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Abstract 20 

Disinfection by-products (DBPs) in drinking water have been associated with increased 21 

cancer risk but single DBPs cannot explain epidemiological cancer occurrences. To test if 22 

combined effects of DBPs are plausible to explain epidemiological evidence for adverse 23 

health effects, we assessed if mixture effects of DBPs can be predicted using the 24 

concentration addition (CA) model. We prepared 12 mixtures of DBPs (trihalomethanes, 25 

halonitromethanes, haloacetonitriles, haloketones, haloacetic acids, chloral hydrate, 26 

haloacetamides, 3-chloro-4-(dichloromethyl)-5-hydroxy-5H-furan-2-one) in equipotent 27 

concentration ratios. We determined effect concentrations with three reporter gene 28 

bioassays (AREc32, ARE-bla, and p53-bla) based on human cell lines and one bacterial assay 29 

(Microtox). The experimental effect concentrations agreed well with the effect 30 

concentrations predicted with the CA model, which suggests that the CA model is applicable 31 
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for reactive DBPs despite different molecular mechanisms because the reporter gene assays 32 

are only detecting one mechanism each. Modelling of mixture effects of DBPs in ratios 33 

detected in drinking water revealed that haloacetonitriles, haloketones, and mono-34 

haloacetic acids contributed the most to the total effect indicating a higher health relevance 35 

of these DBP groups. In drinking water samples the sum of the detected DBPs explained <6% 36 

of effect in most cases. The CA model could be applied to prioritize DBPs for further risk 37 

assessments to potentially close the gap between toxicological cancer risk predictions and 38 

epidemiological findings. 39 

Keywords 40 

Disinfection byproducts, DBPs; mixture toxicity; concentration addition; independent action; 41 

tap water; risk assessment 42 
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1. Introduction 43 

Despite its critical importance for public health,1 disinfection of drinking water has raised 44 

concerns because of the formation of disinfection by-products (DBPs).2, 3 DBPs are formed 45 

by the reaction between disinfectants (commonly chlorine or chloramine) and natural 46 

organic matter (NOM) as well as inorganic precursors (e.g., bromide).2 Epidemiological 47 

studies suggested an increased risk of bladder cancer after life-long ingestion of chlorinated 48 

drinking water pointing toward adverse health effects of DBPs.4-6 Based on such 49 

epidemiological studies the US-EPA calculated that 2 – 17% of bladder cancer cases could be 50 

avoided if the exposure to DBPs were ceased.7 However, the causation of urinary bladder 51 

cancer and other diseases by DBP exposure has not been conclusively proven.6 Additionally, 52 

known DBPs cannot explain epidemiological risk estimates despite approximately 700 DBPs 53 

identified within the last decades.2, 4, 8-11 The majority of all identified DBPs is not yet 54 

quantifiable, let alone toxicologically characterized. Some of the known DBPs have been 55 

characterized by various in vitro bioassays12-14 and such tools have also been applied to 56 

evaluate drinking water quality.15 57 

Given that more than 50% of total organic halogens are unknown,16, 17 and that there is 58 

additionally a diverse set of unknown non-halogenated compounds formed during 59 

disinfection,18 it seems plausible that unknown DBPs contribute to adverse health effects.10 60 

Unknown DBPs occur—most likely—at low concentrations and thus single DBPs would have 61 

to have an extreme potency if they were to close the gap between toxicological risk 62 

assessment estimates and epidemiologic estimates. Therefore, unknown and known DBPs 63 

with similar mechanisms of action or common adverse outcomes acting together as 64 

mixtures might cause the observed epidemiological evidence.  65 
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Our working hypothesis is that DBPs act in mixtures according to the model of concentration 66 

addition (CA), which is a widely used model to describe the effects of mixtures with the 67 

same mode of action.19, 20 The model of CA was derived initially for receptor-mediated 68 

effects but was shown to be applicable also to apical effects provided the chemicals had 69 

similar modes of action.21, 22 While strictly valid only for mixtures with components that 70 

have the same mode of action, empirical evidence points to CA being a realistic worst case 71 

even if chemicals of diverse modes of action act together and apical endpoints such as 72 

mortality or growth inhibition are assessed.23  73 

Mixture studies with DBPs have been performed previously with somewhat conflicting 74 

results. Narotsky et al.24 demonstrated that five HAAs and four trihalomethanes (THMs) 75 

contributed to DBP-induced pregnancy loss in rats. However, a characterization of the type 76 

of interaction of the nine component chemicals was not possible. Hooth et al.25 evaluated 77 

mixtures of bromate, 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), 78 

chloroform, and bromodichloromethane in a rat model for hereditary renal cancer. The 79 

authors found that the mixtures were not more carcinogenic than the most potent mixture 80 

constituent and concluded that application of the CA model may overestimate the 81 

carcinogenic effect of DBP mixtures. In contrast, Andrews et al.26 found that the CA model 82 

adequately predicted the observed developmental toxicity of three haloacetic acids (HAAs) 83 

in a rat whole embryo assay. In a binary mixture study of two HAAs (dichloroacetic acid and 84 

triochloroacetic acid) Hassoun et al.27 found additive or slightly greater than additive effects 85 

on oxidative stress induction in hepatic tissue of mice. Parvez et al.28 proposed a method to 86 

evaluate the contribution of unknown DBPs to mixtures for the endpoint puberty acquisition 87 

in rats by comparing whole mixtures of disinfected water with defined mixtures of regulated 88 
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DBPs found in the whole mixture and concluded that the nine regulated DBPs could explain 89 

most of the effect. 90 

Zhang et al.29 found synergistic effects of sodium chlorite on bromate-induced renal cell 91 

death in an in vitro bioassay using rat kidney cells with the most likely explanation that 92 

NaClO2 partially reversed the bromate induced and cell protective G2/M arrest. Greater 93 

than additive effects of a binary DBP mixture were also found with several in vitro assays.30 94 

In contrast, Simmons et al.31 found an antagonistic departure from additivity for various 95 

mixtures of five HAAs in a Chinese Hamster Ovary cell chronic cytotoxicity assay. Simmons et 96 

al.32 demonstrated that the mixing ratio had a significant impact on the toxicity of mixtures 97 

of 10 HAA in the same assay. 98 

These examples demonstrate uncertainties regarding mixture effects of DBPs. Conflicting 99 

outcomes could be a result of differing mixture designs and differing biological endpoints. It 100 

is critical to use equipotent concentrations for testing the hypothesis whether CA applies. In 101 

equipotent mixtures all components are mixed in concentration ratios of their effect 102 

concentrations, i.e., more potent chemicals have a lower concentration but equal 103 

contribution to the mixture effect as low-potency chemicals. Otherwise a combination of 104 

very abundant and/or very potent compounds may dominate the mixture effect.33 The use 105 

of equipotent concentrations is clearly stated only in one of the mentioned studies.26 More 106 

often the applied concentration ratios were equimolar or based on environmental 107 

concentrations.24, 31, 32 108 

DBPs act via different molecular initiating events and cellular toxicity pathways34, 35 but this 109 

knowledge on the toxicity pathways remains incomplete. Most DBPs trigger reactive 110 

mechanisms and converge into the same adaptive stress response pathways, in particular 111 
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oxidative stress response.14 We applied reporter gene assays that target one mechanism 112 

only. Previous work has demonstrated that in reporter gene assays, CA is a suitable mixture 113 

model unless the specific mechanism targeted is masked by cytotoxicity.36, 37 114 

To test our hypothesis that DBPs act together in a concentration additive manner, we 115 

prepared mixtures with DBPs found in drinking water from three representative water 116 

treatment plants and additional DBPs, which are known to be particularly potent, such as 117 

mono-HAAs, haloacetamides (HAcAms) and MX (3-chloro-4-(dichloromethyl)-5-hydroxy-5H-118 

furan-2-one).14 Mixtures were prepared in equipotent concentration ratios for the AREc32 119 

and p53-bla assay.  120 

All mixtures were exposed in three human cell-based bioassays for activation of oxidative 121 

stress response (AREc32, ARE-bla) and genotoxicity (p53-bla) and one bacterial assay on 122 

cytotoxicity (Microtox). We compared the full experimental concentration-effect curves 123 

from the bioassays with the calculated concentration-effect curves predicted with the CA 124 

model to evaluate also the dependence of mixture interaction on the effect level.  125 

After confirming CA with equipotent mixtures, we calculated the effect contribution of 126 

individual DBPs in known DBP mixtures detected in various drinking water samples in 127 

literature38-43 to evaluate which detected DBPs dominate mixture effects. Finally, the 128 

mixture effects of known and detected chemicals were compared to the effect of the 129 

extract of the entire water sample measured previously in the same bioassays.43130 
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2. Materials and Methods 131 

2.1 Chemicals 132 

For the mixture experiments we selected 22 DBPs that were detected in drinking water from 133 

three water treatment plants (WTPs) of the greater Brisbane area, Australia.43, 44 134 

Additionally, we selected 10 HAcAms, MX, and three mono-HAAs because of their high 135 

toxicity.14 Prior to this study 50 DBPs, including the 36 of the present study, were 136 

toxicologically characterized with various cell-based bioassays,14 and these single-chemical 137 

effect data were used for the mixture effect predictions. Details about the tested chemicals, 138 

including abbreviations, supplier and purity are compiled in Table S1 of the Electronic 139 

Supplementary Information (ESI). Methanolic stock solutions of all DBPs and DBP mixtures 140 

were stored at −80°C. 141 

2.2 Bioassays 142 

We applied four bioassays for this mixture study. The bacterial cytotoxicity assay using 143 

Aliivibrio fischeri (formerly termed Vibrio fischeri) bioluminescence inhibition was selected 144 

as non-specific cytotoxicity screen because of its sensitivity to DBPs.41, 42, 45 The human 145 

MCF7 cell-based AREc32 assay targets the activation of the oxidative stress response 146 

pathway NRf2-ARE.36 The activation of the Nrf2-ARE stress response has been demonstrated 147 

in previous studies to be an important adaptive stress response pathway of mono-HAAs35, 46 148 

and appears to play a central role for the toxicity of many more DBPs.14, 47 The ARE-bla 149 

assay48 was employed in addition to the AREc32 assay to detect oxidative stress response 150 

because it is based on a different cell line (HepG2 liver cells), which might reveal cell-specific 151 

differences in the response. Additionally, different reporter gene constructs may lead to a 152 

different responsiveness of assays depending on promoter/enhancer construction, ARE 153 
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orientation and other factors.49 The p53-bla assay,45, 50 derived from HCT-116 human colon 154 

carcinoma cells, was applied because activation of p53 has been discussed as marker for 155 

genotoxic properties of chemicals51 and because many DBPs activate the p53 adaptive stress 156 

response.14 For all mixtures the bioassays were performed free of headspace52 or with 157 

reduced headspace for the ARE-bla and p53-bla to reduce the loss of volatile DBPs.14 Each 158 

mixture was analysed in 8-step 2-fold dilutions in two to four independent experiments to 159 

derive full concentration-response curves. All replicates were evaluated together. If two 160 

independent repeats aligned closely, they were not further repeated, if there were 161 

differences up to four experiments were performed. The concentrations of the stock 162 

solutions were >300 times higher than the EC-values and complete concentration-effect 163 

curves with constant concentration ratios were derived. We used methanol as solvent at a 164 

concentration of 1% in the bioassays because it showed the lowest effect in the AREc32 165 

assay compared to DMSO, ethanol and MTBE.53 The methanol control did not exhibit effects 166 

different from the medium control. The bioassays were performed according to the same 167 

protocols as in the previous study on single chemicals and the effect concentrations of the 168 

chemicals included in this study are reprinted in the ESI, Table S2.14 169 

For the Microtox assay the assessment endpoint was the effect concentration (EC) that 170 

caused 50% inhibition of bioluminescence (EC50). The EC50 was derived from a log-logistic 171 

concentration-effect curve as described in Escher et al.54 The concentrations of the mixtures 172 

were expressed as the sum of molar concentrations of all components. For the oxidative 173 

stress response, p53 pathway activation and activation of the SOS response we used the 174 

induction ratio (IR) as the measure of effect. The IR is defined as the ratio of effect of the 175 

sample divided by the average effect observed in the solvent control (medium with 1% 176 
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methanol). The effect concentration ECIR1.5 that elicits an IR of 1.5 (i.e., 50% effect increase 177 

compared to the negative control) was the assessment endpoint for these assays, calculated 178 

by use of linear regression of all experimental data points up to IR 4 with a fixed intercept at 179 

IR 1, which is the IR of the negative controls.55 The standard error σECIR1.5 was derived by 180 

error propagation as outlined by Escher et al.36, 56  181 

In addition to the four applied in the experimental mixture study, we also included the 182 

bacterial umuC assay57 in the modelling part of this study. The umuC assay detects the 183 

activation of the cellular SOS-response, a global response to DNA damage to induce DNA 184 

repair mechanisms, and hence indirectly detects genotoxicity.  185 

2.3 Mixture design 186 

Since the single DBPs exhibit differing relative effect potencies in the tested bioassays, an 187 

equipotent mixture in one bioassay may not be equipotent in another bioassay. Therefore, 188 

we designed the equipotent mixture according to the EC values in two bioassays (AREc32 189 

and p53-bla) but measured each mixture in all bioassays.  190 

For six mixtures, 3 to 24 DBPs were mixed in equipotent concentration ratios, where the 191 

ratios of concentration were according to the ratios of effect concentrations in the AREc32 192 

assay (mix1AREc32 to mix6AREc32; Table S3). Additionally, six mixtures of 3 to 21 DBPs were 193 

mixed in equipotent concentration ratios derived from effect concentrations in the p53-bla 194 

assay (mix1p53-bla to mix6p53-bla; Table S4). 195 

2.4 Mixture toxicity prediction 196 

We compared the experimentally derived effect concentrations (ECmix, exp) with ECs 197 

predicted by use of the CA model.19, 20, 58 The ECmix, CA of the mixture predicted with the 198 
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model of CA can be calculated with eqn (1) for i components present in the fraction pi (Σ pi = 199 

1) from the individual effect concentrations ECi of all mixture components i. 200 

ECmix,CA= 1

∑  pi
ECi

n
i=1

          (1) 201 

The error of the CA prediction (σ ECmix, CA) was propagated from experimental standard 202 

deviations of the effect concentration of each mixture component (σ ECi) assuming no error 203 

in the fractions pi (eqn (2)). 204 

σECmix,CA =�∑ ��δECmix,CA

δECi
�

2
·(σECi)2�n

i=1 = �∑ ��ECCA
2·pi

2

ECi
2 �

2
·(σECi)2�n

i=1   (2) 205 

The ECmix, CA can be calculated for all effect levels to construct predicted concentration-206 

response curves of the mixtures depicted in Figures S1-S4. 207 

We used the index on prediction quality (IPQ, eq. 3 and 4) as a measure for the deviation 208 

between experimental (ECmix, exp) and predicted mixture effect (ECmix, CA).36, 59 209 

For ECmix,CA > ECmix,exp:   IPQ= ECmix,CA

ECmix,exp
-1      (3) 210 

For ECmix,CA < ECmix,exp:   IPQ=1- ECmix,CA

ECmix,exp
      (4) 211 

If the ratio between ECmix, exp and ECmix, CA is 1, then the IPQ is 0. A ratio of 2 results in an IPQ 212 

of 1 (if ECmix, CA is greater than ECmix, exp) or −1 (if ECmix, exp is greater than ECmix, CA), a ratio of 3 213 

yields an IPQ of ±2, and so on. 214 

 215 
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2.5 Mixture predictions using literature data 216 

We calculated bioanalytical equivalent concentrations (BEQ)45, 60 to identify the mixture risk 217 

drivers among known chemicals and to compare bioanalytical results of water samples with 218 

predicted effects based on DBPs quantified in the extracts.  219 

Dibromoacetonitrile (dBAN) was selected as common reference compound for all bioassays 220 

due to its high potency and because it was active in all bioassays.14 Hence, BEQs were 221 

expressed as dBAN equivalent concentrations (dBAN-EQ) in units of moldBAN/L.  222 

The dBAN-EQ of the DBPs chemically quantified in a sample (dBAN-EQchem) was calculated 223 

from the concentration Ci and the relative effect potency REPi (eqn ( 5)) of all previously 224 

detected DBPs i (eqn (6)).60 The REPi for all bioassays stem from the EC values derived in our 225 

previous study14 and are reprinted for convenience in the ESI, Table S2. 226 

REPi = ECdBAN

ECi
         (5) 227 

dBAN-EQchem = ∑ Ci·REPi
n
i=1        (6) 228 

Eqn (6) is based on the assumption that CA is valid and that the relative effect potency is 229 

independent of the effect level. Accordingly, BEQs are considered a special case of CA where 230 

the log sigmoidal concentration-effect curves of all mixture components are assumed to be 231 

parallel or linear concentration-effect curves but apply for all effect levels in case of linear 232 

concentration-effect curves.56 233 

The contribution of each mixture component i, BEQi, to the total effect (BEQchem) was 234 

calculated by eqn (7). 235 
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contribution of dBAN-EQi to dBAN-EQchem= dBAN-EQi
dBAN-EQchem

= Ci·REPi

dBAN-EQchem
236 

            (7) 237 

The measured dBAN equivalent concentration in a sample (dBAN-EQbio) was calculated by 238 

dividing the EC of the reference compound by the EC of the sample (eqn (8)). 239 

dBAN-EQbio = ECdBAN

ECsample
         (8) 240 

The ratio between BEQchem and BEQbio (i.e., dBAN-EQchem and dBAN-EQbio) yields the fraction 241 

of effect that can be explained by the quantified DBPs.45 242 

 243 

2.6 Effect contribution of DBPs in a known mixture 244 

We calculated the dBAN-EQchem (eqn (6)) in 20 known DBP mixtures based on literature data 245 

of DBP concentrations from 16 different disinfected drinking water samples38-43 plus four 246 

hypothetical mixtures. Concentrations and literature source of data are listed in Table S5, 247 

ESI). 248 

These mixtures had not been toxicologically profiled, we just use the analytical data to 249 

predict the mixture effect and the contribution of the components to the overall predicted 250 

mixture effect. The hypothetical mixtures were included because comprehensive DBP 251 

occurrence data are rare and most studies focus on a limited number of DBP groups. Thus, 252 

some highly toxic DBPs are often not included, such as iodinated DBPs, haloacetamides, 253 

mono-HAAs or MX, wherefore we included them in the hypothetical mixtures. Hypothetical 254 
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mixture component concentrations were selected based on occurrence data of the 255 

respective compounds (Table S5).  256 

 257 

2.6 Predicted effects versus measured effects in whole samples 258 

We used results of water samples analysed in a previous study43 to calculate the fraction of 259 

effect of whole mixtures that stem from unknown or undetected DBPs. We had sampled 260 

drinking water from three different taps (TW 1 – 3, two sampling campaigns) and three 261 

water treatment plants (WTP1: chloramination, WTP2: chloramination, WTP3: chlorination) 262 

in the greater Brisbane area (Queensland, Australia).43 The distribution system is connected 263 

with all three treatment plants, and thus the tap waters could be mixtures originating from 264 

different drinking water treatment plants with differing disinfection methods. 265 

We had used solid phase extraction to enrich the non-volatile DBP fraction.43. For samples 266 

TW1 – 3, we additionally enriched the volatile fraction with a purge and trap method43 267 

before applying solid phase extraction. The extracts had been tested with the AREc32, p53-268 

bla, umuC and Microtox assays and analysed for DBPs.43 For convenience the concentrations 269 

detected43 are reprinted in Table S6. 270 

  271 
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3. Results and Discussion 272 

3.1 Does concentration addition predict mixture effects of DBPs? 273 

The mixtures were not equipotent with respect to the Microtox assay but the comparison 274 

between experimental and CA-predicted concentration-effect curves showed a good 275 

agreement (Figure S1, ESI) especially at higher effect levels. The IPQ (eqn (3) and (4)) is a 276 

quantitative measure of the agreement between experiments and prediction model and 277 

ranged from -1.16 to 1.15 (Table S7, ESI). In the Microtox assay the IPQ showed a larger 278 

range than in the other bioassays (Figure S2, ESI).  279 

Agreement with CA is consistent with previous mixture studies on organic micropollutant in 280 

the Microtox assay,33 where most of the tested chemicals were classified as baseline 281 

toxicants. In contrast, most DBPs were classified as reactive toxicants in the Microtox 282 

assay.14 Concentration additive mixture effects of reactive soft electrophiles have been 283 

observed before in the Microtox assay.61, 62 The endpoint of the Microtox assay is 284 

bioluminescence inhibition, which is related to energy depletion, e.g., caused by impaired 285 

supporting physiological pathways (for example the respiratory chain) or non-specifically via 286 

narcosis. Thus, bioluminescence inhibition can be regarded as integrative endpoint and 287 

many chemicals act as baseline toxicants in the Microtox assay.63 Mixtures of soft 288 

electrophiles have resulted in at least close to concentration additive effects in the Microtox 289 

assay.61 In a previous study, a cytotoxicity assay based on Escherichia coli growth inhibition 290 

was able to differentiate between soft and hard electrophiles. Within each group 291 

electrophiles acted according to CA but the model for independent action (IA) was valid 292 

between the groups.64 293 
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For the AREc32 assay on oxidative stress response 6 of the 12 mixtures were equipotent 294 

(mix1AREc32 to mix6AREc32). For all 12 mixtures, the experimental concentration-effect curves 295 

(Figure S3) matched the CA prediction with −0.34 ≤ IPQ ≤ 0.84 (Figure 1 and Table S2, ESI). 296 

For ARE-bla (Figure S4) the agreement was only slightly lower with  −0.83 ≤ IPQ ≤ 1.03 297 

(Figure 1 and Table S2, ESI). The AREc32 and ARE-bla assays are reporter gene assays and 298 

hence there is no effect observed for chemicals not triggering this particular response. Thus, 299 

CA in mixtures can be expected and has been observed previously for diverse 300 

micropollutants.36 We observed a similar level of agreement between modelled and 301 

experimental effects for the ARE-bla assay on oxidative stress with −0.83 ≥ IPQ ≤ 1.03 302 

(Figure 1 and Table S7, ESI). 303 

For the p53-bla assay on adaptive stress response to genotoxicity (Figure S5) 6 of the 12 304 

mixtures were equipotent (mix1p53-bla to mix6p53-bla) and we observed a systematic deviation 305 

from zero for all mixtures (experimental potency was higher than predicted by CA (Table S6 306 

and Figure S2, ESI). However, the IPQs for p53-bla were ≤ 0.62, and hence variations were 307 

relatively small (Figure 1, Table S7 and Figure S2). 308 

 309 
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Figure 1. Index on prediction quality (IPQ) for all equipotent mixtures in four bioassays 310 

(Table S7). A ratio of predicted (ECmix, CA) and experimental EC (ECmix, exp) of 1 resulted in an 311 

IPQ of 0, a ratio of 2 yields an IPQ of ±1. 312 

Generally, discrepancies between CA-prediction and experimental data were small and, 313 

apart from p53-bla, not systematic as indicated by the distribution of IPQs. In 44 out of 48 314 

comparisons between experimental and modelled ECs (i.e., 90%; Table S7), we found −1 < 315 

IPQ < 1 (Figure 1) and the highest IPQ deviation from IPQ = 0 (i.e., perfect agreement with 316 

CA) was −1.16 (Table S7, Figure 1). This is in agreement with a previous study where 303 317 

mixture effect data where analysed from literature and 88% fell within −1 < IPQ < 1.65 A 318 

similar level of agreement was also found by Escher et al.36 and Tang et al.33 for mixtures of 319 

micropollutants. Thus, our results demonstrate that the CA model satisfactorily predicts the 320 

mixture effects of DBPs for adaptive stress responses and cytotoxicity despite differences in 321 

molecular initiating events triggering the toxicity pathway. 322 

 323 

3.2 Identifying the risk drivers in a known mixture 324 

Given the good agreement between the experimental mixture effects and the CA model, we 325 

can calculate the contribution of each mixture component to the total effect (eqn (6)). We 326 

selected literature data of DBP concentrations from 16 different samples38-43 and used four 327 

hypothetical mixtures that we considered to be representative for drinking water samples 328 

(Table S5, ESI) to calculate the contribution of each mixture component to the total effect of 329 

the detected DBPs (BEQchem). The hypothetical mixtures were used to include some highly 330 

toxic DBPs, such as iodinated DBPs, haloacetamides, mono-HAAs, or MX, which are often 331 

not included in DBP monitoring studies. 332 
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Figure 2 shows the DBP concentrations (A) in comparison with the resulting BEQchem and the 333 

contribution of each included DBP for the AREc32 assay (B), ARE-bla (C), p53-bla (D), umuC 334 

(E), and Microtox assay (F). The concentrations are clearly dominated by trihalomethanes 335 

(THMs, Figure 2A) but they hardly contribute to the mixture effects (Figures 3B-F). For the 336 

mammalian cell assays (Figures 3B-D), the results suggest not only a minor effect 337 

contribution of THMs, but also of di- and tri-haloacetic acids, halonitromethanes (HNMs), 338 

choral hydrate, haloacetamides, and MX (i.e., % effect contribution <5%, except for 339 

bromochloroacetic acid BCAA). In contrast, haloacetonitriles (HANs), haloketones (HKs, 340 

AREc32 only), and mono-HAAs, if present in a sample, are expected to make a large 341 

contribution to the mixture effect even if present in low concentrations due to their high 342 

relative effect potency (Figures 3B-D). HKs were not active in the ARE-bla assay and hence 343 

did not contribute to the total effect for oxidative stress response activation in this assay 344 

(Figure 2C). 345 

The bacterial assays delivered a very different pattern (Figures 3E, F). Mono-HAAs did not 346 

contribute to the total effect in the umuC assay because cytotoxic effects masked genotoxic 347 

effects and hence we could not derive ECs for these compounds.14 Additionally, genotoxic 348 

effects in the umuC assay were largely dominated by MX (>80%), which is known to be more 349 

potent in bacterial assays than in mammalian cell-based assays.14, 66 In the Microtox assay, 350 

effects were dominated by HNMs (<70%), whenever present in a sample (Figure 2F), 351 

because HNMs have a high REP in this assay.14 352 
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 353 

Figure 2. (A) DBP concentrations from 16 samples based on literature data and four 354 

hypothetical mixtures that include more potent DBPs, which are often not quantified in 355 

studies (see Table S5, ESI, for numerical values of the concentrations). (B – F) Contribution 356 

of all DBPs present in a sample to the bioanalytical equivalent concentrations (dBAN-EQchem, 357 

units of moldBAN/L) based on DBP concentrations and the relative effect potencies in the 358 

respective bioassays. B, C: adaptive stress response to oxidative stress in human cells 359 

(AREc32 and ARE-BLA). D: adaptive stress response to genotoxicity in human cells (p53-BLA). 360 

E: bacterial genotoxicity (umuC). F: bacterial cytotoxicity (Microtox). 361 

 362 
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It needs to be emphasized that the effect contribution of compounds, which require 363 

metabolic activation, such as N-nitrosamines, may be underestimated with the applied 364 

bioassays.14 Treating DBPs or DBP mixtures with rat liver S9 fractions prior to dosing into the 365 

bioassays could help to evaluate the role of metabolic activation for toxicity. 366 

Because of the limited data base available compared to the wide range of DBPs identified in 367 

real water samples,8 these samples do not allow for a comprehensive risk comparison but 368 

serve as blueprint on how to use DBP occurrence data and the CA model to assess which 369 

DBPs are most relevant in a mixture of known DBPs. Our approach is similar to the TIC-Tox 370 

approach proposed recently by Plewa et al.67 They also demonstrated that the THM, which 371 

dominate the concentrations (expressed as peak area of the chromatogram, total ion 372 

current TIC), are no drivers of the mixture cytotoxicity on Chinese hamster ovary (CHO) cells 373 

but that haloacetonitriles and haloacetamides are dominating the mixture effect, just like in 374 

the present study evidenced for the mammalian reporter gene assays.  375 

 376 

3.3 Effect-contribution of unknown DBPs in whole mixtures 377 

As opposed to the approach based on mixtures with known components, whole mixture 378 

approaches reflect the real-world scenario because the major fraction of DBPs in drinking 379 

water is unknown. Calculating the % contribution of known components in a drinking water 380 

sample to the total effect expressed as bioanalytical equivalents enables one to estimate 381 

how relevant the known DBPs are compared to the unknown DBP fraction. It also allows one 382 

to estimate if newly discovered DBPs would be able to lessen the gap between observed 383 

effect in a sample and predicted mixture effect based on the known components. 384 
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The fraction of dBAN-EQ explained by the 34 DBPs included in the chemical analysis of 385 

which a maximum of 15 was detected (Table S6, ESI) was <6% in all real drinking water 386 

samples except for the two purge and trap extracts TW2-1P&T and TW3-1P&T where 29 and 387 

92% could be explained (Figure 3). This demonstrates that unknown or undetected DBPs 388 

must account for the major fraction of effects in the samples, in particular in the non-389 

volatile fraction. This is in concordance with the fact that known DBPs cannot explain 390 

adverse health outcomes.4 Among the approximately 700 DBPs reported in literature only a 391 

small fraction is routinely monitored or has been toxicologically characterized.8 If all of these 392 

known DBPs were included in an effect and occurrence database the calculated contribution 393 

of the known DBPs to the total effect would most likely be significantly larger. 394 

 395 

  396 
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 397 

Figure 3. Percentage of bioanalytical equivalent concentration (dBAN-EQ) in four bioassays 398 

explained by known DBPs calculated with eqn (7) detected in solid-phase extracts (SPE) and 399 

purge-and-trap (P & T) extracts of three tap water samples (TW) and in three SPE extracts 400 

from three water treatment plants (WTP). Analytical data from Stalter et al.43, reprinted in 401 

Table S6; REP from Table S5. Tap water had been sampled twice from each sampling point 402 

at different time points (e.g., TW1-1 and TW1-2: sampled from the same tap at two 403 

different time points). Samples from the first sampling campaign (TW1-1, TW2-1, TW3-1) 404 

were extracted with a purge and trap method (P&T) before SPE to capture the volatile DBP 405 

fraction and samples from the second sampling campaign only with SPE. 406 

 407 

4. Conclusions 408 

We found good agreement between the experimental effects for biological endpoints of 409 

oxidative stress response, genotoxicity and cytotoxicity and the effects predicted with the 410 

model of concentration addition. Our findings support the conclusion by Kortenkamp et al.20 411 

that it is possible to predict the toxicity of multi-component mixtures with reasonable 412 
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accuracy and precision and that deviations from CA are rare and relatively small. 413 

Accordingly, the concept of CA can be employed for the assessment of DBP mixtures despite 414 

the inclusion of various chemical classes with different molecular mechanisms because they 415 

are triggering a similar adverse outcome. This supports increasing evidence that toxicants 416 

can act together in an additive manner to induce a biological effect, despite initial steps of 417 

the adverse outcome pathway—including molecular initiating events and key events—may 418 

differ profoundly.20 Another potential issue is metabolism: many DBPs are only active after 419 

metabolic activation. There is still a research gap concerning the role of metabolism in in 420 

vitro assays.  421 

Calculating the contribution of single compounds to BEQchem of a known mixture in drinking 422 

water enables the estimation of the toxicological relevance of a compound by accounting 423 

for the potency as well as concentrations. Therefore, the CA model could be a tool to 424 

prioritize DBPs for further risk assessments. Compounds with a high contribution to the total 425 

effect could be considered as high priority candidates for further toxicological 426 

characterization. A prerequisite would be the development of a comprehensive effect 427 

database derived from standardized bioassays of known DBPs while newly discovered 428 

compounds need to be toxicologically characterized and continuously added to the 429 

database. The difference between the results of the different reporter gene and bacterial 430 

assays demonstrate the importance to consider a set of different bioassays to capture the 431 

diversity of modes of action relevant for DBPs.  432 

Due to the large fraction of unexplained effects in drinking water samples, further research 433 

should focus on the identification of toxicologically relevant DBPs to find compounds, which 434 

may explain the burden of disease reported in positive epidemiologic studies. Possible 435 
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approaches include effect directed analysis (EDA) for a targeted identification of toxic 436 

compounds,68 which has not been applied for DBPs yet. This could allow targeted mitigation 437 

strategies during drinking water treatment to reduce potential human health hazards from 438 

DBPs.  439 

One great challenge for future research on DBPs is to characterize all known DBPs with 440 

standardized test systems to establish an effect database to prioritize DBPs for further 441 

research to assess potential health effects. ToxCast and Tox21 have set precedence for high-442 

throughput screening (HTS) of in vitro effects of micropollutants.69 Due to the volatility of 443 

many DBPs, HTS approaches need to be adapted to the challenge of evaporative loss from 444 

the test system.43, 52 445 

Another and possibly more pragmatic strategy would be to apply a battery of in vitro assays 446 

as monitoring tools. Bioanalytical monitoring would not replace but complement chemical 447 

analysis of prominent DBPs. The only requirement for their application would be the 448 

definition of effect-based trigger values that can differentiate between acceptable and poor 449 

water quality. Attempts have been made to derive such thresholds for micropollutant 450 

mixtures in recycled and drinking water for a wide range of bioassays33, 36, 55 and similar 451 

approaches could be used for DBPs. 452 
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