence time distributions53

(RTDs; Botter et al. (2011)) by virtue of said SAS functions and is able to54

comprehensively describe the age-specific outflow generation. Moreover, two55

different forms of time-variant TTDs – forward and backward forms – can56
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be distinguished in this framework (Benettin et al., 2015).57

Flux tracking models are based on the determinants (i.e., hydrological58

fluxes/storages) of resulting precipitation partitioning processes. Although59

these models are often highly conceptualized by, e.g., assuming perfect mixing60

inside each control volume, they have been proven to be a valuable model-61

ing framework to interpret tracer data and derive catchment-scale TTDs to62

better characterize the age distribution of water storage and outflow fluxes63

(Hrachowitz et al., 2013; Benettin et al., 2015; Heße et al., 2017; Remondi64

et al., 2018). Flux tracking, therefore, helps to estimate TTDs of different65

water storages and to understand the mixing behaviors of soil water and66

groundwater (Hrachowitz et al., 2013). If spatially distributed models are67

used for input, the spatial heterogeneity in TTDs can also be assessed using68

flux tracking (Heße et al., 2017; Remondi et al., 2018; Kumar et al., 2020).69

On the other hand, Lagrangian particle tracking is a physically-based70

approach that uses the explicit characterization of velocity fields and associ-71

ated flow lines of the water particles in a heterogeneous subsurface system.72

Particle tracking can be used to trace the transport pathways of individ-73

ual water particles under the assumption of dispersive-advective transport74

or sole advective transport (Eberts et al., 2012; Leray et al., 2016; Davies75

and Beven, 2012). Such a particle tracking approach is typically linked with76

three-dimensional, distributed groundwater models that account for unsatu-77

rated and saturated groundwater flow and related age estimation (de Rooij78

et al., 2013; Engdahl and Maxwell, 2015; Yang et al., 2018; Jing et al., 2019).79

Although being computationally expensive, particle tracking models enable80

the direct link between TTs and the physical processes. Nevertheless, the81

particle tracking approach is not immune from certain methodological choices82

like spatial resolution or discretization of the mesh and geological attributes83

representing the subsurface system (Sprenger et al., 2019; Maxwell et al.,84

2019; Jing et al., 2019).85

Flux tracking approaches work very well with conceptual hydrological86

models, i.e., bucket-type models that track water fluxes between different87

compartments by partitioning precipitation, generating runoff, and repro-88

ducing near-surface hydrological variables (e.g., soil moisture and evapotran-89

spiration). Unfortunately, their groundwater characterizations are always90

implicit and processes are simplified/conceptualized with one or two lumped91

parameters, resulting in a possibly over-simplified characterization of ground-92

water flow and transport processes (Fenicia et al., 2006; Stewart et al., 2012).93

This is mainly due to the fact that the signal near the surface (i.e., discharge94
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or tracer concentration) is insensitive to the variation in groundwater stor-95

age. A recent study by Gleeson et al. (2016) demonstrates that only around96

6% of total groundwater in the uppermost 2 km over the globe is found to be97

contributed by contemporary (modern) recharge fluxes, indicating that only98

a modest portion of the total groundwater storage actively interacts with sur-99

face water. Groundwater ages may consequently span a wide range of values100

( e.g., over 50 years) over a short distance (less than 1.5 m) in the vertical101

direction (Weissmann et al., 2002). This strong heterogeneity in groundwa-102

ter ages cannot be explicitly captured by conceptual approaches used with103

flux tracking, but requires a detailed treatment of subsurface heterogeneity104

and tracing of water particles through physically-based groundwater models105

(Jing et al., 2018).106

Another important challenge to the TTD characterization is the fact that107

TTs of water parcels are time-variant and spatially heterogeneous. This108

transient behavior of TTDs has only been investigated more recently (Botter109

et al., 2010; Rinaldo et al., 2011; Cornaton, 2012; Harman, 2015; Engdahl,110

2017; Kaandorp et al., 2018; Kumar et al., 2020). The temporal variability111

has been investigated using tracer experiments (Birkel et al., 2011; McMillan112

et al., 2012; Benettin et al., 2015). The spatial variability in TT behavior,113

however, cannot be assessed using tracer data in streamflow because this sig-114

nal is a lumped representation of the whole catchment (Kirchner, 2016). The115

spatial distribution of water TTs is critical to the assessment of point and116

nonpoint-source contamination. The spatial variability in TTDs is closely117

related to the topographical, morphological, and geological properties within118

the catchment. The inferred mean travel time (MTT) using tracer data is119

subject to a high aggregation error in heterogeneous catchments (Kirchner,120

2016). Some studies unveiled that the shape of TTDs among different catch-121

ments can be different (Kaandorp et al., 2018; Abrams and Haitjema, 2018;122

Remondi et al., 2019). However, the spatial heterogeneity of the grid-scale123

TTDs parameters (e.g., shape and scale) within a catchment has rarely been124

investigated.125

Although many studies deployed flux tracking methods to estimate catchment-126

scale TTDs, the characterizations of groundwater storages are often con-127

ceptual, indicating that an analytical relationship between the storage and128

discharge has typically been presumed in a simplified manner (often as the129

outflow from a linear reservoir). This simplified characterization may lead130

to severe errors in interpreting tracer data and could essentially underesti-131

mate the catchment TTD due to its incapability in “seeing” the old water132
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(Stewart et al., 2012, 2017). Yet, given the known heterogeneity of sub-133

surface flow patterns, this paucity of spatially explicit representation of the134

groundwater system restricts the accuracy and reliability of inferred TT.135

While some studies have begun accounting for spatial heterogeneity in the136

soil compartment (Heße et al., 2017; Remondi et al., 2018; Kumar et al.,137

2020), a similar approach to the deeper groundwater system is still missing.138

Due to this gap, a number of questions remain currently unanswered. For139

example, what is the explicit role of groundwater in shaping up the travel140

time distributions (TTDs) of an overall streamflow behavior? In other words,141

how to disentangle the role of near-surface (soil) and groundwater TTs? How142

does the spatial heterogeneity of TTDs, resulting from the differences in cli-143

mate and landscape attributes (e.g., soil and geological features), affect the144

overall, i.e., catchment-wide TT behavior? And finally, how different are145

the spatial feature of TTDs corresponding to near-surface and groundwa-146

ter components? To answer these questions, we comprehensively investigate147

the spatial and temporal variability in TTDs through the integration of the148

flux tracking approach with the particle tracking approach. We describe and149

test the methodology to provide an integrated assessment of the catchment150

scale, subsurface TTDs accounting for an explicit treatment of the ground-151

water component using a 3-D groundwater model. We adapted a spatially152

varying description of transient TTDs through a flux tracking scheme (Hra-153

chowitz et al., 2013; Heße et al., 2017) that accounts for the daily variation154

in near-surface hydrological processes (e.g., soil moisture, evapotranspira-155

tion, fast-flows, groundwater recharge) represented in a distributed surface156

hydrologic model. The groundwater component is represented through a157

three-dimensional groundwater model and a particle tracking scheme is used158

to infer the corresponding groundwater TTs. Both components are inter-159

actively linked such that spatial and temporal variability of TTDs can be160

deduced for each hydrologic compartment at any specified location within161

a study domain. The proposed modeling framework explicitly accounts for162

the spatial heterogeneity of climate and landscape attributes including the163

representing of deep groundwater aquifers. We apply and test the proposed164

approach in a single densely mapped catchment located in Central Europe.165
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Figure 1: Modeling framework based on the coupled hydrological model mHM-OGS. The
modeling framework combines the flux tracking approach with the particle tracking ap-
proach to characterize soil-water and groundwater transport processes.

2. Methodology166

2.1. Integrated hydrological model167

For the numerical modeling of the subsurface water flow, we employ the168

coupled mHM-OGS model as described by Jing et al. (2018). This model169

was developed to account for the different challenges faced when modeling170

near-surface flow, e.g., soil moisture, vs. modeling deeper subsurface flow,171

i.e, groundwater.172

In the coupled mHM-OGS model, the mesoscale Hydrologic Model (mHM;173

Samaniego et al. (2010); Kumar et al. (2013)) is used to track the surface174

and near-surface hydrologic fluxes and storages (e.g., root-zone soil moisture,175

evapotranspiration, infiltration, groundwater recharge). On the other hand,176

the groundwater model OpenGeoSys (OGS; Kolditz et al. (2012)) is used to177

simulate the groundwater flow in the deeper aquifers and track the paths of178

water particles.179
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mHM is a distributed hydrologic model that employs grid cells as the180

basic unit, and is capable of simulating various near-surface water fluxes181

and states. These include interception, surface runoff, evapotranspiration,182

groundwater recharge, and soil moisture dynamics (Samaniego et al., 2010;183

Kumar et al., 2013). The root zone has been partitioned into several wa-184

ter storages including the canopy storage (x1 ), the snowpack (x2), the soil185

moisture content in the root zone (x3), impounded water in reservoirs or186

sealed area (x4), subsurface reservoir (x5), and groundwater reservoir (x6).187

The root-zone is further discretized into three soil layers with the two upper188

layers end in 0.05 and 0.25 m, and the lowest layer is spatially variable with189

the depth prescribed based on the soil map (average of around 1.8 m deep;190

see Zink et al. (2017)). The conceptualization of these water storages can be191

found in Figure 1, and details of the model parameterizations can be found192

in Samaniego et al. (2010), Kumar et al. (2013), Livneh et al. (2015), and193

Heße et al. (2017). The model uses a unique multiscale parameter region-194

alization (MPR) technique to explicitly incorporate the sub-grid variability195

of basin physical properties (e.g., terrain, soil and landcover attributes) and196

facilitates model runs at multiple spatial resolutions (Samaniego et al., 2010;197

Kumar et al., 2013). mHM can be conditioned and evaluated using various198

types and sources of data (Rakovec et al., 2016; Zink et al., 2018). The199

model is available under an open source license and details on model con-200

ceptualisation and parameterization can be obtained at www.ufz.de/mhm. It201

has been successfully established for many large-scale applications including202

to investigate climate change impact assessment studies (Samaniego et al.,203

2018; Thober et al., 2018).204

OGS is a physically-based porous media simulator employing the finite205

element method to solve subsurface processes (Kolditz et al., 2012). OGS206

has been successfully applied to cope with a broad range of hydrogeologi-207

cal problems including seawater intrusion, groundwater depletion, and wa-208

ter resources management (Sun et al., 2011; Kalbacher et al., 2012; Jing209

et al., 2018). OGS explicitly solves the partial differential equations of 3-D210

unsaturated-saturated groundwater flow.211

Two models are linked through a mHM-OGS coupling interface. Through212

this interface, mHM based spatially distributed recharge and baseflow along213

stream network are transferred as Neumann boundary conditions in the OGS214

groundwater model (Jing et al., 2018, 2019). Here we provide a brief overview215

of the coupling workflow and for more details, please refer to Jing et al.216

(2018):217
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1. After calibration, mHM is first run to calculate soil zone fluxes and218

variables including the recharge and baseflow at the time step ti.219

2. The stepwise routed baseflow, calculated by mHM, is converted into220

distributed river discharges. This distributed river discharge serves as221

a Neumann boundary condition in the OGS model.222

3. Groundwater recharge estimated by mHM is also interpolated onto the223

upper surface of OGS mesh, serving as a Neumann boundary condition.224

4. OGS model calculates the updated groundwater flow and transport225

variables at time step ti, and replaces the original groundwater variables226

in mHM.227

5. The same procedure is repeated at the time step ti+1 until the end of228

simulation.229

2.2. Integrated travel time framework230

Corresponding to this coupled numerical modeling framework, we deploy231

different strategies to track the TTs within their respective (soil and ground-232

water) compartments (see Figure 1). For the water that travels through the233

soil compartment, we use a flux tracking scheme following Heße et al. (2017).234

The flux tracking scheme is built upon the bucket-type hydrologic concep-235

tualization, wherein each bucket is presumed to be well-mixed water storage236

and the water can be stored in the bucket, infiltrated into the deeper bucket,237

or discharged as runoff or evapotranspiration. The storage-discharge behav-238

iors in each bucket are conditioned by climate forcing and topographical,239

morphological, and geological properties. This scheme consequently relies on240

the model results of mHM (see the upper part of the schematic in Figure 1)241

following Heße et al. (2017). For the water that travels through the aquifer242

system, we use a particle tracking scheme, namely the Random walk particle243

tracking (RWPT) algorithm, to track the flow path lines in the heteroge-244

neous aquifer system. RWPT is a Lagrangian particle tracking method as-245

suming that the advection process is deterministic and the dispersion process246

is stochastic. RWPT has been used to simulate reactive transport processes247

as well as particle TTs in heterogeneous groundwater systems (Park et al.,248

2008; Jing et al., 2019). This algorithm is connected to the physically-based249

groundwater model OGS (see the lower part of the schematic in Figure 1).250

The integrated TTDs of the whole input water can then be derived through251

the mass-weighted combination of the component-wise TTDs (Figure 1).252
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Travel time in the soil compartment253

To begin, let us consider the TTD in a control volume CV (e.g., a grid254

cell). Here, we define interflow as the water flux that infiltrates the soil255

surface and flows into the stream which typically travels above the ground-256

water level, and baseflow as the runoff component generated by deep satu-257

rated groundwater (Beven, 1989). The hydrological processes in this CV are258

controlled by an influx J , typically precipitation, as well as several outflux259

components, namely evapotranspiration ET , QIF representing the interflow260

, and R representing the percolation or recharge to the deeper groundwater261

aquifer. The continuity equation can be given as:262

dS

dt
= J −QIF −R− ET (1)

here, the input flux J contains numerous water particles, each of which263

enters the system at time ti and leaves the CV at time te as ET , QIF , or R.264

For the non-stationary hydrologic system, it is advantageous to distinguish265

the TT tT from the residence time tR. Let us define the TT tT as the time266

elapsed by the water particle from entering till exiting the CV: tT = te − ti.267

Conversely, at a given time t, the residence time tR is defined as tR = t− ti.268

The forward expression of TTD pT (tT , ti) tracks the TTs of particles269

injected into the system at a given time ti. We assume that the soil water270

storage is well-mixed, wherein the water particles randomly exit as QIF , R,271

or ET . Following Botter et al. (2010), the analytical form of the travel time272

PDF of water parcels exiting as QIF in a well-mixed storage can be expressed273

by:274

pIFT (t− ti, ti) =
QIF (t)

S(t)

e
−

∫ t
ti

QIF+R+ET
S(x)

dx

θIF (ti)
. (2)

In this equation, the hydrologic partition function of interflow θIF (ti) is275

expressed as:276

θIF (ti) =

∫ ∞
ti

QIF (τ)

S(τ)
e
−

∫ t
ti

QIF+R+ET
S(x)

dx
dτ. (3)

Equation 2 and 3 are forward expressions of travel time PDFs for wa-277

ter particles discharged as interflow. Similarly, PDFs for water particles278

recharged to the deep groundwater aquifers pRT (t−ti, ti) can also be expressed279

using Equation 2 and 3 by swapping QIF with R.280
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Travel time in the groundwater compartment281

Water particles that recharged into the deeper groundwater aquifers are282

traced using RWPT in an explicit three-dimensional groundwater model.283

For such a system, let pGWT (t) represent the TTD of water particles pass-284

ing through groundwater aquifers estimated by the RWPT method. Then285

the TTD of water particles from their entrance to the subsurface system286

(through recharge) until their discharge as baseflow can be expressed using287

the following convolution integral:288

pBFT (t− ti, ti) =

∫ ∞
ti

pRT (τ − ti, ti)p
GW
T (t− τ + ti)dτ. (4)

This convolution represents the fact that the TT of any water parcel289

leaving as baseflow can be considered as a the sum of two random variables:290

the TT for passing through the soil compartment and the TT for passing291

through the groundwater compartment (see schematic in Figure 1). Once292

the TTs for water parcels leaving as interflow and baseflow are determined,293

the integrated TT for water parcels leaving the entire subsurface can be294

computed.295

Integrated travel time in the subsurface296

The catchment-wide, subsurface TTD pSST (t−ti, ti) can now be calculated297

by the mass-weighted average of pIFT (t− ti, ti) and pBFT (t− ti, ti). Note that298

for the grid cell-based hydrologic model, the catchment TTD can be calcu-299

lated by mass-weighted averaging the TTD of each grid cell over the whole300

catchment.301

pSST (t− ti, ti) = θIF (ti)p
IF
T (t− ti, ti) + (1 − θIF (ti))p

BF
T (t− ti, ti). (5)

In the above described way the catchment TTD can be realized by linking302

flux tracking in the soil zone and particle tracking in the groundwater storage303

(Figure 1).304

Using the above modeling framework, we can analyse the spatio-temporal305

behaviour of the resulting TTDs. Furthermore, we also characterize the306

marginal (quasi-stationary) behaviour of TTDs through a time averaging307

approach (Heße et al., 2017).308

10



Summary statistics309

We use several summary statistics to characterize and compare the shape310

and scale of TTDs in different hydrological compartments. These include311

the mean travel time (MTT), the median TT, the standard deviation (SD),312

the coefficient of variation (CV), and the interquartile range. Besides, for the313

parametric form of mean TTDs, we choose the two-parameter Gamma distri-314

bution. This parametric distribution can account for the nonlinear behavior315

and the heterogeneity of the reservoir (Kirchner et al., 2000; Hrachowitz316

et al., 2010). The gamma distribution has two parameters – a shape factor317

α and a scale factor β; and its PDFs can be expressed as:318

p(t) =
t(α−1)

βαΓ(α)
e−t/β =

t(α−1)

(t̄/α)αΓ(α)
e−αt/t̄ (6)

where t is the travel time, and t̄ = αβ is the mean travel time.319

2.3. Study area320

To exemplify the use of this integrated travel time framework, we applied321

it to the Nägelstedt catchment, located in central Germany (Figure 2). The322

study area is a mesoscale headwater catchment of the Unstrut river catch-323

ment, with an area of approximately 850 km2. The terrain elevation in the324

study area ranges from 166 m to 516 m above mean sea level. The climate is325

classified as warm temperate, fully humid, and warm summer – a Cfb type326

according to the Köppen-Geiger method (Kottek et al., 2006). The mean327

annual precipitation is around 660 mm, and the mean annual temperature is328

around 8.3 degrees Celsius. As shown in Figure 2, four 1 × 1 km2 grid cells329

are selected as samples for tracing water travel times. These four grid cells330

are selected to cover both the groundwater recharge areas at highlands (C2331

and C4) and drainage areas (C1 and C3). The locations of these selected cells332

with varying geographical characteristics are depicted in Figure 2. Specifi-333

cally, C1 is a grid cell at a lowland close to the discharge point. C2 represents334

the grid cell in the western mountainous area close to the left tributary. C3335

represents the point at the central lowland near the mainstream, and C4336

represent the eastern mountainous area close to the right tributary.337

The study area is intensively used for agricultural purposes. Around 78%338

of the total land in this area has been classified as arable land (Wechsung339

et al., 2008). Around 17% of the land is marked as forests, while the remain-340

ing 5% is regarded as urban areas (Heße et al., 2017) (Figure 2). Groundwater341
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Figure 2: Study area of the Nägelstedt catchment. Panel (a) is the map of the Nägelstedt
catchment, which also shows the locations of four sampled 1 km grid cells, whereas panel
(b) shows the detailed land-use type in the area. Four cells represent four topographic
types: C1 – lowland close to the catchment outlet, C2 – western highland close to the left
tributary, C3 – central lowland near the mainstream, C4 – eastern highland.
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plays a critical role in supplying public water in this area (Wechsung et al.,342

2008).343

The main geological unit in Nägelstedt catchment is Muschelkalk. Muschel-344

kalk is mainly composed of marine sediments (Figure 3). It can be further345

divided into three sub-units, which are Upper Muschelkalk (mo), Middle346

Muschelkalk (mm), and Lower Muschelkalk (mu; Figure 3). Besides, the Ke-347

uper sediments overlying the Muschelkalk form an aquifer-aquitard system348

in the central floodplain. The Keuper can be divided into Middle Keuper349

(km) and Lower Keuper (ku), wherein the Lower Keuper has a high content350

of grey clay and may form an aquitard (Figure 3).351

This catchment is dominated by agriculture land with a high risk of352

groundwater contamination due to intensive agricultural activities (Wech-353

sung et al., 2008). The fate of input water is of high relevance with groundwa-354

ter quantity and resilience. Additionally, this area is also a target area of the355

AquaDiva project (http://www.aquadiva.uni-jena.de/), which aims to356

cope with environmental problems by multi-disciplinary investigations of bio-357

geochemical processes in the Hainich critical zone observatory (Küsel et al.,358

2016; Kohlhepp et al., 2017).359

2.4. Model setup, calibration, and evaluation360

The mHM and OGS models were established and calibrated for this catch-361

ment using the framework described in Jing et al. (2018) and Jing et al.362

(2019). The distributed mHM simulations were established at a daily time363

step over 60 years (1955 – 2004) and with a spatial resolution of 500 m ×364

500 m. The climate forcings driving the mHM model (e.g., atmospheric tem-365

perature and precipitation) are based on the observations from the German366

Meteorological Service (DWD). Other data for the mHM model setup include367

the DEM data, the land-cover data, the soil-type data, the hydrogeological368

data, and the discharge data (Heße et al., 2017; Jing et al., 2018). A detailed369

evaluation of the mHM model including simulations of near-surface fluxes370

such as runoff, evapotranspiration, and groundwater recharge has been pre-371

sented in several past studies (Zink et al., 2017; Heße et al., 2017; Jing et al.,372

2018).373

For the groundwater model, we used a three-dimensional mesh based on374

a Digital Elevation Model (DEM) with a spatial resolution of 25 m combined375

with information on the geological zonation. We established a stratigraphic376

model based on the geological data from the Thuringian State Office for the377

Environment and Geology (TLUG). Based on this, we used a mesh with a378
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Figure 3: Geological zonation of the Nägelstedt catchment. The full names of abbrevi-
ations are: km – Middle Keuper, ku – Lower Keuper, mo – Upper Muschelkalk, mm –
Middle Muschelkalk, and mu – Lower Muschelkalk.

Table 1: Bounds and calibrated values of zoned hydraulic conductivities of aquifers.

Geological units
Hydraulic conductivity (m/s)

Lower limit Upper limit Calibrated value
km 1.0 × 10−6 5.5 × 10−3 1.145 × 10−5

ku 1.0 × 10−7 3.4 × 10−4 3.714 × 10−6

mo1 8.0 × 10−8 2.0 × 10−3 2.936 × 10−5

mm1 1.0 × 10−7 9.0 × 10−4 2.184 × 10−5

mu1 5.0 × 10−9 2.0 × 10−4 2.258 × 10−6

mo2 1.0 × 10−8 5.0 × 10−4 2.936 × 10−6

mm2 3.0 × 10−8 9.0 × 10−5 2.184 × 10−6

mu2 5.0 × 10−10 2.0 × 10−5 2.258 × 10−7
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Figure 4: Long-term averaged monthly groundwater recharge over the simulation period
(a) and the corresponding spatial organization of released 100, 000 particles for the particle
tracking (b).

spatial resolution of 250 m × 250 m × 10 m (in x, y, and z directions, re-379

spectively (Fischer et al., 2015). Specifically, the less permeable Muschelkalk380

zones underlying the Keuper formation (mo2, mm2, and mu2) are distin-381

guished from the more permeable Muschelkalk zones (mo1, mm1, and mu1;382

see Table 1). This three-dimensional mesh is shown in Figure 3.383

Moreover, we also account for the uncertainty in prescribing the hydraulic384

conductivity values in different geological formations, and their contribution385

to the simulated groundwater and resulting travel times. Specifically, we386

generate an ensemble of hydraulic conductivity fields using the null-space387

Monte Carlo (NSMC) approach (Tonkin and Doherty, 2009). The range388

and distribution of parameters for this uncertainty analysis can be found in389

Appendix Figure B.14.390

Here, we assume steady-state transport processes in the deep ground-391

water aquifers. This assumption is only limited to the OGS model. This392

assumption is justified due to fluctuations in recharge rates having only a393

minor influence on groundwater TTDs (Benettin et al., 2015; Engdahl, 2017;394

Jing et al., 2019) given the large storage of groundwater systems. We then395

assigned a no-flow boundary condition at the bottom and outer perimeter396

of the mesh, whereas a fixed head boundary condition was assigned on the397

stream beds of the perennial rivers (the river network can be found in Fig-398

ure 2). To track the flow paths of water parcels, we released a large number399

of particles (100, 000 particles) at the top surface of the mesh. The spatial400

distribution of these particles was arranged to meet the spatial distribution401

of the mean recharge fields (Figure 4).402
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Figure 5: Calibration and evaluation of the coupled mHM-OGS model using the long-term
averaged groundwater levels (a), discharge (b), and the time series of groundwater levels
at W17 (c). The simulated time series of discharge is 30-year long and at a daily step.
The groundwater levels are monitored at 18 monitoring wells (locations of wells are shown
in Figure 2) and simulated at a monthly time step.

In the calibration phase, the model satisfactorily computed the daily dis-403

charge at the catchment outlet over a 30-year period. The calibrated model404

demonstrated good capability in reproducing high-frequency discharge (Fig-405

ure 5). The skill score based on Nash-Sutcliffe Efficiency (NSE) is 0.60, which406

is satisfactory considering the 30-year simulation period and daily resolution.407

Simulated dynamics of evapotranspiration and groundwater recharge were408

also evaluated and validated by the observation at eddy-covariance stations409

and the Hydrological Atlas of Germany (Heße et al., 2017; Zink et al., 2017).410

These results confirmed the reliability and accuracy of mHM in capturing411

the soil-zone water dynamics. We then calibrated the OGS groundwater412

model against the observed groundwater levels (1955 – 2004) at 18 spatially-413

distributed monitoring wells (Jing et al., 2018, 2019). Hydrogeological pa-414

rameters of the calibrated groundwater model are shown in Table 1. The OGS415

model was also capable to reproduce the pattern of groundwater circulation416

in the deep aquifers (Figure 5). To confirm the accuracy and reliability of417

the mHM-OGS model in simulating the groundwater dynamics, we evaluate418

the modeled groundwater using observations of multiple distributed moni-419

toring wells, wherein 30-year time series of observed groundwater levels are420

available. The evaluation results are shown in Figure 5 and Figure A.13. In421

this evaluation phase, the model also satisfactorily simulated the response of422

groundwater levels to climate forcing (Figure 5 and Appendix Figure A.13).423

The calibrated model was able to adequately characterize the observed trend424

and magnitude of monthly groundwater level fluctuations across the obser-425
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vation wells (Figure 5 and Appendix Figure A.13). This is demonstrated by426

Pearson correlation coefficient (r) values of 0.71, 0.82, 0.48, 0.81, and 0.70427

for five monitoring wells, respectively. Based on this successful establishment428

and evaluation exercise, the coupled mHM-OGS model was used to track the429

movements and TTs of water parcels across the whole catchment.430

3. Results431

In the following, we show the application of this integrated modeling432

framework for a single case study, namely the Nägelstedt catchment. We433

track the TTs of water inputs from January 1955 to December 1974 because434

the 60-year data (1955–2004) of the precipitation and discharge enable the435

tracing of water influxes in this period for the following 30 years (1974–436

2004). Specifically, we show the spatial variability in TTDs associated with437

different spatial scales (grid scale and regional scale), the temporal variability438

of catchment TTD, the contribution of groundwater to the catchment TTD,439

and the sensitivity of component-wise TTD to the climate forcing.440

3.1. Sensitivity of groundwater TTDs to spatial scale and topography441

Figure 6 shows the groundwater TTDs for the catchment and for four se-442

lected 1 × 1 km2 local grid cells (C1, C2, C3, and C4). The analysis results443

presented here correspond to the derived TTs for water particles from their444

entrance to their exit from the deep aquifers. We also fit the gamma distri-445

bution against the simulated catchment-scale groundwater TTD to show its446

preference for discharging young/old water. The catchment-scale groundwa-447

ter TTD shows a preference for discharging younger water with a α value of448

0.71. The parameter α of the gamma distribution characterizes the shape of449

TTDs. A α value less than 1 indicates a strong initial peak and a long tail.450

However, the grid-scale groundwater TTDs exhibit a strong spatial variabil-451

ity in both shape and scale. Simulated groundwater TTDs in C1, C2, C3,452

and C4 have diverse shapes and scales, which also deviate from the catch-453

ment groundwater TTD. This is attributed to their different hydrogeological454

conditions and the resulting different layout of the flow pathways (e.g., the455

occurrence of preferential pathways in some cells due to the more permeable456

geological formation). Meanwhile, the mean travel times (MTTs) of ground-457

water in these cells vary widely, ranging from 70.4 years for C4 to 115.2458

years for C1. This pronounced spatial variability in the MTTs shows the459

distinct behavior of flow paths and velocities of water particles for different460
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Figure 6: Groundwater TTDs in the whole catchment (a) and in four sampled 1 × 1 km2

cells (b-f). The green shading area shows the standard deviation (SD) of simulated TTD
using an ensemble of hydraulic conductivity fields. The grey shading area shows the SD
of MTT using an ensemble of hydraulic conductivity fields. The SD and coefficient of
variation (CV) of MTT are also shown in this figure.
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Figure 7: Spatial pattern of the groundwater MTT, SD of TT, and CV of TT for 1 × 1 km2

grid cells. Panel (a) shows the overall spatial distribution, whereas panel (b) categorize
them by lowland, highland, and the whole catchment.

areas. The parameter uncertainty in hydraulic conductivity propagates to461

the simulated groundwater TTD, which is demonstrated by the coefficient of462

variation (CV) of the catchment-scale groundwater MTT (14.2%).463

The spatial distributions of the mean and standard deviation of ground-464

water TT (MTT and SD) in distributed 1 × 1 km2 grid cells over the whole465

catchment are shown in Figure 7. Specifically, we category the grid cells466

into central lowland and surrounding highland according to topography. We467

find a strong spatial heterogeneity in MTT of grid-scale groundwater TTDs.468

Noticeably, the volume-averaged TTD in the surrounding highland is about469

twice as large as that in central lowland. The groundwater MTT ranges470

from years to decades for lowland, whereas these values lie in the decadal to471
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Figure 8: Time series of the simulated catchment TTs from 1955 to 1974. First three
panels show the time series of medians (solid lines) and interquartile ranges (shading
areas) of TTs. The fourth panel shows the time series of the monthly precipitation rate.

centurial scale for the outer highlands. This is mainly attributed to the rel-472

atively sparse stream network and the lower hydraulic conductivity of main473

geological formations in the highland area. The SD of TTs also shows sim-474

ilar spatial structure – SD is generally lower in central lowland around the475

vicinity of the stream network and higher at highland far away from streams.476

These two summary statistics provide not much information on the shape of477

grid-scale groundwater TTDs, but we can expect a large variability in them478

based on the distinct shape of four sampled TTDs (Figure 6).479

3.2. Climate control on water travel times480

Tracking historical trajectories of the TTs over a long period of precip-481

itation events helps us to understand the relationship between time-variant482

TTs and the resulting hydrologic controls. Figure 8 shows the time series of483
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TTs and the corresponding monthly precipitation rates over the span of 20484

years (1955-1974). Figure 8 shows a large temporal variation in the median485

TTs of soil-water interflows, which closely follow the temporal dynamics of486

precipitation.487

In general, higher precipitation rates result in a shorter TT of soil water,488

a result well known from the literature. We can also observe a significant sea-489

sonality in soil-water TT, which is largely attributed to the seasonal variation490

in precipitation and evapotranspiration (Figure 8). Conversely, the temporal491

fluctuations in precipitation have a minor effect on the TT of groundwater.492

There is no seasonal pattern in the groundwater TTs (see the second panel493

in Figure 8). The integrated TT of the whole catchment has an intermediate494

temporal variability, which is attributed to the fact that the catchment TTD495

is a weighted average between the soil zone TTD and the groundwater TTD.496

The median TTs over the 20-year simulation period are around 1.2, 41, and 8497

years for the soil water interflow, groundwater baseflow, and the total stream-498

flow, respectively. The groundwater TTs show the largest interquartile range,499

indicating the large time scale (e.g., decade) of the groundwater transport500

processes. The interquartile range is also strongly inversely related to pre-501

cipitation such that low precipitation causes a larger interquartile range of502

water TTs. These simulation results through the integrated modeling frame-503

work reveal the contrasting TT characteristics of the different hydrological504

compartments.505

We use the modeling framework to understand the effect of climate forcing506

on the varying behavior of water transport and mixing in different hydrologic507

compartments. Specifically, we evaluate the characteristics and response of508

the hydrologic partition function (Equation 3) and the resulting median TTs509

of different hydrological compartments to varying hydroclimatic conditions510

(Figure 9).511

In a scatter plot shown in Figure 9, the individual points represent the512

monthly-averaged values for 40 years from 1955-1995. We separated the513

40 years (time-period) into wet and dry years depending on the deviation514

from the average annual effective precipitation rate. Effective precipitation515

is defined as the precipitation that is not evapotranspired and eventually dis-516

charges into streams. The hydrologic partition function for water discharged517

as interflow (θIF ) is positively related to higher effective precipitation, indi-518

cating the key part of hydroclimatic forcing in partitioning the water budget519

and generating quick interflows. The θIF values in many years deviate from520

the (fitted) regression line (Figure 9). This is because θIF is a function of521
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Figure 9: Dependence of water TTs on time-variant climate forcing (effective precipita-
tion). Precipitation controls the hydrologic partition function θIF , i.e., the contribution of
interflow to the overall TTDs (panel a). The dependence of median travel time in interflow
(panel b), baseflow (panel c), and total runoff (panel d) on effective precipitation are also
shown in different panels.
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all precipitation events after water parcels enters into the catchment rather522

than the precipitation events of a given year.523

MTTs are negatively correlated with the effective precipitation in the soil524

zone, groundwater aquifer, and the whole catchment, although with different525

degrees of absolute values. The MTTs in the soil zone are more sensitive to526

the climate forcing with the MTTs in dry years being on average two times527

higher than the values observed in wet years. The dependency of MTTs528

on hydro-climatic conditions for baseflow is not as pronounced as that for529

interflow. The MTTs for the whole catchment show the moderate response530

with values in the wet years being on average 20% lower than those observed531

during dry years.532

3.3. Contribution of groundwater to catchment TTD533

The numerical framework described here allows for the investigation of534

space/time behavior of TTDs in different hydrologic compartments and their535

contribution to overall TTD. Here we explicitly examine the role of component-536

wise TTDs and their relationship to the integrated catchment signal. Specif-537

ically, we show how the parameter uncertainty in different hydrologic com-538

ponents affects the predictive capability of the integrated TTD.539

Figure 10 shows the probability density functions (PDFs) for water TTs540

discharged as interflow, baseflow, and the total runoff over the whole catch-541

ment from 1955 to 1974. The catchment TTD exhibits a power-law behavior542

with a significant long tail (Figure 10. This indicates that the catchment543

discharge is comprised of water parcels with a wide range of travel times.544

The mean TT of water particles discharged as interflow (MTTIF) is approx-545

imately 1.93 years. Conversely, the mean TT of water particles discharged546

as baseflow (MTTBF) is 74.16 years. Based on the hydrologic partition func-547

tion, the mean TT for the whole catchment (MTTQ) is 37.50 years. It is548

worth noting that the estimated MTT is much larger than the corresponding549

median TT in every hydrological compartment, which emphasizes the asym-550

metric long-tail behavior of the TTDs (Figure 8 and Figure 10). We could551

also observe a narrower shading width towards the higher tails of the TTDs,552

indicating a decreasing (temporal) variance in the probability function with553

increasing TT. There is also a contrasting shape (width) between the TTDs554

of the two hydrologic compartments – with a larger temporal variability for555

the soil-water TTs than that of the groundwater TTs. We attribute this to556

the relatively more dynamic fluxes and storage volumes in the shallow soil557

23



Figure 10: PDFs of catchment-scale TTD of water discharged as interflow, baseflow, and
total runoff from 1955 to 1974. Shaded area denotes the interquartile range of all individual
monthly TTDs over this period.

zone compared to those in the deep groundwater aquifer. This also reveals558

the damping effect of the catchment to the input signal (e.g., precipitation).559

Figure 11 shows the simulation results of the grid-scale TTDs in four560

1 × 1 km2 grid cells through the mass-weighted average of the TTDs of561

interflow and the TTDs of baseflow. A remarkable difference in the scales of562

the interflow TTs and baseflow TTs can be observed across the four analyzed563

locations. The MTTs of water discharged as interflow are approximately 2564

years for all four cells, whereas the MTTBF values vary over a wide range565

(63.18 – 96.78 years). As a mass-weighted average between the above two566

TTDs, the integrated mean TTs of the total runoff range from 38.43 – 61.39567

years. The shapes of the integrated TTDs are irregular due to the distinct568

shapes and time scales of soil-water TTDs and groundwater TTDs. The569

shapes of the integrated TTDs are dominated by the soil-water for an early570

period, e.g., TTs less than 1 year, and thereafter by the groundwater for571

the tails of the distribution (Figure 11). We can also observe a multi-modal572

shape of the overall TTD for the C4 cell, which is mainly controlled by the573

complex aquifer geometry and stratigraphy. Overall TTDs in C1, C2, and574

C3 present similar power-law shape and fractal behaviors. The MTTs of575
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Figure 11: Grid-scale TTDs of input water that eventually discharged as interflow, base-
flow, and total runoff in four sampled 1 × 1 km2 grid cells.

overall discharge flux show a strong spatial heterogeneity, which is largely576

due to the heterogeneous MTTs in baseflow. Moreover, the decadal scale of577

MTT of total runoff can be attributed to the long tails of baseflow TTD. This578

signifies the importance of appropriate characterization of deep groundwater579

such that it strongly controls the scale of overall MTTs.580

3.4. Predictive uncertainty in catchment TTD581

We further study the influence of uncertainties in different hydrological582

compartments and their contributions to the total uncertainty in stream-583

flow signal. The simulation results in Subsection 3.1 already shows that the584

parameter uncertainty in aquifer hydraulic properties results in a 14.18%585

variation in simulated groundwater MTT. Accordingly, we investigate how586

this degree of variation in groundwater affects the predicted overall MTT in587

streamflow. We also set up a reference scenario wherein the same degree of588

variation in soil water MTT is considered, and compare the predictive uncer-589

tainty in overall MTT in these two scenarios. We then calculate the induced590

variation in median TT of the catchment from the same degree of variation591

in soil zone and groundwater.592

Figure 12 clearly shows the contrasting degree of predictive uncertainty in593
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Figure 12: Uncertainty in simulated MTT and Median TT introduced from different
hydrological compartments from 1955 to 1974. The upper panel shows the time-dependent
hydrologic partition function θIF . The lower panel shows the variation in catchment MTT
and Median TT introduced from the variation in groundwater and soil water, respectively.
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these two scenarios. Note that the volume contribution of soil zone and deep594

groundwater is computed using the hydrologic partition function θ. We find595

that the contribution from the soil zone is about 56%. A 14.2% variation in596

groundwater MTT leads to an around 48.4% variation in catchment MTT,597

whereas the same variation in soil water MTT only results in an around 1.6%598

variation in catchment MTT. However, the same level of variation in soil zone599

and groundwater only leads to 8.7% and 7.8% variations in catchment-scale600

median TT. This indicates that although the volume contributions from soil601

water and groundwater to the streamflow are almost equal, the sensitivities602

of catchment MTT to them are distinct. In the study area where baseflow603

from deep groundwater substantially makes up a large portion of streamflow,604

catchment MTT is extremely sensitive to variation in groundwater and not605

sensitive to that in soil water. Although quick interflow from soil zone consti-606

tutes about 56% of the total volume of streamflow, their TTs appear to have607

a minor influence on the overall MTT. Alternatively speaking, MTT is not608

representative of the transport processes in the soil zone, even if the volume609

of interflow constitutes more than half of the total volume of streamflow.610

The sensitivities of catchment-scale median TTs to soil zone and groundwa-611

ter seem to be consistent with the volume weights of these two components,612

indicating that the median TT is more robust in terms of representing the613

overall behavior of water transport processes relative to the MTT.614

4. Discussion615

This study introduces a novel modeling framework that couples the flux616

tracking approach and the particle tracking approach to achieve a full, spatially-617

explicit description of subsurface TTDs. We use this modeling framework to618

investigate the spatio-temporal behaviors of TTDs in different compartments619

of the subsurface water cycle in the Nägelstedt catchment. Although the sim-620

ulations in this study are particular to the study area, the method used here621

is applicable to other regional catchment. The numerical simulation results622

have important implications for understanding the transient and spatially623

heterogeneous TTs in subsurface systems.624

4.1. Spatial variability in TTDs and its dependence on topography and aquifer625

structure626

The proposed modeling approach explicitly characterizes the spatial vari-627

ability in component-wise water TTDs across scales (from grid scale to catch-628
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ment scale). Therefore, it facilitates the study of topographic and geologic629

controls on catchment TTDs. Since we could observe a significant influence630

of the subsurface hydraulic heterogeneity on the shapes of grid-scale TTDs,631

it follows that the explicit characterization of subsurface heterogeneity is a632

nontrivial element to a comprehensive characterization of TTDs (Figure 11).633

This influence can be attributed to the complex spatial organization of flow634

pathlines within the aquifer system, resulting from a said pattern of stratig-635

raphy. These findings are in-line with the ones described by Danesh-Yazdi636

et al. (2018) and Kaandorp et al. (2018), who also report strong variability637

in the shapes of TTDs either using different realizations of hydraulic con-638

ductivity fields or in different catchments. We also observe different patterns639

of groundwater TTD for central lowland and surrounding highland, which640

is likely related to the distance to the groundwater discharge zone and the641

underlying subsurface structure. A similarly strong dependence of TTD on642

topography has been reported in other real-world catchments (Cardenas,643

2007; Remondi et al., 2019).644

The contrasting shapes and scales of groundwater TTDs in different inves-645

tigated cells (see Figure 7 and Figure 8) highlight the key role of subsurface646

heterogeneity in controlling the flow paths and TTs of water parcels. This647

effect is unveiled by direct simulation of the pathways and velocities of a large648

number of released particle tracers using the RWPT algorithm. Investigating649

the relationship between the properties of the aquifer system and the behav-650

ior of groundwater TTDs revealed a number of relevant relationships. The651

strong spatial heterogeneity in the shapes of grid-scale groundwater TTD652

is mainly introduced by the stratigraphical structure of the aquifer system653

and the zoned hydraulic conductivity distribution prevailed across the study654

area. The grid-scale MTT appears to be closely related to the distance of655

the corresponding grid cell to the stream network. These findings are in-line656

with Fiori and Russo (2008) and Ameli et al. (2016), wherein they also found657

a strong dependence of TTD on the vertical pattern of hydraulic properties.658

The aforementioned strong spatial variability of TTs has greater implica-659

tions for the assessment of nonpoint-source agricultural contamination. The660

long tail and fractal behavior of catchment TTD imply a high risk of legacy661

contamination in the Nägelstedt catchment wherein agricultural activities are662

extremely intensive (Wechsung et al., 2008). The proposed mHM-OGS mod-663

eling framework could therefore be a valuable tool in revealing the intrinsic664

mechanism of the legacy nitrogen in streamflow, which has been frequently665

reported in many catchments across Germany and the globe (Mueller et al.,666
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2016; Van Meter et al., 2017, 2018).667

4.2. Temporal variability in catchment TTD conditioned by precipitation668

The second contribution of this study is on the time-varying impact of669

soil water and groundwater to the integrated TTDs. This finding is crucial670

to the understanding and prediction of the fate and the TTs of nonpoint-671

source input solute such as agricultural contaminants. In general, we observe672

a decrease in variability for longer times (see Figure 10 and Figure 11). This673

can be attributed to the different sensitivities of the shallow soil storage and674

the deeper groundwater aquifer to the climate forcing. The shallow storage675

is highly dynamic due to being subjected to the highly-dynamic input of676

precipitation, its small storage volume (compared to the deeper groundwater677

system), the varying land-use type, and the impact of evapotranspiration678

(Benettin et al., 2015). Conversely, the deeper groundwater aquifer system679

has a large storage volume and no (apparent) direct connections with the680

atmosphere leading to the overall less dynamic input forcing in the form of681

groundwater recharge (Jing et al., 2019; Heße et al., 2017). The hydroclimatic682

conditions also control the contribution from different hydrological compart-683

ments to the overall TTD. The median travel time in dry years is expected684

to be larger than that in wet years, implying that transport and mixing685

characteristics of the catchment will be altered by the changing climatic con-686

ditions. This is attributed to the fact that higher precipitation essentially687

increases the hydraulic potential difference in both soil and groundwater,688

and thus activates shallow flow pathlines (Kaandorp et al., 2018; Remondi689

et al., 2019). These kinds of response behaviors (TTs vs. climate forcings)690

noticed here are in-line with those of Remondi et al. (2018) and Jing et al.691

(2019), wherein they also found a strong dependence of catchment TTs on692

hydroclimatic forcing conditions.693

4.3. Contribution of different hydrological compartments to catchment TTD694

This study provides insights into the constitution of catchment TTD of695

different hydrological compartments. Compared with the partition of the hy-696

drograph, the partition of water mass in streamflow suffers from a wider range697

of uncertainty, which is mainly attributed to the difficulty in quantifying con-698

tribution from slow baseflow component (Stewart et al., 2012). Tracer-based699

analysis (e.g., interpretation of Tritium data using lumped parameter model)700

is a common approach used for this purpose, but it also suffers from many701

sources of error such as the aggregation error (Kirchner, 2016; Stewart et al.,702
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2017). The application in the Nägelstedt catchment is built on a 60 years’ of703

the daily hydroclimatic forcing data and a 3-D stratigraphic aquifer model,704

therefore explicitly accounts for the spatial and temporal heterogeneity that705

facilitates the forward-type of particle tracking. The partitioning of con-706

tributions from different hydrological compartments is achieved through the707

hydrologic partition function θ, which explicitly tracks all precipitation events708

after the entrance of water parcels to the catchment. Several recent studies709

have also demonstrated the advantages of forward simulation of travel times710

in explicitly accounting for the constitution of catchment TTD (Koh et al.,711

2018; Eberts et al., 2012).712

4.4. Uncertainty and robustness of MTT in describing catchment transport713

processes714

The catchment TTD exhibits a power-law behavior with a high probabil-715

ity at an early stage and a long tail (Figure 10 and Figure 11). This tailing716

behavior is also revealed by the strong deviation from MTT (37.50 years)717

to median TT (8 years) of the catchment. The decadal scale of catchment718

MTT has also been reported in several tritium-based studies, although the719

catchment properties may vary greatly from this study (Cartwright and Mor-720

genstern, 2015; Stewart et al., 2017). The power-law behavior also exhibit721

the uncertainty propagating from parameters (varying hydraulic conductiv-722

ity values) to groundwater simulations and the resulting TTDs. In the study723

area, the same degrees of uncertainty in soil zone and groundwater can lead724

to distinct scales of predictive uncertainty in MTT, although the volume725

contributions from two components to streamflow are almost the same. This726

suggests the accurate characterization of groundwater TTD is critical to the727

accuracy and reliability of simulated MTT, and the uncertainty in soil water728

TTs is almost irrelevant to the simulated MTT. Unfortunately, the simulated729

groundwater TTD is inevitably subject to parameter uncertainty because the730

regional hydraulic parameters are typically inferred through model calibra-731

tion. Many studies also reveal that a calibrated groundwater model cannot be732

exempted from parameter uncertainty due to the calibration null-space and733

the model structural error (Moore and Doherty, 2006; Zink et al., 2017; Jing734

et al., 2019). MTT seems to be an incomplete description of such power-law735

type TTDs due to the fact that a marginal error in groundwater characteriza-736

tion will dramatically bias the value of MTT. Similarly, the SD of TT is also737

sensitive to the long tail of TTD. Some recent studies also show that MTT738

inferred from tracer data may significantly bias from the true MTT due to739
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the nonlinear mixing of tracers with different ages (Kirchner, 2016; Stewart740

et al., 2017). Our study extends this conclusion from tracer interpretation741

to explicit numerical modeling.742

Although MTT is the most commonly used summary statistics to repre-743

sent catchment transport processes, we advocate for using multiple summary744

statistics including the mean, the standard deviation, the median, the in-745

terquartile range, and the young water fraction (Kirchner, 2016) to describe746

catchment TTD. The median and interquartile range of travel times are rel-747

atively less error prone to the tailing behavior of catchment TTD, which are748

more representative of power-law type TTDs than the mean and standard749

deviation. The young water fraction (i.e., the fraction of runoff younger than750

a certain threshold – say 2-3 months) is immune to the aggregation error751

(Kirchner, 2016; Stewart et al., 2017). Although not used in this study,752

young water fraction proves to be effective in reducing the uncertainty in753

tracer-based TTD predictions (Stewart et al., 2017; Lutz et al., 2018).754

4.5. Advantages and limitations of current modeling framework755

The proposed modeling framework allows for different spatial discretiza-756

tions of the domain and temporal resolutions in soil zone and groundwater757

aquifer. For example, it allows daily simulation of soil-zone dynamics and758

monthly simulation of saturated groundwater flow, as well as the coarse spa-759

tial resolution of climate forcing and fine spatial resolution of terrain. In760

contrast, fully physically-based models (e.g., HydroGeoSphere, ParFlow, and761

CATHY) explicitly solve partial differential equations of surface flow and762

unsaturated-saturated groundwater flow, therefore require continuous dis-763

cretization of mesh, meaning that the size of the grid can essentially vary in764

several magnitudes in the same mesh due to the fine-scale features in the soil765

zone and the coarse-scale aquifer properties. This may cause huge numerical766

expense and potential numerical oscillation when dealing with complex large-767

scale real-world catchments (Paniconi and Putti, 2015). Our method allows768

different grid sizes in soil zone and groundwater aquifer because these two769

compartments are simulated in two models and dynamically linked through770

model interfaces. Therefore, the proposed mHM-OGS model provides better771

numerical stability than those of Richard’s equation-based models.772

Notwithstanding the aforementioned advantages, the proposed modeling773

framework also has certain limitations. First, the current framework relies774

on the hydrologic partition function that partitions the subsurface into func-775

tional zones. This approach has been extensively used to investigate the776
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transport of environmental tracers and to derive catchment TTDs (Benettin777

et al., 2015; Birkel et al., 2015). The accurate estimation of internal fluxes778

(e.g., groundwater recharge) is critical to the simulated TTDs in this ap-779

proach (Jing et al., 2019). This partitioning is straightforward and flexible,780

therefore it enables the coupling of flux tracking approach and particle track-781

ing approach and the integrated modeling of catchment TTD. However, it782

is a conceptual assumption and suffers from a lack of physical interpreta-783

tion. While a fully physically-based modeling approach to catchment flow784

and transport processes is more sound in this respect (Kaandorp et al., 2018;785

Yang et al., 2018), it does suffer from the high computational and data de-786

mand, and uncertain parameterizations and numerical instabilities for their787

application in a real-world mesoscale catchment. Conversely, the approach788

proposed in this study is computationally efficient, parsimonious, and nu-789

merically robust.790

The second limitation of this study lies in the exclusive use of hydromet-791

ric data for the model evaluation (McDonnell and Beven, 2014). Isotope or792

conservative tracer concentrations prove to be beneficial in testing and val-793

idating the flux-tracking and particle-tracking models (Eberts et al., 2012;794

Davies et al., 2013; Remondi et al., 2018; Lutz et al., 2018). However, it is795

difficult to integrate tracer datasets into the numerical setup in the study796

area because long-term high-frequency measurements of tracer concentra-797

tions for groundwater and streams are required, which are unfortunately not798

available yet. Even if available, a reasonable reconstruction of distributed799

inputs might be problematic for a catchment of this size. The absence of the800

tracer datasets implies that the simulated TTDs and the summary statistics801

are subject to a certain degree of uncertainty. Other avenues to test these802

integrated modeling approach lie in utilizing model to capture observed dy-803

namics of non-conservative solutes like NO3-N nitrate. However such efforts804

require integration and tracking of both hydrologic and biogeochemical pro-805

cesses. There has been some recent efforts utilizing the valuable flux-tracking806

TTDs approach within the mHM modeling framework for the solute trans-807

port modeling (Kumar et al., 2020; Nguyen et al., 2020).808

This study by considering spatially explicit TTDs has important impli-809

cations for the assessment of nonpoint-source contamination. It provides ad-810

ditional information on the spatial pattern in grid-scale water TTDs, which811

can not be revealed by a lumped, catchment-scale tracer experiment. The812

particle tracking model can be used to interpret the tracer data with bet-813

ter accuracy compared to the lumped parameter model (Leray et al., 2016;814
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Danesh-Yazdi et al., 2018). Therefore, the joint investigation by integrating815

the tracer experiment and numerical modeling is strongly recommended for816

future studies.817

5. Conclusions818

This study proposes a novel modeling framework to estimate the water819

TTDs based on flux tracking in a near-surface, soil-water compartment, and820

particle tracking in the deeper groundwater compartment. We use the pro-821

posed approach to investigate the TTDs in Nägelstedt catchment in central822

Germany. Based on the hydrologic partition function, the TTDs in soil zone823

and groundwater aquifer have been studied separately using two different824

approaches. The TTDs for different hydrologic compartments are integrated825

as TTDs for the whole subsurface system. This framework facilitates the826

explicit representation of the groundwater transport process, meanwhile, it827

is also flexible and computationally robust.828

The simulation results reveal strong spatial variability in both shapes and829

scales of grid-scale groundwater TTDs in the study area. Specifically, grid-830

scale groundwater TTDs in different grid cells vary significantly in both shape831

and scale, which is attributed to the stratigraphy and the heterogeneity in the832

topographic properties and the spatially variable organizations of groundwa-833

ter flow pathways. Simulated grid-scale water TTDs have great implications834

in assessing the nonpoint-source contamination in central Germany.835

This study also reveals the contrasting temporal variability in TTs in836

different hydrological components. We observe a seasonal behavior in soil-837

water TTs and a relatively stable groundwater TTs, indicating the contrast-838

ing sensitivities of soil-water and groundwater transport processes to climate839

forcings. The temporal variability decreases with the time in the Nägelstedt840

catchment, indicating the highly variable distributions of soil-water TTs and841

the almost constant distribution of groundwater TTs.842

Simulation results suggest a power-law type and fractal behavior of catch-843

ment TTD. It further shows that the predictive uncertainty in catchment844

MTT is dominated by the contribution from groundwater uncertainty and845

almost immune to the uncertainty in the soil zone. The power-law shape846

catchment TTD makes the MTT extremely vulnerable to biased groundwa-847

ter characterization. A joint description of catchment TTD using multiple848

summary statistics is strongly recommended to characterize catchment trans-849

port processes.850
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Appendix A. Evaluation of mHM-OGS model using long-term ob-863

servations of distributed groundwater levels864

To evaluate the performance of the mHM-OGS model in simulating ground-865

water head dynamics, we compare the simulated groundwater heads to the866

long-term records in many spatially distributed monitoring wells. For the867

sake of simplicity, we display the results of simulated and observed ground-868

water levels in four monitoring wells (Figure A.13). The spatial locations869

of these monitoring wells and more details of the model evaluation can be870

found in Jing et al. (2018).871

Appendix B. Parameter uncertainty in hydraulic conductivity of872

groundwater aquifer873

To assess the influence of parameter uncertainty in hydraulic conductivity874

on the simulated groundwater travel times, we generate an ensemble of hy-875

draulic conductivity fields using the null-space Monte Carlo (NSMC) method.876

Employing this method, we generate 400 hydraulic conductivity fields that877

are all compatible with the observed discharge and groundwater levels (Fig-878

ure B.14). Figure B.14 shows the range of hydraulic conductivity for 8 main879

geological units in the groundwater aquifer. The hydraulic conductivities in880

the less permeable Muschelkalk formations (mo2, mm2, and mu2) are tied881

with the corresponding more-permeable formations (mo1, mm1, and mu1)882
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Figure A.13: Model evaluation: simulated and observed groundwater levels at distributed
groundwater monitoring wells (Jing et al., 2018). A higher Pearson correlation coefficient
(R) indicates a better capture of fluctuations in groundwater levels.
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Figure B.14: Boxplot of 400 hydraulic conductivity fields that are all compatible with the
observed discharge and groundwater levels.

with a factor of 0.1. This figure indicates that the deepest Lower Muschelkalk883

formation (mu) has the largest uncertainty. This indicates a low sensitivity884

of the hydraulic conductivity in this unit to groundwater level observations.885
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Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J.O., Fischer, T.,1044

Görke, U.J., Kalbacher, T., Kosakowski, G., McDermott, C.I., Park, C.H.,1045

Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y.Y., Singh,1046

A.K., Taron, J., Walther, M., Wang, W., Watanabe, N., Wu, Y., Xie,1047

M., Xu, W., Zehner, B., 2012. OpenGeoSys: an open-source initiative1048

for numerical simulation of thermo-hydro-mechanical/chemical (THM/C)1049

processes in porous media. Environmental Earth Sciences 67, 589–1050

599. URL: http://link.springer.com/10.1007/s12665-012-1546-x,1051

doi:10.1007/s12665-012-1546-x.1052

Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World1053
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K., 2016. Discharge Driven Nitrogen Dynamics in a Mesoscale River Basin1134

As Constrained by Stable Isotope Patterns. Environmental Science &1135

Technology 50, 9187–9196. URL: https://doi.org/10.1021/acs.est.1136

6b01057, doi:10.1021/acs.est.6b01057.1137

Nguyen, T.V., Kumar, R., Lutz, S.R., Musolff, A., Yang, J., Fleckenstein,1138

J.H., 2020. Modeling nitrate export from a mesoscale catchment using stor-1139

age selection functions. Water Resources Research n/a, e2020WR028490.1140

URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1141

1029/2020WR028490, doi:https://doi.org/10.1029/2020WR028490,1142

arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2020WR028490.1143

Niemi, A.J., 1977. Residence time distributions of variable flow pro-1144

cesses. The International Journal of Applied Radiation and Isotopes1145

28, 855–860. URL: http://www.sciencedirect.com/science/article/1146

pii/0020708X77900266.1147

Paniconi, C., Putti, M., 2015. Physically based modeling in catchment hy-1148

drology at 50: Survey and outlook. Water Resources Research 51, 7090–1149

7129. URL: http://dx.doi.org/10.1002/2015WR017780, doi:10.1002/1150

2015WR017780, arXiv:2014WR016527.1151

Park, C.H., Beyer, C., Bauer, S., Kolditz, O., 2008. Using global node-based1152

velocity in random walk particle tracking in variably saturated porous1153

media: Application to contaminant leaching from road constructions. En-1154

vironmental Geology 55, 1755–1766. doi:10.1007/s00254-007-1126-7.1155

Rakovec, O., Kumar, R., Mai, J., Cuntz, M., Thober, S., Zink, M., Attinger,1156
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