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Abstract

Coupled thermo-hydro-mechanical (THM) models are used for the assessment of nuclear waste disposal,
reservoir engineering, and many other branches of geotechnical engineering. Model-based decision making
and optimization often entail sensitivity analyses (SA) and uncertainty quantification (UQ). The suitability
of different UQ and SA methods for coupled THM problems on an engineering scale requires clarification. To
provide such guidance without the need for large numerical studies, an analytical solution of a simple THM
problem is employed here that encompasses the most relevant primary couplings, can robustly cover the
entire parameter space, and remains computationally inexpensive. Both local (OVAT) and global sensitivity
analysis (GSA) techniques are applied to the study of the THM model. The information that can be
derived from the different approaches is then systematically assessed, such as parameters and interactions
that control selected observation quantities and how their effect varies in both space and time. We provide
application-oriented conclusions on the conditions which should be met when applying the different methods
as well as examples for possible misinterpretations. The analysis can serve as a benchmark for UQ and SA
software designed around numerical THM simulators. This work may also serve as an attempt to highlight
the methodology and effectiveness of SA to the audience from an engineering background.
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Nomenclature

Acronyms

Symbol Description Unit

GSA Global sensitivity analysis

MC Monte Carlo

OVAT One variable at a time
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SA Sensitivity analyses

THM Thermo-hydro-mechanical

UQ Uncertainty quantification

Greek Symbols

Symbol Description Unit

αB Biot-Willis coefficient −

β Bulk compressibility of the mixture Pa−1

λ Lamé parameter Pa

µw Dynamic viscosity of water Pa s

ν Poisson’s ratio −

φ Porosity −

ρs Intrinsic density of solid kg m−3

ρw Intrinsic density of water kg m−3

Roman Symbols

Symbol Description Unit

g Gravitational acceleration vector m s−2

as Volumetric thermal expansion coefficient of solid K−1

aw Volumetric thermal expansion coefficient of water K−1

cp,s Isobaric specific heat capacity of solid J kg−1 K−1

cp,w Isobaric specific heat capacity of water J kg−1 K−1

E Young’s modulus Pa

G Shear modulus Pa

Ks Thermal conductivity of solid W m−1 K−1

ks Intrinsic permeability m2

Kw Thermal conductivity of water W m−1 K−1

Subscripts

Symbol Description Unit

s Solid

w Water
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1. Introduction

With the availability and continuous increase in computational resources, the tendency to employ in-
creasingly complex mathematical models for decision-making, safety analysis and process understanding in
various disciplines of science is becoming more prevalent. Among others, an important aspect of this in-
creased complexity is the increased number of model inputs. When the models in question describe complex
physical phenomena in the subsurface on large spatial and temporal scales, these parameters can usually
not be determined without considerable uncertainty or imprecision. To understand how the uncertainty in
the input parameters contributes to the uncertainty in the model output, sensitivity analyses are in use in
medical science [1, 2, 3], earth and environmental science [4, 5, 6], chemical engineering [7, 8, 9], agriculture
[10, 11, 12], oil and reservoir engineering [13, 14, 15] and others [16, 17, 18, 19]. One class of physical models
with particular relevance to the geosciences are coupled thermo-hydro-mechanical (THM) models which are
used for the assessment of nuclear waste disposal, geothermal energy exploitation, reservoir engineering and
geotechnical engineering [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. To better understand the dominant
physical processes in subsurface engineering applications, their inherent uncertainties and the associated
strategies for safety assessment of natural and engineered barriers, several long-term, large-scale in-situ ex-
periments have produced a tremendous amount of valuable data over the past decades and continue to do
so [20, 25, 31, 32, 33, 34, 35, 36, 37].

An assessment of different UQ and SA methods that work for coupled THM problems on an engineering
scale is required for their reliable application to model-based decision making, optimization and (research)
prioritization. Before proceeding any further, a clear distinction should be made between SA and UQ; while
UQ revolves mainly around computing or quantifying the overall uncertainty in the model outputs, SA
involves the relative attribution of said uncertainty to the uncertainty contributed by the various inputs
[38]. The focus of the current paper is on the latter, while the topic of UQ is studied in a companion paper
1. Of the analyses performed in the context of the mentioned applications, only a very small proportion of
studies address aspects of uncertainties and sensitivities of the underlying coupled THM problems. Typically,
sensitivity analyses of coupled THM problems remain local and are often done for the sake of completeness
rather than for a comprehensive exploration of the parameter space. Even less is understood about the
spatial and temporal variability of sensitivity measures. Some examples of UQ and/or SA of THM problems
can be found in [39, 40, 41, 42, 43]. The most relevant work that we could find which addresses derivative-
based local SA and variance-based GSA applied to a coupled THM numerical problem was by Nguyen et.
al. [44] (without considering the spatio-temporal changes), but we could not find any work related to the
SA of analytical THM model under study.

Due to different coupling levels (primary and secondary), non-linearities, and large system sizes nu-
merical analyses of THM problems can be challenging. For an initial screening of available methods and
interpretation of their results, it is therefore advantageous to have a well-understood analytical solution that
nevertheless encompasses the most relevant primary couplings, can robustly cover the entire parameter space
and remains computationally inexpensive. An analytical solution suitable for the purpose of this paper was
provided by [45] and [46]; it describes consolidation around a point heat source located in a fully saturated
isotropic elastic porous medium.

The objective of this paper is to systematically compare the information gained and conclusions supported
by different approaches to sensitivity analysis: local (OVAT) and global sensitivity analysis (GSA) based on
Sobol indices. The analyses were performed for different spatio-temporal settings to observe both near and
far-field effects as well as early- and late-stage system response. We show which parameters and parameter
interactions control the results in these different domains and provide physical interpretations. We provide
application-oriented conclusions on the conditions which should be met when applying the different methods
and examples for possible misinterpretations. The analysis results can furthermore serve as a benchmark
case for SA software designed around coupled numerical simulators applied to THM problems.

The paper is organized as follows: Section 2 summarizes the analytical solution of the coupled THM
problem under study. In Section 3, an initial screening of the input parameters by means of a classical local
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OVAT analysis is performed and its advantages and disadvantages for the case under study are discussed.
Sections 4 and 5 discuss the results of an extended full-range local sensitivity analysis and global sensitivity
analysis (GSA), respectively. Section 6 contains the concluding remarks. Generally, the paper follows the
natural workflow and complexity of sensitivity analyses and therefore, each section contains all relevant
details and corresponding results. The physical interpretation of the results is only discussed in detail in the
Section 5 to avoid repetitions. In our wording we try to stick to terms familiar to the engineering community
as much as possible.

2. The THM model: non-isothermal consolidation around a point heat source

2.1. Description of the physical model

The sensitivity analyses of a THM problem are performed on the analytical solution of non-isothermal
consolidation around a point heat source embedded in a fully saturated porous medium. As is common for
THM problems, the model is controlled by the three independent variables temperature T , pore-pressure
p and displacement of the solid skeleton u. A change in temperature caused by the heat source induces a
response from the solid skeleton and the pore fluid at different time scales resulting in a pressure gradient
that drives the flow of fluid away from the source causing the porous medium around the heat source to
undergo a transient deformation. Fluid flow induced by the resulting pressure gradient diminishes with the
passage of time depending on location as a local steady-state is reached. In the context of radioactive waste
disposal, the coupled THM model mimics a disposal cell emitting decay heat embedded in a fluid-saturated
rock type such as clay rock.

For the details related to the derivation of the analytical solution, the reader is referred to [45] and [46].
Here, we simply summarize the relevant equations.

The thermal part in this case is based on a heat balance equation which is given as [47]

(ρcp)effṪ + ρwcp,w gradT · v − div (K gradT ) = qT (1)

where qT is a heat source per unit volume and the heat capacity (ρcp)eff, heat conductivity K and Darcy
velocity v are given as

(ρcp)eff = φρwcp,w + (1− φ) ρscp,s (2)

K = φKw + (1− φ)Ks (3)

v = − ks

µw
( grad p− ρwg) (4)

The hydraulic part is based on the mass balance equation which is given as

βṗ− [φaw + (1− φ) as] Ṫ + αB div u̇ + divv = qH (5)

The mechanical part is based on the quasi-static balance of linear momentum of the mixture and is given as

divσ + ρg = 0 (6)

where ρ = φρw + (1− φ)ρs and σ is the total stress given as

σ = σ′ − αBp1 (7)

where 1 is the second-order identity tensor and σ′ is the effective stress tensor for which we assume a linear
elastic and isotropic behaviour:

σ′ = 2Gεel + λ tr εel1 (8)

where elastic strain εel is related to the total strain ε as

εel = ε− as

3
∆T1 (9)
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The analytical solution [45, 46] solves this set of equations for spherical symmetry and a constant heat
flux emitted at the center of the domain in a domain with homogeneous initial conditions. The assumptions
made while deriving the analytical solution also underlay this work and can be stated as follows; no advection
is considered, so the second term on the left hand side of Eq. (1) vanishes. The energy balance thus becomes
uni-laterally coupled to the HM-part of the model and validity is limited to low-permeable media. This is
the type of medium in which thermal fluid pressurization is most pronounced. Also, the gravitational force
is neglected and assumed to be accounted for in the initial stress and pore-pressure fields, so the last term on
the right hand side of Eq. (4) and the left hand side of Eq. (6) vanishes. The solid and fluid phases are both
assumed to be intrinsically incompressible, which results in αB = 1 and β = 0. As a consequence, the density
change of a phase is caused only by the change in temperature. This assumption usually leads to conservative
estimates of thermal pressurization. No external fluid source or sink is present i.e. qH = 0. Mechanical,
thermal and hydraulic isotropy are assumptions already intrinsic to the above equations. Solution for T and
p follows from Eqs. (23) and (24) in [46], respectively. It should be noted here that the values of T and p in
the results refer to the values above the reference values (initial conditions). Furthermore, since the THM
problem under study possesses spherical symmetry, the solution for displacement follows from Eq. (30) in
[46].

2.2. Input parameters and their variability

Table 1: Input parameters for sensitivity analysis. Data based on [36, 48].

Parameter Symbol/Unit Min Max Mean Std. Dev. Distribution

Total thermal conductivity K / W m−1 K−1 1.29 2.45 1.79 0.34 Truncated normal
Total specific heat capacity C / J kg−1 K−1 774 1182 978 68 Normal
Total density ρ / kg m−3 2420 2540 2480 30 Truncated normal
Young’s modulus E / Pa 5.5 · 109 20.1 · 109 12.8 · 109 3.7 · 109 Truncated normal
Volumetric thermal expansion
coefficient of solid skeleton

as / K−1 3 · 10−5 7.5 · 10−5 5.25 · 10−5 - Uniform

Intrinsic permeability ks / m2 7.8 · 10−21 2.2 · 10−19 5.6 · 10−20 5.5 · 10−20 Truncated normal
Poisson’s ratio ν / − 0.2 0.4 0.3 − Triangular
Porosity φ / − 0.097 0.185 0.15 0.0276 Truncated normal

Instead of simply varying all the model parameters by a given percentage above and below certain base
values, we used data from in-situ experiments on Callovo-Oxfordian (COx) clay rock to specify variability
[36, 48]. The experimental data is available in the form of various types of distributions where mean,
standard deviation, variation range and type of distribution are specified in each case. We chose 8 of these
parameters which are listed in Tab. 1 to be used as input variables for SA. It is worth mentioning that in
the data available at hand, the density and specific heat capacity of the mixture are given. In the sequel, we
will use C instead of cp for convenience. The strength of the heat source is chosen to be 3 kW. The values of
the parameters that are not explicitly mentioned here, are taken from [46]. Fig. 1 shows the corresponding
probability density functions (PDF) and cumulative distribution functions (CDF) for these parameters.

The SA is performed for different spatio-temporal settings to observe, relatively speaking, near and far-
field effects as well as early- and late-stage system response. The values of radii and times chosen for the
analysis are combinations r × t of the sets

r ∈ {r1, . . . , r10} = {2 m, 4 m, 6 m, 8 m, 10 m, 12 m, 15 m, 20 m, 25 m, 30 m} (10)

t ∈ {t1, . . . , t10} = {1 d, 7 d, 30 d, 90 d, 180 d, 1 y, 2 y, 3 y, 4 y, 5 y} (11)

In the sequel, the subscripts of r & t will refer to their corresponding values mentioned above, e.g. t7 = 2 y.
Figs. 2a, 2b and 2c show the analytical solution for T , p and ur for the minimum, mean and maximum
values of the input parameters, respectively, as defined in Tab. 1. Apparently, one observes that a collective
increase in parameter values from lower to mean and subsequently to upper bounds results in a decrease in
T and ur at r1 but this is not the case with p where the maximum value of p is observed for mean values
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Figure 1: A priori probability density function (PDF) f(x) and cumulative distribution function (CDF) F (x) for input variables
according to Tab. 1.

of input parameters. This observation is quite qualitative in nature and it is too early to conclude anything
at this stage, but it may present a first indication of a relatively complex and non-intuitive behaviour of p
compared to T and ur. We will return to this observation later.

3. Initial OVAT screening

Local sensitivity analysis is commonly referred to as one-variable-at–time (OVAT), one-function-at-time
(OFAT) or univariate sensitivity analysis. The computational cost of a comprehensive sensitivity analysis
increases significantly with the number of input parameters. Thus, before performing an extensive SA, an
initial screening can be helpful to simplify the model by eliminating input parameters deemed insignificant.
One such screening method uses the so-called Tornado charts. To draw a Tornado chart, first a base value
for all input parameters is chosen. As an example, the base values can either be the best known values for
the model under consideration or the mean values if the input parameters are available in form of some
range (case under study). The base values are then increased and decreased either uniformly by a certain
percentage or to maximum and minimum values of the input parameters. For every input parameter, the
difference in model output for minimum, base and maximum values of input parameters is then plotted in
form of bars with the width of bars decreasing from top to bottom, thus giving it the shape of a Tornado.
The width of the bars is thus a direct indicator of the significance of a certain input parameter. Thus
an input parameter with no or a relatively small contribution in a Tornado chart can be excluded from
more extensive sensitivity analysis or uncertainty quantification, especially if the computational resources
available at hand are limited. The threshold value for insignificance is typically at the discretion of the
modeller and requires physical insight. It is important to note here that it is a common practice to plot both
sides of the bars (left and right side of base values) in a Tornado chart with different colors to show direct
and inverse relation between input and output. Thus, in our case, a blue color on left side and a red color
on right side will indicate that an increase (decrease) in input parameter will result in an increase (decrease)
in the output and vice versa. Fig. 3a shows such a Tornado chart for the analytical solution at a point 2 m
from the heat source after 7 days, where the base values are chosen to be the mean values and bounds as
the maximum and minimum values of input parameters from Tab. 1. It can be observed that temperature is
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Figure 2: Analytical solution at t ∈ [t1, t10] at r ∈ {r1, . . . , r10} for parameter settings ’min’, ’mean’ and ’max’ as given in
Tab. 1.

sensitive to C, K and ρ in descending order while insensitive to all other input parameters. In contrast, the
number of sensitive parameters for pressure and displacement is larger and one may conclude that pressure
is most and least sensitive to E & ρ, while displacement to ks & ρ, respectively. But, the question arises;
are the above conclusions safe to be made? Since the analytical solution under study is known to vary with
time as well as distance from the heat source, the above conclusions can only be regarded as preliminary at
this stage. Fig. 3b shows the Tornado chart for all output variables at a distance of 2 m after 90 days. It can
be observed that at this later time point, temperature appears to become more sensitive to K than C in this
case which is in contrast to the observation made earlier. Furthermore, pressure now appears to be most
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sensitive to ks
2 instead of E, and E which appeared to be on the top in the Tornado chart after 7 days, now

ranks fifth after 90 days. Also the sensitivity to the remaining parameters appears to be different. In case of
displacement after 90 days, although ks and ρ still appear to be most and least significant parameters, the
sensitivity ranking of the remaining parameters has changed. A more careful look at both Tornado charts
also shows that at t = 7 d (Fig. 3a), ur decreases with an increase in ν (red color bar on left) which is not
the case at t = 90 d (Fig. 3b). One can also observe the shift in both base-line values and spread due to the
transient development of the process.

Even at the so-called screening stage, one may be interested to see if there are non-linearities present.
Tornado charts may give a slight hint of non-linear behaviour, provided the base values and the average of
upper and lower bounds of input parameters are equal, which is the case with C, ρ, E, as and ν. In such
a case, an unequal width of bars on left and right side of the base line may indicate that input parameter
and output are non-linearly related. From Fig. 3a & Fig. 3b, it appears that p and ur may depend only
linearly on as. It is also worth mentioning that in case of C-T in Fig. 3b, a slightly different value of r or t
might have led to equal width of red and blue bars indicating falsely a linear relation. Another important
aspect to notice is ks-p in Fig. 3a where both red and blue bars appear on the same side of the base line
which is not the case in Fig. 3b. This can be an indication of a transition from inverse relation to direct
relation or vice versa (non-monotonic relation). We will attempt to verify some of these observations in the
next section.
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Figure 3: Tornado chart for temperature, pressure and displacement close to the heat source at different time points.

2We comment on the asymmetry later.
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4. Full-range local sensitivity analysis (OVAT)

It is not uncommon in the literature to consider the sensitivity analysis of a given problem finished based
on the result in the previous section, i.e. a simple up or down regulation of individual input parameters.
Although the Tornado charts are quite efficient when it comes to computational cost (only 3 computations
per input parameter), care should be taken as a Tornado chart only gives the output points for the specified
limiting and central values of the input parameters and does not provide any reliable information of their
effect between these values. Neither can these values be considered bounds which is often overlooked based on
an intuition biased towards linearity. As mentioned in the previous section, a relatively better understanding
of the parameter sensitivity can be achieved by a multi-point local sensitivity analysis. Similar to the classical
OVAT analysis, first an upper and lower limit is chosen for each input parameter. Then in contrast to the
Tornado charts presented above, the input parameter is varied in small intervals between these limits while
keeping all other parameters fixed. This process is then repeated for all input parameters. Naturally, a
higher number of subdivisions will give a better understanding of local sensitivity and non-linearity over the
entire parameter range, but comes at the expense of a higher computational cost. Depending on the degree
of non-linearity, the number of subdivisions need not be very high in most practical cases. In the present
case, of course, computational cost is of no concern.

Fig. 4 shows the OVAT analysis at r = 2 m, t = 7 d for 100 subdivisions. The red and blue boxes are
spanned by the input and output variation computed in the Tornado charts (Fig. 3a). It is appropriate
to mention here that it is not a common practice to draw such boxes in OVAT charts. It was done here
intentionally for comparison purposes in order to show where information from Tornado charts may fail to
provide a complete picture. The input parameters contributing most and least to the outputs are plotted
from top to bottom. Evidently, the OVAT chart in Fig. 4 gives a better insight into the non-linearities
present in the model in comparison to the Tornado chart in Fig. 3a. Before proceeding further, we try to
verify the specific test case observations made at the screening stage for which we also perform the OVAT
analysis at r = 2 m, t = 90 d, the result of which is shown in Fig. 5. Here we see again in both figures that
T is sensitive to K, C & ρ only and that the sensitivity of T to K & C is reversed between Fig. 4 & Fig. 5.
But, in case of p, for the specified bounds of ks, the maximum value of p obtained by the full-range OVAT
analysis (Fig. 4) is higher than that obtained in the Tornado chart as seen in Fig. 3a. This shows that it
is quite possible that a Tornado chart does not provide bounds of the model output leading to unreliability
when it comes to decision making based on extreme values. In other words, conservative inputs do not
necessarily lead to conservative estimates of outputs. This effect can also be observed in case of ν-p in
Fig. 5. The OVAT analysis in Fig. 4 & Fig. 5 shows that all the parameters except as involved in this study
show non-linear behaviour to some extent and that the sensitivity varies with time even at a given distance
from the heat source.

Even in case of as, one cannot say with utmost certainty, that it will be linear for all combinations of
r and t, and thus it is important to also have a detailed look on the spatio-temporal changes in parameter
sensitivity. One way of doing this, is to perform the OVAT analysis for a certain input parameter and a
certain output for all permutations of r and t within the intervals defined above. For this purpose, we choose
all combinations of r1 − r5 and t1 − t5. Only selective sets of input-output are shown here which appeared
to be of particular interest.

Fig. 6 shows the results of the OVAT analysis for T vs K. It can be observed that at (r1,t2), an increase
in K resulted in a small increase in temperature but this effect is reversed after the first week of heating.
This effect is visible at all distances from the heat source as soon as the temperature signal initially arrives
at these distances. A similar effect can also be observed in case of p vs ks in Fig. 7 where an increase in
intrinsic permeability will result in higher pore pressures initially but this effect is reversed sooner than in
case of K vs T . Also, the relation between ks & p appears to be highly non-linear for very small values
of intrinsic permeability. A summary of the type of relationship observed between input parameters and
model outputs by considering all possible combinations of r and t under study, is given in Tab. 2.

We have so far examined two different ways of looking at the OVAT results: first, by fixing r & t while
considering all input parameters and model outputs in a single plot with sensitivity descending from top
to bottom of the chart (Fig. 5, Fig. 4); and second, by fixing a single input parameter as well as a single
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model output while considering all possible combinations of r & t under study (Fig. 6, Fig. 7) in order to
examine spatio-temporal sensitivity variations. Both types appear to have advantages and disadvantages
in communicating particular features of the problem: The former allow one to observe the sensitivity of
parameters in comparison to each other; the latter give an impression of how the effect of a parameter varies
with the location of an observation point as well as over time. This demonstrates that sensitivities are not
invariant quantities. In other words, it matters where and when one measures if a certain effect is to be
observed.

For interpreting the significance of an observation, e.g. a particularly strong non-linearity, it is further-
more important to take a look at the scale of the abscissa of the graphs: the strongest non-linearities occur in
combination with the non-monotonic behaviour, i.e. the switch from direct to inverse parameter sensitivity.
As such, while strongly non-linear, the actual sensitivity measured in terms of the range of the observed
quantity (e.g. temperature) is low at this combination of r and t. This is often, but not always the case.

There are some major shortcomings of the local sensitivity analysis in general. Primarily, it cannot
account for interactions between input parameters. Another major drawback of OVAT analysis is that it
does not cover the whole parameter space, the so-called curse of dimensionality [49]. Imagining a simple
example of a cube which spans the space of three input parameters, the OVAT analysis will cover only the
parameter values lying on the axes inside the cube which will lead to the underestimation of the response
surface bounds. This leads us to the need for global sensitivity analysis which is performed in the next
section. Modifications of the OVAT approach where the analysis is repeated around different sets of baseline
values in order to better capture the parameter space and get an impression of parameter interactions can
be considered a special case of or transition to GSA.

Table 2: Summary of parameter behaviour observed by OVAT analysis. ”Non-monotonic” means that the parameter sensitivity
reversed from direct to inverse for some combinations of r & t

K C ρ E as ks ν φ

T Non-monotonic Inverse Inverse
p Non-monotonic Inverse Inverse Direct Direct Non-monotonic Non-monotonic Direct
u Inverse Inverse Inverse Inverse Direct Inverse Non-monotonic Direct

10



1.33 1.99 2.66 3.32 3.98

0.8

1.0

1.2

C 
/ J
 k
g−

1  
K
−1

1e3

2.40 5.05 7.71 10.36 13.01
0.5

1.0

1.5

2.0

E 
/ P

a

1e10

0.84 0.99 1.15 1.30 1.45
0

1

2

k s
 / 
m

2

1e−19

1.17 1.74 2.30 2.86 3.43

1.5

2.0

K 
/ W

 m
−1
 K

−1

1e5

3.47 4.69 5.90 7.11 8.32
0

1

2

k s
 / 
m

2

1e−19

1.03 1.13 1.23 1.34 1.44

4

6

a s
 / 
K
−1

1e−5

2.15 2.22 2.29 2.36 2.44

2.45

2.50

ρ 
/ k

g 
m

−3

1e3

6.86 8.06 9.26 10.46 11.66
0.2

0.3

0.4

ν 
/ -

1.06 1.16 1.26 1.37 1.47

0.8

1.0

1.2

C 
/ J
 k
g−

1  
K
−1

1e3

2.292.292.292.292.29

0.100

0.125

0.150

0.175

ϕ 
/ -

6.31 7.39 8.46 9.54 10.62

0.8

1.0

1.2

C 
/ J
 k
g−

1  
K
−1

1e3

1.04 1.12 1.20 1.28 1.37

0.100

0.125

0.150

0.175

ϕ 
/ -

2.292.292.292.292.29
0.2

0.3

0.4

ν 
/ -

5.91 6.98 8.05 9.11 10.18

4

6

a s
 / 
K
−1

1e−5

1.11 1.18 1.25 1.32 1.39
0.5

1.0

1.5

2.0

E 
/ P

a

1e10

2.292.292.292.292.29
0

1

2

k s
 / 
m

2

1e−19

5.99 6.85 7.70 8.55 9.40

0.100

0.125

0.150

0.175

ϕ 
/ -

1.13 1.18 1.22 1.27 1.31

1.5

2.0

K 
/ W

 m
−1
 K

−1

1e5

2.292.292.292.292.29

4

6

a s
 / 
K
−1

1e−5

7.27 7.57 7.87 8.17 8.47

1.5

2.0

K 
/ W

 m
−1
 K

−1

1e5

1.14 1.17 1.20 1.24 1.27
0.2

0.3

0.4

ν 
/ -

2.292.292.292.292.29
T / K

0.5

1.0

1.5

2.0

E 
/ P

a

1e10

7.81 7.93 8.05 8.17 8.30
p / MPa

2.45

2.50

ρ 
/ k

g 
m

−3

1e3

1.21 1.22 1.23 1.25 1.26
ur / mm

2.45

2.50

ρ 
/ k

g 
m

−3

1e3

Figure 4: OVAT analysis at r = 2 m, t = 7 d for all model outputs11
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Figure 5: OVAT analysis at r = 2 m, t = 90 d for all model outputs12
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5. Global sensitivity analysis (ANOVA)

5.1. Preliminary remarks and Sobol indices

Global sensitivity analysis aims at calculating sensitivity measures that represent the system behaviour
over the entire parameter space. Some of the common types of GSA in use are the method of Morris, also
called elementary effects method (EEM) [50, 51] (used mainly for screening purposes), the Delta moment
independent measure [52], or the derivative-based global sensitivity measure (DGSM) [53]. However, the
most common among these are the variance-based GSA techniques. Two frequent types of variance-based
GSA, also referred to as ANOVA (Analysis of variance) in use are the Fourier amplitude analysis test (FAST)
[54] and Sobol’s sensitivity analysis [55]. In this work, we restrict ourselves to Sobol’s sensitivity analysis
while discussion about its comparison with FAST can be found in the literature [56]. Major advantages
of Sobol analysis over FAST include its relatively straightforward implementation, higher accuracy and the
ability to address higher order interactions.

Sensitivity analysis refers to the study of how different sources of uncertainty in the model input con-
tribute to the uncertainty in the model output [57]. In the current work, we restrict ourselves to first and
second-order sensitivity indices which are written as

Si =
Vi(Y )

V (Y )
, Sij|i6=j

=
Vij(Y )

V (Y )
(12)

The first-order index Si is thus a measure of the partial variance contributed by a single parameter i to
the overall variance in the response variable, while the second-order index gives a measure of the partial
variance contributed by the interaction of two parameters i, j to the overall variance. Further details can
be found in Appendix A. Another important measure of the sensitivity index of an input parameter is the
total effect index or total order index which is the sum of a parameter’s first or main-order index and its
higher-order interactions with other input parameters, i.e.

ST i = Si +
∑

Sij +
∑

Sij...n (13)

This index becomes particularly useful in cases where one wants to avoid the explicit computation of in-
dividual interactions due to high computational costs (e.g. for initial screening) as ST i = Si will in-
dicate the absence of parameter interactions (additive models) while ST i > Si will indicate otherwise.
It should be noted here that

∑
i ST i can be greater than 1 because Sij is accounted for twice in ST i.

In other words, assuming an example where only second-order interactions are present, one may write∑
i ST i −

∑
i

∑
j Sij =

∑
i Si +

∑
i

∑
j Sij = 1 [58].

As seen from the definitions in Appendix A, Si measures the relative variance that could be reduced if
Xi could be fixed to a single value, while ST i measures the relative variance that would be left if all factors
but Xi could be fixed [59].

The numerical computation of the indices is described in Appendix B.

5.2. Analysis of the point heat source THM problem

5.2.1. General screening

We used 100 000 samples which resulted in 1 800 000 re-evaluations of the model for a single pair of (r, t).
It is worth mentioning here that we chose such high number of samples based on convergence of confidence
bounds and because computational effort was of no concern for the model studied. Keeping in mind that
this will change drastically for numerical models, we investigated the results by using one order of magnitude
lower sample numbers, the results of which are provided as a supplement with this work. The analysis was
carried out for the 100 pairs of r × t defined previously. Fig. 8 shows a stacked bar chart of Si and ST i for
T , p and ur at r1 and t2-t4. It should be noted that it is a common practice to plot a bar chart where Si and
ST i are plotted next to each other, hence an equal height of bars will indicate the absence of interactions
for that particular input parameter. We chose to plot the stacked version to also incorporate the effect of
change in r or t in the same chart. As seen earlier at the screening and full-range OVAT stages, T appears
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magnitude of the sensitivity index.

to be sensitive to K, C and very slightly to ρ but what is interesting to see is that the temporal change in
sensitivity of both K and C is not monotonic. This is also in line with previous observations and points to
a spatio-temporal variation of certain parameter sensitivities associated with the ongoing processes of heat
and mass transport as well as deformation. To investigate this further, we plot spatio-temporal sensitivity
maps (Figs. 10 to 15).

The relative impact of parameter interactions can be studied by plotting a chart such as Fig. 9 which
shows Si and Sij at r1 and t2. Dots along the diagonal represent Si while off-diagonal entities (except
crosses below the diagonal) show interactions. This allows one to gain a fast and intuitive overview over the
relative magnitude of first- and second-order indices.

5.3. Spatio-temporal sensitivity maps—temperature

In these graphs, each box shows the sensitivity index for a specific combination of r and t where change
in color in horizontal and vertical direction shows the corresponding change in sensitivity w.r.t spatial and
temporal domains, respectively. Figs. 10 and 11 present Si and Sij for T , respectively, for all combinations of
r and t. Again, it is evident that T is sensitive toK and C which also makes sense from a physical perspective.
But in contrast to the OVAT screening results (e.g. Fig. 3a), the sensitivity to ρ seems far less pronounced
here. One possible reason for this might be, since in the OVAT analysis, outputs are not normalized, thus
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Figure 10: Si for T for all combinations of r and t.

while comparing the width of the bars of K, C and ρ in Tornado chart (Fig. 3a), the comparative sensitivity
to ρ appeared more pronounced. But if we carefully look at the variation of temperature produced by K and
C in Fig. 3a (less than 3 K), it is very small in comparison to the overall variation observed for parameter
combinations (above 80 K) shown in Fig. 2a. Since the GSA covers the entire parameter space instead of
relying on the minimum, mean or maximum values, it provides a more representative picture than the OVAT
analysis. Thus, we may safely conclude from GSA results for temperature that sensitivity of temperature
predictions to ρ is of very little significance (overall maximum value of Si = 0.022). Generally, this is only
true for the data at hand where the percentage of uncertainty in input data for ρ is small in comparison to
the uncertainty of K and C. The sensitivity maps also recover the non-monotonous trends observed earlier:
one observes a decrease in sensitivity to K which later increases again and then remains high permanently
(left most column in Fig. 10). In case of C, we also observe this non-monotonous behaviour but in a fashion
completely complementary to the behaviour of K: the sensitivity first increases and then decreases which
ultimately ends in T not being sensitive to C at all. This transition of sensitivity between K & C occurs
earlier in the near field and later in the far field and the transition region widens diffusively (the sandwiched
blue and red diagonal for K & C in Fig. 10 widens while moving from left to right, even though the time
difference is in years). This behaviour can be explained physically: before the arrival of the temperature
front, neither of the thermal parameters play an important role. During the passage of the temperature front
the temperature rate is determined strongly by the material’s heat capacity C controlling the transient part
of Eq. (1). Once the front has passed, the remaining temperature gradient is determined by the stationary
part of Eq. (1) and thus by the material’s heat conductivity. The actual arrival time is determined by
the heat diffusivity which is a combination of both parameters. This parameter interaction is picked up
by the second-order indices, as evidenced by Fig. 11 which shows that interactions are present in case of
temperature for the case of K & C especially at earlier times when the temperature signal arrives at a
given location. The unilateral thermal coupling to the hydraulic and mechanical parts (Eq. 1), explains
the insensitivity of temperature to parameters like E or ks (no advection). If the range of uncertainty in
the data for ρ were wider, we would have expected that sensitivity for ρ-T will follow somewhat a similar
pattern as C-T .
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Figure 11: Sij for T for all combinations of r and t.

5.3.1. Confidence bounds on higher-order indices

When it comes to the accuracy of the computed indices, we observed that these early arrival areas need
special attention. For example, the blue colored boxes in the lower right regions of K-T and C-T in Fig. 10
are the regions where no parameter combinations produced any output T , but at the very next value of
time, a small percentage of combinations of input parameters produced very small values of temperature
change. During the computation of the sensitivity indices, such circumstances created a sort of numerical
noise and produced unrealistically high values of sensitivity indices. The confidence intervals associated
with these predictions where likewise unacceptably high (data not shown). To avoid unphysical sensitivity
indices, confidence intervals spanned by ±5 % were applied as a filter and the values outside these bounds
are shown with black color, cf. Fig. 11. To verify if these unrealistically high values can indeed be attributed
to the computational scheme, we tested it using the commonly used test of Ishigami’s function (mentioned
earlier) and found out that in the case where parameter interactions are involved, even extremely high
sample numbers still resulted in either negative values of sensitivity indices or sensitivity indices being very
small in comparison to the confidence bounds. It should be noted though that this numerical noise does
not influence the understanding of the results if the sample size is large enough and if proper filtering
is employed. Nevertheless, physical understanding should always be used to check the plausibility of the
obtained results. With these considerations, T is seen to be primarily sensitive to K and C, and their
interaction is particularly relevant for the speed at which the temperature signal travels, Fig. 11.

5.4. Spatio-temporal sensitivity maps—pressure

Figs. 12 and 13 show spatio-temporal maps for Si and Sij with respect to pressure. Sensitivity of pressure
is most pronounced3 to ks, E and as. Qualitatively, ks-p follows a similar trend as observed in case of K-T
while E, ν and φ appear to be significant in the zone where the pressure front first arrives. Sensitivity of p
to as is again more pronounced in near field at earlier times but does not fade away quite as much as in case
of E, ν and φ as time passes. Fig. 13 shows the significance of parameter interactions in case of pressure
and suggests that interactions E − ks and ks − ν are the most prominent ones.

3Note that small sensitivies are not shown due to the discrete color scheme used. For example, K has an overall maximum
value of Si = 0.03 and C of Si = 0.047, which is just below the threshold for visibility of 0.05.
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Figure 12: Si for p for all combinations of r and t.

Physical interpretation of parameter sensitivity in case of pressure might not be as simple and intuitive
as compared to temperature due to the various THM couplings involved. We observe by inserting Eq. 4
into Eq. 5 that the last terms on left hand side of Eqs. 1 and 5 are of same type (Laplacian of T and p,
respectively). Thereby, the similarity of the sensitivity patterns for p to ks and K to T can be explained.
Furthermore, as the first term on left hand side of Eq. 1 vanishes due to the incompressibility assumption
(β = 0), the sensitivity of pressure to parameters other than ks can be attributed to the thermal and
mechanical coupling terms (second and third terms on left hand side of Eq. 5, respectively). Since both of
these coupling terms are transient in nature, the sensitivity to the corresponding parameters vanishes as
soon as a quasi-steady state is reached. Due to the presence of coupling terms, the sensitivity attribution due
to parameter interactions is not only stronger but also more diverse than observed for temperature. Fig. 13
thus does not only show the effect of interactions between closely related material parameters such as E and
ν but also interactions due to couplings e.g. E-ks or ks-ν. This reflects that the hydro-mechanical coupling
strength—manifesting itself in phenomena such as fluid load support or flow-dependent viscoelasticity—is
a function of both the stiffness and the permeability of a porous medium. The sensitivity contribution
due to these transient interactions gradually vanishes for most input parameter combinations, although the
effects of interactions appear to last longer than in case of temperature, e.g. E-ks, which may be indicative
of slightly different intrinsic time scales of the thermal and hydraulic processes, although the transient
development is dominated by the temperature signal.

5.5. Spatio-temporal sensitivity maps—radial displacement

Figs. 14 and 15 show the discrete surface charts for Si and Sij , respectively, in case of displacement ur.
In contrast to the case of T and p, the sensitivity chart for ur shows a completely different pattern, especially
in the earlier stages of time in far field. A reason for this behaviour may be that the solid skeleton reacts
faster to a change in the displacement caused near the heat source. To further understand this, it is helpful
to consider the analytical solution for various combinations of r and t as shown in Fig. 2. At r = 30 m, i.e.
the point farthest from the heat source, there is a consistent increase in displacement for all times which is
not the case with T and p. This also explains the sensitivity of ur to as, C and φ (right most column for as,
C and φ in Fig. 14) which will remain significant as long as there is any change in ur with time. Likewise,
the sensitivity of ur to as, C and φ at r = 2 m vanishes very early (left most column for as, C and φ in
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Figure 13: Sij for p for all combinations of r and t.

Fig. 14) because the value of ur in the proximity of the heater stabilises soon (Fig. 2). All three parameters
are related to TM coupling: C determines the temperature evolution, as controls the thermal expansion of
the solid skeleton. The porosity, in turn, controls the overall thermal expansion coefficient by a mixture rule
and thus also affects the thermal pressurization of the fluid, which in turn affects displacements and is thus
a full THM coupling effect.

The sensitivity of ur to ks appears to arise from the HM-coupling and thus follows a somewhat similar
pattern to ks-p but with a clear dominance in the transient period. One important aspect which might have
been easily overlooked by OVAT analysis is that at later times, the input parameter which mainly contributes
to the sensitivity of ur is K which is indicative of TM coupling which becoming dominant in comparison to
HM-coupling in the wake of the heat front where ur becomes sensitive to K just as temperature becomes
sensitive mostly to K (Fig. 10). Fig. 15 shows interactions between E-ks and as-ks in case of ur but the
scale of these interactions is very small (maximum value of Sij = 0.015).

5.6. Overall ranking

Finally, it may be useful to have an overall view of the ranking of parameter sensitivity for all output
parameters (observation quantities) based on the GSA results. Fig. 16 shows the maximum values of Si

for each input parameter among all combinations of r and t ranked from left to right. In other words, the
obtained maximum values will usually occur at different locations and times. For temperature we confirm
the already discussed results: the two thermal parameters control temperature. For pressure, we also find
the usual intuition confirmed by identifying permeability, Young’s modulus and solid thermal expansivity
as the dominant parameters. Note that this corresponds to a process intrinsic parameter being the most
important, following a HM-coupling and a TH(M)-coupling parameter. For displacement we observe that
all leading sensitivities are related to various kinds of THM coupling. This is likely rooted in the fact that
this problem is free of external load changes and instead primarily heat-source driven.

6. Concluding remarks

In this work, we performed spatio-temporal local (OVAT) and global sensitivity analyses (GSA) of a
coupled THM problem. For this purpose, we employed an analytical solution [45, 46] describing the non-
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Figure 14: Si for ur for all combinations of r and t.

isothermal consolidation around a point heat source embedded in a fully-saturated isotropic porous medium
which, in the context of nuclear waste disposal, mimics a disposal cell emitting decay heat embedded in a
fluid-saturated rock type such as clay rock. As input parameters, various types of distributions obtained
from the in-situ experiments were utilized [36, 48].

We showed that the OVAT screening based on the Tornado charts may underestimate the parameter
sensitivity for non-monotonic parameters but can provide a sound first impression at low cost in simple cases.
However, for a spatio-temporal analysis, the interpretation of results may not be easy and may require the
introduction of derived sensitivity measures. Generally, the screening based on the Tornado charts should
only be interpreted as a sensitivity measure very carefully. OVAT analysis can help identifying the direc-
tionality of a parameter’s influence, especially when the interval is subdivided into several evaluation points.
In that case, physical bounds of system response variables can be better assessed. However, real bounds
may still be missed because parameter interaction is not accounted for. OVAT can severely underestimate
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Figure 15: Sij for ur for all combinations of r and t.
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Figure 16: Maximum sensitivity (Si) of each input parameter for all combinations of r and t

the parameter sensitivity for non-monotonic parameters as well as due to the curse of dimensionality by not
including the effect of parameter interactions.

For global sensitivity analysis, we employed variance-based GSA technique which computes the so-called
Sobol sensitivity indices. The main advantages of GSA are the quantitative nature of the method, the
inclusion of parameter interactions and consideration of overall parameter space while the disadvantages
are related to the lack of information about directionality and its change as well as high computational
time. For the effective interpretation of the results, we showed that traditional bar charts may not be
suitable for problems evolving in space and time. Instead, spatio-temporal sensitivity maps proved to be a
valuable interpretative tool. The applicability of these charts extends to parameter interaction sensitivity.
By examining the first- and second-order sensitivities as well as the ranking of sensitivity indices based
on their overall maximum values it became clear that certain processes are indeed dominated by process
coupling. While this is straight forward to understand in the present case, it may be less obvious in
more complex scenarios where the tools developed here can significantly aid the interpretation of complex
simulation results.

Based on the above findings, it can be concluded in general that neither the local sensitivity analysis, nor
the global sensitivity analysis present a full picture of the parameter sensitivity of the underlying problem
and thus, both should be combined to be performed side by side for an effective decision making.

We close by remarking that the spatio-temporal sensitivity maps illustrated in this study provide a
valuable tool to devise monitoring strategies, as they are indicative of where sensors should be placed
and when their signals should be primarily evaluated in order to obtain measurements most suitable for
the determination of certain material properties or the measurement of specified target quantities. We also
observed that a detailed spatio-temporal SA recovers the physical characteristics of the problem. This implies
that such an analysis can help build understanding and perform causality or plausibility tests of black-box
models not based on known PDEs, such as data-driven approaches based on, e.g., machine learning [60, 61].
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Appendix A. Origin of Sobol’s indices

A system under analysis involves three basic constituents; uncertain input parameters or factors, the
main model under study which can be numerical or analytical, and the model output. Mathematically, this
can be represented as Y = f(X) where X = (Xi, ..., Xn) represents the space of n input parameters (Tab. 1
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in our case), f represents the model under study (THM analytical solution in our case), and Y represents
the model output (T , p and ur in our case). As the name indicates, the variance-based GSA is built around
the decomposition of the total variance of the model output, which following [55, 62], can be written as

V (Y ) =
∑
i

Vi(Y ) +
∑
i

∑
j>i

Vij(Y ) + ...+ V12...n(Y ) (A.1)

where V refers to the unconditional or total variance while the terms on right hand side are referred to as
partial variances related to the corresponding input factors (in subscripts) and their interactions (indicated
by multiple subscripts). Thus, the definition of the sensitivity indices follows from the above equation by
dividing the variance decomposition by the total variance on both sides[62] yielding the sensitivity index
definition

Sij...n =
Vij...n(Y )

V (Y )
(A.2)

In the current work, we restrict ourselves to first and second-order sensitivity indices which are simply
written as

Si =
Vi(Y )

V (Y )
, Sij|i6=j

=
Vij(Y )

V (Y )
(A.3)

Following [55, 62, 59], the variances in the above equation can also be expressed

Vi(Y ) = VXi(EX∼i(Y | Xi)) (A.4)

Vij(Y ) = VXi,j
(EX∼i,j

(Y | Xi, Xj))− Vi(Y )− Vj(Y ) (A.5)

where X∼i represents the vector of all parameters excluding Xi while V and E stand for variance and
expectation value, respectively. In Eq. (A.4), the expectation value E (inner term) is calculated by fixing
Xi in the model input and then taking the mean of response variable Y by varying all input parameters
other than Xi. This is repeated for all Xi and the variance VXi (outer term) is then computed for all these
calculations. It becomes clear how the entire parameter space can be covered by this approach. Eq. (A.5)
can be understood analogously. The sensitivity indices can then be rewritten as

Si =
VXi

(EX∼i
(Y |Xi))

V (Y )
(A.6)

Sij|i6=j
=
VXi,j

(EX∼i,j
(Y | Xi, Xj))

V (Y )
− Si − Sj (A.7)

The first-order index Si is thus a measure of the partial variance contributed by a single parameter i to
the overall variance in the response variable, while the second-order index gives a measure of the partial
variance contributed by the interaction of two parameters i, j to the overall variance. In the sequel, Sij will
refer to Sij|i6=j

. Another important measure of the sensitivity index of an input parameter is the total effect
index or total order index which is the sum of a parameter’s first or main-order index and its higher-order
interactions with other input parameters, i.e.

ST i = Si +
∑

Sij +
∑

Sij...n (A.8)

Following [59], it can be computed directly as

ST i =
EX∼i(VXi(Y |X∼i))

V (Y )
(A.9)
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Appendix B. Computation of indices

The GSA in this work is performed using the open-source Python library SALib [63]. For sampling
of the input parameter space, the code uses an improved version of the low-discrepancy quasi-random
sampling scheme based on Sobol’s sequence [64] by Saltelli et al. [59]. The discussion related to different
sampling schemes as well as their comparison is out of the scope of this work and can be found in [65]. The
formulation employed by the code uses equation (b) for Si and equation (f) for ST i in Table 2 of [59] while
Sij is computed following [62]. For N samples and n input parameters, the computational cost is N(n+ 2)
if only Si is computed while N(2n+ 2) if Sij needs to be evaluated too. To check for convergence, the code
also makes use of bootstrapping [66] to compute MC confidence intervals of sensitivity indices. Discussion
related to why MC bootstrapping technique is preferable over MC probable error estimation can be found
in [67]. Intuitively, the number of sensitivity indices obtained in case of Si and ST i each, will be equal to
the number of parameters n while in case of Sij , it will generate indices for n

2 (n− 1) pairs (e.g. 28 for n = 8
in our case). Although the code provides support for simple non-uniform distributions of inputs, we rather
used our own extension to also include support for truncated normal distributions. The extended code is
tested for performance and correctness using the commonly employed test case of Ishigami’s function [68].
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[28] Ruiping Guo, KE Thatcher, DM Seyedi, and C Plúa. Calibration of the thermo-hydro-mechanical parameters of the
callovo-oxfordian claystone and the modelling of the alc experiment. International Journal of Rock Mechanics and Mining
Sciences, 132:104351, 2020.

[29] Jung-Wook Park, Jonny Rutqvist, Dongwoo Ryu, Eui-Seob Park, and Joong-Ho Synn. Coupled thermal-hydrological-
mechanical behavior of rock mass surrounding a high-temperature thermal energy storage cavern at shallow depth. Inter-
national Journal of Rock Mechanics and Mining Sciences, 83:149–161, 2016.

[30] Jung-Wook Park, Yves Guglielmi, Bastian Graupner, Jonny Rutqvist, Taehyun Kim, Eui-Seob Park, and Changsoo Lee.
Modeling of fluid injection-induced fault reactivation using coupled fluid flow and mechanical interface model. International
Journal of Rock Mechanics and Mining Sciences, 132:104373, 2020.

[31] Ola Karnland, Torbjörn Sandén, Lars-Erik Johannesson, Trygve E Eriksen, Mats Jansson, Susanna Wold, Karsten Peder-
sen, Mehrdad Motamedi, and Bo Rosborg. Long term test of buffer material. final report on the pilot parcels. Technical
report, Swedish Nuclear Fuel and Waste Management Co., 2000.

[32] X.L. Li, W. Bastiaens, P. Van Marcke, J. Verstricht, G.J. Chen, E. Weetjens, and X. Sillen. Design and development of
large-scale in-situ praclay heater test and horizontal high-level radioactive waste disposal gallery seal test in belgian hades.
Journal of Rock Mechanics and Geotechnical Engineering, 2(2):103 – 110, 2010. ISSN 1674-7755. doi: https://doi.org/
10.3724/SP.J.1235.2010.00103. URL http://www.sciencedirect.com/science/article/pii/S1674775515300317.
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[36] G. Armand, F. Bumbieler, N. Conil, R. de la Vaissiére, J.-M. Bosgiraud, and M.-N. Vu. Main outcomes from in situ
thermo-hydro-mechanical experiments programme to demonstrate feasibility of radioactive high-level waste disposal in
the callovo-oxfordian claystone. Journal of Rock Mechanics and Geotechnical Engineering, 9(3):415–427, 2017.

[37] Ju Wang, Liang Chen, Rui Su, and Xingguang Zhao. The Beishan underground research laboratory for geological disposal
of high-level radioactive waste in China: Planning, site selection, site characterization and in situ tests. Journal of Rock
Mechanics and Geotechnical Engineering, 10(3):411–435, jun 2018. ISSN 16747755. doi: 10.1016/j.jrmge.2018.03.002.

[38] J.C. Helton, J.D. Johnson, C.J. Sallaberry, and C.B. Storlie. Survey of sampling-based methods for uncertainty and
sensitivity analysis. Reliability Engineering & System Safety, 91(10):1175 – 1209, 2006. ISSN 0951-8320. doi: https:
//doi.org/10.1016/j.ress.2005.11.017. URL http://www.sciencedirect.com/science/article/pii/S0951832005002292.
The Fourth International Conference on Sensitivity Analysis of Model Output (SAMO 2004).

[39] Norihiro Watanabe, Wenqing Wang, Christopher I McDermott, Takeo Taniguchi, and Olaf Kolditz. Uncertainty analysis
of thermo-hydro-mechanical coupled processes in heterogeneous porous media. Computational Mechanics, 45(4):263, 2010.

[40] Long Nguyen-Tuan, Tom Lahmer, Maria Datcheva, Eugenia Stoimenova, and Tom Schanz. A novel parameter identification
approach for buffer elements involving complex coupled thermo-hydro-mechanical analyses. Computers and Geotechnics,
76:23 – 32, 2016. ISSN 0266-352X. doi: https://doi.org/10.1016/j.compgeo.2016.02.005. URL http://www.sciencedirect.

com/science/article/pii/S0266352X16300143.
[41] Fabrice Dupray, Chao Li, and Lyesse Laloui. Thm coupling sensitivity analysis in geological nuclear waste storage.

Engineering geology, 163:113–121, 2013.
[42] K. Khaledi, E. Mahmoudi, M. Datcheva, D. König, and T. Schanz. Sensitivity analysis and parameter identification of

a time dependent constitutive model for rock salt. Journal of Computational and Applied Mathematics, 293:128 – 138,
2016. ISSN 0377-0427. doi: https://doi.org/10.1016/j.cam.2015.03.049. URL http://www.sciencedirect.com/science/

article/pii/S0377042715002022. Efficient Numerical Methods for Large-scale Scientific Computations.
[43] SN Pandey and Vikram Vishal. Sensitivity analysis of coupled processes and parameters on the performance of enhanced

geothermal systems. Scientific reports, 7(1):1–14, 2017.
[44] Long Nguyen-Tuan, Tom Lahmer, Maria Datcheva, and Tom Schanz. Global and local sensitivity analyses for coupled

thermo–hydro–mechanical problems. International Journal for Numerical and Analytical Methods in Geomechanics, 41
(5):707–720, 2017.

[45] J. R. Booker and C. Savvidou. Consolidation around a point heat source. International Journal for Numerical and
Analytical Methods in Geomechanics, 9(2):173–184, 1985.

[46] A. A. Chaudhry, J. Buchwald, O. Kolditz, and T. Nagel. Consolidation around a point heat source (correction and

25

http://www.sciencedirect.com/science/article/pii/S1674775515300317
http://www.sciencedirect.com/science/article/pii/S1474706506002038
http://www.sciencedirect.com/science/article/pii/S1674775514000134
http://www.sciencedirect.com/science/article/pii/S0951832005002292
http://www.sciencedirect.com/science/article/pii/S0266352X16300143
http://www.sciencedirect.com/science/article/pii/S0266352X16300143
http://www.sciencedirect.com/science/article/pii/S0377042715002022
http://www.sciencedirect.com/science/article/pii/S0377042715002022


verification). International Journal for Numerical and Analytical Methods in Geomechanics, pages 1–9, 2019. doi:
10.1002/nag.2998. URL https://doi.org/10.1002/nag.2998.

[47] Roland Wynne Lewis and Bernard A Schrefler. The finite element method in the static and dynamic deformation and
consolidation of porous media. John Wiley, 1998.
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