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Abstract 16 

The pollution of aquatic ecosystems with complex and largely unknown mixtures of organic 17 

micropollutants is not sufficiently addressed with current monitoring strategies based on target 18 

screening methods. In this study, we implemented an open-source workflow based on non-19 

target screening to unravel longitudinal pollution patterns of organic micropollutants along a 20 

river course. The 47 km long Holtemme River, a tributary of the Bode River (both Saxony-21 

Anhalt, Germany), was used as a case study. Sixteen grab samples were taken along the river 22 

and analyzed by liquid chromatography coupled to high-resolution mass spectrometry. We 23 

applied a cluster analysis specifically designed for longitudinal data sets to identify spatial 24 

pollutant patterns and prioritize peaks for compound identification. Three main pollution 25 

patterns were identified representing pollutants entering a) from wastewater treatment plants, 26 

b) at the confluence with the Bode River and c) from diffuse and random inputs via small point 27 

sources and groundwater input. By further sub-clustering of the main patterns, source-related 28 

fingerprints were revealed. The main patterns were characterized by specific isotopologue 29 

signatures and the abundance of peaks in homologue series representing the major (pollution) 30 

sources. Furthermore, we identified 25 out of 38 representative compounds for the patterns by 31 

structure elucidation. The workflow represents an important contribution to the ongoing 32 

attempts to understand, monitor, prioritize and manage complex environmental mixtures and 33 

may be applied to other settings.  34 
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Abbreviations 35 
BR – Bode River 36 

dd – data-dependent 37 

DOM – dissolved organic matter 38 

DRI – diffuse and random input 39 

HCD - higher energy collision-induced dissociation 40 

HDX - hydrogen-deuterium exchange 41 

HESI - heated electrospray ionization 42 

LC-HRMS – liquid chromatography coupled to high resolution mass spectrometry 43 

LC-MS/MS - liquid chromatography coupled to tandem resolution mass spectrometry 44 

m/z – mass-to-charge ratio 45 

NTS – non-target screening 46 

RT – retention time 47 

WW – wastewater 48 

WWTP – wastewater treatment plant 49 

 50 

  51 
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1. Introduction 52 

Aquatic ecosystems are contaminated with a complex and largely unknown mixture of organic 53 

micropollutants emitted from a number of pollution sources (Richardson and Kimura, 2017). 54 

Although hundreds of compounds became analyzable in freshwaters by target screening, the 55 

large number of unknown components detected in complex and variable environmental 56 

mixtures pose a major challenge for monitoring, risk assessment and water management 57 

(Altenburger et al., 2015; Brack et al., 2018). Thus, novel approaches are needed to 58 

characterize these mixtures, link them to sources and prioritize yet unknown organic 59 

micropollutants for identification in order to allow for efficient mitigation (Altenburger et al., 60 

2015). 61 

Non-target screening (NTS) by liquid chromatography coupled to high-resolution mass 62 

spectrometry (LC-HRMS) provides an unbiased approach for capturing this complexity. It has 63 

been recommended as a monitoring tool (Brack et al., 2019) to identify newly emerging 64 

compounds and accidental spills of previously undetected compounds (Hollender et al., 2017) 65 

and to understand processes in drinking water (Brunner et al., 2020; Müller et al., 2011) and 66 

wastewater treatment (Nürenberg et al., 2015) such as formation of transformation products 67 

(Schollée et al., 2015) and degradation of dissolved organic matter (DOM) (Verkh et al., 2018). 68 

Furthermore, NTS may complement target screening (Hug et al., 2014; Ruff et al., 2015; 69 

Schymanski et al., 2014) and is used in effect-directed analysis to identify unknown toxicants 70 

(Muschket et al., 2018; Muz et al., 2017). 71 

NTS generates a huge amount of data, e.g., up to millions of peaks in a set of 360 samples 72 

before data treatment (Carpenter et al., 2019) and already about 20,000 peaks in a data set of 73 

10 WWTP effluents (Schymanski et al., 2014). Thus, the application of multivariate statistics 74 

becomes inevitable. Using exploratory data analysis tools, the complexity of the data set can 75 

be reduced and data structures may be unraveled (Carpenter et al., 2019; Hollender et al., 76 

2017; Schollée et al., 2015). For example, time-trend analysis was recently used to detect 77 

temporal changes of individual peaks at the influent of a wastewater treatment plant (WWTP) 78 
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(Alygizakis et al., 2019). This is a valid approach for extracting individual compounds with 79 

potentially interesting trends. However, in order to draw more general conclusion on mixture 80 

dynamics, cluster analysis has been demonstrated as a valuable and time-efficient tool to 81 

understand mixture dynamics (Carpenter et al., 2019; Chiaia-Hernández et al., 2017). By 82 

means of clustering techniques, e.g. hierarchical clustering, similarities among complex 83 

mixtures were identified and sorted into distinct spatial and temporal chemical or 84 

ecotoxicological patterns (Carpenter and Helbling, 2018; Carpenter et al., 2019; Chiaia-85 

Hernández et al., 2017; Peter et al., 2018; Zheng et al., 2012). These patterns may reflect 86 

source-related or effect-related fingerprints (Brack et al., 2018; Carpenter and Helbling, 2018; 87 

Peter et al., 2018; Zheng et al., 2012) and can be used as a prioritization tool for the 88 

identification of individual peaks as pattern representatives (Carpenter et al., 2019; Chiaia-89 

Hernández et al., 2017). In a longitudinal setting, the advantages of time-series analysis and 90 

the reduction potential of cluster analysis can be combined to identify groups of variables with 91 

similar longitudinal behaviour. Genolini et al. (2015) developed a partitioning cluster analysis 92 

for longitudinal data (‘kml’) originally designed for epidemiological data. Here, each variable’s 93 

course is seen as a trajectory and similar trajectories are clustered together. This approach is 94 

potentially faster than a two-step procedure as applied by Chiaia-Hernández et al. (2017) or a 95 

stepwise comparison of spatial samples (Ruff et al., 2015). With the application of a novel 96 

workflow combining NTS with partitioning clustering, we hypothesized that continuous 97 

longitudinal pollution patterns resulting from diffuse and point sources can be distinguished at 98 

least in small streams.  99 

The objective of this study was to test this hypothesis using the Holtemme River (Saxony-100 

Anhalt, Germany) as a case study and demonstrate this open-source workflow on a set of 101 

water samples taken according to the flow velocity along a river course. Using a multi pollution 102 

source catchment as a case study we were interested in I) whether the new approach allows 103 

for the separation of point source pollution from diffuse pollution and natural background and 104 

for the identification of source-related fingerprints, II) whether the patterns can be generally 105 
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characterized based on isotopologue signatures and homologue series, and III) what are 106 

representative compounds for these patterns. 107 

2. Methods 108 

2.1 Study site 109 

The Holtemme River (Saxony-Anhalt, Germany) was chosen as a case study (SI 1.1, Figure 110 

A.1). From its source in the national park of the Harz Mountains to its confluence with the Bode 111 

River, it spans over 47 km passing through an area of intensive agriculture and two medium-112 

sized towns with wastewater treatment plants (WWTP), which discharge into the river. The 113 

catchment of the first WWTP (WWTP I) covers an urban and rural area of 300 km² with about 114 

50,000 inhabitants and an industrial input of about 15,000 population equivalents. The second 115 

WWTP (WWTP II) covers a mostly urban area of 143 km² with about 36,800 inhabitants 116 

connected to the WWTP. The input from industry contributes approximately 5,400 population 117 

equivalents. The WWTP effluents can be considered as the largest tributaries of the Holtemme 118 

River contributing about 34% and 23% to the river’s discharge on the sampling day, 119 

respectively. Further technical details provided by the operators of the WWTPs are presented 120 

in the Supporting Information (SI 1.2, Table A.1). 121 

2.2 Sampling 122 

Grab samples of 500 mL each were collected along the river at 16 sites (SI 1.1, Figure A.1). 123 

Glass beakers used for sampling were cleaned with LC-grade acetone, methanol and distilled 124 

water and rinsed thrice with the water from the sampling site before the actual samples was 125 

collected. The name of each sampling site consists of the abbreviation “Holt” for Holtemme 126 

River and a number representing the river kilometer where the respective sample was 127 

collected. Aliquots of 1 mL of each sample were taken for chemical analysis. The time of 128 

sampling was adjusted to the river’s flow velocity to sample the same water package at each 129 

sampling site. The flow velocity was modelled by hydrologists from UFZ based on a regression 130 

analysis considering actual discharge data from official gages and distances between sampling 131 
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sites. Details on the sampling sites including information on physico-chemical properties of the 132 

samples are shown in SI 1.3, Table A.2. 133 

2.3 Chemical analysis of samples 134 

Samples were prepared for direct large volume injection (100 µL). For sample preparation, 10 135 

µL of a 2 M ammonium formate buffer, 25 µL of methanol and 25 µL of an internal standard 136 

mixture containing 40 isotope-labelled compounds (40 ng mL-1) were added to 1 mL of sample. 137 

Details on chemicals, reagents and isotope-labelled standards are provided in SI 2.1, Tables 138 

B.1 and B.2. Chemical analysis was performed on an UltiMate 3000 LC system (Thermo 139 

Scientific) coupled to a quadrupole-Orbitrap MS (Q Exactive Plus, Thermo Scientific) with a 140 

heated electrospray ionization (HESI) source. Chromatographic separation was performed on 141 

a Kinetex 2.6 μm EVO C18 (50x2.1 mm) column equipped with a pre-column (C18 EVO 5x2.1 142 

mm) and an inline filter. The column temperature was 40°C. The LC solvent gradient is 143 

presented in SI 2.2, Table B.3. The nominal resolving power in the fullscan experiments was 144 

140,000 (referenced to 200 m/z). For data-dependent (dd)-MS² experiments, an inclusion list 145 

of the selected ions of interest was provided for ionization modes. The nominal resolving power 146 

in dd-MS2 experiments was 70,000 (referenced to m/z 200) in fullscan mode and 35,000 147 

(referenced to m/z 200) in dd-MS2 scans. Two collision energies (i.e., higher energy collision-148 

induced dissociation (HCD)) were used for dd-MS2 experiments, i.e. HCD 55 and HCD 35, in 149 

order to obtain diagnostic fragmentation patterns for small and large molecules. Further details 150 

on settings and parameters of the Q ExactiveTM Plus for fullscan experiments are presented in 151 

SI 2.2, Table B.4. At the beginning and at the end of each batch, calibration standards were 152 

run at four levels (1, 10, 100 and 1000 ng L-1) to check for mass accuracy, intensity changes 153 

during the run and as a quality control during peak picking. Solvent blanks (95% H2O/ 5% 154 

methanol) were analyzed at least after every sixth sample accounting for background 155 

contamination.  156 
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2.4 Data processing 157 

Raw data from the LC-HRMS analysis were converted into .mzML format (centroid mode) by 158 

ProteoWizard v3.0.18265 (Chambers et al., 2012). Peak lists were generated using the 159 

software MZmine v2.32 (Pluskal et al., 2010). MZmine settings are given in SI 2.3, Table B.5. 160 

Repeatability of the chemical analysis and peak picking was checked by injecting replicates of 161 

selected samples. The peak lists were exported to Microsoft Excel® for blank correction 162 

according to Eq. 1. Signals below that threshold in the samples were removed. Furthermore, 163 

an intensity cut-off at peak heights below 5,000 in negative mode and 50,000 in positive mode 164 

was included to remove noise added by gap filling. For annotated target compounds, 165 

calibration standards were checked for logical increase in peak heights. If this was not 166 

observed, the annotation was removed. For manually added “marker” compounds, the 167 

intensity cutoff limit was not an exclusion criterion as they were manually integrated and were 168 

analyzed with a full calibration curve ranging from 1 to 1000 ng/L (Beckers et al., 2018). 169 

Eq. 1: Calculation of intensity threshold (Ithres) 170 

Ithres = µ(IBlk) + 2*σ(IBlk) 171 

µ(IBlk) = mean of peak intensities in blanks; σ(IBlk) = standard deviation of peak intensities in 172 

blanks 173 

Prior to cluster analysis, isotope peaks identified by the R package ‘nontarget’ v1.9 (Loos and 174 

Singer, 2017; R Core Team, 2017) were removed and the two cleaned peak lists obtained from 175 

positive and negative ionization mode were merged. As we observed several false positive 176 

adduct peaks identified by R ‘nontarget’ already for target compounds, adduct peaks were not 177 

filtered out in the peak list. Settings used in the R ‘nontarget’ package are described in SI 2.4, 178 

Table B.6. If a target compound was detected in both ionization modes, the one showing lower 179 

peak intensities was removed from the merged peak list. Some typically detected target 180 

compounds in the Holtemme River (Beckers et al., 2018) were missed during peak detection 181 

by MZmine due to poor peak shapes. All samples of this study were re-analyzed on a LC-182 
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MS/MS system (QTrap 6500 MS/MS, ABSciex). The data was manually evaluated with the 183 

MultiQuant Software (Sciex). Details on the LC-MS/MS method are described elsewhere 184 

(Beckers et al., 2018). In total, seven compounds were added by target analysis. These 185 

compounds included the wastewater marker compounds acesulfame and saccharin (Buerge 186 

et al., 2009) as well as the pharmaceuticals pipamperone, diphenhydramine, ofloxacin, 187 

ciprofloxacin and metoprolol acid, which were detected as important wastewater compounds 188 

in a previous study (Beckers et al., 2018). 189 

2.5 Cluster analysis 190 
Cluster analysis was performed on componentized peak lists of the 16 water samples along 191 

the river. Prior to cluster analysis, the peak heights were normalized by intensity of the internal 192 

standard peaks matched by retention times to account for matrix effects. The normalized peak 193 

heights were scaled to unit variance according to Eq. 2 (i.e., z-score scaling). Scaling ensures 194 

that all variables spread over the same range, i.e. all variables have equal variances. 195 

Eq. 2: Scaling to unit variance 196 

𝑧𝑧 =
𝑥𝑥 − µ
𝜎𝜎

 197 

z = standard score, µ = mean, σ = standard deviation 198 

Non detects (i.e., zeros) were not removed from the data set. Cluster analysis was performed 199 

in R using the R package ‘kml’ to unravel longitudinal clusters of peaks along a river course 200 

(Genolini et al., 2015; R Core Team, 2017). The cluster analysis in ‘kml’ was customized by 201 

using the distance function ‘diss.CORT’ from the R package ‘TSclust’ (Montero and Vilar, 202 

2014). The ‘diss.CORT’ function compares trajectories based on the change in direction and 203 

rate at each spot (Montero and Vilar, 2014). Thus, this distance function fitted better to our 204 

spatial data set and helped to mitigate the assumption of spherical data by Euclidean distance 205 

used in the k-means algorithm. The R script for kml cluster analysis can be found in SI 2.5. 206 

The final number of clusters was chosen according to a consensus score of the incorporated 207 

quality criteria. The analysis was performed on the entire data set as well as on the resulting 208 
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clusters to identify potential sub-patterns masked by main patterns. The ‘kml’ package 209 

provided probabilities of individuals belonging to the different clusters. However, these 210 

probabilities should be seen as indications rather than absolute values as they depend on 211 

normal distribution of each peak’s data which does not apply for single detects. 212 

2.6 Characterization of pattern members 213 
The R ‘nontarget’ package was used for the characterization of the peaks in the different 214 

patterns by identifying isotopologue signatures, adducts and homologue series (Loos and 215 

Singer, 2017). The analysis was based on the most representative samples of each pattern 216 

(section 3.2). The most representative sample of each pattern was the sample in which 217 

maximum intensities of peaks in the respective pattern were observed. In case maximum peak 218 

intensities were observed in more than one sample for a pattern, more samples were selected 219 

as representatives for the respective pattern. Information on isotopologues and homologues 220 

series was merged with information on cluster assignment and displayed in scatter plots (R 221 

packages ‘ggplot2’ (Wickham, 2016) and ‘ggpubr’ (Kassambara, 2018)). 222 

2.7 Structure elucidation  223 
Peaks were selected for structure elucidation by intensity. The top 5 to 10 high-intensity peaks 224 

were selected in representative samples of the different patterns and sub-patterns for 225 

identification. Chemical formulas were generated with the QualBrowser in XCalibur (Thermo 226 

Scientific). Calculated formulas were tested for plausibility regarding the isotopic pattern in the 227 

QualBrower and submitted for a probable formula query in ChemSpider (Royal Society of 228 

Chemistry, 2015) and CompTox (US EPA, 2019) database. Further information for structure 229 

elucidation was obtained by re-analyzing samples again in dd-MS², hydrogen-deuterium 230 

exchange (HDX) and pH-dependent chromatography experiments according to Muz et al. 231 

(2017). Fragment lists from respective MS² spectra were submitted to MetFrag v2.3 (web tool) 232 

(Ruttkies et al., 2016) to obtain candidate lists. HDX experiments provided information on 233 

exchangeable hydrogens in a molecule (Ruttkies et al., 2019), while pH-dependent 234 

chromatography supported the identification of probable pKa values (Dann et al., 2016). 235 

Experimentally determined pKa value ranges were compared to calculated acidic and basic 236 
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pKa values by JChem for Office (Excel). Spectral similarity was checked for candidates in 237 

MassBank (Horai et al., 2010) and CFM-ID (Allen et al., 2014). Details on the complete 238 

workflow for structure elucidation are provided in SI 2.6. Finally, the level of identification for 239 

each structure was reported according to confidence levels introduced by Schymanski et al. 240 

(2015). 241 

3. Results and Discussion 242 

In the data set, 14,235 peaks were extracted in negative and 50,446 peaks in positive mode. 243 

After blank correction and removal of isotope peaks, the final list contained 23,485 peaks 244 

including 141 annotated target compounds. Since adducts were not removed, this list still 245 

included replicate peaks of the same compound exemplified for surfactants (section 3.3). 246 

Moreover, non-target compounds might be detected in both ionization modes. The stability in 247 

mass accuracy and peak intensity of calibration standards and the performance of replicate 248 

analyses is presented in SI 3.1 (Figures C.1-4) and 3.2 (Figure C.5). The effect of normalization 249 

of peak heights by internal standards was assessed in SI 3.3, Figure C.6. 250 

3.1 Longitudinal peak patterns 251 

Cluster analysis is an exploratory data analysis tool which reduced the data set to three main 252 

patterns. The applicability of the cluster analysis and the validity of the identified patterns were 253 

checked by running the analysis on a subset of quantified target compounds (SI 3.4.1, Figure 254 

C.7) and a manual cross-check of spatial courses of individual compounds with the spatial 255 

course of their associated main pattern as well as knowledge on potential sources at the 256 

Holtemme River. Furthermore, the effect of single detects on the cluster stability was tested 257 

underlining the robustness of the method (SI 3.4.2, Figure C.8). Due to the nature of 258 

partitioning cluster analysis, every variable (i.e., every peak) needs to be assigned to one of 259 

the clusters. This might be problematic for variables in the overlapping region of clusters. Thus, 260 

the main pattern did not reflect each peak’s intensity course. In order to “clean up” the main 261 

pattern and identify finer structures and source-related fingerprints in the data set, a second 262 
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sub-clustering of the main patterns was performed (section 3.1.2). The probabilities of peaks 263 

belonging to the assigned cluster and peak intensities in the samples are presented for target 264 

and prioritized unknown compounds in SI 3.6.1, Table C.1A-C. 265 

3.1.1 Main peak patterns along the river course 266 

According to the score of the quality criteria (SI 3.5.1, Figure C.9), three main patterns were 267 

unraveled in the river data set by cluster analysis (Figure 1). This distinction into three patterns 268 

would be missed by target screening alone (SI 3.4.1, Figure C.7). 269 

The first pattern exhibited maximum intensity downstream of the two WWTPs with low or no 270 

signals in the headwater and will be referred as wastewater (WW) pattern below. This pattern 271 

included 9,811 peaks representing about 42% of the data set and most of the target 272 

compounds (n = 100, SI 3.6.1, Table C.1A). The target compounds belonged mostly to the 273 

group of pharmaceuticals, industrial compounds and pesticides. A second pattern showed a 274 

distinct and sudden increase in peak intensity at the last sampling site in the river, which 275 

represents the mixing zone with the Bode River. This pattern was called Bode River (BR) 276 

pattern and contained 7,776 peaks, i.e., 33% of all peaks. As there are no major tributaries in 277 

the Holtemme River between sampling sites 40 and 42, those peaks likely originated from the 278 

Bode River. Target compounds of BR pattern included mostly industrial compounds and 279 

industrially used biocides (i.e., isothiazolinones, SI 3.6.1, Table C.1B). A third cluster with 5,910 280 

peaks included about 25% of all peaks. It showed higher intensities in the headwater regions 281 

with a decrease downstream of the WWTP effluent sites potentially due to dilution and was 282 

termed diffuse and random input (DRI) pattern (section 2.1). Thus, the peaks of this pattern 283 

were not associated with WWTP effluents. The few target compounds that were assigned to 284 

this pattern were mainly pesticide metabolites as well as the legacy pesticide atrazine and 285 

artificial sweeteners (SI 3.6 1, Table C.1C). The presence of the artificial sweeteners cyclamate 286 

and saccharin suggested the input of untreated wastewater as they are largely degraded 287 

during the wastewater treatment process (Buerge et al., 2009). A previous study identified rain 288 

sewers as a small point source for untreated wastewater and random spills in this headwater 289 
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region (Beckers et al., 2018). The input was observed even under dry weather conditions due 290 

to faulty or illicit connections in the sewer network. The occurrence of pesticides and their 291 

metabolites might also be explained by the input via rain sewers and other drainages as well 292 

as from infiltrating groundwater (Kolpin et al., 2000; Reemtsma et al., 2013). During this 293 

sampling campaign, the total discharge was solely produced by base flow generated by 294 

groundwater as well as by contributions from tributaries (including WWTP effluents). This led 295 

to a river discharge rate of 0.34 m³ s-1 well below the mean annual discharge rate of 1.55 m³ 296 

s-1 and consequently comparably lower dilution along the river course (LHW, 2019; Müller et 297 

al., 2018). The DRI pattern, moreover, contained many unidentified peaks which showed 298 

consistently high intensities over the whole river course. They likely represented natural 299 

background compounds. Thus, this pattern summarized both diffuse and random input of 300 

organic compounds. 301 

3.1.2 Sub-patterns and source-related fingerprints 302 

Based on the score of the quality criteria (SI 3.5.2, Figure C.10), cluster analysis of the WW 303 

pattern revealed four sub-patterns (Figure 2A). The majority of peaks were assigned to sub-304 

pattern WW1, which represented peaks associated with both WWTPs. Sub-patterns WW2 and 305 

WW3 represented peaks which were more associated with either one of the WWTPs. This 306 

included peaks which solely or mainly originated from one of the WWTPs. Specific input from 307 

WWTP I included fungicides, the antibiotics roxithromycin and azithromycin, as well as 308 

coumarin derivatives (SI 3.6.1, Table C.1A). The latter were previously identified as the main 309 

drivers for anti-androgenic activity at this sampling site (Muschket et al., 2018). Several 310 

pharmaceuticals (e.g. acetaminophen and ketoprofen) were associated to a larger extent with 311 

WWTP II even though they were emitted from both WWTPs. The relatively higher input from 312 

WWTP II might be explained by shorter hydraulic residence times and thus less efficient 313 

treatment of WWTP II (SI 1.2, Table A.1). The sub-patterns WW1, WW2 and WW3 clearly 314 

assigned peaks to their sources. Thus, they may be seen as source-related fingerprints, 315 

whereas the WW1 sub-pattern is a fingerprint for common wastewater compounds with lower 316 

variability and the WW2 and WW3 sub-patterns are fingerprints for wastewater-related 317 
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compounds with more variable discharges or specific sources in the WWTPs’ catchments. 318 

Many of the compounds in these patterns were among frequently detected compounds at 319 

European WWTPs including the sweetener acesulfame, pharmaceuticals (e.g. 320 

carbamazepine, citalopram, diclofenac and sulfamethoxazole), pesticides (e.g. MCPA) and 321 

corrosion inhibitors such as benzotriazoles (Loos et al., 2013; Munz et al., 2017). Sub-pattern 322 

WW4 contained compounds which were predominant at the first sampling site (Figure 2A), and 323 

showed only small intensity increases downstream of both WWTPs. Already in the headwater 324 

region, there is some anthropogenic influence due to a small battery factory and a hotel 325 

upstream of sampling site Holt3. Both treat their wastewater in septic tanks and discharge rain 326 

water to the Holtemme River. 327 

Likewise, sub-clustering of the BR pattern (Figure 2B and SI 3.5.2, Figure C.11) revealed sub-328 

patterns of peaks that also occurred at the sites downstream of the WWTPs (i.e., BR2, BR4). 329 

However, the sampling site with highest peak intensities was still the river mouth for all sub-330 

patterns (i.e., BR1-4). 331 

Sub-clustering of the DRI pattern indicated a few sampling sites with elevated intensities in the 332 

urban regions (i.e., site Holt9, Holt11, Holt15 and Holt26) (Figure 2C and SI 3.5.2, Figure C.12). 333 

The sites are believed to reflect inputs from small point sources such as rain sewers. The high 334 

variation of some peaks among sampling sites is likely due to very random and inconsistent 335 

inputs from these sources directly reflecting activities in their catchment (Beckers et al., 2018). 336 

Thus, the sub-patterns of the DRI pattern may greatly vary with time. Still, the cluster analysis, 337 

especially with detailed sub-clustering, has the potential to detect even smaller point sources 338 

and is also robust enough, so that the patterns are not disturbed by single detects (SI 3.4.2, 339 

Figure C.8).  340 

The applicability of the cluster analysis was demonstrated using data of a one-time sampling 341 

campaign. However, the stability of these patterns, sub-patterns and source-related 342 

fingerprints should be tested for temporal variations due to changing flow conditions (i.e., 343 

effects of dilution) and seasonal influences (Beckers et al., 2018) (e.g., pesticide applications 344 
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in spring or changes in industrial production) in future studies. Especially, the origin of peaks 345 

in DRI pattern may become more defined and background may be better separated from input 346 

of small point sources by repeated sampling. 347 

3.2 Characterization of pattern components 348 

The main patterns were investigated for characteristic mass-to-charge ratio (m/z) and retention 349 

time (RT) distributions as well as for the abundance of peaks with specific isotopologue 350 

signatures and homologue series. Halogenated compounds are typically of anthropogenic 351 

origin and are often toxic and persistent. Sulfur-containing compounds especially in 352 

combination with homologue series indicate the presence of surfactants. The characterization 353 

was based on representative samples of each of the patterns. For the WW pattern, this 354 

included samples Holt17 and Holt31 corresponding to the sampling sites downstream of each 355 

of the WWTPs. Samples Holt9 and Holt26 were analyzed as representatives for the DRI 356 

pattern and sample Holt42 for the BR pattern. 357 

By plotting m/z values against RT of the pattern components, distinct differences between the 358 

DRI pattern and the two other patterns (WW and BR) were identified (Figure 3). The DRI 359 

pattern contained a lot of peaks eluting at or close to the column dead time with high intensities 360 

(i.e., RT < 1 min). A lot of potentially halogenated and sulfur-containing compounds were 361 

among these peaks (Figure 3C). For a better identification of these compounds, an improved 362 

chromatographic separation of highly hydrophilic compounds on a more polar stationary phase 363 

would be required. This exemplifies the limit of each data set’s explanatory power based on 364 

the analytical methods used. 365 

Also the WW and BR patterns included such early eluting peaks with this isotopologue 366 

signature. However, in these patterns more halogenated and sulfur-containing compounds 367 

were detected with higher retention times (Figures 3A, B).  368 

The number of peaks assigned as part of a homologue series was evaluated per pattern. The 369 

number of homologue peaks increased with the effluent from the two WWTPs (n = 2282) and 370 
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almost doubled with the confluence with the Bode River. In combination with the potentially 371 

high number of sulfur-containing compounds, these peaks might indicate the presence of 372 

surfactants as identified in wastewater by previous studies (e.g. Alygizakis et al., 2019; Gago-373 

Ferrero et al., 2015; Peter et al., 2018; Schymanski et al., 2014). Dissolved organic matter 374 

(DOM) originating from wastewater has a distinctly high content of sulfur-containing species in 375 

comparison to DOM from pristine waters (Greenwood et al., 2012). The investigation of 376 

changes in DOM homologue series during wastewater treatment showed that especially 377 

compounds with CH2-series are not readily degradable during treatment (Verkh et al., 2018). 378 

Follow-up studies in the Bode River should reveal where this high contribution of compounds 379 

in homologue series (potentially surfactants) originate from. The presence of these 380 

characteristic peaks in the WW and BR pattern supported the urban and industrial contributions 381 

indicated by target compounds (section 3.2). Some of these ions of interests were identified 382 

(section 3.3). 383 

A consistently low number (n = 464) of peaks in a homologue series were related to the DRI 384 

pattern. Most of these homologue series (>90%) showed a mass increment of 14 m/z 385 

representing a CH2 group. This group is commonly seen in anthropogenic homologue series 386 

but was also discovered in homologue series of natural compounds such as humic and fulvic 387 

acids (Stenson et al., 2002). Thus, the homologues series in this pattern might reflect natural 388 

background. Our results suggested that natural compounds make up a considerable part in 389 

the chemical mixtures detected along the river. Further analytical efforts are necessary to study 390 

these compounds, especially because they may play a role in the overall ecosystem health 391 

(Pignatello and Xing, 1996) and in water treatment (Neale et al., 2012). 392 

3.3 Identification of ions of interest 393 

In addition to target compounds, ions of interest were identified to different levels of confidence 394 

(Schymanski et al., 2015). The identified compounds supported pattern and source 395 

interpretation as well as are previously unknown representatives for these patterns. Spectra of 396 

confirmed substances were uploaded to MassBank database (SI 3.6.1, Table C.2). 397 
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The identification focused on high intensity peaks in the common wastewater WW pattern 398 

(WW1) as well as the two WWTP-specific patterns (WW2 and WW3) and the DRI and BR 399 

pattern. The results are summarized in Tables 1 and C.1A-C (SI 3.6.1). Based on determined 400 

molecular formulas, plausible candidate structures were selected using MS2 spectra, pKa 401 

values (indicated by pH-dependent retention times) and the number of exchangeable 402 

hydrogens. Finally, commercial relevance was considered as an indication to occur in a 403 

wastewater-impacted river. The MS2 spectra of the compounds in the original sample and the 404 

respective reference standards are presented the SI, section 3.6.2. 405 

In the WW sub-patterns, several pharmaceuticals (i.e., lamotrigine, methocarbamol, irbesartan 406 

and olmesartan) and some pharmaceutical transformation products (i.e., gabapentin-lactam 407 

and valsartan acid) were confirmed by reference standards. The peak of lamotrigine was also 408 

correctly identified by the R ‘nontarget’ package as ion with chlorine isotopes further supporting 409 

the confirmation based on the mass spectra of the reference standard. Lamotrigine was 410 

assigned to the WW3 sub-pattern and showed a distinct peak at WWTP I (SI 3.6.1, Table 411 

C.1A). The intensity was reduced to 30% of the original peak over the course of the river. 412 

WWTP I had a specific input of other pharmaceuticals such as the antidepressant pipamperone 413 

(SI 3.6.1, Table C.1A). This might be explained by the presence of a pharmaceutical 414 

manufacturer connected to the WWTP as there is no difference in hospital size or 415 

specialization. Lamotrigine is a ubiquitous pharmaceutical previously detected, e.g., in the 416 

Rhine River, in Swiss WWTP effluents and a US estuary (Carpenter and Helbling, 2018; Munz 417 

et al., 2017; Muz et al., 2017; Ruff et al., 2015). The other identified pharmaceuticals showed 418 

similar intensities at both WWTP effluent sites (SI 3.6.1, Table C.1A). Methocarbamol is a 419 

muscle relaxant and irbesartan, olmesartan and valsartan (the latter detected as its 420 

transformation product valsartan acid) are used for treatment of hypertension. The high 421 

intensity in this study and detections in other studies can be explained by high consumption 422 

volumes of these widely used pharmaceuticals (Carpenter and Helbling, 2018; Munz et al., 423 

2017). Irbesartan was detected in 100% of WWTP effluents in EU-wide study (Loos et al., 424 

2013). Gabapentin-lactam is a human metabolite of the anticonvulsant gabapentin and is more 425 
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stable under environmental conditions than the parent compound (Henning et al., 2018). 426 

Gabapentin was part of our target list and has been assigned to the WW2 sub-pattern showing 427 

a 50% higher intensity in the effluent of WWTP II than in the effluent of WWTP I, while the 428 

intensity of gabapentin-lactam was similar in both WWTP effluents. Thus, the lower gabapentin 429 

to gabapentin-lactam ratio in the effluent of WWTP I might be explained by a more efficient 430 

treatment in WWTP I. 431 

Furthermore, 4-methyl-7-ethylaminocoumarin was identified by a reference standard as 432 

specific to WWTP I (SI 3.6.1, Table C.1A). Coumarin derivatives were identified as 433 

ecotoxicologically relevant compounds specifically emitted from this WWTP (Muschket et al., 434 

2018). 4-Methyl-7-ethylaminocoumarin is the transformation product of 4-methyl-7-435 

diethylaminocoumarin. Like the parent compound, it has an anti-androgenic effect. However it 436 

is less potent than its parent compound (Muschket et al., 2018). The sulfophenyl carboxylic 437 

acids (SPC) C6-SPC and C7-SPC were tentatively identified at confidence level 2b. Their 438 

identification matched the isotopologue and homologue patterns revealed in section 3.2 as 439 

representatives of a sulfur-containing homologue series. SPCs are main degradation products 440 

of linear alkylbenzene sulfonates (LAS) and have been detected in the aquatic environment 441 

and WWTP effluents (Lara-Martín et al., 2011). No records were available in MassBank 442 

spectral library for C6-SPC or C7-SPC. However, diagnostic fragments (183.0123 m/z and 443 

197.0279 m/z) and ionization were matched to previous studies (SI 3.6.3, Figure C.34) 444 

(Gonsior et al., 2011; Lara-Martín et al., 2011). Moreover, the mass increment 14 m/z 445 

suggested a CH2 - homologue series.  446 

Seven out of 21 ions of interest were identified at level 4 in the WW pattern. By application of 447 

the pH-dependent LC retention method (Dann et al., 2016), we were able to separate two of 448 

these peaks with the same molecular formula with the m/z 274.2010 (SI 3.6.4, Figure C.35). 449 

Even though the two compounds could not be fully identified, one peak must belong to a 450 

carboxylic acid and the other one to a compound with a basic functional group with a basic pKa 451 

between 2.6 and 6.4, e.g. primary, secondary, tertiary aromatic amines or triazine derivates. 452 
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The limits of proper pKa calculation were exemplified for irbesartan, olmesartan and 4-methyl-453 

7-ethylaminocoumarin. Here, the calculated pKa did not correspond to the structures 454 

suggested by the pH-dependent LC retention (Table 1). Thus, care that has to be taken in the 455 

evaluation of calculated pKa values. Only for two ions in the WW pattern, no unequivocal 456 

molecular formula could be determined. 457 

The BR pattern was dominated by peaks which were predominantly showing ammonium 458 

adducts [M+NH4]+ but also the [M+H]+ and [M+Na]+ adducts. Five of these peaks were 459 

identified (level 1) as polyethylene glycols (PEGs) with the general molecular formula 460 

C2nH4n+2On+1. They are usually detected as these adducts (Alygizakis et al., 2019; Lara-Martín 461 

et al., 2011; Peter et al., 2018). PEGs have a broad field of application in industrial and 462 

household products and may enter via rain sewers during surface runoff (Peter et al., 2018) as 463 

well as via treated (Schymanski et al., 2014) and untreated (Gago-Ferrero et al., 2015) 464 

wastewater input. PEGs were also observed at other sampling sites at the Holtemme River, 465 

e.g. in urban regions and at the weir (SI 3.6.1, Table C.1B), but not as dominant as at the 466 

confluence with the Bode River. Moreover, the intensities of PEGs in the river samples dropped 467 

downstream of the WWTP effluents suggesting dilution by treated wastewater and a removal 468 

of PEGs by WWTPs in agreement with other studies (Freeling et al., 2019). The results 469 

coincided with the overall patterns revealed by isotopologue signatures and homologue series 470 

detection (section 3.2) which suggested a specific contribution of Bode River to the Holtemme 471 

River, e.g. by untreated wastewater or a specific point source. Moreover, other surfactants and 472 

industrial compounds were identified at this spot including triacetin, diethylene glycol 473 

monobutyl ether and azelaic acid (level 1). Triacetin was identified in surface waters and 474 

groundwater (Schwarzbauer and Ricking, 2010; Sorensen et al., 2015) and was previously 475 

linked to specific industrial effluents and proposed as an indicator for the production of paper 476 

and inks (Botalova et al., 2011). However, triacetin has a broad range of other industrial 477 

applications as a food additive, plasticizer and in pharmaceutical products suggesting a variety 478 

of sources. Azelaic acid was intensively studied in and associated with airborne organic 479 

particulate matter as a photochemical oxidation product of unsaturated fatty acids (e.g. Hyder 480 
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et al., 2012; Wang et al., 2002). In our study, azelaic acid was only detected at the sampling 481 

site at the river mouth (SI 3.6.1, Table C.1B) which contradicts an input from atmospheric 482 

deposition. However, it is also used in personal care products (DrugBank, 2019), which might 483 

explain its local occurrence in the Holtemme River. Again, these specifically high occurrences 484 

in the BR pattern call for further in-depth investigations on sources in the Bode River and 485 

dynamics at this particular sampling site.  486 

In the DRI pattern, five out of eight ions of interest could be identified to level 1 as constituents 487 

of cocamidopropylbetaine as well as n-lauroylethanolamine and triethylene glycol monomethyl 488 

ether. Cocamidopropylbetaine and n-lauroylethanolamine are surfactants mainly used in 489 

personal care products (ECHA, 2019a; ECHA, 2019b). These compounds were not related to 490 

the input of treated wastewater, as they are likely eliminated in WWTPs. They showed 491 

specifically high intensities in the urban area upstream of WWTP I (SI 3.6.1, Table C.1C) 492 

suggesting input of untreated wastewater via rain sewers (Beckers et al., 2018). Furthermore, 493 

they were clustered together with the target compound lauryl diethanolamide in the DRI 494 

pattern. In absence of a reference standard, lauryl sulfate was tentatively identified at level 2a 495 

(SI 3.6.5, Figure C.36). It was previously identified in untreated wastewater (Alygizakis et al., 496 

2019). Triethylene glycol monomethyl ether and lauryl sulfate were related to point source 497 

pollution at a sampling site close to a rain sewer and at sampling site Holt36, which is at a weir 498 

(Figure A.1 and SI 3.6.1, Table C.1C). The site-specific detection of these compounds might 499 

suggest an input of raw wastewater and surface runoff via rain sewers, their quick removal 500 

from the water phase and a remobilization in the weir area from deposited sediments, 501 

respectively. 502 

Conclusions 503 
The analytical power of NTS is continuously increasing and the volume of NTS data produced 504 

is increasing exponentially. However, the availability of concepts and tools to structure and 505 

exploit these huge data sets is lagging behind. In the present study, we demonstrated how 506 

innovative analytical workflows integrating multivariate statistical approaches emerging from 507 
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different areas of research help to identify pollution patterns and source-related fingerprints in  508 

highly complex pollutant mixtures. To our knowledge, this is the first study to apply a 509 

longitudinal cluster analysis on a non-target data set, which efficiently separated peaks 510 

originating from different sources. The identified patterns suggested a high abundance of 511 

natural background in environmental chemical mixtures which could be separated from clear 512 

anthropogenic inputs and require further investigation. The cluster analysis was robust enough 513 

to identify main pollution patterns despite many single detects in the data set. By means of 514 

isotopologue fingerprints and homologue series as well as detected target and identified non-515 

target compounds, the patterns were related to inputs from WWTPs, specific pollutants at the 516 

river’s mouth and point pollution of untreated wastewater. The proposed workflow is 517 

extendable to and should be tested in other settings (e.g. larger rivers, river stretches) to 518 

quickly identify pollution hotspots or pathways or identifying temporal dynamics. The exchange 519 

of identified patterns in environmental mixtures and source-related fingerprints is encouraged 520 

among researchers to test their validity in other water bodies and point sources and allow for 521 

their complementation. The approach presented here is an important building block in the 522 

ongoing attempts to understand, monitor, prioritize and manage complex environmental 523 

mixtures (Brack et al., 2018).   524 
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Figure legends 525 

Figure 1: Main patterns (wastewater (WW), Bode River (BR), and diffuse and random (DRI) 526 

pattern) identified by cluster analysis on all peaks detected by non-target screening. Colored 527 

lines represent clusters identified by cluster analysis. Gray background represents 528 

longitudinal course across all sampling sites of intensities of individual peaks detected in LC-529 

HRMS data set. Peak intensity was scaled to unit variance. The number of the sampling sites 530 

represents the river kilometer. Box above the plot indicates percentage of peaks of the data 531 

set assigned to a respective cluster. 532 

Figure 2: Sub-patterns of main patterns (A) wastewater (WW), (B) Bode River (BR) and (C) 533 

diffuse and random input (DRI) identified by cluster analysis on all peaks included in the 534 

respective main pattern. Colored lines represent clusters identified by cluster analysis. Gray 535 

background represents longitudinal course across all sampling sites of intensities of 536 

individual peaks detected in LC-HRMS data set. Peak intensity was scaled to unit variance. 537 

The number of the sampling sites represents the river kilometer. Box above the plot indicates 538 

percentage of peaks of the data set assigned to a respective cluster. 539 

Figure 3: Scatter plots of retention time [min] vs. mass-to-charge ratio of all peaks in the three 540 

main patterns (A) wastewater (WW), (B) Bode River (BR) and (C) diffuse and random input 541 

(DRI). Colored points represent isotopologues assigned to isotope peaks. Point size reflects 542 

the intensity of each peak.  543 
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Tables 544 

Table 1: Results of structure elucidation for ions of interest 545 

#level of confidence according to Schymanski et al. (2015), nr = no results obtained from 546 
experiments, nc= not calculable by JChem for Office 547 
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