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Abstract 

Aims: In this study, we attempted to discriminate between MR1 binders and non-binders using 

machine learning (ML) approach and emphasized the important descriptors.  Background: The major 

histocompatibility complex (MHC) class I-related molecule, MR1, is a component of the Immune system 

and interacts with T cell receptor (TCR) to modulate the immune response against various antigens. MR1 

has raised many interests in recent years due to the potential of presenting a broader range of small 

molecules. MR1 has a small ligand-binding pocket interacting with agonistic or antagonistic ligands to 

stimulate or inhibit the immune response, respectively. Objective: There are limited studies on designing 

small molecules for the MR1 binding site, and the available raw data for MR1 binders is insufficient to 

exploit them for prioritizing chemicals.  Therefore, the objective of this study was to provide validated and 

precise outcomes to expand the knowledge of critical structural features of MR1 binders. Method: We 

developed QSAR classifier models using Decision Tree (DT), Artificial Neural Network (ANN), Random 

Forest (RF), Extra Tree (ET), Linear Support Vector Machine (LSVM), Logistic Regression (LR), Naïve 

Bayesian classification (NB), and K-nearest-neighbors (KN). Result: The total accuracies for the best 

Machine Learning (ML) models were over 85%. The developed Decision Tree (DT) using suggested 

descriptors (fr_C_O_noCOO,  fr_phenol,  PEOE_VSA2) was able to classify the binders and non-binders 

with the accuracy of 85% for the train set and 100% for the test set. However, the 100% accuracy might 

be achieved by chance (due to simple random split of train/test set).  DT models are easily interpretable. 

Therefore, a set of simple association rules was provided based on the provided DT model. Moreover, a 

LR equation was provided. Conclusion: The developed DT and LR models and rules could be used directly 

for ligand optimization, virtual screening, or re-scoring structure-based virtual screening results after 

consideration of the domain applicability. In general, the most important descriptors were found to be 



fr_C_O_noCOO, fr_phenol, PEOE_VSA2 and to lesser extents, NumHDonors and VSA_Estate8 that were 

consistent with available crystallographic structures. 

Keywords Classification; Decision Tree; Machine learning; Neural Network, MR1; QSAR 

Introduction 

MR1  is a receptor on the antigen processing cells. Mucosal-associated invariant T (MAIT) cells are 

an abundant population of innate-like T cells in humans that are activated by an antigen(s) bound to the 

MHC class I-like molecule MR1. It presents fragments of an antigen to the T cell receptors to activate MAIT 

cells immune response against a specific antigen [1].  MR1 is ideally suited to bind ligands originating from 

vitamin B metabolites. The well-known agonists that bind and interact with MR1 and TCR are riboflavin 

(vitamin B2) metabolites. 

On the other hand, the folic acid (vitamin B9) metabolites are considered non-stimulatory to MAIT 

cells after interacting with MR1 binding pocket [2-5].  A recent study [6] demonstrated that despite the 

smallness of the MR1 ligand-binding pocket it could bind a variety of small molecules with either inhibitory 

or excitatory effects. That study paved the way for finding new potential therapeutic compounds that 

could interact with MR1.  

The Quantitative Structure-Activity Relationship (QSAR) is a regression or classification method to 

predict the activity or class of new compounds and explores the possible mechanism of the interactions 

of ligands with the targets. It is routinely applied alongside experimental and other computational 

methods in drug development procedure [7-9]. QSAR modeling by Machine Learning (ML) methods has 

been helping the researchers to explore new possibilities. The various ML methods have been 

implemented in python to solve regression, clustering, classification and optimization problems [10]. ML 

methods are a collection of mathematical algorithms that aim to build predictive models in either a 



supervised or a non-supervised manner. The supervised algorithms for classification include Neural 

Network, Decision Tree, etc. [11]  

There are some standard metrics that if are applied wisely they will guide us to find a robust 

predictive model. This study compares different classification ML models alongside different metrics to 

ensure the validity of the proposed final models.  In this study, we developed QSAR classifier models using 

Decision Tree (DT), Artificial Neural Network (ANN), Random Forest (RF), Extra Tree (ET), Linear Support 

Vector Machine (LSVM), Logistic Regression (LR), Naïve Bayesian classification (NB), and K-nearest-

neighbors (KN). The ML methods are different in terms of performance and interpretability. DT is the most 

interpretable and transparent method among them, but it is prone to over-fitting. Therefore, variable 

selection is strongly suggested beforehand. That is also true in the case of LR, and variable selection is 

required before modeling. ANN, RF, ET, and SVM perform well on complex data. However, the developed 

model using these methods are less interpretable [12-14].  

In addition, the quality of the data set has a direct and substantial impact on the developed QSAR 

model [15]. The availability of non-binders alongside the binders is beneficial. If a data set consists of a 

decoy set rather than a non-binder set, it will contain imprecise data, and the resulting model probably 

will be less robust.  Decoy set is a library of often randomly selected molecules assumed to be inactive. 

Therefore, the decoy set may contain some unknown binders.  

In this study, we attempted to discriminate between MR1 binders and non-binders using ML 

approach and emphasize the important descriptors.  The workflow of the study is shown in Figure 1. To 

process the chemical data and applying ML methods, RDKit[16] and Scikit-learn[10] python libraries were 

employed, respectively.  

Methods 



Data set  

A data set containing known binders and non-binders of MR1 was retrieved from recent studies 

[6, 17].  In a recent study [6], a set of non-binders has been provided alongside the new set of binders that 

is very helpful to construct a data set without the inclusion of compounds with unknown activity 

(Supplementary Material). Some other binders have been retrieved from other studies [2, 17]. Therefore, 

the data set containing all compounds (experimentally determined as binders = 30 or non-binders = 60) 

was constructed in SDF format with rationalized 3D structures. Most of the 3D structures were retrieved 

from PubChem database, and they have CID code within their names (Supplementary Material).  For the 

other compounds, minimization was carried out using MMFF99 force field in Chem3D (PerkinElmer 

Informatics).  Python implementation of the RDKit[16] package was used to calculate molecular 

descriptors. Gasteiger Partial charges have been computed using RDKit package. A set of 196 descriptors 

including 2D, 3D, and fragmental ones were calculated for each compound (Supplementary Material). The 

prepared descriptor table was used to build a series of statistically valid classifiers. 

 Machine learning algorithms 

 Pre-processing was performed to omit descriptors that all of the values were zero. Highly 

correlated descriptors were also omitted with a threshold of 0.9 (correlation coefficient). The descriptor 

scaling was carried out prior to modeling, except in the case of the Decision Tree (DT) modeling. A method 

called standardization was used to scale each of the individual descriptors. Standardization scales and 

centers in a parallel way. 

To provide models that could classify the data set, a variety of ML methods have been employed. 

Because of the importance of model interpretability, it was attempted to employ the algorithms for which 

Scikit-learn has provided the feature importance extraction function. In the case of ANN, the employed 



model had one hidden layer that makes it possible to extract feature importance by simple calculations 

[18-19]. In all modeling attempts 20% of the data set (n=18) was dedicated to the test set. The data was 

apportioned by train/test split function of Scikit-learn, and that was randomized.  Besides, the different 

parameters for each method were explored (by grid search) to find the best hyperparameters for an 

individual model. The following classification methods were applied to the data set:  

Support vector machine with linear kernel (LSVM) [12, 20]: SVM is a state-of-the-art statistical 

learning and a maximum margin classifier to perform classification, regression and outlier detection. It 

performs well even with a large-dimensional feature vector. We used a linear kernel in our study, and the 

penalty parameter of the error term was set to 1.0. In our study, The LSVM was applied to the range of 

descriptor sets with 5 to 100 descriptors. LSVM was the right choice for that purpose because it is a linear 

model with a low number of parameters to be optimized. The best results were obtained with 13 

descriptors. “f_classif” function of Scikit-learn that computes ANOVA F-values for the descriptors was 

employed as the feature selection method. 

Decision tree (DT) [12, 20]: DTs are tree-like graphs that suggest some rules, which are usually learned 

by splitting the set of training data into subsets based on the values for all variables. The top node presents 

the essential features. DTs are widely used as a predictive model or decision support tool because they 

are easily interpreted . Among the eight selected methods, DT was not able to develop a reliable model by 

13 descriptors. The maximum depth was selected as a range of 2 to 10 for each set of descriptors.  The 

best train and CV accuracy were achieved by 3 descriptors and a maximum depth of 3. 

Artificial Neural Network (ANN) [13, 21]: ANN is originally based on the structure and the function of 

the network of neurons. ANN is a well established ML algorithm for developing QSAR models. The ANN 

used here was a Multi-Layer Perceptron (MLP) and trained with backpropagation. MLP consists of layers 

of neurons that each node in one layer connects with a certain weight to every node in the following layer. 



MLP at least consists of three layers, input, hidden, and output layers. The hidden layer might be more 

than one. The L2 penalty parameter, number of hidden layers, and number of units in the hidden layer 

were set to 0.0001, 1, and 10, respectively. The activation function was set as the rectified linear unit 

function. Adam was used as the weight optimizer, and it is a stochastic gradient-based optimizer [22].  

Random forest (RF) [13, 21]: RF consists of an ensemble of several weighted DTs. Therefore, it is not 

readily interpretable, and each DT generated using a different selected subset of the descriptors. If enough 

data points are available, it will perform well with high-dimensional data. RF is developed to improve the 

predictive power of the DT for high dimensional problems. To have better control of the level of fitting, 

the number of trees in the RF model was limited.  The number of trees in the forest was set to 10 after a 

grid search. 

Extra Trees (ET) [12, 23]: It is another algorithm based on the average of the randomized DTs, but the 

randomness is higher than the one in RF. For example, the ET algorithm splits nodes using entirely random 

cut points and grows the trees using the entire sample. Similar to the RF, the number of trees in the forest 

was set to 10.  

Logistic regression (LR) [12, 23]: LR is a transformation of multiple linear regression to model the 

probabilities for classification problems with two possible outcomes. It uses the same formula as the 

logistic regression. However, instead of continuous output it deals with a two states output, 1 or 0. It can 

give the probability of each sample to either be in class 1 or 0 (here, binder, or non-binder). The LR function 

returns the probability of success (here to be binder). It is given by p(x) = 1/(1 + exp(-(B0 + B1X1 + ... BnXn)). 

B0 is the intercept. B1 through Bn are the coefficients. X1 through Xn are the features.  

Naïve Bayesian (NB): Gaussian naïve Bayes classification is a probabilistic supervised method that 

could classify the different classes based on Bayes’ theorem.  As implemented here, it does not have 

critical parameters to be tuned.  



K-nearest-neighbors: K-nearest-neighbors (KN) classification is one of the most basic classification 

algorithms in ML. KN depends on a Euclidean distance metric between data points in order to predict 

the class labels. The K is a hyperparameter defined as the number of the nearest neighbors. It was 

selected from the set: 1, 3, 5 (default), 10, 30. Best CV results were obtained with K = 3.  

The Scikit-learn package has a function that extracts feature importance of some models, including 

LSVM, RF, LR, and DT. For the ANN, we used a method called connection weights [18-19]. In this method, 

the product of input-hidden and hidden-output connection weights was calculated. In general, the 

absolute value of the provided importance value shows the extent of their effects on the predicted result, 

whereas the sign of the values shows how a descriptor affects the compounds to be in either of the classes, 

binders, or non-binders.  

 Model assessments 

The results of a classification job can be classified into four categories: 

True positive (TP): The active (here is binder) compounds, which have been predicted as active. 

True negative (TN): The inactive (here is non-binder) compounds which have been predicted as inactive. 

False positive (FP):  The inactive compounds which have been predicted as active. 

False negative (FN): The active compounds which have been predicted as inactive. 

Based on these classes, the following metrics were used to select the best models. Each metric can be 

calculated for the train, cross-validation, test or total set: 

   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃+𝑇𝑁𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) =  𝑇𝑃𝑇𝑃 + 𝐹𝑁 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑁𝑇𝑁 + 𝐹𝑃 



𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃𝑇𝑃 + 𝐹𝑃  
𝑀𝐶𝐶 = (𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)√(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁)  ×   (𝑇𝑁 + 𝐹𝑃)  ×  (𝑇𝑁 + 𝐹𝑁) 

  All the metrics are between 0 (the worst prediction) and 1 (the best prediction) except Matthews 

Correlation Coefficient (MCC). The MCC is regarded as a balanced measure, which can be employed even 

if the classes are of diverse sizes. The MCC is merely a correlation coefficient between the observed and 

predicted binary classifications, and it returns a value between −1 and +1. A coefficient of +1 signifies a 

perfect prediction, 0 an average random prediction, and −1 an inverse prediction [24].  

 All the metrics were calculated for the train, cross validation and test sets and according to the QSAR 

guideline of OECD (Organization for Economic Cooperation and Development) they demonstrates 

goodness-of-fit, robustness and predictivity of a model, respectively. The test set is only used once the 

model is developed. Therefore, the test set data are considered as unseen to the developed model. 

Another method to assess the predictive ability of the model is cross validation. During cross-validation, 

each time a part of the train set was removed from the input data and then used for the model evaluation. 

Leave one out (LOO), and random sampling (validation set = 20%) with 2000 repetitions were employed 

as cross-validation (CV) methods. This method is also called Monte Carlo cross-validation. The purpose of 

CV is to detect a possible over-fitted model with high internal accuracy whereas low external prediction 

power. LOO is performed by repeatedly removing one data point at a time form the train set whereas, in 

random sampling, a group of data points (here, 20%) were removed each time. The modeling process is 

shown in Figure 2.  

 Results and discussion 

 Model development and validation 



In this study, we have introduced ML models discriminating between MR1 binders and non-binders 

with good internal and external accuracy, sensitivity, specificity, and precision. DT has an interpretable 

and straightforward output that makes it favorable for classification QSAR tasks. The DT and LR models 

presented here had both robust internal and external predictive power. The ANN, RF, and ET usually 

require higher observation to descriptors ratio to demonstrate its modeling potentials. Therefore, those 

complex methods were not good choices for the data set. Moreover, the equation of the LR model is 

provided and explained. 

 Table 1 demonstrates the statistical parameters for the best models achieved by several ML 

algorithms. The models were selected based on both train set accuracy and Cross-validated (CV) accuracy.  

The model building without feature selection resulted in the over-fitted models with low CV and external 

set accuracy. The graph of DT is shown in Figure 3, and the extracted rules are shown in the Supplementary 

Material.  It should be noted that the 100% accuracy for DT test might be achieved by chance (due to 

simple random split of train/test set). The ANN and RF models seem to suffer from the over-fitting 

problem. In the next section, it has been shown that the critical descriptors suggested by these two 

methods were slightly different from the other methods. The individual prediction for each compound is 

shown in Supplementary Material.  

 The significant difference between train set accuracy and LOO CV accuracy (> 0.25-0.30) could be a 

sign of an over-fitting problem, and it is the case for the ANN and RF models in our study (Figure 4). The 

over-fitting issue could be responsible for the different sets of descriptors proposed by these models. 

 There is a reverse correlation between the accuracy of external prediction (test set) for the models 

and the difference between train set accuracy and LOO CV (Leave One Out Cross-validated) accuracy 

(Figure 4, Pearson’s correlation coefficient = -0.64).  It emphasizes the reliability of CV accuracy in the 



selection of the most predictive models.  The negative correlation was because of the over-fitting issue of 

the models with a great difference between the train and LOO CV accuracy. In those cases despite an 

increase in internal accuracy, external predictive power decreased.   

 Descriptor  Importance 

One of the flaws in QSAR studies, especially with a high ratio of descriptors to compounds (high 

dimensional data) is the chance correlation. Using different algorithms with a consistent set of proposed 

important descriptors could decrease the occurrence of chance correlation in the models. In addition, to 

understand which characteristics make a compound an MR1 binder we attempted to analyze the 

importance of the descriptors involved the best models.  

Table 2 shows the most important descriptors proposed by each model for classification of the set. 

They have grouped based on either increasing or decreasing the effect on the probability of MR1 binding 

capability, generally. The consistent descriptors are shown in bold faces. Among the most significant 

descriptors fr_C_O_noCOO,  fr_phenol, PEOE_VSA2, NumHDonors, and VSA_Estate8 were shared 

among the various models.  fr_C_O_noCOO and fr_phenol indicate the number of carbonyls (except 

carboxyl) and phenol groups, respectively. , NumHDonors is equal to the number of hydrogen bond donor 

groups in the molecule.   The van der Waals surface area (VSA) is a volume surface area that can be 

calculated either for the whole molecule or for parts of the molecule with specified attributes. PEOE_VSA2 

corresponds to the partition of the molecular surface area conditioned by the partial charges between -

0.25 and -0.30, whereas and VSA_Estate8 corresponds to the electrotopological state (Estate) indices 

values between 6.45 and 7.0.  

The calculated LR equation shows a general trend of the effect of descriptors on the probability of a 

compound to be active p (x):  



 p (x) = 1/ (1+ exp ( 0.92 - 0.74 (fr_phenol) - 0.63 (fr_C_O) – 0.59 (fr_C_O_noCOO) – 0.56 (PEOE_VSA2) 

– 0.52 (NumHDonors) – 0.28 (PEOE_VSA11) – 0.22 (EState_VSA7) – 0.06 (SMR_VSA1) – 0.05 

(EState_VSA10) + 0.34 (PEOE_VSA3) + 0.43 (VSA_EState9) + 0.48 (PEOE_VSA7) + 0.75 (VSA_EState8) ) ) 

For details on the equation, see the Supplementary Materials. 

The average values and distribution of the crucial descriptors for both groups are shown in Figure 5. 

Figure 5 demonstrates that the most of the suggested descriptors by the ML algorithms were differently 

distributed between Binders and non-binders. For example, number of carbonyl fragments are generally 

higher in the binders group than non-binders group. Similarly, in the case of PEOE_VSA2 the difference 

between two groups is obvious. A 3D scatter plot for three important descriptors that were used by DT is 

shown in Figure 6. It represents the value of fr_phenol, fr_C_O_noCOO and PEOE_VSA2 for the data set. 

It has decreased the variable space to three descriptors. In addition, the value of fr_phenol and 

fr_C_O_noCOO descriptors are discrete. Therefore, the data points are overlapping. This may cause loose 

of some information. However, the limitation of the variable space could be an effective way to achieve 

a  generalized model with a simple algorithms like DT. Locally, their impact also depends on the values of 

other descriptors; however, the extracted feature importance shows a general trend of a descriptor on 

the probability of being either MR1 binder or non-binder across the entire train set. 

 Analysis of the interactions of MR1 ligands with MR1 active site 

 The available MR1 X-ray structures with a unique co-crystallized ligand are listed in Table 3. Some of 

the corresponding interactions are shown. As it is shown, most of the compounds make a covalent bond 

with the Lys43 residue of the MR1 binding site. The Schiff base formation after reaction between the 

ligand carbonyl group and the amino group of the Lys43 is shown in Figure 7. The carbonyl group of the 

OP-RU, OP-RE, RL-6-Me-7-OH, and Ac-6-FP ligands makes hydrogen bond as a hydrogen bond acceptor 



with the amino group of the Arg9 and Arg94 residues of the MR1 active site. π- π interactions are seen in 

the interactions list for all ligands. This finding was consistent with one of the important descriptors, 

fr_phenol, which was suggested by the developed ML models and this is discussed in the next section.  

The experimental binding pose of MR1 inhibitors showed that most of them make a covalent bond 

with Lys43 [25]. On the other hand, it was found that the fr_C_O_noCOO descriptor had a significant effect 

on several ML classifiers performance. The number of the carbonyl group could be attributed to the 

possibility of Schiff base formation with the amino group of Lys43. Moreover, carbonyl acted as a 

hydrogen bond acceptor for the amino group of the Arg9 and Arg94.  

The number of phenyl fragments could be attributed to the ability of a ligand to make π- π interaction 

with Tyr7, Tyr62 or Tyr169 of the active site [2, 6]. In addition, in some cases, the phenolic hydroxyl group 

made hydrogen bonds with His58 (Table 3).  

The importance of NumHDonors descriptor could be explained by the fact that most of the MR1 co-

crystallized ligands made several hydrogen bonds as hydrogen-bond donors with MR1 active site residues 

[2, 6].  

VSA_Estate and to a lesser extent, PEO_VSA descriptor families are considered hard to interpret. 

Generally, they are correspondent to the charge and electron distribution and topological state of the 

molecule.   

 Conclusion 

The MR1 has been suggested as a therapeutic target, especially since the analyses of the ligand 

interactions indicated the ability of MR1 binding pocket to bind a variety of small molecules in addition to 

the processed antigens like vitamin B2 metabolites [6]. Our study was conducted to pave the path to find 



new small ligands as lead structures for future drug development. We plan to use the developed DT and 

LR models and extracted rules for rescoring of structure-based virtual screening results on MR1 for 

possible enrichment of the true binders. To accomplish that, one should keep in mind the importance of 

the applicability domain. A QSAR model could be trustfully applicable only if the tested compound falls 

within the applicability domain of it.  

Availability of Data and Materials 

The data that supports the findings of this study are available in the Supplementary Material of 

this article. 

Supplementary Material: An excel file includes descriptor table, the 2D images of the entire 

dataset, name of the descriptors, descriptor importance suggested by the models, details of the LR model, 

and model performance metrics are provided as Supplementary Material.  
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Table 1. The accuracy of the best models.   

*The confusion matrixes are presented as [𝑇𝑃 𝐹𝑁𝐹𝑃 𝑇𝑁]  

**Acc.: Accuracy, Spec.: Specificity, Prec.: Precision, CV: Cross-validation with 2000 times Resampling. 

^ The 100% accuracy might be achieved by chance (due to simple random split of train/test set) 

Algorithm Confusion 

matrix 

(train)* 

Confusion 

matrix 

(test)* 

Acc.** Spec.** 

(Total) 

Sens.** 

(Total) 

Prec. 

**(Total) 

MCC 

(Total) 
LOO CV** Train Test train 

- CV 

Total 

DT [17 47 44] [6 00 12] 
0.85 0.83 0.85 1.00^ 0.00 0.88 0.93 0.77 0.85 0.72 

ANN [24 00 48] [5 31 9] 
0.63 0.68 1.00 0.78 0.32 0.96 0.95 0.97 0.91 0.90 

RF [23 01 48] [5 11 11] 
0.68 0.69  0.99 0.89 0.25 0.97 0.98 0.93 0.97 0.92 

ET [24 00 48] [5 11 11] 
0.75 0.71 1.00 0.89 0.27 0.98 0.98 0.97 0.97 0.95 

LSVM [16 38 45] [6 20 10] 
0.71 0.71 0.85 0.89 0.14 0.86 0.92 0.73 0.81 0.67 

LR [16 38 45] [6 10 11] 
0.80 0.75 0.84 0.94 0.04 0.86 0.93 0.73 0.85 0.69 

NB [14 610 42] [5 11 11] 
0.74 0.72 0.78 0.89 0.04 0.80 0.82 0.73 0.63 0.54 

KN (K=3) [17 37 45] [3 13 11] 
0.72 0.69 0.86 0.78 0.14 0.84 0.85 0.83 0.67 0.64 

 

 



 

Table 2. Important descriptors suggested by the ML models after feature selection.  

*>= 3 occurrence at the top of the descriptor list within the 6 models 

Algorithm Important descriptors with the positive 

effect on binding 

Important descriptors with the negative effect on 

binding 

Consistent * fr_C_O_noCOO,  fr_phenol,  

PEOE_VSA2, NumHDonors 

VSA_Estate8 

DT fr_C_O_noCOO,  fr_phenol,  

PEOE_VSA2 

 

ANN PEOE_VSA2, NumHDonors VSA_EState8, PEOE_VSA3, SMR_VSA1 

RF PEOE_VSA11 VSA_EState9  VSA_EState8 PEOE_VSA7 

ET fr_C_O_noCOO fr_phenol PEOE_VSA7 

LSVM fr_phenol, PEOE_VSA2, fr_C_O_noCOO, 

NumHDonors, fr_C_O 

EState_VSA10, VSA_EState8, VSA_Estate9, 

VSA_Estate7 

LR fr_phenol, fr_C_O_noCOO, PEOE_VSA2, 

NumHDonors 

VSA_EState8 

 

 

 

 



Table 3. The summary of the interactions between MR1 binders with available co-crystallized X-ray 

structures. Only interactions that could be related to the critical descriptors suggested by the ML models 

have been mentioned. The interactions were identified by PoseView.  

* Hydrogen Bond Donor 

PDB ID Ligand hydrogen 

bond with  a 

ligand 

carbonyl  

A covalent 

bond with 

Lys43  

π- π 

interaction  

Number of 

HBDs* 

Phenolic 

hydroxyl group  

(HBD) 

4nqc 5-OP-RU With  Arg9 Yes TYR7 3 - 

4nqe 5-OE-RU With  Arg9 Yes TYR7 1 - 

4l4v RL-6-Me-7-

OH 

With  Arg9 No TYR7 1 - 

5u1r Diclofenac - No TYR7, TYR62 2 - 

5u72 5OH-

Diclofenac 

- No TYR7, TYR62, 

TRP164 

1 With a TCR 

residue 

4gup 6FP - Yes TYR7 1 - 

4pj5 Ac-6-FP With  Arg9 

and Arg94 

Yes TYR7 0 - 

5u17 DA-6-FP - Yes TYR7 0 - 



5u16 2-OH-1-NA - Yes TYR7, TYR62 1 With His58 

5u2v HMB - Yes TYR7, TYR62 1 With His58 

5u6q 3-F-SA - Yes TYR7 0 No 

 

 

 

 

 



 

 

Figure 1. The workflow of the study. 

 

 

 

 



 

Figure 2. The modeling process. During the search for the optimum hyperparameters and number of 

descriptors, several models were developed, and the best one for each algorithm was chosen based on 

the train and CV results. Then, the best models were applied to the test set to assess the prediction power 

and validity.   



 

Figure 3. Training of the DT model with three variables and a maximum depth of 3. In each represented 

rectangle (node), the first row indicates the decision rule. The second one is Gini. Gini is a measure of 

impurity of a node. The third row shows the number of sample in the node. The fourth row demonstrates 

the number of compounds. The fifth row indicates the class that majority of the compounds in the node 

belong to it.  



 

Figure 4. Negative correlation between test set prediction accuracy and the difference between accuracy 

of the train set prediction and the accuracy of cross-validation (Pearson's correlation coefficient =-0.64). 

 



 

Figure 5. The average value and distribution of the most discriminative descriptors for the binder or non-

binder group.  

 



 

Figure 6. A 3D scatter plot of the three critical descriptors employed by the DT. Binders and non-binders 

(including train and test set) are shown in red circles and blue triangles, respectively.  



 

Figure 7. a: The 2D interaction diagram between 5-OP-RU and MR1 (PDB ID: 4nqc). The Schiff base 

formation after reaction between the ligand carbonyl group and the amino group of the Lys43, which is 

shown by a red rectangle. The π- π interactions are shown by a green dashed line between rings. A black 

dashed line shows hydrogen bond. The image was created using PoseView [26] and then edited manually.  



b: The 3D interaction diagram between 5-OP-RU and MR1 (PDB ID: 4nqc). The Schiff base formation after 

reaction between the ligand carbonyl group and the amino group of the Lys43, which is shown by a red 

rectangle. The image was created using Chimera. 

 


