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Abstract 30 

 The spatial distribution of water quality status, especially in water bodies near 31 

intensively urbanized areas, is tightly associated with patterns of human activities. For 32 

establishing a robust assessment of the sediment quality in an urban aquatic 33 

environment, the source apportionment and risk assessment of Cr, Mn, Ni, Cu, Zn, As, 34 

Cd, Hg, and Pb in sediments from an anthropogenic-influenced lake were carried out 35 

with considering uncertainties from the analysis methods, random errors in the sample 36 

population and the spatial sediment heterogeneity. The distribution analysis of the trace 37 

metals with inverse distance weighting-determined method showed that the pollutants 38 

were concentrated in the middle and southern areas of the lake. According to the self-39 

organizing map and constrained positive matrix factorization receptor model, 40 

agricultural sources (24.8%), industrial and vehicular sources (42.5%), and geogenic 41 

natural sources (32.7%) were the primary contributors to the given metals. The 42 

geogenic natural had the largest random errors, but the overall result was reliable 43 

according to the uncertainty analysis. Furthermore, the stochastic contamination and 44 

ecological risk models identified a moderate/considerable contamination level and a 45 

moderate ecological risk to the urban aquatic ecosystem. With consideration of 46 

uncertainties from the spatial heterogeneity, the contamination level of Hg, and the 47 

ecological risk of Cd in had a 20-30% probability of the increase. 48 

  49 
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1. INTRODUCTION 50 

Water resources are vital for human survival and sustainable development of urban 51 

regions (Chen et al., 2019; Kaeseberg et al., 2018; Li et al., 2019b; Wang et al., 2019c). 52 

However, the unprecedented increase in population and rapid growth of urbanization 53 

has relevant impacts on the quality of the urban aquatic environment (Ayeni et al., 2011; 54 

Chen et al., 2019; Chetelat and Gaillardet, 2005; Zhang et al., 2017b). On one hand, 55 

several anthropogenic activities, including agrochemical usage (Li et al., 2014; 56 

Marrugo-Negrete et al., 2017; Zhang et al., 2017a), industrial practices (Cheung et al., 57 

2003; Jain, 2004; Quevauviller et al., 1989; Zhang et al., 2015a), and traffic (Men et al., 58 

2019; Pekey et al., 2004; Sutherland, 2000; Zhang et al., 2019b) are potential drivers of 59 

the deterioration of the quality of water resources. On the other hand, the land surface 60 

modification in highly-urbanized areas alters the regional hydrological processes of 61 

infiltration and runoff. The increasing amount of surface runoff with non-point source 62 

pollutants flows into the water bodies near the urban area, causing the water quality 63 

degradation in the urban aquatic environment (Chen et al., 2017; Luo et al., 2020; Qin 64 

et al., 2010; Tong and Chen, 2002). In consequence, water pollution in the urban aquatic 65 

environment is a major concern. As a typical urban aquatic environment, the urban 66 

water channel has been regarded as the fore-end part of the natural water bodies and 67 

the primary pollutant carrier that receives wastewater and polluted surface runoff. The 68 

variation of anthropogenic associated pollutants makes it difficult for cities to maintain 69 

a good status of urban surface waters.  70 
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Among these pollutants, trace metals have drawn a wide concern as they have 71 

toxicity, persistence, bioaccumulation, and biomagnification (Lin et al., 2013; 72 

Raghunath et al., 1999; Yang et al., 2014). In the aquatic environment, sediment is 73 

recognized as the main sink for trace metals, thereby posing long-term serious risks to 74 

benthic organisms and, in turn, humans (Fu et al., 2013; Ning et al., 2014; Yi et al., 75 

2011). Therefore, the trace metal pollution in sediments can be a typical indicator 76 

revealing the impact of anthropogenic activities on the aquatic environment. As the first 77 

step to improve the quality status of urban water channels, it is essential to evaluate the 78 

spatial variation of trace metals, identify major source contributors to trace metals, and 79 

understand their contamination characterization in the sediments. 80 

Cluster analysis is an adopted method to evaluate the spatial variation in water 81 

quality in the water resources and ecosystems (Li et al., 2019a; Nguyen et al., 2020). 82 

More recently, self-organizing map (SOM) was frequently used as a clustering method 83 

to spatially analyze water quality due to its good noise tolerant and ability to handle 84 

complex data with non-linear relationships, missing data and outliers (Alvarez-Guerra 85 

et al., 2008; Guo et al., 2020; Li et al., 2018a). The visualization map with clustering 86 

information yielded by SOM can enhance the understanding of trace metal pollution in 87 

the urban water channels.  88 

 Conventional source apportionment approaches (e.g., principal component 89 

analysis; PCA) and pollution assessment approaches (e.g., contamination factor and 90 

ecological risk factor models) are commonly used to identify the source contributors 91 
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(Lin et al., 2016; Shil and Singh, 2019; Wijesiri et al., 2019) and assess trace metal 92 

pollution risk in sediments, respectively (Cao et al., 2018; Hossain et al., 2019; Liang 93 

et al., 2016). However, such approaches have limits in interpreting the uncertainty of 94 

the samples caused by sampling errors, measurement errors, and sediment 95 

heterogeneity (Feng et al., 2019b; Norris et al., 2014), and it is hard to judge the fitness 96 

of the result as a basis for decision making.  97 

The analysis of uncertainty can overcome these problems and improve the 98 

reliability of the results. Regarding the source apportionment, it could improve the 99 

solution especially if small datasets were used (Manousakas et al., 2017), and could be 100 

a useful method to judge the accurate number of sources (Brown et al., 2015b). Besides, 101 

the uncertainty consideration could also increase the robustness of the solution in risk 102 

assessments (Park et al., 2019). Several mathematical approaches with uncertainty 103 

consideration, such as the positive matrix factorization (PMF) receptor model for 104 

source apportionment (Niu et al., 2019; Wang et al., 2019c) and the advanced stochastic 105 

model considering probability theory for pollution assessment (Feng et al., 2019a) have 106 

been newly developed, but not been applied for pollution assessment in the urban 107 

aquatic environment. 108 

Accordingly, the primary focus of this study was to conduct the source 109 

apportionment and risk assessment with uncertainty consideration to facilitate the 110 

source-oriented mitigation of trace metals in the urban aquatic environment. The 111 

detailed objectives were to: (1) characterize the spatial distribution of the trace 112 
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elemental contents in urban aquatic sediments, (2) identify the major contributor(s) of 113 

the trace metals through an artificial neural network of self-organizing map model and 114 

constrained PMF receptor model associated with uncertainty analysis, and (3) assess 115 

the pollution and ecological risk levels based on a stochastic contamination model and 116 

ecological risk determination model with uncertainty consideration.  117 

2. MATERIALS AND METHODS 118 

2.1 Study area 119 

The study area was Wanshan Lake (31° 35' 34.78" N, 120° 31' 4.17" E), which is 120 

the largest lake on the west bank of the Wangyu River in the Taihu catchment, China. 121 

It is situated east of Xishan District in Wuxi (396.8 km2) and adjacent to Suzhou. It has 122 

a planimetric area of 1.9 km2 with an average depth of 1.12 m (0.65 - 4.2 m) (JPDWR, 123 

2006). The annual precipitation and mean temperature are 1,048 mm and 18°C, 124 

respectively, in the study area. It is a typical urban aquatic environment that connects 125 

the downtown area of Wuxi, the Wangyu River, and Taihu Lake. Therefore, the 126 

pollutant status in Wanshan Lake could be regarded as an indicator of the regional 127 

aquatic environment.  128 

Nine trace metals (Cr, Mn, Ni, Cu, Zn, As, Cd, Hg, and Pb) in sediments was 129 

monitored at 30 sampling sites, namely, 10 sites (N1–N10), 7 sites (M1–M7), and 13 130 

sites (S1–S13) in the northern, middle, and southern area of the channel, respectively 131 

as given in Fig. 1a.  132 
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2.2 Sampling and chemical analysis 133 

The sampling and field surveys were conducted in April 2019. Three parallel 134 

sediment samples were collected at depths of 0–3 cm at each sampling site using a 135 

bucket dredger, transferred into polyethylene ziploc bags, and stored in a freezer at -136 

20 °C in the laboratory. To analyze the trace metals (Cr, Mn, Ni, Cu, Zn, As, Cd, Hg, 137 

and Pb) in the sediments, the samples were freeze-dried (Biosafer-10A lyophiliser) and 138 

subsequently sieved with a 200-mesh nylon sieve after being carefully ground.  139 

After microwave-assisted digestion, the determination of trace elements was 140 

conducted by a TAS-986AFG atomic absorption spectrophotometer, 240ZAA graphite 141 

furnace atomic absorption spectrometer, or PF32 atomic fluorescence spectrometer 142 

according to GB/T 22105.2-2008 (As), GB/T 17141-1997 (Cd and Pb), HJ 491-2009 143 

(Cr), GB/T 17138-1997 (Cu and Zn), GB/T 17139-1997 (Ni), and LY/T 1256-1999/5.2 144 

(Mn) standards. The limit of detection for each metal was 5.000 mg/kg for Cd, 5.000 145 

mg/kg for Mn, 5.000 mg/kg for Ni, 1.000 mg/kg for Cu, 5.000 mg/kg for Zn, 1.000 146 

mg/kg for As, 0.010 mg/kg for Cd, 0.002 mg/kg for Hg, and 0.100 mg/kg for Pb.  147 

2.3 Geostatistical analysis 148 

 Inverse distance weighting (IDW) has simple computation and straightforward 149 

interpretable features, thus it is used extensively for analyzing the spatial distribution 150 

of pollutants in sediments (Dai et al., 2018; Gu and Gao, 2019; Li et al., 2013). IDW 151 

method with a weighting power of 2.0 was conducted to illuminate the spatial variation 152 

of the trace metal concentrations and source contributions (Fang et al., 2019b; Gu and 153 
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Gao, 2019). The geostatistical analysis was implemented by QGIS 3.2 with the 154 

coordinate reference system of WGS 84. The GIS information of Wanshan Lake was 155 

provided by Nanjing Institute of Geography and Limnology, Chinese Academy of 156 

Sciences. 157 

2.4 Self-organising map (SOM) 158 

The dimensionality reduction is conducted in a way that neurons or units in the 159 

SOM, which are represented by the weight vector, are trained to find the minimum 160 

distance to the input vector by the best matching unit (Alvarez-Guerra et al., 2008; 161 

Kiang, 2001). Euclidean metrics were used to calculate the distance between the vectors 162 

in this study. The detailed algorithms were provided by Kohonen (1990). The unit 163 

setting was described in Supplementary Material Part B. 164 

The SOM clustering was yielded by the K-means algorithm, and the optimal 165 

clustering was found according to the lowest Davies–Bouldin validity index (DBI) 166 

(Davies and Bouldin, 1979). All SOM calculations in the study were performed using 167 

SOM toolbox 2.1 in the MATLAB R2017b platform (Vesanto et al., 2000). 168 

2.5 Positive matrix factorisation (PMF) 169 

The identification and apportionment of pollutant sources were conducted by PMF 170 

receptor model 5.0 released by the United States Environmental Protection Agency. 171 

Non-negativity constraints were imposed in the PMF, and the missing data points and 172 

outliers were down-weighted employing a point-by-point estimation of uncertainty 173 

(Jain et al., 2018; Zhang et al., 2019a).  174 
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The uncertainties of the PMF results including the random errors and rotational 175 

ambiguity were analyzed by the Bootstrap (BS) method and Displacement (DISP) 176 

method. BS method can identify the disproportionately influence of the observations 177 

on the PMF solution, or random errors, which describe a variation in the sample 178 

population (Paatero et al., 2014). The DISP method is able to explicitly determine the 179 

rotational ambiguity of a PMF solution which is an uncertainty generated by the PMF 180 

receptor model (Brown et al., 2015a). The uncertainties could be visualized as the upper 181 

uncertainty interval, an increase of uncertainty estimates from the base factor 182 

concentration to the BS or DISP upper uncertainty limits. 183 

The result with the lowest PMF object function in 200 realizations was selected in 184 

the study, and a constraint method was applied to reduce the effect of rotational 185 

ambiguity. The PMF algorithm, pre-treatment of input data, determination of the PMF 186 

parameters and constrained model operation were described in detail in 187 

Supplementary Material Part A. The detailed computation of PMF was described by 188 

Comero et al. (2009) and Norris et al. (2014). The source identification referred to the 189 

review of source fingerprints of each element for individual potential sources 190 

summarised in Table S1. 191 

2.6 Stochastic contamination and ecological risk determination model  192 

The conventional contamination factor (CF) model and ecological risk factor (ER) 193 

model are widely used to evaluate the contamination level and ecological risk condition 194 

of trace metals in sediments according to the following equations: 195 
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CF (Cabrera et al., 1999; Tomlinson et al., 1980): 196 

  𝐶𝐶𝐶𝐶𝑖𝑖 =
𝐶𝐶𝑖𝑖

𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟,𝑖𝑖
 Eq. 1 

where Ci and Cref,i are the content value and background level of the ith specific element 197 

observed in sediments, respectively.  198 

ER (Hakanson, 1980): 199 

  𝐸𝐸𝐸𝐸𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑖𝑖 × 𝐶𝐶𝐶𝐶𝑖𝑖 Eq. 2 

where the value of Tr is 40 for Hg, 30 for Cd, 10 for As, 5 for Pb, Ni, and Cu, 2 for Cr, 200 

and 1 for Mn and Zn (Hakanson, 1980; Sharifi et al., 2016).  201 

The CF index can rank the sediment quality according to four classes of 202 

contamination levels, namely, low (CF < 1), moderate (1 ≤ CF < 3), considerable (3 ≤ 203 

CF < 6), and very high (CF ≥ 6), while the ER can describe five classes of potential 204 

ecological risk levels, namely, low (ER < 40), moderate (40 ≤ ER < 80), considerable 205 

(80 ≤ ER < 160), high (160 ≤ ER < 320), and very high (ER ≥ 320). 206 

However, Ci in the model cannot describe the uncertainty of spatial sediment 207 

heterogeneity (Sharifi et al., 2016), which can be overcome by the stochastic 208 

contamination model (SCM) and ecological risk determination model (SERM), which 209 

are developed based on probability theory. Ci is not a concrete value but lies in the 210 

interval [ai, bi]. In this study, ai and bi were defined as the first quartile (Q1) and third 211 

quartile (Q3), respectively, of the concentration values of the ith trace element in the 212 

northern, middle, or southern area of the channel to avoid biased results caused by 213 
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extreme values. The maximum entropy principle determined the uniform statistical 214 

distribution of Ci within the interval, and the possibility of the contamination and the 215 

ecological risk condition of the pollutants in each corresponding class was calculated 216 

based on the interval and the classification standards of CF and ER. The detailed 217 

computation is elaborated in Supplementary Material Part C. 218 

3. RESULTS AND DISCUSSION 219 

3.1 Spatial distribution of trace metals in sediments 220 

Descriptive information of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg, and Pb in the sediments 221 

of the study area as well as the geogenic background value in sediments are listed in 222 

Table 1. The background values of trace elements were referenced from their content 223 

contained in Xiashu loess owing to the strong effect of loess on the river sediments in 224 

the Taihu Basin (Bian et al., 2016). The average elemental contents in the sediments 225 

followed a descending order of concentrations as follows: Mn (696.90 mg/kg) > Zn 226 

(418.07 mg/kg) > Cr (152.90 mg/kg) > Cu (103.86 mg/kg) > Ni (88.69 mg/kg) > Pb 227 

(17.38 mg/kg) > As (14.00 mg/kg) > Hg (0.17 mg/kg) > Cd (0.10 mg/kg). All trace 228 

metal concentrations, except for Mn and Pb, exceeded the corresponding background 229 

levels. Comparable to the published data in the other rivers/lakes in China (Table 1), 230 

the contents of Cr, Ni, Cu, and Zn in the sediments of the study area were significantly 231 

higher than those found in other studies, ranging from 65.79 mg/kg (Qin et al., 2015) 232 

to 151.00 mg/kg (Jiang et al., 2018) for Cr; 23.60 mg/kg (Yan et al., 2016) to 43.00 233 

mg/kg (Bian et al., 2016) for Ni; 21.80 mg/kg (Wang et al., 2019b) to 86.00 mg/kg 234 
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(Bian et al., 2016) for Cu; 68.4 mg/kg (Yan et al., 2016) to 224.00 mg/kg (Jiang et al., 235 

2018) for Zn. The aforementioned results indicate a strong influence of anthropogenic 236 

activities on trace element pollution in the studied urban channel. 237 

The coefficient of variation of Cu (78.12%), Cd (62.58%), and Cr (60.10%) 238 

showed the large spatial heterogeneity of these metal concentrations. Its values of the 239 

other trace metals were in the range of 28.67–44.65%. The spatial distribution of the 240 

content in sediments (Fig. 1b-e) shows that the pollutants tended to be concentrated in 241 

the middle or southern area of the channel. The concentrations in the middle area and 242 

the southern area were 18%-91% and 6%-92% higher on average than those in the 243 

northern area. Most of the elements, except for Mn, showed the maximum content in 244 

sediments at M6 which should be affected by a particular source.  245 

3.2 Cluster analysis according to the self-organizing map 246 

According to the SOM component distribution as shown in Fig. 2a, the trace 247 

metals were classified into three interpretable groups. Group I was characterized by Cr, 248 

Ni, Cu, Zn, Cd, and Hg owing to their significant similarity with high values (red) in 249 

the sites at the bottom-right corner and relatively low values (blue) in the top-left corner. 250 

These elements mostly originate from anthropogenic sources, such as industrial 251 

activities, traffic, and agricultural work (Adekola and Eletta, 2007; Li et al., 2018b; 252 

Omwene et al., 2018; Zhang et al., 2018). Group II and III, characterized by As and Mn 253 

respectively, displayed completely different component distributions. The component 254 

distribution of Pb illustrated both outlook patterns of II and III, which means that Pb 255 
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content in sediments was possibly influenced simultaneously by the contributors found 256 

in these two groups.  257 

Fig. 2b showed clusters of the sampling sites and four different clusters (clusters 258 

I–IV) were classified by the K-means algorithm. The distance between the map units 259 

and the diagram of the DBI against the number of clusters is shown in Fig. S1 and S2. 260 

Cluster I was characterized as an As-influenced area. It grouped the sites (N6, N8, M1, 261 

S12, and S13) with a considerably high content of only As in sediments in the range of 262 

17.0–21.5 mg/kg. Cluster II was the low-concentration area, which included seven 263 

northern sites, two middle sites, and three southern sites. Comparatively, Cluster III 264 

contained 10 sites that are all located at the middle or southern parts of the channel with 265 

relatively higher concentrations of trace elements monitored. The last three sites (I9, 266 

L1, and M3) were distinguished as Cluster IV. They shared a common feature in that 267 

they had considerably higher concentrations of varied pollutants than those of the other 268 

sites. The maximum concentrations of Zn (761.00 mg/kg) and Hg (0.34 mg/kg) were 269 

found at N10, while most of the pollutants showed significantly high content in 270 

sediments at M5 and especially M6.  271 

3.3 Spatial changes in the sources of trace elements 272 

3.3.1 Source identification 273 

The fractional contributions of three factors to the elements are illustrated in Fig. 274 

3a. Factor 1 was characterized by Cd, Cu, and Hg with the contributions of 68.35%, 275 

45.73%, and 54.76%. Cd and Hg are traditionally found in many agrochemical 276 
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applications, such as fungicides, pesticides, and phosphate fertilizers (Dai et al., 2018; 277 

Ji et al., 2019; Wang et al., 2018; Yang et al., 2009). Cu is also related to seed 278 

disinfectants and herbicides for agricultural purposes (Ruiz-Fernández et al., 2009). It 279 

is a widely used element in Chinese approved agrochemicals, and 5000 tons of Cu is 280 

estimated to be used in farmland in China (Chen et al., 2016). Hence Factor 1 might be 281 

associated with the agricultural sources. 282 

Factor 2 explained high loadings of Cu (42.85%), Zn (43.42%), Cr (42.25%), and 283 

Ni (34.36%). Cu and Zn are extensively found in auto brake erosion, road and pavement 284 

erosion, vehicle wear, and other traffic-related activities (Adekola and Eletta, 2007; 285 

Pekey et al., 2004; Sutherland, 2000; Zhang et al., 2015b). Cu, Zn, Cr, and Ni can be 286 

released into the environment through metal plating, metal casting, fuel combustion, 287 

leather production, and other industrial activities (Özmen et al., 2004; Wang et al., 2018; 288 

Wang et al., 2019c; Yang et al., 2009; Zhang and Qu, 2001). It also explained 42.10% 289 

of Mn, which possibly caused by industrial sources including goods processing and 290 

welding (Pinsino et al., 2012). Therefore, Factor 2 probably represented industrial and 291 

vehicular sources. 292 

Factor 3 explained the significant loadings of As (57.43%), Pb (55.62%), and Mn 293 

(43.86%). Mn bound with As could have originated from the weathering of parent 294 

minerals and paedogenic processes (Yin et al., 2011; Zaharescu et al., 2009). Pb was 295 

the only element that had below-background concentrations in the study. Thus, Factor 296 

3 might be interpreted as geogenic natural sources.  297 
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3.3.2 Influence of local economic structure on contributor distribution 298 

Agricultural sources, industrial and vehicular sources, and geogenic natural 299 

sources accounted for 24.8%, 42.5%, and 32.8% of the total metals respectively 300 

according to the PMF results. The source contributions in mg/kg in the entire Wanshan 301 

Lake were spatially distributed in Fig. 3b-d. The results almost matched the patterns of 302 

land use types near the channel (Fig. S4). The contribution of agriculture mainly existed 303 

in the middle area and part of the northern area where a large area of agricultural land 304 

and green land was located. N10 was a representative site near farming land where the 305 

highest contribution of 938.5 mg/kg occurred. Conversely, there was a significant 306 

occurrence of industry and vehicle in the southern area (averagely 923.7 mg/kg), which 307 

was surrounded by several industrial areas and manufacturing plants.  308 

Furthermore, according to the Chinese Statistical Yearbook that the industrial 309 

wastewater emissions from the downtown area of Wuxi were 35.17 tons per capita in 310 

2017, which was considerably higher than that in Jiangsu Province (averagely 22.42 311 

tons per capita), Beijing (3.92 tons per capita), and Shanghai (13.07 tons per capita). 312 

Additionally, the gross domestic product of primary and secondary industries in Wuxi 313 

accounted for 3.3% and 12.8% (2nd place), respectively, in 2017 in Jiangsu Province. 314 

This reveals that agriculture and industry are the two dominant factors in the economic 315 

structure in the intensively urbanized city of Wuxi, which was consistent with the 316 

source apportionment from this study.  317 
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3.3.3 Uncertainty analysis 318 

The uncertainty intervals between the constrained-based factor concentration of all 319 

trace metals and the upper uncertainty limits for BS method and DISP method were 320 

illustrated in Fig. 4. The ratio between the upper uncertainty intervals and the PMF-321 

simulated concentrations, expressed as the uncertainty ratio, was 19% (Ni) to 96% (Cd) 322 

for BS method and 28% (As) to 45% (Mn) for DISP for all metals in total concentration. 323 

The BS upper uncertainty intervals of Cu, As, Cd, Hg, and Pb in all three sources were 324 

higher than those for DISP method. Here, the upper uncertainty intervals for BS method 325 

of Cd in agricultural sources (0.04 mg/kg) were nearly 4 times higher than those for 326 

DISP method (0.01 mg/kg). The BS intervals of Mn in agricultural sources as well as 327 

industrial and vehicular sources (78.38 mg/kg; 150.12 mg/kg) were approximated to 328 

DISP intervals (80.62 mg/kg; 189.85 mg/kg). The results indicate that the random error 329 

of the most metals was more dominant than rotational ambiguity (Wu et al., 2019). It 330 

can be explained by the fact that the effect of rotational ambiguity was reduced by the 331 

constraint method but the small datasets resulted in the increase of random errors.  332 

Among three sources, the uncertainty ratios for BS/DISP were in the range of 4%-333 

100%/13%-103% for agricultural, 2%-187%/8%-114% for industrial and vehicular, 334 

and 51%-270%/16%-181% for geogenic natural sources. Obviously, the factors of 335 

agricultural sources as well as industrial and vehicular sources demonstrated fewer 336 

uncertainties than geogenic natural sources, indicating a robust identification of these 337 

two source contributors. The large uncertainty ratio of geogenic natural sources resulted 338 
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in high uncertainty in this factor, suggesting a poorly-defined factor. As, for 339 

characterizing the factor, was the metal with the worst fitting score (r2 = 0.5001) 340 

determined by PMF receptor model (Fig. S3). The result of SOM also demonstrated 341 

two independent clusters characterized by As and Mn. Both reasons suggest that 342 

information characterized by As in PMF could cause the increase of uncertainty of 343 

geogenic natural sources and overestimate the contribution of the factor.  344 

Nevertheless, all PMF results were still reliable according to the > 95% BS 345 

mapping factors and the zero swap for dQmax for DISP method (Supplementary 346 

Material Part 1).  347 

3.4 Contamination and ecological risk assessment 348 

The contamination level and ecological risk of each trace element in the northern, 349 

middle, and southern parts of the channel were identified by the SCM and SERM, and 350 

the results are illustrated in Fig. 5 and Table S2. The uncertainty of the spatial sediment 351 

heterogeneity was described as the probability distribution in the classes of 352 

contamination level and ecological risk. Additionally, Mn was not considered in the 353 

risk assessment owing to the lack of background information and its low toxicity in a 354 

non-acidic environment.  355 

Fig. 5a shows that Pb showed low contamination levels in the water channel while 356 

Cr, Ni, As, Cd, and Pb reached moderate contamination levels. The contamination 357 

levels (probability in %) of Cu, Hg, and Zn in the northern area were moderate (93%), 358 

moderate (100%), and considerable (100%), respectively, while those in the 359 
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middle/southern area were considerable (100%/80%), considerable (100%/0%), and 360 

very high (70%/76%), respectively. Considering the spatial variation of contamination, 361 

the highest metal contamination was found in the middle area, whereas the lowest was 362 

found in the northern area. Hg in the north and south had 18% and 4% probability, 363 

respectively, in moderate contamination levels but could possibly deteriorate the water 364 

quality to the next contamination category.  365 

As shown in Fig. 5b, Most elements were identified as posing low risks to the 366 

aquatic ecosystem. However, Hg showed a significantly higher ecological risk. Besides, 367 

the presence of Cd in the northern and southern areas had probabilities of 30% and 21%, 368 

respectively, increasing the ecological risk from low to moderate.  369 

The relatively lower contamination level and ecological risk in the northern area 370 

were caused by the fact that the northern area of the channel was developed as a pilot 371 

wetland where the water quality was significantly improved. In contrast, the channels 372 

in the middle and southern areas were the main shipping channels connecting Wuxi and 373 

the Wangyu River, and the anthropogenic activities were relatively more intensive in 374 

the middle and southern area than in the northern area, which resulted in a higher trace 375 

metal pollution in sediments and greater ecological risk to benthic organisms.  376 

5. CONCLUSION 377 

The results show that Ni, Cu, Zn, and Cr, had higher contents in sediments than 378 

those of the geogenic background concentrations, indicating a significant impact of 379 

anthropogenic activities on the enrichment of trace pollutants in the given area. 380 
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According to the SOM cluster analysis and constrained PMF source apportionment, the 381 

primary human-related sources were agricultural, industrial and vehicular, and 382 

geogenic natural sources. Agricultural sources showed high contributions mainly in the 383 

middle area of the lake. Industrial and vehicular sources contributed significantly to the 384 

southern area of the lake. The geogenic natural sources had a relatively higher 385 

uncertainty than the other two sources, but the uncertainty can be acceptable. According 386 

to the results derived from the SCM and SERM, moderate and considerable 387 

contamination levels were mostly found in the lake, which was strongly related to 388 

human activities. Hg and Cd in the sediments had the potential to increase risk in the 389 

studied urban aquatic system.  390 

  391 
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Table 1 Comparison between the trace metal (Cd, Mn, Ni, Cu, Zn, As, Cr, Hg, and Pb) concentrations in the study, the geogenic background, and 409 

the average concentrations in other rivers/lakes in China (mg/kg dry weight). 410 

Study area Cr Mn Ni Cu Zn As Cd Hg Pb 

This 
study 

Mean 153.00 697.00 89.00 104.00 418.00 14.00 0.10 0.17 17.40 

Median 129.00 645.00 87.00 90.00 375.00 13.85 0.09 0.17 17.10 

Range 
75.00–
533.00 

340.00–
1170.00 

59.00–
183.00 

31.00–
479.00 

203.00–
895.00 

7.82–
21.50 

0.02–
0.37 

0.04–
0.38 

8.50–
27.80 

CV (%) 60.10 33.66 28.67 78.12 42.47 30.72 62.58 44.65 29.89 
Background 
(mg/kg)1 

83.000 / 35.200 27.000 69.000 9.200 0.082 0.060 23.900 

Taihu Basin (Bian et al., 2016) 89.42 / 43.00 86.00 147.20 10.98 0.66 0.13 50.83 
Yangtze-Taihu section (Qin et 
al., 2015) 

65.79 / / 26.60 124.73 10.57 1.78 / 44.11 

Han River (Cao et al., 2018) 77.50 / 29.60 46.00 144.20 / 0.26 / 40.10 
Chaohu Lake (Fang et al., 
2019a) 

72.5  / 26.0 137.8 10.4 0.44 0.114 47.1 

East Lake, Wuhan (Jiang et al., 
2018) 

151.00 / 27.60 56.10 224.00 200.00 0.92 0.18 7.60 

Lihu Lake (Wang et al., 2019a) 77.400 / 29.100 31.000 102.200 12.400 0.360 0.097 74.500 
Poyang Lake (Dai et al., 2018) 135.9 / / 62.0 132.9 / 0.7 / 77.4 
Yellow River (Yan et al., 2016) 62.400 / 23.600 40.700 68.400 2.460 0.085 / 15.200 
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Weihe Basin (Wang et al., 
2019b) 

75.70 / 26.64 21.80 70.79 / 0.19 / 20.81 

Note: 411 

1The background values of trace elements were referenced from their content contained in Xiashu loess owing to the strong effect of loess on the 412 

river sediments in the Taihu Basin (Bian et al., 2016)  413 
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Figure captions 414 

Fig. 1 a) Map of the study area of Wanshan Lake, Wuxi, China and b-e) spatial 415 

distribution of the trace metal (Cd, Mn, Ni, Cu, Zn, As, Cr, Hg, and Pb) contents in 416 

sediments. 417 

Fig. 2 a) Component planes of trace metals obtained by performing self-organising map 418 

(SOM) analysis and b) the map unit labels with clusters I–IV derived from the K-means 419 

algorithm. The hexagon in a certain position corresponds to the same map unit.  420 

Fig. 3 a) Fractional contributions of each factor to the trace metal content in sediments 421 

and spatial contribution distribution percentage of b) agricultural sources, c) industrial 422 

and vehicular sources, and d) geogenic natural sources among the total pollution 423 

contribution in Wanshan Lake without considering M6. 424 

Fig. 4 Simulated concentrations Upper uncertainty intervals of the trace metals by BS 425 

method and DISP method for each factor.  426 

Fig. 5 Rose chart of the a) contamination level and b) ecological risk of trace metals in 427 

sediments through the stochastic contamination model (SCM) and risk determination 428 

model (SERM). The angular axis presents the probability of a variable in a specific 429 

class.430 
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Fig. 2 
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