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ABSTRACT 19 

Desertification has become an important issue for the sustainable development of human society at 20 

global scale and has led to the changes in soil properties and vegetation cover. Biocrusts and litter 21 

crusts play roles in improving the soil microhabitat of sandy ecosystems. Soil microbial 22 

communities mediate ecosystem functions in various ecosystems, e.g., soil biogeochemical 23 

processes. However, limited information is available about how the underlying processes of 24 

bio-crusts/litter crusts restoration are driven by soil bacterial communities in sandy land. Here, we 25 

investigated the changes in soil bacteria from three groups (sandy land, bio-crusts, and litter crusts) 26 

and three soil layers (0-2 cm, 2-5 cm, 5-10 cm) with nine replicates each collected in July 2019 27 

utilized high-throughput pyrosequencing of the V4-V5 rRNA gene region. Most soil nutrients 28 

(SOM, AP, AK, and TN) and enzyme activities (BG and DHA) had differences among the three 29 

groups and three soil layers. OTU richness and diversity of bacteria were positively correlated with 30 

most soil variables. The constructed co-occurrence networks between soil variables and bacterial 31 

communities, and within bacterial communities showed that bacterial taxa had closer relationships 32 

with all soil variables in crusts than sandy land and varied among the three sand groups (sandy land, 33 

bio-crusts, and litter crusts). The result showed that the composition of bacterial community was 34 

regulated mainly by soil variables and crust types. Compared with sandy land, more predictors in 35 

nutrient cycling were found in crust types. They played major roles in nutrient cycling in desert 36 

ecosystem restoration on the basis of random forest modeling. Our findings indicate some bacterial 37 

taxa may played the predominant roles in connecting with soil variables and other bacterial taxa 38 

across crusts types, and litter crusts and bio-crusts drive the nutrient cycling by mediating the 39 

restoration of bacterial taxa in sandy ecosystems.  40 

 41 
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1. Introduction 45 

Land desertification poses a great threat to all types of ecosystems, it can damage ecosystem’s 46 

basic functions and services to sustain life, causes the losses in soil nutrients, the decline in soil 47 

potential productivity, and the reduction in vegetation (D’Odorico et al., 2013). Arid and semiarid 48 

areas are among the most susceptible to land desertification, however, they covered approximately 49 

one-third of the earth’s land and have been expanding rapidly, this is due to climate change and 50 

human activities, such as overcultivation, overgrazing, and urbanization (Asner et al., 2003; 51 

Sivakumar et al., 2005)(Gao et al., 2017). With the increase of the world population and 52 

deterioration of living environment, desertification has becoming one of a major issue for the in 53 

human societies at global scale(D’Odorico et al., 2013). For instance, according to The 54 

Desertification and Sanditification Sate of China, China had a desert area of  2.6 million square 55 

kilometers, and another 1.7 million square kilometers of sandy area in 2014, which covers about 56 

27.2% and 17.9% of the country’s land, respectively (State Forestry Administration, 2015). The Mu 57 

Us Sandy Land, which is located in central north of China, is the region with high risks of 58 

desertification in arid Asia (Wang et al., 2017). In 1999, the Grain for Green Program was launched 59 

by Chinese government with aims to halt soil erosion and improve the ecological environment (i.e. 60 

the losses of soil fertility and the decrease of vegetation coverage). It is the largest ongoing 61 

revegetation project in China and also one of the largest conservation projects in the world. This 62 

project converted croplands into grasslands or shrubs and increased vegetation coverage from 63 

31.6 % in 1999 to 59.6 % in 2013 on the Loess Plateau (Chen et al., 2015b; Uchida et al., 2005). 64 
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Meanwhile, apart from the "Grain for Green" Program, several other initiatives have been carried 65 

out to restore soil fertility and alter the sand surface to control desertification in sand areas, such as 66 

mechanical sand barriers (Bo et al., 2015) and afforestation (Zeng et al., 2008). These initiatives 67 

enhanced development of bio-crusts and litter crusts on the Loess Plateau, either directly or as a 68 

result of a general improvement of environmental conditions. Better environmental conditions, 69 

including appropriate humidity and temperature, promote the development of bio-crusts and litter 70 

crusts in the Mu Us Sandy Land (Liu et al., 2019b). 71 

Biological soil crusts (bio-crusts), which are composed of cyanobacteria, lichens, mosses, 72 

fungi, and other nonvascular photoautotrophs, are typical for dryland ecosystems worldwide and 73 

represent an essential functional component of the pedosphere. Bio-crusts can stabilize soil, 74 

increase soil fertility, impact hydrologic cycles, alter soil organic matter content, and provide a 75 

home for belowground organisms (Reed et al., 2019; Torres-Cruz et al., 2018). Litter crusts are 76 

defined as the cohesiveness of the soil surface shaped by litter and soil and forms a hard shell by the 77 

mixing of sand and litter organisms in the wind - water erosion crisscross zone Bio-crusts and litter 78 

crusts play crucial roles in improving microhabitat conditions, forming soil organic matter, affecting 79 

hydrological processes, and soil bacterial communities in sandy lands during restoration (Jia et al., 80 

2018; Leloup et al., 2018; Liu et al., 2019b). 81 

In this context, soil variables are most important factors to impact microbial communities, such 82 

as soil pH, soil texture and, available nutrients (Chen et al., 2015a; Fierer and Jackson, 2006). On 83 

the contrary, microbial communities are important indicators of rehabilitated ecosystems (Banning 84 

et al., 2011) and drive the Earth’s biogeochemical cycles (Falkowski et al., 2008). Soil bacterial 85 

communities represent the greatest biodiversity reservoir and greatly affect ecosystem functions and 86 

services (Falkowski et al., 2008; Wagg et al., 2014). An enhanced appreciation of the connection 87 
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between environment and microbial ecology, in the last decade, has led to many studies focused on 88 

the distribution of soil microbial communities (Karimi et al., 2018), the influence of microbial 89 

diversity on plant community (Jiao et al., 2019) and multifunctionality of terrestrial ecosystem 90 

(Delgado-Baquerizo et al., 2016; Falkowski et al., 2008; Jiao et al., 2019; Karimi et al., 2018). 91 

However, limited information is available about the response of bacterial communities on soil 92 

variables in natural desert ecosystems. Moreover, each microbe may play a different functional role 93 

in complex microbial ecosystem (Li et al., 2019). Experimental evidence suggested that the 94 

bacterial communities at phylum level are similar in the two sample types. The relative abundance 95 

of several genera has considerably differences at the genus level (Jakobsen et al., 2019). However, 96 

the foundational role of the bacterial genera in regulating key ecosystem processes (i.e. nutrient 97 

cycling) of litter crusts and bio-crusts in the sandy ecosystem is lacking. Thus, we must expand our 98 

insight into the functions of the microorganisms, particularly bacteria genera, in the bio-crusts and 99 

litter crusts in the restoring sand ecosystem. 100 

The present study aims to (1) elucidate the variations in soil quality and bacterial communities 101 

coupled with the soil quality of bio-crusts and litter crusts, (2) explore the correlations between the 102 

soil bacterial taxa and soil variables and the bacterial taxa among themselves in the bio-crusts and 103 

litter crusts networks, (3) identify the contributions of the annotated bacterial taxa to nutrient 104 

cycling during ecosystem restoration. To achieve these aims, we used high-throughput 105 

pyrosequencing of the V4-V5 rRNA gene region to compare the variations of bacterial communities 106 

in relation to soil variables, their co-occurrence networks, and their contributions to the soil 107 

functioning (nutrient cycling) in bio-crusts and litter crusts of restoring sandy ecosystems. 108 

 109 

2. Materials and methods 110 
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 111 

2.1. Study sites and sample collection 112 

The study was carried out in the eastern part of the Mu Us Sandy Land ecosystem (110°21’ 113 

-110°23’E, 38°46’-38°51’N; 1080-1270 m Altitude), located in Shenmu County at the northern of 114 

Shanxi Province, China. This region, as the most arid area in Asia, is one of the largest dune areas in 115 

the north of China (Wang et al., 2017). Psammophytic shrubs and herbaceous plants are mainly 116 

dominant plant species in this study site (Jia et al., 2018). Accordding to our previous studies, 117 

bio-crusts and litter crusts, as two major contributors, covered about 40% and 30% of the Mu Us 118 

Sandy Land, respectively (Jia et al., 2018). To compare the effects of bio-crusts and litter crusts on 119 

the surface microhabitats of the sandy land, three sites (sandy land, bio-crusts, litter crusts) with 120 

similar environmental conditions in terms of underlying subsoil, microtopography, and soil 121 

hydrology, were selected and the distance between them was above 500 m apart. Sand samples were 122 

collected in July 2019 from sampling sites covered by bio-crusts and litter crusts, respectively. After 123 

removing the litter horizon, nine replicate sites were randomly selected above 10 m apart and three 124 

sand layers (0-2 cm, 2-5 cm, 5-10 cm). Each replicate was mixed with five sand cores by a zigzag 125 

pattern (Liu et al., 2019a). In total, 81 soil samples = 3 sites (sandy land, bio-crusts, litter crusts) × 3 126 

depths (0-2 cm, 2-5 cm, 5-10 cm) × 9 replicates were obtained, and all the sand samples were taken 127 

to the laboratory on ice within 24 h. A small part of each sample (~2 g) for the DNA analysis was 128 

transported to the company (Novogene, Beijing, China) on ice. Another part was sieved (~2 mm) 129 

for the analysis of soil properties. The rest was stored at −80 °C. 130 

2.2. Sand characters and enzyme activities 131 

Sand organic matter (SOM) were measured by potassium dichromate colorimetric method 132 

(Nelson and Sommers, 1982); total phosphorus (TP), and available phosphorus (AP) were 133 
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determined by molybdenum anti-colorimetric method (Olsen and Sommers, 1982); ; total nitrogen 134 

(TN) was determined with the Kjeldahl method (Bremner and Mulvaney, 1996); total potassium 135 

(TK), and available potassium (AK) were determined with Flame photometry as described 136 

previously ( Page et al., 1982). β-glucosidase (BG), dehydrogenase (DHA), Urease (UA), alkaline 137 

phosphatase (ALP), and acid phosphatase (ACP) were measured by the methods described in 138 

Tabatabai, 1994 (Tabatabai, 1994; Taylor et al., 2002). Briefly, BG activity was determined as the 139 

amount of p-nitrophenol (PNP) released; ALP and ACP were determined by p-nitrophenol (PNP) 140 

released at pH 11 and 6.5, respectively. UA was measured by the determination of ammonia 141 

released. DHA was determined as the amount of the TPF released (Taylor et al., 2002). All the 142 

samples were determined using three replicates. The selected parameters reflect either resource 143 

pools (SOM, TN, TP, AP, TK) in biogeochemical cycles or important processes regulating 144 

availability of these pools (BG, DHA, UA, ALP, ACP). Such as, the important ecosystem processes 145 

related to the cycling of carbon (SOM, BG and DHA), nitrogen (TN and UA), phosphorus (AP, TP, 146 

ALP, and ACP), and potassium (AK and TK) (Jiao et al., 2019; Jing et al., 2015). 147 

 148 

2.3. DNA extraction and 16S rRNA gene sequencing 149 

Genomic DNA from each sand sample was extracted from 1g sand using the OMEGA soil 150 

DNA Kit (Omega Bio-Tek, Inc., Norcross, GA, USA) based on the manufacturer's instructions. To 151 

assess the bacterial communities, the V4–V5 region of the bacterial 16S rRNA gene was amplified 152 

with the primers: 515F (5' – GTGCCAGCMGCCGCGGTAA – 3') / 907R (5' – 153 

CCGTCAATTCCTTTGAGTTT - 3'). The purified PCR products were pooled and sequenced on 154 

the Illumina HiSeq (300~bp paired-end reads) platform (Novogene, Beijing, China).  155 

 156 
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2.4. Data analysis 157 

The acquired sequences were processed to remove low - quality sequences using the QIIME 158 

pipeline (Caporaso et al., 2011). The remaining sequences were classified into operational 159 

taxonomic units (OTUs) with 97% sequence similarity by the UPARSE pipeline (Edgar, 2013). 160 

OTU richness, Chao1 index, Shannon index, ACE index, and Simpson index were calculated by the 161 

OTU table in QIIME (Caporaso et al., 2010).The changes in soil nutrients, enzyme activities, and 162 

bacterial communities, as well as the relative abundance of the microbial phyla among three soil 163 

groups (sandy land, bio-crusts, and litter crusts) and three soil layers (0-2 cm, 2-5 cm, and 5-10 cm), 164 

were conducted based on one-way ANOVAs with Tukey's tests by GraphPad Prism version 8.0.2 165 

(GraphPad Inc. San Diego, CA, USA). The normality of data and the equality of variance were 166 

tested. If the data did not meet normality or homogeneity, non-parametric Kruskal-Wallis analyses 167 

were used. Redundancy analysis (RDA) was performed to visualize the influence of soil variables 168 

on bacterial community composition in R package “vegan” (Oksanen et al., 2013). 169 

The co-occurrence networks were constructed for bio-crusts and litter crusts based on 170 

significant correlations between bacterial genera and all of the soil nutrients (Pearson’s correlation, 171 

p.thres = 0.05, r.thres = 0.6), and among the bacterial genera themselves (Pearson’s correlation, 172 

p.thres = 0.05, r.thres = 0.8), which were visualized by R packages ‘igraph’ (Hartmann et al., 2015; 173 

Qian et al., 2018). In the co-occurrence networks, each node represents one bacterial genus and 174 

each edge represents a significant correlation between two nodes. A set of metrics: number of edges 175 

(Num. edges), average. degree, average. path. length, diameter, and modularity were calculated to 176 

estimate network topological features. Num. edges represent the number of edges. To identify the 177 

major statistically significant bacterial predictors for sand nutrient cycling, a Random Forest (RF) 178 

modeling was performed with the forest (5,000 trees) using the “random Forest” package (Archer, 179 
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2016). The model significance was computed by the R package “A3” (Fortmann-Roe, 2013). A total 180 

of 35 classified microbial phyla and 143 annotated genera from 6 predictors at the phylum level 181 

were selected in the Random Forest modeling. Percentage increases in the mean squared error 182 

(MSE) was used to estimate the importance of variables. All statistical analyses were performed by 183 

GraphPad Prism 8.02 or R software (v3.6.3; https://www.r-project.org/). 184 

3. Results 185 

3.1. Variation in sand nutrients and enzyme activities  186 

Soil nutrients and enzyme activities typically differed among three soil groups and three sand 187 

layers, most of which were significant differences. Litter crusts had significantly higher SOM, TN, 188 

AP, AK, BG, DHA, UA,  and ACP than those in the sandy land and the bio-crusts in surface soil 189 

(0-2 cm and 2-5 cm); TK, SOM, TK, AK, TN, ALP, ACP were significantly higher in the bio-crusts 190 

than those in the sandy land in the surface soil (0-2 cm and 2-5 cm). SOM, AP, AK, BG, and DHA 191 

were highest in the topsoil (0-2 cm) of the bio-crusts and litter crusts. (Fig. 1). These results 192 

indicated that both litter crusts and bio-crusts improved the sand soil quality compared with sandy 193 

land, and litter crusts had more significant improvement in sandy soil quality than bio-crusts, 194 

especially, in the surface of the sand layer. The statistical information listed in Table S1. 195 

 196 

3.2. Variation in sandy bacterial community  197 

In total, 6,865,683 high-quality sequences were classified into 14560 operational taxonomic units 198 

(OTUs) after the 97% sequence similarity cutoff across 81 sand samples (Table S2). The OTU 199 

richness in biocrust and the litter crusts were significantly greater than this in the sandy land in the 200 

surface soil (0-2 cm and 2-5 cm) (Fig. 2B and Table S3). Bacterial OTU were primarily classified 201 

into the 66 microbial phyla, and the most dominant bacterial phyla were the phyla Proteobacteria 202 

https://www.r-project.org/).
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(28.2%), Actinobacteria (23,86%), Acidobacteria (18.92%) (Fig. 2A, and Table S4). 39.57% OUT 203 

were classified into the 707 genera, the most dominant identified genera were Sphingomonas (2.4%) 204 

and Nocardioides (2.2%), respectively belonging to the Proteobacteria, and Actinobacteria phyla 205 

(Table S5). For most of the bacterial phyla and genera, relative abundance of the phyla or genera 206 

bacteria significantly different among three sand groups (P > 0.05) (Table S4, Table S5). The 207 

Shannon index of bacterial community diversity in the litter crusts and bio-crusts were significantly 208 

higher than this in sandy land in the surface soil (0-2 cm and 2-5 cm). The bacterial communities 209 

clearly differed among three soil groups (Fig. 2E, Fig. 2F, Fig. 2H and Table S3).  210 

 211 

3.3. Co-occurrence patterns of soil bacterial communities 212 

Redundancy analysis (RDA) was performed to investigate the influence of soil variables on 213 

bacterial community among three sand groups and three sand layers. We found that soil variables 214 

well explain dynamic changes of bacterial communities at the phylum level or genus level. 215 

However, the correlations are not alike between the level of bacterial phylum and genus (Fig. 3 and 216 

Table S6). For instance, AK was the most important variable for litter crusts bacterial community at 217 

genus level, whereas, SOM, AP, TN, DHA, GB, and UA were more important at the genus than at 218 

the phylum level (Fig. 3 and Table S6). Furthermore, the co-occurrence networks were constructed 219 

for three sand groups to investigate the correlations between the bacterial genera and soil nutrients 220 

(Fig. 4A and Table S7). The network structure was distinct, the bio-crusts network had more edges 221 

(34) than sandy land network (33) and litter crusts network had more than two times (2.71) as many 222 

edges as found in bio-crusts. There is the highest average degree in the litter crusts and higher 223 

average degree in the bio-crusts network than these in the sandy land network. These showed that 224 

most soil nutrients had closer relationships with bacterial genera in the litter crusts than in the 225 
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bio-crusts and sandy land. 226 

Given the interactions between bacterial taxa, we constructed co-occurrence networks to 227 

explore the interactions between the bacterial genera with each other in three sand groups, 228 

respectively (Fig. 4B and Table S8). Diverse topological characteristics were observed. The 229 

modularity indices were 0.8810.587, and 0.892 in the sandy land, bio-crusts, and litter crusts 230 

network, respectively. These values (The modularity indices > 0.4 show that the network has a 231 

modular structure) mean these networks had a modular structure. The highest average degree in the 232 

sandy land network than these in the litter crusts and bio-crusts networks. There were 975 edges and 233 

94.26% positive correlations identified as co-occurrences in the bio-crusts and 1,787 edges and 234 

99.89% positive correlations in the litter crusts. In sum, bacterial co-occurrence patterns were 235 

distinctly different between the bio-crusts and litter crusts. 236 

 237 

3.4. The potential contributions of bacterial taxa to sand nutrient cycling  238 

The contributions of bacterial communities to sand functionings were evaluated by Random 239 

Forest (RF) modeling. We uncovered the potential major bacterial drivers of sand nutrient cycling in 240 

the crust types by RF analysis, including 35 microbial phyla. We discovered that 9 bacteria phyla 241 

were the most important predictors to nutrient cycling in the bio-crusts and litter crusts (Fig. 5A). 242 

Planctomycetes ，  Cyanobacteria ，  Armatimonadetes ，  Rokubacteria ，  Nitrospirae ， 243 

Latescibacteria ，  Deinococcus-Thermus were predictors in bio-crusts and Actinobacteria, 244 

Chloroflexi, Planctomycetes, Cyanobacteria, Armatimonadetes， Rokubacteria, Latescibacteria, and 245 

Deinococcus-Thermus were predictors in litter crusts. Furtherly, 143 annotated genera from the 246 

Actinobacteria, Planctomycetes, Chloroflexi, Armatimonadetes, Deinococcus-Thermus, Nitrospirae 247 

were selected to identify the major predictors at the genus level (Table S5). Compare to sandy land, 248 
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more predictors were found in the bio-crusts and litter crusts. We observed 22 and 20 predictors to 249 

nutrient cycling in bio-crusts and litter crusts, respectively (Fig. 6). Blastococcus, Couchioplanes, 250 

Crossiella, Geodermatophilus, Actinoplanes, Parviterribacter, Marmoricola, Rhizocola, 251 

Tepidisphaera, and Fimbriiglobus are the same predictors to the nutrient cycling between the 252 

bio-crusts and litter crusts. Most of the predictors were distinct between bio-crusts and litter crusts 253 

not only at the phylum level but also at the genus level and the particular bacterial consortium made 254 

important contributions to soil functionings. 255 

 256 

4. Discussion 257 

 258 

4.1 Influence of crusts on sand characters and bacterial communities 259 

Bio-crusts and litter crusts improved sand surface microhabitats, including soil properties and 260 

hydrological processes, and caused the development of soil fertility (Ferrenberg et al., 2018; Liu et 261 

al., 2019b). Our study showed that most sand nutrients, enzyme activities, and the diversity of soil 262 

bacteria communities increased markedly during the development of bio-crusts and litter crusts. 263 

This finding indicated that these crusts have a positive effect on sandy ecosystem restoration. 264 

In this study, litter crusts enhanced most sand nutrients and enzyme activities compared with 265 

bio-crusts. This result is consistent with previous study that litter crusts significantly increase soil 266 

organic matter than those in bio-crusts (Liu et al., 2019b). This condition can be apparently and 267 

partially due to many substrates for decomposition provided from the litter crusts, thereby 268 

elucidating the improvement of soil quality in sandy litter crusts. Soil quality determined the nature 269 

of vegetation series and the achievement of ecological restoration (Putten, W.H 2013). Previous 270 
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studies indicated that the diversity of bacteria typically increases with ecosystem restoration. The 271 

richness and diversity of bacterial communities in the litter crusts and bio-crusts were significantly 272 

higher than in the sandy land. This condition is attributed to the opportunities for the interactions of 273 

different species among themselves are provided by the improved soil quality (Liu et al., 2019a). 274 

These crusts can provide favorable environment for vegetation species formation via improving soil 275 

surface microhabitats of sandy land in the wind-water erosion crisscross region. Moreover, most 276 

soil nutrients contents and enzyme activities were greatest in topsoil, as shown in previous results 277 

(Liu et al., 2018). These differences in soil properties may have an influence on the soil 278 

microorganisms. The diversity of bacteria was higher in the deep layer (5-10 cm) than in the other 279 

layers in sandy land. This finding is inconsistent with studies that the diversity of bacterial 280 

communities commonly decreases with increasing soil depth (Jiao et al., 2018a). This result may be 281 

due to the specific environmental conditions of sandy land, including the high air temperature, low 282 

soil humidity, and abundant solar radiation in surface soil (Liu et al., 2018). 283 

4.2 Influence of litter crusts and bio-crusts on co-occurrence networks 284 

Many studies have reported that the co-occurrence patterns of complex ecological interactions 285 

that form bacterial communities can demonstrate the interactions of soil variables and bacterial taxa. 286 

These patterns are generally used to evaluate the information on community interactions in natural 287 

habitats. In our co-occurrence networks, the interactions of soil variables and bacterial genera were 288 

complicated in the litter crusts network. This result may be related to the accumulation of soil 289 

nutrients and enzyme activities that contributed to the bacterial community activity. The bio-crusts 290 

and litter crusts networks were significantly different at the genus level, which may be due to their 291 

heterogeneity in response to the soil properties and different habitats. 292 

Soil microbes may be related to the soil properties and among themselves through various 293 
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mechanisms (Ma et al., 2016). In this study, we found that the bacterial networks were distinct 294 

among the three sample groups. Bacterial genera had more connections with each other in the litter 295 

crusts network (num. edges = 1787) than in the bio-crusts network (num. edges = 975). More 296 

positive correlations identified as co-occurrences were found in the litter crusts (99.89%) than in the 297 

bio-crusts (94.26%). Dominant positive correlations illustrate that most bacterial genera may share 298 

similar ecological niches or synergistically operate in the litter crusts environment, which is 299 

consistent with other microbial networks (Aschenbrenner et al., 2017; Zhang et al., 2018). The 300 

bacterial taxa enriched in the litter crusts might benefit from sufficient soil nutrients, thereby 301 

enabling them to take up the leading ecological niches in the interaction network. In litter crusts 302 

network, the most important genera, including Romboutsia, Paeniclostridium, and Mogibacterium 303 

belong to the phyla Firmicutes. The lowest relative abundance of these genera and the most 304 

important roles were observed. Our study showed that the relative abundance of bacterial taxa is not 305 

directly related to ecosystem function, consistent with sulfate reducer Desulfosporosinus with the 306 

low (0.006%) abundance managed the majority of soil SO4 reduction (Pester et al., 2010). It is 307 

known that members of the Firmicutes have ability to degrade cellulose in the litter. But, the highest 308 

relative abundance of the Firmicutes were observed in the sandy land probably because the much 309 

phenotypic variation of its members enables these organisms to live in various environments 310 

(Lawson et al., 1993), and many members with spore-forming ability are able to endure harsh 311 

environmental conditions (Zhuang et al., 2010). However, negative correlations (5.74%), which 312 

show co-exclusion between the two bacterial genera, were rarer than positive ones in the bio-crusts 313 

network. The number of negative links was higher than in the litter crusts network, probablydue to a 314 

more competitive connection between bacterial genera in the bio-crusts. More negative correlations 315 

were found between Gaiella and other genera, for instance, Gaiella and Hydrocarboniphaga, 316 
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Microvirga, or Belnapia. Gemmatimonas, Hydrocarboniphaga, Microvirga, and Belnapia were the 317 

important genera in the bio-crust network. Compared with the sandy land, the highest relative 318 

abundance of the Gaiella and lower abundance of the Hydrocarboniphaga, Microvirga, or Belnapia 319 

were found in the bio-crusts. Gaiella is chemoorganotrophic and had the ability to utilize organic 320 

acids, amino acids, and some sugars as single carbon sources but not utilize hydrocarbons as carbon 321 

(Albuquerque et al., 2018). Hydrocarboniphaga, Microvirga, or Belnapia belong to the 322 

Proteobacteria, these members were facultative and aerobic bacteria and can utilize various organic 323 

substrates (Slezak et al., 2017). Most organisms contain or produce small amounts of hydrocarbon, 324 

such as, the fermentation of many bacteria in the soil and the decomposition of plants. 325 

Hydrocarboniphaga active in hydrocarbon degradation (Palleroni et al., 2004) and Microvirga can 326 

degrade some hydrocarbon (i.e. Tween 20, D-sorbitol, adonitol, and alphaiso-leucine) as carbon and 327 

nitrogen sources (Veyisoglu et al., 2016). This observation may be because the accumulation of 328 

hydrocarbons has an opposite effect on the growth of Gaiella and Hydrocarboniphaga or Gaiella 329 

and Microvirga in bio-crusts. These results may indicate the preferences of specific bacteria for soil 330 

crust types and substrates. 331 

4.3 Bacterial community predictors of sandy nutrient cycling 332 

Plant and microbial diversity drive terrestrial ecosystem multifunctionality 333 

(Delgado-Baquerizo et al., 2016). Recent research provides evidence that microbial communities 334 

play pivotal roles in driving soil nutrient cycling in reforested ecosystems (Jiao et al., 2018a). Our 335 

results showed that the members of the predictors varied with the crust types in sandy land. 336 

Nitrospirae was the important and unique predictor to the nutrient cycling in the bio-crusts likely 337 

due to its diverse metabolism. Most of its genera are aerobic chemolithotrophs, including nitrifiers, 338 

dissimilatory sulfate reducers, and magnetotactic forms (Garrity and Holt, 2001). Nitrospirae is an 339 
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extensive nitrite-oxidizing bacterial taxa and plays a major role in the soil nitrogen cycle. In our 340 

study, Nitrospirae showed the highest relative abundance in the bio-crusts, and had a sight higher 341 

content of TN and UA compared with in sandy land, which participate in nitrogen cycle. This result 342 

showed that the nitrogen-cycling bacterial group was crucial in the development of the bio-crusts, 343 

and the soil conditions in the bio-crusts were enhanced with long-term crust restoration in the sandy 344 

land. Actinobacteria and Chloroflexi are the important and unique predictors to the nutrient cycling 345 

in the litter crusts. This condition is probably because Actinobacteria, as an excellent indicator of 346 

soil biological activity, metabolize cellulose, lignin, and other complex polymers, mediate the 347 

decomposition of organic matter in ecosystems, and influence the nutrient cycling in the soil (Kirby, 348 

2005). The relative abundance of Actinobacteria accounted for the high proportion across the three 349 

groups with their capacity to colonize bare soil (Suela Silva et al., 2013). However, their decrease 350 

with the increase in soil nutrients agrees with the study that Actinobacteridae are more abundant in 351 

patches without vegetation than in shrubs (Hortal et al., 2013). Actinobacteria play a beneficial role 352 

in the soil by providing protection against abiotic stresses and enhancing plant nutrition acquisition 353 

(Shi et al., 2019).Chloroflexi can offer energy through photosynthesis, degradation of plant-derived 354 

compounds, and organic matter decomposition (Wang et al., 2018). Previous study showed that it 355 

was negatively correlated with TN and organic carbon in the litter crusts (Lozano et al., 2014) and 356 

the relative abundance of Chloroflexi decreased with the development of soil (Brown and 357 

Jumpponen, 2014). These findings are consistent with our study that showed the lowest relative 358 

abundance of Chloroflexi and the highest content of TN and organic matter, and its relative 359 

abundance is indirectly correlated with soil nutrients and enzyme activities. Actinobacteria and 360 

Chloroflexi are pivotal in predicting the cycling of sand nutrients under the litter crusts. Our 361 

experimental results reveal the distinct contributions of bacterial taxa to soil functions 362 
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(multi-nutrient cycling) in bio-crusts and litter crusts in sandy lands.  363 

Increasing attentions in manipulating host-microbiome interactions by adding bacteria in a 364 

range of systems should focus on a fine scale to analyze the relationships between the microbia l 365 

populations and soil functioning under natural conditions. However, most studies have focused on 366 

the microbial indicator at the phylum level or class level of bacteria. In our study, we aimed to 367 

determine the predictors of nutrient cycling at the genus level. Our results indicated that 368 

approximately 31% of predictors (10) were the same between the bio-crusts and litter crusts at 369 

genus level, and they were more connected with other bacterial genera in the co-occurrence 370 

networks. Hence, they may affect the soil ecosystem functioning by contributing to nutrient cycling 371 

in the crust types of ecosystem restoration. The unique bacterial predictors’ groups in the bio-crusts 372 

or litter crusts with these bacterial consortiums can play important roles in nutrient cycling in 373 

different habitats. This finding is consistent with the study of distinct microbial communities that 374 

can exhibit distinct responses in different habitats (Wagner et al., 2016). The number of bacterial 375 

predictors were more in the crusts than in the sandy land. This result suggested the importance of 376 

soil bacterial communities in impacting ecosystem functioning (multiple nutrient cycling) during 377 

the development of the bio-crusts and litter crusts in sandy land.Our results showed particular 378 

bacterial consortium play important roles in predicting soil nutrient cycling in sandy ecosystem 379 

restoration. In a microbial ecosystem, the identification of the key microbial populations is often 380 

associated with the occurrence and abundance of species in local habitat (Mei et al., 2016). 381 

Therefore, the important drivers at the genus level with litter crusts and bio-crusts contribute to the 382 

applications of the key microbial driver in ecosystem restoration. These observations indicate 383 

bacteria participate in the biogeochemical cycling of multi-nutrients in the litter crusts and 384 

bio-crusts and the importance of investigating distinct responses contributed to sand nutrient cycling 385 
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in the sandy ecosystem restoration. These studies enrich our knowledge on crusts and bacterial 386 

communities in restoring sandy land. 387 

5. Conclusions 388 

Soil bacterial communities represent important variables for predicting nutrients cycling of 389 

restoration trajectories, thereby affecting belowground ecological restoration. In this study, the 390 

bacterial communities showed increased diversity and varied composition and structure in the crust 391 

types compared with the sandy land. The diversity and OUT richness were positively correlated 392 

with soil nutrients (except TP) in surface soil (0-2 cm and 2-5 cm). Litter crusts network had closer 393 

relationships between the soil bacterial taxa and soil nutrients and more positive correlations among 394 

themselves than in the bio-crusts network. The bacterial drivers play the most important roles in 395 

mediating sand nutrient cycling in the crust types of ecosystem restoration. These findings increase 396 

our understanding of the complex interactions between bacterial communities and crust types 397 

during the ecosystem recovery. The distinct response strategies of particular bacterial groups at the 398 

genus level can be important for the comprehensive understanding of the belowground microcosms 399 

with litter crusts and bio-crusts in the surface sand. Our study provides a new perspective that the 400 

exploration of the specific functions of particular bacterial consortiums in nutrient cycling is crucial 401 

to their applications in pivotal ecosystem functioning. Future work should be conducted to isolate 402 

the most important drivers of the bacterial taxa. Bacterial inoculants may promote soil bacterial 403 

functioning in nutrient cycling and may be potentially implemented as an approach for increasing 404 

soil fertility in degraded lands or agricultural lands. 405 
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Figure legends 646 

 647 

Figure 1. Variation in soil properties and enzyme activities (n=9) among three soil groups (sandy 648 

land, biocrusts, and litter crusts) and three soil layers (0-2 cm, 2-5 cm, and 5-10 cm). Different 649 

lowercase letters indicate significant difference among three soil group in the same soil layer (p < 650 

0.05), and different uppercase letters indicate significant difference among three soil layers in the 651 

same soil group (p < 0.05). Error bars indicate standard deviation. 652 

 653 

Figure 2. Variation in the microbial communities among three sand groups (sandy land, biocrusts, 654 

and litter crusts). (A) Relative abundances of the microbial taxa annotated (>1% of total community) 655 

at the phylum level; Difference in OTU richness (B), Chao1 index (C), Shannon index (D) of the 656 

microbial community (n=9) among three soil groups (sandy land, biocrusts, and litter crusts) and 657 

three soil layers (0-2 cm, 2-5 cm, and 5-10 cm). Difference in OTU richness (E), Chao1 index (F), 658 

Shannon index (H) of the microbial community (n=27) among three soil groups. Color of blue, red, 659 

green represent sandy land, biocrusts, and litter crusts, respectively. Different lowercase letters 660 

indicate significant difference among three soil group in the same soil layer (p < 0.05), and different 661 

uppercase letters indicate significant difference among three soil layers in the same soil group (p < 662 

0.05). Error bars indicate standard deviation. 663 

Figure 3. Redundancy analysis (RDA) for identifying the influence of soil nutrients and enzyme 664 

activities on bacterial community composition at the phylum level (A) or the genus level (B) .  665 

Dashed ellipses represent nine treatments; Arrows represent the soil variables associated with 666 

bacterial community composition. 667 

 668 
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Figure 4.  669 

Co-occurrence networks of soil bacterial communities in the sandy land, biocrusts, and litter crusts. 670 

The color of nodes represent bacterial genera and soil variables (red nodes represent soil variables, 671 

the other color nodes represent bacterial genera). (A) The correlations between the soil variables 672 

and bacterial taxa. (B) The correlations among the bacterial taxa themselves. Red edges represent 673 

positive correlation, blue edges represent the negative correlation.  674 

SOM, sand organic matter; TK, total potassium; AK, available potassium; TP, total phosphorus; AP, available 675 

phosphorus; TN, total nitrogen; UA, urease activity; GB, β-glucosidase activity; DHA, dehydrogenase activity; 676 

ALP, alkaline phosphatase activity; ACP, acid phosphatase activity. 677 

 678 

Figure 5. Random forest (RF) shows all annotated microbial drivers at the phyla level for sand 679 

nutrient cycling in sandy land, biocrusts, and litter crusts, respectively. MSE is the mean square 680 

error. MSE% values represent the importance of these predictors. Higher MSE% values mean more 681 

important predictors. The significance of the model was estimated by the R package “A3”. *, P < 682 

0.05; **, P < 0.01. 683 

 684 

Figure 6. Random forest (RF) shows all potential drivers (MSE% values > 5%) of the phyla 685 

Actinobacteria, Planctomycetes, Chloroflexi, Armatimonadetes, Deinococcus-Thermus, Nitrospirae 686 

at the genus level for sand nutrient cycling in the sandy land, biocrusts and litter crusts, respectively. 687 

Color of orange, red and green represent the sandy land, biocrusts and litter crusts, respectively. 688 

MSE is the mean square error. MSE% values represent the importance of these predictors. Higher 689 

MSE% values mean more important predictors. The significance of the model was estimated by the 690 

R package “A3”. *, P < 0.05; **, P < 0.01.691 
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Figure 1693 
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Figure 6 703 


