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Abstract

Nontargeted mass spectrometry (MS) is widely used in life sciences and environ-

mental chemistry to investigate large sets of samples. A major problem for larger-scale

MS studies is data gaps or missing values in aligned data sets. The main causes for

these data gaps are the absence of the compound from the sample, issues related to

chromatography or mass spectrometry (for example broad peaks, early eluting peaks,

ion suppression, low ionization e�ciency), and issues related to software (mainly limi-

tations of peak detection algorithms). While those algorithms are heuristic by necessity

and should be used with strict settings to minimize the number of false positive and

negative peaks in a data set, gap �lling may be used to reduce missing data in single
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samples remaining after peak detection. In this study, we present a new gap �lling

algorithm. The method is based on the symbolic aggregation approximation (SAX)

algorithm that was developed for the evaluation and classi�cation of time series in

data mining studies. We adopted SAX for liquid chromatography high resolution MS

non-target screening to support the detection of missing peaks in aligned mass spectral

data sets. The SAX-based algorithm improves the detection e�ciency considerably

compared to existing gap �lling methods including the Peak Finder algorithm provided

in MZmine.

Introduction

Gas/liquid chromatography high resolution mass spectrometry (GC/LC-HRMS) is a ubiqui-

tous technology in environmental sciences, metabolomics, lipidomics and other �elds where

natural or synthetic molecules need to be detected. In the past, the focus of mass spectral

analysis was primarily on structure elucidation of single compounds and targeted quan-

titative analysis of substances with known speci�c chromatographic retention times and

mass-to-charge ratios. However, already in the 1970s �rst studies using nontargeted analysis

(NTS) were published.1 The availability of modern and a�ordable high resolution and accu-

racy mass spectrometers accelerated the application of NTS in all relevant domains.2 NTS

is an analytical approach that does not require a priori knowledge on the precursor masses

obtained during the MS data acquisition and strives to detect all compounds that are con-

tained in the sample. In practice, it covers all substances that can be acquired under the

experimental and instrumental setup in dependence on the intrinsic physico-chemical prop-

erties and concentrations of the compounds. NTS helps to detect and prioritize unknown

substances and can be used in conjunction with other methods to gain a more holistic un-

derstanding on chemical signals related to biological e�ects of substances even if the identity

of the e�ect drivers is unknown. A basic processing of chromatography-mass spectrometry

data across multiple samples can be summed up in two main computational steps after ac-
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quisition: Peak picking and alignment.3 Peak picking (or peak/feature detection) is done

by utilizing an algorithm that tries to �nd chromatographic peaks in certain mass-to-charge

windows. These peaks are caused by the presence of speci�c compounds. The intensity

curve of a compound measured in these regions usually results in a characteristic shape re-

sulting from the chromatographic separation and is called a peak. Alignment (sometimes

called �grouping�) algorithms aggregate peaks with similar m/z and retention times across

di�erent samples by binning them into consensus m/z and retention times across all samples

in the data set. The binning is usually controlled by the setting of retention time and mass

di�erence limits as well as weighting factors. The goal of alignment is to get an overview on

the presence and absence of single peaks over all samples in the analysis, which also includes

mitigating the retention time shifts that occur when measuring a large number of samples

over time.4 One of the main challenges of automated peak detection is that it is heuristic

by necessity, because the underlying data are complex and can di�er strongly even between

samples collected in the same study (e.g. an environmental study having water samples

from within highly populated cities as well as from nature reserves). While nontargeted

peak detection algorithms produce results with a high precision, they usually also have a

high false negative rate, but a low false positive rate.3 This means that, given a sensible

parametrization, many peaks present in the data remain undetected, but those revealed are

reliable true positive detections. The main reason for this is that most peak detection al-

gorithms assume peaks to have a minimum length and an approximately Gaussian shape.

While it is possible for mass spectrometry noise to create a Gaussian shape by accident, it

is very unlikely that this happens over several seconds. This results in the algorithm usually

correctly identifying Gaussian shapes in the chromatogram as peaks, meaning that the false

positive rate is low. However, many peaks do not have a shape close enough to Gaussian to

be detected by those algorithms. This happens especially at lower intensities, where the noise

is higher and �masks� the underlying Gaussian shape, resulting in many false negatives in the

aligned peak list. While di�erent peak detection and alignment algorithms are implemented
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in proprietary and open source software packages such as XCMS,3,5,6 MZmine,7 OpenMS8

or enviMass,9 only few of these packages provide procedures to re�ne the peak detection by

exploiting the information from the aligned peak (or feature) lists (e.g., XCMS, MZmine).

These so called gap �lling approaches reanalyze those positions with gaps in single samples

with correspondence to all samples with detected peaks in the same row of the alignment

matrix. If the extracted information supports the assumption of a peak at that position,

this missing peak is imputed into the aligned peak list independent from the peak detection

settings. The heuristic nature of the peak picking algorithms does not allow for gap �lling

during peak detection, because peak pickers can a priori only obtain peaks in the strict

limits of its settings in order to create reliable results. In combination with peak alignment,

gap �lling can be used to mitigate some of the problems stemming from the peak detection

procedures. However, gap �lling algorithms are rarely implemented and none of them have

been published. The most intuitive and simple approach is to indiscriminately integrate

the extracted ion chromatogram (EIC or XIC) region (i. e. in the m/z and retention time

window) of a chromatogram at the same retention time window at which a peak is found in

other samples and assume that any signal within this window is always caused by the same

compound. Another approach for gap �lling is the one used in the �Peak Finder� method in-

cluded in MZmine,7 which represents a more sophisticated form of the simple peak detection;

it does not integrate EICs indiscriminately, but with a simple set of criteria for peaks, such

as a notable local maximum being present. A completely alternative method to gap �lling is

data imputation � �lling data gaps without reevaluating the EICs, but based on the patterns

present in the known values. Data imputation is a common approach to handle missing val-

ues speci�cally in metabolomics MS,10 using a wide array of di�erent imputation strategies.

For example, MetaboAnalyst11 o�ers a variety of imputation methods based on several sta-

tistical and machine learning strategies such as singular valued decomposition (SVD) and

the k-nearest neighbours algorithm (kNN).12 Several studies have shown the e�ectiveness

of imputation on metabolomics MS data,13,14 especially using Random forests10,15 but it is
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clear that imputation approaches are only feasible as long as the initial number of missing

values is low, since any model for the imputation of missing data necessarily becomes worse

if the initial data basis for the extrapolation is too small. This means that while imputation

approaches are useful for some data sets, they would be too inaccurate in cases where the

number of missing values is too high. This especially holds for many environmental nontar-

get MS studies, which create data matrices with many more missing values than detected

signals, since many substances are site- or sample-speci�c. It is mathematically implausible

to impute realistic values for these substances if the data basis is too small to build a model

on. In this study, we propose a new algorithm for �lling information gaps in alignment data

sets that is robust with regard to the false positive and false negative rate. This procedure is

based on the symbolic aggregate approximation (SAX) algorithm described by Lin et al.16,17

Our approach di�ers from other �gap �lling� methods by building a more in-depth model of

the characteristic peak shape of each individual signal, thus also being more robust to noise

or other �uctuations of the chromatographic peak shape. By assigning each EIC a letter

sequence representing its shape in a simpli�ed form, we can compare EICs at similar m/z

and retention time positions to each other in a reasonable time without sacri�cing either

speci�city or sensitivity. In order to evaluate the performance of the SAX-based algorithm,

it was compared with the performance of simple gap �lling and the only other non-simple

gap �lling algorithm, the �Peak Finder� algorithm implemented in MZmine.

Existing gap �lling algorithms

One of the main challenges of describing and evaluating the new algorithm in a scienti�c

context is that the other two previously existing �gap �lling� algorithms have not been

published or peer-reviewed in any journal before. Each come with certain drawbacks and

strengths, that � to our knowledge � have not been mentioned in scienti�c publications before.

Since the traits of these algorithms are part of the main motivation why we developed a new

type of gap �lling algorithm, we describe those traits in this publication.
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Simple gap �lling algorithms

Most existing gap �lling algorithms, such as the �Same mz and RT range gap �ller" from

MZmine7 or the ��llPeaks�-method from XCMS3,5,6 indiscriminately integrate intensities at

some predicted m/z and retention time ranges for a certain sample at chromatogram positions

where a peak is reasonably suspected. This means that all m/z and retention time ranges

where a peak was found in any sample get integrated over all samples. This approach is

based on the assumption that all substances are technically present in all samples and that

by integrating all signals in the same m/z and retention time regions, these substances can

be considered in the analysis. This approach results in many false positive detections across

the samples, since LC-HRMS measurements often contain regions with string background

noise resulting from the sample matrix. While this approach can be e�ective if the false

positive rate of detection is far less important than the false negative rate, it falls short when

a large set of peaks is post-processed automatically. For targeted mass spectrometry or other

studies that concern a small set of substances and/or peaks, this approach is a good choice,

since the drawbacks of this method do not get exacerbated by the data set. Most peaks in

targeted mass spectrometry studies get manually checked, so a false positive detection can

be easily recti�ed. The main problem caused by this form of gap �lling is that � especially

for NTS and its large number of aligned peaks � many false positive peaks are included by

this process. This is caused by the fact that peak detection methods will still pick some

noise regions as peaks in every sample. As this noise is not as often picked as peaks in other

samples, this results � for most data sets � in an alignment with many ostensible peaks that

only occur in a single sample. If these false peaks get integrated in all other samples as well

(which is likely, as background noise occurring from the mass spectrometer is moderately

consistent across samples) this results in a huge number of false positive peak detections

caused by a small number of initially wrongly picked peaks.
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Peak Finder

The Peak Finder algorithm is the only widely-used18�21 non-simple gap �lling algorithm and

it is integrated into MZmine. At its core, it follows the same principle as the simple gap �lling

algorithms (i.e. it re-examines EICs if one can reasonably suspect a previously unpicked

peak to be there due to the information gained in the alignment), but it works di�erently

from the simple gap �lling in that it does not integrate the EIC regions indiscriminately,

but with additional criteria. The Peak Finder �rst includes a check to see whether a local

maximum can be found within the given EIC. After �nding the highest local maximum, the

Peak Finder algorithm determines peaks by following the local maximum in positive and

negative retention time direction. By analyzing the intensity ratio from one point to the

next for increase or decrease beyond a certain tolerance, peak width is determined. If the

total summed intensity of this determined peak is above a certain intensity threshold, the

peak gets added to the alignment. This results in a more informed decision about the EIC

than a simple check of the presence of a signal at the speci�c retention time, but it is not

too strict by allowing only shapes similar to bell curves. A big advantage of this method

is that the reported intensity � if there is a peak � is likely very accurate, as the method

itself determines where the peak begins and ends, meaning that the peak can have a variable

length. However, this method also has two major disadvantages: First, peaks have such a

wide range of shapes in LC-MS that the heuristic described here does not su�ciently apply

to a large part of these shapes and second, the noise present in some LC-MS EICs may still

have the initial appearance of a peak. This algorithm contains the underlying assumption

that the local maximum found is distinct from the signals surrounding it. In practice, the

Peak Finder often results in false positives in a noisy region because the zigzagging signal

locally creates the appearance of a signi�cant peak.
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Methods

Study data set

The study data set was characterized in detail in a Data Descriptor,22 but basic sample and

data processing information is available in the supporting information (B). It is a collection of

manually preclassi�ed EICs designed speci�cally for the evaluation of gap �lling algorithms.

The data set contains 255,000 EICs that have been manually assigned to either be a peak or

not a peak, as well as EICs that could not be clearly classi�ed. There were no strict criteria

determined for the manual classi�cation of the EICs and it relied on the assessment of three

mass spectrometry experts. The underlying raw mass spectral data was reused from a real

world nontargeted screening study by Beckers et al.23 The mass spectral data was acquired

of 51 water samples collected along the Holtemme river (Saxony-Anhalt, Germany). The

samples represented the whole river transect from close to its source to the con�uence with

the Bode river. The uniqueness of the data set is that several sampling sites along the

river were sampled at time intervals corresponding with �ow velocity during one day so that

the samples all represent the same �water package�. In addition to di�use forest, urban

and farmland sources of natural and arti�cial compounds, the river receives also e�uents

from two wastewater treatment plants as point sources of pollution. This means that the

data set as a whole should be consistent as pertaining to the compounds present in each

sample, while also containing sets of samples that are clearly distinct from the others. It

was expected, for example, for a large set of substances to be consistently present in the

samples that were taken downstream of the �rst and second waste water treatment plant.

The manual classi�cation of the LC-HRMS chromatograms resulted in 62,500 out of 255,000

EICs (24.5 %) being classi�ed as detectable peaks, while 184,850 EICs (72.5 %) were classi�ed

as not representing a peak. 6,250 EICs (3 %) could not be de�nitively classi�ed. Leaving

out these inconclusive EICs, this approach results roughly in a 1:3 ratio of �peaks� to �not

peaks�, which means that this data set is imbalanced in regards to the classi�cation of EICs.
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Furthermore, of the 212,933 EICs that have not been picked, here called �gaps�, only 26,786

EICs (12.6 %) were manually identi�ed as peaks, resulting in a ratio of estimatingly 1:8.

This means the classes of the gaps are more imbalanced than the total data set. A detailed

analysis of the complete data set (Fig. 1) showed that about 16 % of the aligned m/z and

RT positions contained no peak in any of the samples, meaning that in one or more samples

a peak has been falsely picked at this position in the aligned data set. At approximately

13 % of the positions, only one out of the 51 samples contained the peak. The peak count

by coverage generally follows (roughly) an exponential distribution, except for peaks that

occur in 20 samples, and those that occur in (almost) all samples.
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Figure 1: Relative peak abundance by coverage. The coverage is de�ned as the number of
samples in which a peak is present. The relative peak abundance shows what percentage of
peaks is present in any given number of samples in the study data set.

It is in agreement with expectations that many peaks occur in all samples, since there

are substances that are known to occur in any surface water at measurable concentrations.

The many peaks that occur in 20 of the samples are also explainable, since 20 samples were

taken at sites that are located downstream of waste water treatment plants. Thus, these

signals represent substances that are typical components of waste water treatment plants
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e�uents.

SAX

The Symbolic Aggregate ApproXimation (SAX) described Lin et al.17 is an algorithm gen-

erating a high level symbolic representation of time series speci�cally designed to reduce

the dimensionality and numerosity of the data to make data mining more viable on any set

of time series. SAX converts a time series into a string of letters by z-normalizing24 the

time series and splitting it into w segments of equal size and assigning each segment a letter

according to the average of the function in that segment range. The value range is split into

a separate segments so that a N(0, 1) normal distribution density function would be split

into a ranges with an equal area under the curve. Figure 2 illustrates an example of how a

peak is being converted into an SAX string.
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Figure 2: SAX-conversion of a time series with w = 8 and a = 4. The red bars show the
position and width of each of the 8 equidistant segments with the letter above them denoting
the letter that is assigned to the segment. The blue dashed lines show the positions where the
value range is split so that each range would have the same area under a normal distribution.
This time series is converted to the letter sequence �aabddcba�.

One main advantage of the SAX over other time series representations is that the letter
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sequences, that result from the conversion of timer series data are to some degree inter-

pretable even for humans. Another advantage is, that a lower bound distance measure called

MINDIST is also de�ned, making it possible to compare two SAX strings (and henceforth

time series) for their similarity without losing a lot of information compared to the original

time series. For two SAX strings S1 and S2, MINDIST is de�ned as:

MINDIST (S1, S2) =

√
n

w

√√√√ w∑
i=1

(dist(S1i , S2i)

With n being the number of initial data points before conversion, Ski being the letter of

SAX string k at position i and dist() being a lower-bound distance function for the SAX

letters based on the break points of the value range. dist() is usually implemented by utilizing

a precalculated lookup table of the distance values between two letters.16

Implementation

The SAX-based and simple gap �lling algorithms were implemented in R version 3.6.1.25

The packages openxlsx,26 XLConnect27 and readxl28were used to interface with and process

Excel �les. The package data.table29 was used for table processing. The package XCMS3,5,6

was used to read in .mzML �les and to extract the EICs. The caret30 package contained the

functions for the generation of the confusion matrices for the results. The progress31 package

was used to implement progress bars for several of the longer steps of the processing.

Results

SAX-based gap �lling

The SAX-based gap �lling algorithm was separated to work in four sequential steps:

1. Extracting and converting all EICs represented in the alignment table to the SAX-

format.
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2. Building a consensus string out of the SAX-strings resulting from the EICs of the

originally picked peaks.

3. Comparing the SAX-strings of the EICs that have not been previously marked as

de�nitive peaks to the consensus string and adding them if they show a high similarity.

4. Removal of low-coverage peaks if their shape does not occur in other EICs.

Extraction and conversion of EICs

The algorithm extracts raw EICs of all m/z and retention time positions speci�ed by the

aligned peak table across all S samples. The m/z range of the EICs needs to be set to

the LC-MS instrument speci�c accuracy. To mitigate small retention time shifts, the EICs

are centered around the weighted mean of the measurements of ±t seconds of the average

retention time, with t being the average peak width of the chromatographic method. The

EICs are then converted to the SAX-format, resulting in one string of letters for each EIC.

Optimal parametrization a, w for the SAX and t for the EIC lengths are later evaluated in

this study.

Building the consensus string

The consensus string of the SAX strings is built for each entry in the aligned peak table.

The aligned peak table contains N rows (and therefore N aligned peak groups) with general

peak information and S columns indicating the peak areas of the same peak (if present) in

each sample. First, the SAX strings of each aligned peak are separated into two categories:

Those strings in row x in the alignment table that represent EICs that have been picked by

peak detection will be called

SAXP,x = {SAXP,x,1, . . . , SAXP,x,NP,x
}

(with NP,x being the number of peaks that have been picked in the alignment table at
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position x) and those that have not been picked will be called

SAXM,x = {SAXM,x,1, . . . , SAXM,x,NM,x
}

(with NM,x = S−NP,x). The totality of SAXP,x and SAXM,x over all alignment positions

will be called SAXP and SAXM respectively. The consensus string SAXC , x of the peak x at

row x is built out of the strings SAXP,x akin to a consensus sequence in genetics:32 The most

frequently occurring letter at each position over all strings is taken as the canonical letter

at that position. If there is no single most occurring letter, then this con�ict is solved by

calculating the mean of the most occurring letters by reinterpreting these letters as numbers

in alphabetical order (i.e. ”a” = 1, ”b” = 2...) taking the average and then rounding the

result if necessary.

abcdcbbc
abcdcbba
bbddcbbb
bbcdcbba
abbcdbbb
abddcbbc
abcdcbbb

Figure 3: Example of a SAX consensus string generated from 6 SAX strings with a con�ict
in the last position marked in red (a, b and c occur equally as often)

For example, as illustrated by Fig. 3, if the letter �a�, �b� and �c� occur most often and

equally as often in the same position SAX strings, the result will be 1+2+3
3

= 2, which means

that the canonical letter in this example will be a �b�.

13



Comparison of SAX-strings to the consensus string

To decide on whether the previously unpicked EICs get added to the alignment as a peak, the

SAXM,x-strings are compared to the consensus string SAXC,x one by one. The maximum

allowed distance of these strings to the consensus string is equal to the maximum distance

of the picked strings max
k

(MINDIST (SAXP,x,k, SAXC,x)) to the consensus string. This

means that not-picked EIC number m represented by the SAX string SAXM,x,m gets added

to the alignment table only if

MINDIST (SAXM,x,m, SAXC,x) ≤ max
k

(MINDIST (SAXP,x,k, SAXC,x))

Handling of low-coverage peaks

To handle low-coverage peaks (i.e. peaks that occur only below a certain percentage or

in less than a set number of samples), all SAX strings contained in SAXP that are not a

representation of low-coverage picked peaks are aggregated and the occurrence of each string

is subsequently counted. Afterwards the unique SAX strings are sorted by occurrence. A

top percentile p : 0 < p < 1 of the unique SAX strings is then taken as a list of reference

strings for the re-evaluation of low-coverage EICs. As an explanatory calculation, if p = 0.3

for a sample set with n = 100 peaks, the SAX strings are sorted cumulatively in decreasing

order until a limit of 30 or higher.

All unique strings among those that are summed up are seen as reference strings for the

evaluation of low-coverage peaks. If the SAX-strings of low-coverage peaks have a distance

of 0 to any of the reference strings, the corresponding peaks remain in the data set and are

used for gap �lling. Otherwise, the table row in the alignment stays the same. In our study,

we de�ne low-coverage peaks as peaks that occur in 5 % or less of the samples.
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Parameter optimization and evaluation

The evaluation and comparison between the described methods of �lling gaps in the align-

ment have been done by using a number of di�erent quality measures. Since the classes

�peak detected� and �no peak detected� are imbalanced for this data set, it is important to

not just evaluate the results by considering the predictive accuracy33 (i.e. the number of

correctly classi�ed EICs divided by the total number of peaks) but rather a measure that

is robust in regards to imbalanced data sets. Our preferred choice in this case is Matthews

Correlation Coe�cient (MCC),34 since it is a well-tested measure for such types of data

sets.35 It is described as

MCC =
TP · TN − FP · FN√

(TP + FP )(TN + FN)(TP + FN)(TN + FP )

with TP being the number of true positives, TN being the number of true negatives, FP

being the number of false positives and FN being the number of false negatives. The MCC

is a holistic and unbiased measure, in the sense that all values from the confusion matrix

(TP ,TN ,FP ,FN) are included at equal importance. While it is reductive to describe a

classi�cation in a single measure, the MCC is still favorable for its unbiased (in regards to

type I and II errors) evaluation of any given classi�er. Unlike most other quality measures,

the MCC ranges from -1 to 1, since it is a correlation measure. While the predictive accu-

racy gives insight into the overall performance of the algorithm, sensitivity and speci�city33

indicate whether the algorithm generally produces more type I or type II errors. While both

types of errors are equally valued in our case, a look at these secondary measures can gauge

whether the algorithms in question produce balanced results. The MCC is used as a general

measure for the optimization of the parametrization. The parameters of the SAX (a,w),

the EIC extraction time (t) and the percentile for re-evaluation of low-coverage peaks (p)

have not previously been optimized for the classi�cation of EICs. To optimize these speci�c

parameters, we used a grid search over di�erent parameter magnitudes. There are several
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reasons for using a grid search: First, a grid search over magnitudes very distinctly avoids

over�tting to our speci�c data set. Second, the methods' success is not strongly depending

on the exact parametrization of a and w, as long as the parameters are within a reasonable

margin for the speci�c use case.17 Third: The discreteness and unpredictable interactions of

these parameters mean that gradient descent methods for parameter optimization are very

unlikely to work.

The speci�c values of which all combinations were tested are:

a ∈ {4, 6, 8}, w ∈ {3, 5, 8, 11}, t ∈ {3.5, 7, 10.5, 14, 17.5, 21}, p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}

For the evaluation, the data set of 5,000 aligned peaks has been split into two parts: The

cross-validation set, containing 3,000 aligned peaks, and the holdout set with 2,000 aligned

peaks. For parameter optimization, a 10-fold cross-validation was used, meaning that the

cross-validation set was split into 10 parts with 300 peaks and validated each time with one

part left out respectively as the test data set. The optimization criterion for the algorithm

was maximizing MCC. After training, the optimal parameters were applied to each test

data set and the optimal parameters and evaluation metrics were calculated. The optimized

parameter sets were then used to process the holdout data set as an independent validator

of these parameters. The parameter t was also optimized for the simple gap �lling, as the

EIC width has a large impact on whether this gap �lling process detects a peak or not. The

optimization was done by simply testing all prede�ned values for t and optimizing for the

maximization of MCC. These optimization processes were done twice: Once with only the

gap data, meaning that the picked peaks were left out entirely from the validation and once

with the full data set. Inconclusive EICs were excluded from both data sets, since they can

not be used as reference values for the classi�cation. Seven total combinations of methods

and data sets were evaluated: One for no gap �lling, three for the gap �lling methods with

evaluation parameters calculated from using the full data set and three for the gap �lling
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methods with the evaluation parameters calculated from using the data set containing only

the original peak gaps. The holdout data set exists as a �nal means of evaluation and is the

closest result to a worst-case evaluation of the algorithm on this MS-method. By leaving

out this data set right from the beginning and only evaluating it once at the end without

iterating on the results acquired from this �nal evaluation, we gain an unbiased estimation

of the performance of our algorithm with the parameters we chose. While a repeated cross-

validation usually results in an estimation closer to an average real-world case, the usage of

an extra holdout data set can show possible biases that may be present in the training data

set for the cross-validation.

Cross-validation results

Table 1: Average results for four evaluation measures of the cross-validation for seven di�erent
methods and/or sets of peaks: (1) Utilizing the full data set, but without any gap �lling; (2)
The results of the simple gap �lling with the full data set; (3) The results of the Peak Finder
algorithm with the whole data set; (4) The results of the SAX gap �lling with the whole
data set; (5) The results of the simple data set with evaluating only the gaps speci�cally;
(6) The results of the Peak Finder algorithm with evaluating only the gaps speci�cally; (7)
The results of the SAX gap �lling with evaluating only the gaps speci�cally; The highest
values in each table are bold-faced (multiple bold-faced numbers occur if the di�erence is
only marginal)

Method Accuracy MCC Sensitivity Speci�city

(1) Full data set (no gaps �lled) 0.868 0.572 0.51 0.967

(2) Full data set (�lled � Simple) 0.443 0.279 0.994 0.29
(3) Full data set (�lled � Peak Finder) 0.598 0.318 0.857 0.527
(4) Full data set (�lled � SAX) 0.871 0.654 0.81 0.888
(5) Only gaps (�lled � Simple) 0.385 0.214 0.988 0.3
(6) Only gaps (�lled � Peak Finder) 0.565 0.166 0.707 0.545
(7) Only gaps (�lled � SAX) 0.871 0.51 0.698 0.895

The cross-validation results (Table 1) show that the SAX gap �lling has the highest

average MCC across all test data sets with approximately 0.654 with an average accuracy

of 0.871. The �Peak Finder� gap �lling results in the second highest average MCC of 0.318

and an accuracy of 0.598. The simple gap �lling's average accuracy is 0.4425 with an average
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MCC of 0.279. The evaluation for only the gap data shows similar results with MCC and

accuracy being equal or lower than in their respective full data sets.

A more detailed analysis of the MCC of the cross-validation for each run (Fig. A2, Tab.

A1) shows that the results for the MCC were in the same general range across all test folds,

meaning that each method yields consistent results, independent of the speci�c peak set.

Optimal parametrization

The detailed cross-validation results of the SAX gap �lling (Table A1) show that there were

only four parameter sets that were deemed optimal by the training process, which proves

that the SAX gap �lling yields consistently good results if given the right parameters. The

metrics for the four parameter sets show that there is only a small di�erence between them

in terms of classi�cation strength. It is however notable that the parameter combination

a = 8, w = 8, t = 14, p = 0.9

is occurring most often across all evaluation folds of the SAX-based gap �lling and is

therefore the preferable combination to use for this type of data. It shows desirable results

when evaluating the full data set as well as only the gap data. The other parameterization

results are not very di�erent in terms of their parameters, as there is a trade-o� between

a and w. Generally, if a is higher for an optimal parameterization, then w is lower and

vice versa. It should also be noted that optimal EIC extraction retention time windows

seem to be either ±7 or ±14 seconds, with the higher time being correlated with a higher

meaning that the general segment length of the SAX (in terms of seconds per segment)

stays approximately constant. The peak re-evaluation threshold p is in most cases 0.9,

showing that a conservative approach to evaluation of low-coverage peaks is better for overall

performance. The previously mentioned parameter set a = 8, w = 8, t = 14, p = 0.9 was

used for the holdout data set evaluation.
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Holdout data set evaluation

Table 2: Table showing the average results for four evaluation measures of the holdout data
set evaluation for seven di�erent methods and/or sets of peaks: (1) Utilizing the full data
set but without any gap �lling; (2) The results of the simple gap �lling with the full data
set; (3) The results of the Peak Finder algorithm with the whole data set; (4) The results
of the SAX gap �lling with the whole data set; (5) The results of the simple data set with
evaluating only the gaps speci�cally; (6) The results of the Peak Finder algorithm with
evaluating only the gaps speci�cally; (7) The results of the SAX gap �lling with evaluating
only the gaps speci�cally; The highest values in each table is bold-faced (multiple bold-faced
numbers occur if the di�erence is only marginal)

Method Accuracy MCC Sensitivity Speci�city

(1) Full data set (no gaps �lled) 0.868 0.572 0.51 0.967

(2) Full data set (�lled � Simple) 0.443 0.279 0.994 0.29
(3) Full data set (�lled � Peak Finder) 0.598 0.318 0.857 0.527
(4) Full data set (�lled � SAX) 0.871 0.654 0.81 0.888
(5) Only gaps (�lled � Simple) 0.385 0.214 0.988 0.3
(6) Only gaps (�lled � Peak Finder) 0.565 0.166 0.707 0.545
(7) Only gaps (�lled � SAX) 0.871 0.51 0.698 0.895

The holdout data set evaluation (Tab. 2) shows similar results as compared to the cross-

validation. The MCC of the SAX method is again higher than for any other method and

the accuracy is comparable to that of the data set where no gaps are �lled. The power of the

SAX gap �lling is slightly less than in the cross-validation, but this is normal behavior for

the evaluation of a holdout data set. The results of all other methods are very similar to the

results from the cross-validation, which is also expected due to the fact that these methods

are largely nonparametric and should therefore stay consistent independent of the data set.

Applicability

While this algorithm has only been tested on environmental data, it is very likely also

applicable on LC-MS data in other �elds, like metabolomics, proteomics and lipidomics.

The success of this algorithm is mainly dependant on substances having consistent peak

shapes and a good initial peak detection. As long as these requirements are ful�lled, the
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algorithm should work with similar results on other LC-MS data. Whether the algorithm

works on GC-MS data needs to be tested, as there are several factors that favor or disfavor

the success of this algorithm on such data. On the one hand, GC-MS is usually far less noisy

and has therefore very consistent peak shapes compared to LC-MS data, on the other hand,

lower resolution might be problematic for identifying the distinct shapes.

In its current form, the algorithm only needs a peak alignment table containing inten-

sity values for each peak in each sample and mass spectrometric data in .mzML format

corresponding to each sample column in the table.

Conclusion

The results show that the SAX gap �lling enhances the general informativeness of the EIC

classi�cation process while sacri�cing only a small margin of speci�city, compared to not

applying any gap �lling method. Although the general accuracy of the SAX gap �lling is

equal to that of no gap �lling, the much higher sensitivity shows that more peaks can be

correctly detected in mass spectrometry with little caveats. With no gap �lling method

applied, only about half of all actual peaks were correctly detected. Choosing the approach

without gap �lling yields a very high speci�city, meaning that the number of false negatives

is very low compared to other methods. By using no gap �lling, only about 4 % of the EICs

are wrongly classi�ed as containing a peak when they do not contain it, but the high number

of undetected peaks is a strong caveat for leaving out gap �lling. The simple gap �lling has

the highest sensitivity, but at the cost of a very low speci�city. This is due to the fact that it

detects a peak in every EIC where a signal is present, and therefore the speci�city value for

this method strongly correlated to the number of extracted EICs without any signal. While

the Peak Finder algorithm managed to detect about 85 out of 100 peaks, it also led to the

misclassi�cation of about half of all not-peak representing EICs as peaks in the test data.

The SAX gap �lling achieves almost the same sensitivity without such a strong trade-o�.
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With our method, more than 80 % of all peaks can be detected while also misclassifying only

around 15 % of EICs which do not contain a peak as containing it.
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