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Abstract 

Climate change is uncertain and has uncertain effects on the suitabilities of species habitats. 
Conservation strategies have to take this uncertainty into account. Two concepts for 
addressing uncertainty are, to make strategies adaptive and robust. Using a stylized 
ecological-economic model in which a decision maker can allocate a conservation budget 10 
between two time periods and two regions, I explore how the cost-effective allocation of the 
budget depends on ecological and economic parameters, including parameters describing the 
uncertain dynamics of climate change; and under which circumstances adaptive allocation 
strategies significantly outperform fixed strategies. Even if an adaptive strategy is politically 
feasible, its optimisation requires some knowledge about the dynamics of the climate change 15 
in the form of statistics like mean and variance of climate parameters. If these statistics are 
estimated wrong then even an adaptive strategy may fail. To explore the risk of such failure I 
subject the cost-effective strategies derived in the first part of the analysis to a robustness 
analysis that, among others, identifies those strategies that are relatively prone to wrong 
expectations of the climate change. Among others, the analysis reveals that flexibility pays 20 
only if there is uncertainty in the relative performances of different strategies; and depending 
on whether substitution between the benefits of the two time periods is allowed or not, the 
most robust strategy is to concentrate conservation expenses to the first period or to allocate 
the budget evenly among the two time periods, respectively.  
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1 Introduction 35 

Climate change affects the spatial distribution of species and the suitability of habitats. The 

ranges of many species shift poleward or to higher altitudes (Parmesan et al. 1999, Root et al. 

2003, Chen et al. 2011). The reason for these shifts is that previously suitable habitats become 

unsuitable while previously unsuitable habitats become suitable. 

As a consequence, species protected in the current reserve systems will not be protected in the 40 

future (Burns et al. 2003, Araujo et al. 2004).  A range of possible responses through 

conservation management has been compiled by Heller and Zavaleta (2009). Among their 

top-ranked (measured by the number of articles the authors found for each management 

option) are: integrate climate change into conservation planning, increase the number and 

sizes of reserves, protect the full range of bioclimatic variation, increase connectivity between 45 

reserves, and practice adaptive management. Jones et al. (2016) come to similar conclusions 

and add, among others, that methods able to deal with uncertainty need to be incorporated into 

spatial conservation planning under climate change. 

Planning for conservation under climate change is challenging because the ranges of species 

and the suitability of habitats for the species will change and so do the ecological benefits of 50 

individual habitats. Furthermore, this change is uncertain (Faleiro et al. 2013) due to 

uncertainties in the climate projections (Kujala et al. 2013) and the ecological models that 

predict the implied habitat suitabilities for the species (Elith et al. 2006).  

Outlining the previous research in the field, to conserve biodiversity under climate change, it 

is necessary to know the impact of climate change on the distribution of species and the 55 

suitabilities of potential conservation sites. Species distribution models have been used 

frequently to generate knowledge on this issue (Hannah et al. 2007, Faleiro et al. 2013, Lung 

et al. 2014). Such information can be used to prioritise sites for biodiversity conservation.  

Various authors in the field of conservation planning have addressed uncertainty  in the 

climate projections and the future suitabilities of potential conservation sites. Most papers 60 

consider this uncertainty by creating an ensemble of likely species distributions and base the 

reserve selection on certain averages or statistics of these ensembles, or they explicitly 

generate reserve networks for different scenarios (Jones et al. 2016). An explicit consideration 

of uncertainty is found, e.g., in Cavalho et al. (2011) and Loyola (2013) who construct some 
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sort of risk-utility function that leads to the selection of conservation sites with higher 65 

expected ecological benefit and/or lower uncertainty.    

The most explicit consideration of uncertainty is found in Ando and Mallory (2012) who 

employ modern portfolio theory to the selection of reserve sites under climatic uncertainty. 

Modern portfolio theory is a basic tool in the evaluation of financial investments. The task 

here is to select a portfolio of financial assets that minimises the uncertainty in the portfolio’s 70 

total return for a given mean return. The assets may differ in their individual mean returns and 

the standard deviations of their returns, and the returns of different assets may be correlated.    

While the mentioned studies contain a high level of realism and consider many specific 

features of their study region, the produced results and conclusions are mostly applicable only 

to the study area. An alternative approach is to consider stylized landscapes with only few 75 

potential sites, that can be analysed systematically to gain general insights into the problem of 

species conservation under climate change. 

The present study is based on such a simple model. The model considers two regions that are 

characterised by ecological benefit and economic cost functions, i.e. functions that describe 

how the regional ecological benefit and the economic cost depend on the amount of area 80 

conserved. The benefit and cost functions may have different shapes and may differ between 

the two regions. To include climate change, a future point in time is considered and the 

benefit and cost functions of the two regions change between present and future in an 

uncertain manner. 

It is assumed that a conservation agency has to allocate a financial budget over the two time 85 

periods and the two regions. The amount of money spent in a particular period in a particular 

region determines the current ecological benefit in that region. The objective is to maximise a 

joint ecological benefit composed of the benefits generated in the two time periods for the 

given budget (cost-effectiveness). 

Uncertainty is addressed in two steps. First, I assume that although the particular shapes of the 90 

future cost and benefit functions are not known in the first time period, at least some statistics 

of their distributions (means, standard deviations and correlations) are known. I analyse how 

the cost-effective allocation strategy depends on these statistics as well as a few other model 

parameters. 
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A classical response to the described type of uncertainty is to allow for flexibility, so that (in 95 

the present setting) the allocation decision for the second time period does not have to be 

taken in the first time period but can be postponed to the second time period when the actual 

shapes of the cost and benefit functions are known. Only the decisions of how much of the 

total budget to spend in the first time period and where to spend this period-1 budget are taken 

in the first time period. Such an, the ‘adaptive strategy’ thus is able to adapt to the climate 100 

change and will generally outperform (and never underperform) the ‘fixed strategy’ in which 

the allocation of the period-2 budget is also taken in the first time period. 

Comparing the cost-effectiveness of these allocation strategies allows assessing the value of 

flexibility. Flexibility is well known as a means to cope with uncertainty about the future 

(e.g., Arrow and Fisher (1974), Albers (1994), Dixit and Pindyck (1994), Westphal et al. 105 

(2003), Costello and Polasky (2004), Kassar and Lasserre (2004), Drechsler et al. (2006)). 

However, since a flexible or adaptive strategy usually involves transactions costs such as 

information costs and the costs incurred by the reallocation of conservation efforts, the 

question arises how large the efficiency gain of flexibility is, so it can be decided whether that 

gain is worth the additional transaction costs. Thus, next to the analysis of the cost-effective 110 

allocation of conservation efforts, the present study focuses on the question under which 

circumstances efficiency gains are comparatively large and when they are comparatively 

small. 

Analyses of the type described above rely on the knowledge of the statistics (means, standard 

deviations and correlations) of the future change (of the cost and benefit functions, as in the 115 

present setting). This assumption may be overly optimistic and one may wonder how good a – 

fixed or adaptive – strategy will perform if the actual changes become manifest in a different 

manner than assumed in the statistics. Such a question can be addressed by robustness 

analysis (Ben Haim 2001, Regan et al. 2005, Salomon et al. 2020) that explores how a 

strategy that had been optimised with respect to certain assumptions will perform if these 120 

assumptions turn out to be wrong. Of particular interest here is to identify robust strategies 

that perform ‘reasonably well’ under a wide range of prediction errors. In the present paper I 

will determine the robustness of the above-mentioned fixed and adaptive allocation strategies 

with respect to errors in the assumptions on the climate change statistics. 

 125 
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2 Methods 

2.1 Model description 

The model assumes two regions, i = 1,2, with areas of size Ai managed for conservation. The 

marginal economic cost accruing from managing an area of size Ai for conservation increases 

linearly with increasing Ai: 130 

𝑐𝑐𝑖𝑖(𝑡𝑡) = 𝛾𝛾𝑖𝑖(𝑡𝑡) + eA𝑖𝑖(𝑡𝑡),          (1) 

where γi is a constant with respect to Ai but depends on the time period t ∈ {1,2}, and e is the 

slope of the marginal cost curve (cf. Drechsler and Wätzold 2001). For simplicity the slope e 

is assumed identical in both regions and does not change in time. The ecological benefit 

generated from a conserved area of size Ai is 135 

𝐵𝐵𝑖𝑖(𝑡𝑡) = 𝑔𝑔𝑖𝑖(𝑡𝑡)𝐴𝐴𝑖𝑖(𝑡𝑡)𝑧𝑧,          (2) 

where the prefactor gi depends on the period t, and the exponent z determines whether the 

ecological benefit function is convex in Ai (z > 1), linear (z = 1) or concave (z < 1) (for the 

ecological meaning of z, see e.g. Drechsler and Wätzold (2001)). For simplicity the exponent 

z is assumed identical in both regions and does not change over time. 140 

Climate change modifies the cost and benefit functions from period 1 to period 2. For the cost 

functions I assume that the γi of eq. (1) are multiplied with some climate change factor δi
(γ), so 

that 

𝛾𝛾𝑖𝑖(2) = 𝛾𝛾𝑖𝑖(1) ⋅ 𝛿𝛿𝑖𝑖
(𝛾𝛾)         (3) 

for i = 1, 2. In an analogous manner, the benefit functions change according to 145 

𝑔𝑔𝑖𝑖(2) = 𝑔𝑔𝑖𝑖(1) ⋅ 𝛿𝛿𝑖𝑖
(𝑔𝑔),         (4) 

where δi
(g) represents the relative change of gi of eq. (2) in the course of climate change.  

To model uncertainty in the climate change I assume that the climate change factors δi
(γ) and 

δi
(g) are random numbers drawn from a uniform distribution with means mi(δγ) and mi(δg) and 

upper and lower bounds of mi(δγ)[1 ± σi(δγ) and mi(δg)[1 ± σi(δg)], respectively. In addition, 150 

the changes in the cost functions, δ1
(γ) and δ2

(γ), are correlated with correlation coefficient rγ, 
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and the changes δ1
(g) and δ2

(g) in the benefit functions are correlated with correlation 

coefficient rg (the chosen approach for drawing correlated uniformly distributed random 

numbers is described in Appendix A). 

Now assume a conservation agency is confronted with the task to allocate a budget C over the 155 

two time periods and the two regions, so that Ci(t) is the amount of money allocated to region 

i in period t. Since ci of eq. (1) is the derivative of Ci with respect to conserved area Ai, the 

magnitude of Ci determines the size of the conserved area Ai. 

The objective of the agency is to distribute the budget such that an ecological benefit B is 

maximised. I assume that the benefit in each time period t ∈ {1, 2} is the sum of the two 160 

regional benefits: 

𝐵𝐵(𝑡𝑡) = 𝐵𝐵1(𝑡𝑡) + 𝐵𝐵2(𝑡𝑡).         (5) 

For the aggregation of the two benefits B(1) and B(2) into a total benefit, many possibilities 

exist. A rather general one is  

𝐵𝐵 = {𝐵𝐵(1)1−𝛼𝛼 + 𝐵𝐵(2)1−𝛼𝛼}
1

1−𝛼𝛼        (6) 165 

with α ∈ [0, 1) (Quaas et al. 2013). Here α = 0 represents full substitutability of the two 

benefits so that the total benefit B is the sum of B(1) and B(2), and a reduction in one of the 

two benefits can be fully compensated by an equal increase in the other benefit (cf. Fig. 1). 

The other extreme, α → 1, represents full complementarity so that a reduction in the smaller 

of the two benefits can not (or only marginally) be compensated by an increase in the other 170 

benefit (cf. Fig. 1). 

Due to the uncertainties in the processes of climate change , for a given allocation of the 

budget the ecological benefit B is uncertain and has a mean mB and a standard deviation σB. 

Risk-averse decision makers try to avoid variation and for given mB prefer smaller σB to larger 

σB. I assume the conservation agency attempts to maximise, for given budget C, the risk-175 

utility function (cf. Eckhoudt et al. 2005) 

𝑈𝑈 = 𝑚𝑚𝐵𝐵 − 𝑠𝑠𝑠𝑠𝐵𝐵,          (7) 
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where s is the degree of risk aversion. For s = 0 the standard deviation σB does not affect 

utility U, characterising the case of risk-neutrality, while increasing s reduces U if the 

standard deviation σB is non-zero. 180 

 

 

 

 

 185 

 

 

 

 

Figure 1: Iso-benefit lines, B = const. Solid lines from upper right to lower left: α = 0.2, 0.5, 190 

0.8; B = 100. Dashed line: α = 0.8; B = 800.  

 

2.2 Model analysis 1: optimisation and comparison of fixed and adaptive strategies 

To determine the cost-effective allocation of the budget, the Ci(t) are systematically varied in 

small steps. For each combination of the Ci(t) (i = 1, 2; t = 1, 2) the conserved areas Ai(t) are 195 

determined through the inverse of eq. (1), and the resulting benefits Bi(t) are calculated 

through eq. (2). To take the climate and colonisation uncertainties into account, the Bi(t = 2) 

are calculated based on 100,000 random samples of δi
(γ), δi

(g). The means mB and σB over the 

resulting total benefits are taken and the allocation Ci(t) that maximizes U of eq. (8) is the 

cost-effective one.  200 

Two allocation strategies are analysed. In the fixed strategy all Ci(t) are selected in the first 

time period, based among others on the means, variations and correlations of the uncertain 

climate change factors δi
(γ), δi

(g) but without knowing the exact values of the climate change 
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factors. In the adaptive strategy the decision on the budgets C1(1) and C2(1) for the first period 

is the same as in the fixed strategy, i.e. in ignorance of the climate change factors δi
(γ), δi

(g). 205 

However, in contrast to the fixed strategy, the allocation of the remaining budget C – C1(1) – 

C2(1) over the two regions in the second period (i.e., C1(2) and C2(2)), is chosen only when 

the values of δi
(γ), δi

(g) and thus the precise shapes of the cost and benefit functions are known. 

The cost-effective adaptive strategy is determined through stochastic dynamic programming 

(Dixit and Pindyck 1994): For a given choice of C1(1) and C2(1), the cost-effective allocation 210 

of C1(2) and C2(2) that maximises risk-utility U is determined for each of the 100,000 random 

samples of δi
(γ), δi

(g) and the average over the obtained risk-utilities, EU(C1(1), C2(1)), 

calculated. This average is a function of C1(1) and C2(1)), and to obtain the cost-effective 

adaptive strategy, C1(1) and C2(1) are varied systematically and the values that maximise EU 

identified. The fixed and adaptive strategies are analysed for the model parameter values 215 

shown in Tables 1 and 2. 

The baseline parameter values (Table 1) is chosen with the following logic. The cost and the 

benefit functions for both regions in the first period are assumed identical. The factors γ1(1) = 

γ2(1) and g1(1) = g2(1) are set to 1, which imposes no loss of generality. The slope of the 

marginal costs is set at a rather small value of e = 0.02, so the cost functions are only slightly 220 

convex. The benefit functions are assumed to be linear: z = 1. Uncertainty levels in all cost 

and benefit factors are moderate with σ1(δγ) = σ2(δγ) = σ1(δg) = σ2(δg) = 0.5, and the cost 

and benefit correlations are rγ = rg = 0. The budget is set at a value of C = 100 which in 

preliminary analyses turned out to allows extracting the behaviour of the model. The benefit 

aggregation factor is set to α = 0 which represents additive benefits. Lastly, the decision 225 

maker is risk-neutral: s = 0. 

From these values selected model parameters are varied in turn (Table 2). The cost offset is 

moderately increased to γ1(1) = 1.5 which makes conservation in region 1 more expensive. 

Since the model is symmetric in the two regions, increasing γ2(1) (or reducing either of the 

two factors accordingly) would lead to equivalent results. The slope of the marginal costs is 230 

increased to a moderate value of e = 0.05, so the cost functions are significantly convex. 

Analogously to the marginal cost offsets, the benefit prefactor is increased to a moderate 

value of g1(1) = 1.5, increasing the benefit in region 1 relative to that in region 2. The shape of 

the benefit function is varied from linear to concave (z = 0.5) and to convex (z = 2).  
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Table 1: Baseline values of the model parameters.  235 

Parameter Notation Equation Value 

Cost offset γ1(1) = γ2(1) 1 1 

Slope marginal cost e 1 0.02 

Benefit prefactor g1(1) = g2(1) 2 1 

Benefit exponent z 2 1 

Mean climate change factor costs m1(δγ) = m2(δγ) cf. eq. (3) 1 

Mean climate change factor benefits m1(δg) = m2(δg) cf. eq. (4) 1 

Cost variation σ1(δγ) = σ2(δγ) cf. eq. (3) 0.5 

Benefit variation σ1(δg) = σ2(δg) cf. eq. (4) 0.5 

Correlation cost variation rγ Appendix A 0 

Correlation benefit variation rg Appendix A 0 

Budget C  100 

Benefit aggregation factor α 6 0 

Risk aversion parameter s 7 0 

 

Climate change can have positive or negative ecological impacts (e.g., Marqués et al. 2018) 

and so I assume it may positively or negatively affect the benefits in region 1, region 2 or both 

regions. This is considered by varying the mean climate change factors m1(δg) and m2(δg) 

systematically from 0.5 to 2, which is done in four steps on a geometric scale so that from one 240 

step to the next mi(δg) (i = 1, 2) is multiplied by a factor of of 21/2 ≈ 1.41. Cost and benefit 

uncertainties are varied in turn to small values of σ1(δγ) = σ2(δγ) = 0.2 and σ1(δg) = σ2(δg) = 

0.2. The budget is increased to a rather large value of C = 400. The benefit aggregation factor 

is varied to α = 0.5 which means that the total benefit is the squared sum of B(1)0.5 and 

B(2)0.5. Lastly, the level of risk aversion is increased to a moderate level of s = 2. 245 

For each parameter combination the following quantities are determined: for the fixed 

strategy (i) the cost-effective share of the budget allocated to period 1, (ii) the cost-effective 

share of the period-1 budget in region 1, and (iii) the cost-effective share of the period-2 

budget in region 1; for the adaptive strategy (iv) the cost-effective share of the budget in 

period 1, (v) the cost-effective share of the period-1 budget in region 1, and (vi) the cost-250 

effective share of the period-2 budget in region 1; and (vii) the relative increase, (Uadapt-
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Ufix)/Ufix, in utility U (i.e., the efficiency gain) when switching from the fixed to the adaptive 

strategy. Note that since in the adaptive strategy the allocation of the period-2 budget is 

chosen adaptively in dependence of the observed climate change factors δi
(γ) and δi

(g), the 

cost-effective share of the period-2 budget in region 1 (quantity vi) is calculated as the mean 255 

over the cost-effective allocations obtained for the 100,000 random realisations of δi
(γ) and 

δi
(g).  

 

Table 2: Varied values of the model parameters. Each model parameter, except for m1(δg) and 

m1(δg) which are varied systematically within their ranges, is varied from its baseline value 260 

up and/or down.  

Parameter Notation Value 

Cost offset γ1(1) 1.5 

Slope marginal cost e 0.05 

Benefit prefactor g1(1) 1.5 

Benefit exponent z 0.5, 2 

Mean climate change factor benefit 1 m1(δg) 0.5, 0.71, 1, 1.41, 2 

Mean climate change factor benefit 2 m2(δg) 0.5, 0.71, 1, 1.41, 2 

Cost variation σ1(δγ) = σ2(δγ) 0.2 

Benefit variation σ1(δg) = σ2(δg) 0.2 

Correlation cost variation rγ –0.8, 0.8 

Correlation benefit variation rg –0.8, 0.8 

Budget C 400 

Benefit aggregation factor α 0.5 

Risk aversion parameter s 2 

 

  The impacts of the model parameters on the seven quantities are determined in the following 

order. Starting from the baseline parameter combination (Table 1) the mean climate change 

factors m1(δg) and m2(δg) are varied systematically as indicated in Table 2. Then all 265 

alternative parameter combinations defined in Table 2 are varied in turn and for each 
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parameter combination, as in the baseline parameter combination, the mean climate change 

factors m1(δg) and m2(δg) are varied systematically.    

2.3 Model analysis 2: robustness analysis 

Some of the parameters in Tables 1 and 2 are not subject to climate uncertainty: γ1(1), e, g1(1), 270 

z, C, α and s. Setting these at their base values of Table 1 plus varying them from there one by 

one to their values of Table 2 yields a total of nine scenarios (Table 3). 

 

Table 3: Parameter values for the nine scenarios considered in the robustness analysis. 

Scenario Varied model parameter 

1 Baseline (Table 1) 

2 γ1(1) = 1.5 

3 e = 0.05 

4 g1(1) = 1.5 

5 z = 0.5 

6 z = 2 

7 C = 400 

8 α = 0.5 

9 s = 2 

 275 

The choices for the other parameters, m1(δg), m2(δg), σ1(δγ) = σ2(δγ), σ1(δg) = σ2(δg), rγ  and 

rg represent climate expectations. Setting them at their base values plus varying them from 

there to the values of Table 2 (with some simplification in the considered values m1(δg) and 

m2(δg)) yields eleven climate expectations (Table 4). 

For each of the nine scenarios the following calculations are carried out. For each climate 280 

expectation, the cost-effective allocation strategy is determined together with its utility U. 

Then this strategy is evaluated for the ten respective other climate expectations and its utility 

for each climate ecpectation determined. This analysis is carried out separately for the 

adaptive and the fixed strategies. By this, for each scenario one can assess how each 

optimised (for given climate expectation) strategy performs if the climate change turns out not 285 
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to follow the assumed expectation but one of the other ten climate expectations. And in 

particular, one can assess which strategy is most robust against the choice of a ‘wrong’ 

climate expectation.  

Table 4: Parameter values for the eleven climate expectations. 

Climate expectation Varied model parameter(s) 

1 Baseline (Table 1) 

2 m1(δg) = 0.5, m2(δg) = 0.5 

3 m1(δg) = 0.5, m2(δg) = 2 

4 m1(δg) = 2, m2(δg) = 0.5 

5 m1(δg) = 2, m2(δg) = 2 

6 σ1(δγ) = σ2(δγ) = 0.2 

7 σ1(δg) = σ2(δg) = 0.2 

8 rγ = –0.8 

9 rγ = +0.8 

10 rg = –0.8 

11 rg = +0.8 

 290 

3 Results 

3.1 Optimisation and comparison of fixed and adaptive strategies 

As a first result it turns out that for all parameter combinations the cost-effective allocation 

under the fixed strategy is identical to that under the adaptive strategy, so below and in 

Appendix B only the cost-effective allocation under the fixed strategy will be reported. For 295 

the baseline scenario (parameters values as in Table 1) the following results are obtained. 

Cost-effective allocation: For climate-change factors m1(δg) < 1 and/or m2(δg) < 1, so that 

benefits decline from period 1 to period 2, it is cost-effective to spend most of the budget in 

period 1, because here it generates higher benefits than in period 2 (Fig. 2a); and the period-1 

budget should be spent evenly between the two regions (Fig.  2b), because the increasing 300 

marginal costs imply that an uneven allocation generates over-proportionally high costs 

without generating higher benefits (note that the benefit functions are linear: z = 1). 
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Conversely, for m1(δg) >1 or m2(δg) > 1), i.e. temporally increasing benefits, most of the 

budget should be spent in period 2 (Fig. 2a); and the allocation of the period-1 budget over the  

two regions is not decisive because for those small budgets the cost functions appear nearly 305 

linear and for linear cost and benefit functions any allocation is cost-effective (Fig. 2b). 
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Figure 2: Cost-effective share of the budget in period 1 (panel a), cost-effective share of the 

period-1 budget in region 1 (panel b), cost-effective share of the period-2 budget in region 1 310 

(panel c) and efficiency gain of the adaptive strategy compared to the fixed strategy (panel d) 

as functions of the mean climate change factors m1(δg) and m2(δg). Other model parameters 

as in the baseline scenario. 

 

 315 
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The cost-effective allocation of the period-2 budget (Fig. 2c) simply follows the ratio 

m2(δg)/m1(δg): the higher the climate change factor in a given region (relative to that in the 

other region) the higher the budget share that region should receive. 

Efficiency gain: The adaptive strategy is more cost-effective than the fixed strategy for all 

levels of m1(δg) and m2(δg), with a maximum efficiency gain of about five percent (Fig. 2d) 320 

for large m1(δg) ≈ m2(δg). The efficiency gain decreases with increasing dissimilarity between 

m1(δg) and m2(δg) and is (close to) zero if (at least) one of the two climate change factors, 

m1(δg) and m2(δg) is very small. The reason is that here it is obvious already in period 1 that 

the region i associated with the small mi(δg) should receive no share of the period-2 budget, 

so there is not much gain if that decision is postponed to period 2. 325 

The results for the other scenarios defined by Table 2 are shown in Appendix B. A summary 

is given in the following list, starting with more and ending with less intuitive ones. 

1. The budget should generally be allocated into the region which has the higher benefit 

and/or the lower cost (as, e.g., in the baseline scenario where the cost-effective budget 

share in period 1 declines with increasing mean climate change factors m1(δg) and 330 

m1(δg), and where the share of the period-2 budget in region 1 increases with 

increasing m1(δg)).    

2. Strongly increasing marginal costs and/or concave benefit functions favour a more 

even allocation of the budget over periods and/or among regions (as, e.g., in the cases 

of marginal cost slope e = 0.05 or benefit exponent z = 0.5 in which the period-1 335 

budget should be allocated evenly among the two regions. 

3. In the presence of convex benefit functions (e.g., z = 2), in contrast, the budget should 

be more concentrated in one period and one region. 

4. If substitutability between the benefits of time periods 1 and 2 is restricted (α = 0.5) 

the allocation of the budget between the two time periods should be more even.  340 

5. Higher uncertainty in the climate change factors increases the efficiency gains 

associated with the adaptive strategy. 

6. If climate change increases especially the benefit in the region with the higher cost 

and/or lower initial benefit the share of the budget allocated to period 2 should be 

reduced because the effectiveness of budgets spent in that period is reduced (as, e.g., 345 

in the case of an increased cost in region 1, γ1(1) = 1.5, but higher mean climate 
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change factor, m1(δg) > m2(δg); or in the case of a higher benefit factor, g1(1) = 1.5, 

and a lower mean climate change factor, m1(δg) < m2(δg)). 

7. Higher budgets imply higher marginal costs, implying that more even allocations over 

periods and/or among regions become cost-effective.  350 

8. A risk-averse decision maker (risk aversion s > 0) will spend more of the budget in 

period 1 to avoid the uncertainty in the outcomes obtained in period 2. 

9. The efficiency gain associated with the adaptive strategy increases with the sensitivity 

of the cost-effective allocation of the period-2 budget to the uncertain climate change 

factors, in particular the factors δ1
(g) and δ2

(g). In the following several cases are 355 

highlighted in which this sensitivity is particularly high or particularly low: 

a. If the mean climate change factor mi(δg) is higher in the region with the higher 

initial cost γi(1), a trade-off occurs in period 2 between minimising costs per 

conserved area and maximising benefits per conserved area, enhancing the 

sensitivity of the cost-effective allocation to climate change. 360 

b. If the mean climate change factor mi(δg) is higher in the region with the lower 

initial benefit gi(1)  it is not clear in period 1 whether it will be better to 

concentrate the period-2 budget in region i or not, enhancing the sensitivity of the 

cost-effective allocation to climate change. 

c. Concave benefit functions or strongly increasing marginal costs favour more even 365 

allocations, avoiding extreme allocations in which the period-2 budget is allocated 

only into one of the two regions. This reduces the sensitivity of the cost-effective 

allocation to the climate change factors. 

d. Convex benefit functions imply a concentration of the budget in one of the two 

regions. If the mean climate change factors have similar magnitudes it is difficult 370 

to predict in period 1 whether in period 2 region 1 or region 2 should be preferred, 

enhancing the sensitivity of the cost-effective allocation to climate change. 

e. A large positive spatial correlation between the climate change factors (in 

particular, a large rg) implies that although the climate change factors (δ1
(g) and 

δ2
(g)) are uncertain, they will be of similar magnitude in both regions, reducing the 375 

sensitivity of the cost-effective allocation to the climate change factors. 

 

3.2 Robustness analysis 
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As described in section 2.3, for each of the eleven climate expectations of Table 4 the cost-

effective fixed and adaptive strategies are determined for the baseline scenario (Tables 1, 3). 380 

The utility of these strategies then is evaluated for all eleven climate expectations of Table 4. 

The first row of Table 5, e.g., shows the results for the fixed strategy, termed F1, optimised 

for climate expectation 1. The first value in the row (84) is the utility obtained for climate 

expectation 1 for which the strategy F1 had been optimised for. The second value (63) is the 

utility obtained for the same strategy F1 under climate expectation 2. It is also the lowest 385 

utility obtained for strategy F1 under all climate expectations 1–11.  The highest utility (127) 

of strategy F1 is obtained under climate expectation 5.  

The robustness of strategy F1, i.e. its likelihood of not underperforming, is obviously 

positively related to the mean of the eleven utilities and negatively related to their standard 

deviation. The two quantities are aggregated in the second last value of the first row which 390 

gives the mean minus two standard deviations of the utilities in the first row. Since this 

robustness index implicitly assumes that all climate expectations are equally likely, another 

useful index of robustness is added in the last entry of the first row: the minimum over the 

eleven utilities (63). Across all scenarios and climate expectations (with scenario 1 shown in 

Tables 5 and 6 as an example), both robustness indices turn out to agree perfectly.  395 

The same analysis is carried out for the other ten fixed strategies F2–F11 and the eleven 

adaptive strategies A1–A11. Both robustness indices are maximal for strategies F2 and A2 

that were optimised for climate expectation 2 (which assumes declining benefits from time 

period 1 to time period 2) and thus prescribe an allocation of the entire budget into time 

period 1 (Fig. 2, origins of upper left panel).  400 

The result that F2 and A2 are most robust is obtained for the other eight scenarios of Table 3. 

Table 7 shows the minimum utilities (cf. last column of Tables 5 and 6) for all eleven fixed 

strategies, F1–F11 (for the adaptive strategies the results are almost identical) for the 

scenarios 1–9. The highest minimum utility (‘maximin’) is always obtained with strategy F2 

(grey-shaded cells in Table 7) that assumes a reduction of the benefit functions.  405 

One should, however, be aware that the exact shape of a strategy depends on the assumed 

scenario. A look into the figures of Appendix B reveals that strategy F2 always prescribes an 

prioritisation of the budget in time period 2, but the allocation of the period-1 budget over the 
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two regions depends, e.g., on the shapes of the cost and benefit functions in that time period 

(cf. Figs. B2–B6). 410 

Table 5: Utilities for the fixed allocation strategies F1–F11 optimised for the baseline scenario 

(Tables 1, 3) and for each climate expectation (rows) as a function of the ‘realised’ climate 

expectation (columns). Second last column: mean minus two standard deviations of the 

utilities in each row. Last column: Minimum of the utilities in each row.  

 1 2 3 4 5 6 7 8 9 10 11   

F1 84 63 94 96 127 84 83 84 84 84 84 59 63 

F2 73 73 73 73 73 73 73 73 73 73 73 73 73 

F3 67 37 126 37 126 67 66 67 67 66 66 17 37 

F4 67 39 39 126 125 68 67 68 67 67 67 18 39 

F5 75 37 92 95 150 75 73 75 75 74 74 30 37 

F6 84 63 96 94 127 84 83 84 84 84 84 59 63 

F7 84 63 94 96 127 84 83 84 84 84 84 58 63 

F8 84 63 94 96 127 84 83 84 84 84 84 59 63 

F9 84 64 95 95 126 84 83 84 84 84 84 59 64 

F10 84 62 95 95 129 84 83 84 84 84 84 58 62 

F11 84 62 95 95 129 84 83 84 84 84 84 58 62 

 415 

In most scenarios (columns in Table 7) there is considerable variation in the minimum utilities 

over the strategies,  indicating that the cost-effective strategy quite sensitively depends on the 

chosen climate expectation and fails under the alternative climate expectations. Exceptions 

are scenarios 4, 8 and 9 (grey-shaded cells in Table 7) which represent strongly increasing 

marginal costs (e = 0.05), restricted substitutability (α = 0.5) and risk aversion (s = 2), 420 

respectively. In the first two scenarios, 4 and 8, an even allocation of the budget over both 

time periods is cost-effective, regardless of the assumed climate expectation (cf. Figs. B3 and 

B14), so that all strategies F1– F11 are almost identical and thus perform very similarly for a 

given climate expectation. A similar situation is observed in scenario 9, except that here it is 

cost-effective, throughout all climate expectations, to spend most of the budget in time period 425 

1 (cf. Fig. B15). 
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Table 6: Utilities for the adaptive allocation strategies A1–A11 optimised under the baseline 

scenario (analogous to Table 5).  

 1 2 3 4 5 6 7 8 9 10 11   

A1 88 63 118 118 137 85 86 88 85 87 86 55 63 

A2 77 73 82 82 85 77 76 77 77 77 77 72 73 

A3 81 43 126 126 156 78 79 81 78 80 80 32 43 

A4 82 46 126 126 155 79 81 82 79 82 81 35 46 

A5 79 39 125 125 158 76 77 79 75 78 78 27 39 

A6 88 65 116 116 134 85 86 88 85 87 86 57 65 

A7 88 63 118 118 137 85 86 88 85 87 86 55 63 

A8 88 64 117 117 135 85 86 88 85 87 86 56 64 

A9 88 65 115 115 132 85 86 87 85 87 86 58 65 

A10 88 64 117 117 135 85 86 88 85 87 86 56 64 

A11 88 64 117 117 135 85 86 88 85 87 86 56 64 

 430 

 

Table 7: Minimum utilities (taken over all climate expectations: cf. Table 5) of the 11 fixed 

strategies F1–F11. Each column gives the results for one of the nine scenarios defined in 

Table 3.  

 1 2 3 4 5 6 7 8 9 

F1 63 82 53 55 14 1987 186 122 73 

F2 73 96 59 65 14 3820 204 124 73 

F3 37 60 39 34 13 1988 144 112 73 

F4 39 51 38 35 13 1989 144 110 73 

F5 37 49 34 34 12 1986 136 116 48 

F6 63 84 53 55 14 1987 186 122 73 

F7 63 85 52 57 14 1988 188 122 73 

F8 63 83 52 56 14 1986 186 123 67 

F9 64 84 53 56 14 1987 186 122 73 

F10 62 83 53 55 14 1983 188 122 73 
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F11 62 83 53 56 14 1986 186 122 73 

 435 

4 Discussion 

A stylised model is analysed in which a decision maker can allocate a budget over two time 

periods and two regions and where the costs and benefits of conservation differ between the 

regions and change over time in an uncertainty manner. The model is analysed in two steps. 

First, the cost-effective allocation of the conservation budget is determined as a function of 440 

various model parameters, assuming that the allocation if the period-2 budget must be decided 

upon already in the first time period (‘fixed strategy’) or can be postponed to the second time 

period when the current cost and benefit functions are known (‘adaptive strategy’).  

Some of the model parameters describe characteristics that are, in the present setting, assumed 

to be time-invariant, such as the slope of the marginal costs and the convexity or concavity of 445 

the ecological benefit functions. A second set of model parameters describes the uncertain 

effects of climate change on the cost and benefit functions, such as the mean factors by which 

the ecological benefit functions multiply from the first to the second time period. 

While in the first step of the analysis these climate change parameters are assumed to be 

known, in the second step it is explored how a strategy performs if it was designed cost-450 

effectively under the assumption of a particular combination of climate change parameters 

(‘climate expectations’) but it turns out that the climate change had been better characterised 

by a different climate expectation. Particular focus here is on the identification of robust 

strategies that perform ‘reasonably well’ under a wide range of climate expectations.     

The first analysis reveals some general conclusions, such that the cost-effective budget share 455 

falling into period 1 and the cost-effective allocation of that period-1 budget over the two 

regions is very similar between the fixed and the adaptive strategies. Further, the cost-

effective allocation is strongly influenced by the slope of the marginal costs and the convexity 

or concavity of the ecological benefit functions, such that strongly increasing marginal costs 

and/or concave benefit functions favour an even allocation of the budget over time and 460 

regions.  

Another important issue in this context is the way by which the ecological benefits of the two 

time periods are aggregated. In the present analysis I distinguished between perfect 



20 

substitution where a low benefit in one time period can be fully compensated for by an 

accordingly high benefit in the other; and restricted substitution where a low low benefit in 465 

one time period can only partly be compensated for by a high benefit in the other time period. 

In the latter model, the cost-effective allocation of the budget turns out to be more even over 

the two time periods. 

A converse effect is observed if the decision maker is assumed to be risk-averse, penalising 

high variation in the period-2 benefits due to climatic uncertainty. To reduce that uncertainty, 470 

a risk-averse decision maker will spend more of the budget in period 1 where the ecological 

benefits from conservation are certain. Here a trade-off exists between generating acceptably 

high benefits in both time periods and minimising the risk of a low total benefit. 

A typical question raised in the present type of dynamic optimisation problem is under which 

circumstances the adaptive strategy most strongly outperforms the fixed strategy. Relating 475 

statements 5 and 9e from the list in section 3.1 points to an interesting and probably general 

conclusion. Although uncertainty generally increases the advantage of adaptive strategies over 

fixed strategies, only that component of the uncertainty counts which determines the relative 

favourabilities of the decisions to be made. While a high spatial correlation in the climate 

change factors does increase the uncertainty in the total benefit that can be attained in period 480 

2, it reduces the uncertainty in the relative magnitudes of the climate change factors (in 

particular the uncertainty in the ratio δ1
(g)/δ2

(g)) – and thus reduces the advantage of adaptive 

strategies. 

Summarising the results of  the second analysis, the most robust strategy – regardless of 

whether fixed or adaptive – is the strategy that expects a decline in the ecological benefits 485 

over time and concentrates that budget in the first time period. This is even for moderate 

restriction of substitutability (scenario 8 in Table 7). However, in that scenario the strategies 

F1 and F6–F11 (cost-effective for climate expectations 1 and 6–11) that favour an even 

allocation of the budget show almost the same level of robustness. For a tighter restriction of 

substitutability (larger α in eq. (6)) the even allocation would eventually become most robust.   490 

The model analysis is based on a number of assumptions. One assumption is that the overall 

budget, available for both time periods and regions, is fixed, so that the portion of the budget 

not spent in the first period is completely available with certainty in the second period. Given 

that the second period may be decades after the first, this assumption appears to be quite 
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strong, if not unrealistic. Therefore the model results should not be interpreted in a literal 495 

manner but more general in the sense that  they tell under which circumstances conservation 

action should be favoured in the present and when it may be sensible to postpone some 

decisions or conservation actions into the future while using present scarce funds for saving, 

investments or other political goals. While a conservation organisation or agency may not be 

equipped with such a high level freedom and certainty about future funding, a society as a 500 

whole is able to implement such policies. An example for this is the Norwegian Government 

Pension Fund that invests present revenues from the country’s oil and gas resources to ensure 

society’s long term wealth (https://www.nbim.no/).       

Another important assumption is the neglection of spatial and temporal interactions. Under 

spatial interactions the ecological benefit in region 1 could affect the ecological benefit in 505 

region 2 and vice versa. Such interactions have been considered, e.g., by Wu and Boggess 

(1999) and Wätzold and Drechsler (2005). A biological motivation of spatial interactions is 

the ecological metapopulation concept (Hanski 1999) which considers that local populations 

on individual habitat patches interact through the dispersal of individuals, so habitat patches 

that have become empty due to the extinction of the local population can be colonised by 510 

other local populations. The two studies of Wu and Boggess (1999) and Wätzold and 

Drechsler (2005) indicate that spatial interactions call for a more even allocation of 

conservation budgets, as it has been obtained in the present study for the cases of concave 

benefit functions (z = 0.5) and increasing marginal costs (e = 0.05).  

Temporal interactions include, e.g., the influence of the ecological benefit in period 1 on the 515 

ecological benefit in period 2. Managing a species population in a good state in period 1 

(measured by a high ecological benefit in that period) increases the likelihood of that species 

being in a good state in period 2. Conversely, if no area is conserved in period 1 so the species 

goes extinct before period 2, it will not recover by any conservation effort in period 2 (unless 

individuals from other local populations immigrate) and the ecological benefit in period 2 will 520 

always be zero. This is an example of path dependence (Liebowitz and Margolis 1995, 

Drechsler and Wätzold 2020) where an action in the past affects the present set of possible 

actions and the effects of these actions. In this manner, the decision in the first period is to 

some extent irreversible. Irreversibility is a major problem in dynamic decision making (e.g., 

Arrow and Fisher (1974), Albers (1996), Lewis and Polasky (2018)). Preliminary analyses of 525 

a variant of the present model that includes the described path dependence led to expected 
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results: that the cost-effective budget share in period 1 increased compared to the case without 

temporal interaction because higher period-1 benefits allowed for higher period-2 benefits, 

while the share in period 2 decreased because the period-2 benefits had no influence on the 

period-1 benefits. 530 

In that manner, the consideration of path dependence would even strengthen the above-

mentioned result that the most robust strategy is to concentrate the budget in the first time 

period. This would, however, imply that high benefits are obtained only in the first period 

while benefits in the second time period are small or even zero (an allocation that is even 

more favoured under risk aversion, as argued above). A more constant temporal flow of 535 

ecological benefits is obtained if substitution between the benefits of the two time periods is 

restricted and a more even temporal allocation of the budget is cost-effective. Altogether, the 

two arguments of path dependence and a constant flow of benefits seem to have opposite 

implications, which calls for future research on this issue. 

Future research might further consider models with three or more regions that interact through 540 

dispersal of individuals, and include temporal interactions, e.g., through the explicit 

consideration of species population dynamics. This would also move the rather abstract 

present analysis closer to real-world application. 
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