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Abstract

Overcoming the obstacle of frequent cloud coverage in optical remote

sensing imageries is essential for monitoring dynamic land surface processes

from space. APiC, a novel adaptable pixel-based compositing and classifica-

tion approach, is especially designed to use high resolution spatio-temporal

space-borne data. Here, pixel-based compositing is used separately for train-

ing data and prediction data. First, cloud-free pixels covered by reference

data are used within adapted composite periods to compile a training dataset.

The compiled training dataset contains samples of spectral reflectances for

respective land cover class at each composite period. For land cover pre-

diction, pixel-based compositing is then applied region-wide. Multiple pre-

diction models are used based on temporal subsets of the compiled training

dataset to dynamically account for cloud coverage at pixel level. Thus we

present a data-driven classification approach which is applicable in regions

with different weather conditions, species composition and phenology. The

capability of our method is demonstrated by mapping 19 land cover classes

across Germany for the year 2016 based on Sentinel-2A imageries. Since
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climatic conditions and thus plant phenology change on a large scale, the

classification was carried out separately in six landscape regions of different

biogeographical characteristics. The study could draw on extensive ground

validation data provided by the federal states of Germany. For each land-

scape region, composite periods of different lengths have been established,

which differ regionally in their temporal arrangement as well as in their total

number, emphasising the advantage of a flexible regionalised classification

procedure. Using random forest, an overall accuracy of 88% was achieved,

with particularly high classification accuracy of around 90% for the major

land cover types. We found that class imbalances has significant influence on

classification accuracy. Based on multiple temporal subsets of the compiled

training dataset, over 10,000 RF models were calculated and their perfor-

mances varied considerably across and within landscape regions. The calcu-

lated importance of composite periods show that a high temporal resolution

of the compiled training dataset is necessary to better capture the different

phenology of land cover types. In this study we demonstrate that APiC,

due to its data-driven nature, is a very flexible compositing and classifica-

tion approach making efficient use of dense satellite time series in areas with

frequent cloud coverage. Hence, regionalisation can be given greater focus

in future broad-scale classifications in order to facilitate better integration of

small-scale biophysical conditions and achieve even better results in detailed

land cover mapping.

Keywords: land cover classification, Compositing, Crop mapping,

Phenology, Sentinel-2, Random Forest
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1. Introduction1

Land cover has indeed become a force of global importance in recent years2

(Foley et al., 2005). Global demographic and economic developments are3

leading to an increase in anthropogenic land use and land cover change. Due4

to the ongoing transformation of natural ecosystems into agricultural land,5

37% of the area is currently used for agriculture (https://data.worldbank.6

org/indicator/AG.LND.AGRI.ZS (accessed 5 April 2019)).7

World-wide, the expansion of agriculture is often at the expense of forests8

(Hansen et al., 2013), contributing greatly to the negative trends in carbon9

stocks (DeFries et al., 2010; Houghton, 2010), climate change (Sombroek,10

2001) and biodiversity (Billeter et al., 2008; Dormann et al., 2007; Newbold11

et al., 2015). On the local level, intensification and monocultures are respon-12

sible for the decline in soil fertility, which in turn contributes to an overuse13

of fertilisers (Smith et al., 2016). Land cover configuration is an important14

factor for reassessing nitrogen input into surface water or runoff, biodiver-15

sity loss due to the lack of animal corridors (Bleyhl et al., 2017) or changed16

pollination dynamics (Hadley and Betts, 2012).17

Hence, there is an urgent need to gather information on how the land is18

being used at field level over time, so that land management can be improved.19

Remote sensing is a widespread tool for mapping land surfaces and has often20

been used to capture broad land cover categories such as forests, water bodies21

or agricultural land (Joshi et al., 2016).22

However, mapping thematically detailed land cover classes - and crop23

types in particular - continues to be challenging. With the launch of Sentinel-24

2A, new classification approaches are conceivable, as the Earth observation25
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instrument has relatively high resolutions in all three domains: (1) tempo-26

ral: a revisit time of 2-3 days at mid-latitudes allows a better detection of27

dynamic vegetation processes; (2) spatial: a pixel size of 10 or 20 m allows28

the capture of smaller-scaled land cover configurations; and (3) spectral: 1329

and 9 spectral bands at 10 m and 20 m ground resolution respectively al-30

low plants with similar physiological and morphological characteristics to be31

better distinguished by their spectral traits.32

The temporal resolution of a satellite system determines the number of33

available observations per time unit but says little about the usability of34

individual image pixels, which can be affected by cloud cover. In optical re-35

mote sensing, cloud removal techniques are required for large area land cover36

mapping or longer time series analysis (Cihlar, 2000), as the Earth’s surface37

can only be reliably observed under cloud-free conditions. The detection and38

substitution of clouds for land cover mapping is usually done by pixel-based39

image compositing (Holben, 1986), where a contaminated pixel is replaced40

by the same pixel of a cloud-free satellite observation within a given time41

interval. The length and timing of these intervals should be well considered42

for the composites to be radiometric consistent.43

Recently, Gomez et al. (2016) concluded that novel classification proce-44

dures which exploit the information in complex temporal data are not yet45

realized. In this sense, and in light of the high temporal and spatial resolu-46

tion of Sentinel-2, we introduce a dynamic approach for adaptable pixel-based47

compositing and classification, called APiC.48

We refrain from creating a seamless, cloud-free and artifact-free image49

composite of the entire study area (Lueck and van Niekerk, 2016; Roberts50
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et al., 2017) and go beyond the original idea of pixel-based compositing where51

the best-available-pixel is selected by rule-based criteria (Lueck and van Niek-52

erk, 2016; White et al., 2014). Instead, APiC distinguishes between two pixel-53

based compositing processes: (1) Compositing is exclusively applied to pixels54

covered by reference data. The aim is to compile spectral reflectances of dif-55

ferent land cover types from different times of the year in a training dataset56

for analysis by a supervised classification algorithm. Within an iterative57

process, the availability of cloud-free pixels per land cover type determines58

the length and temporal localisation of each time interval. Due to the dy-59

namic, data-driven process, we call our composite approach adaptable and60

the time intervals to be defined herein as (adaptable) composite periods. (2)61

Compositing is applied to all Sentinel-2A pixels, including those that are not62

part of the previously compiled training dataset. It is therefore likely that63

not all pixels can be compiled cloud-free in each composite period, so that64

here pixel-based compositing takes place within combinations of composite65

periods. Temporal subsets of the compiled training dataset are extracted ac-66

cordingly, thereby requiring multiple prediction models for region-wide land67

cover mapping in APiC.68

The dynamic, data-driven generation of composite periods is central to69

our approach, as the spectral trajectories of land cover’s phenology are cap-70

tured in more detail in high-resolution training data. This is in contrast to71

earlier studies, in which composites were created monthly wise (Roy et al.,72

2010) or around static (Griffiths et al., 2013) or adaptive seasonal target73

days-of-the-year (Frantz et al., 2017). Manually specified target days (White74

et al., 2014) require expert knowledge about the seasonal growth cycle in75

5



the study area and for each land cover type of interest. This knowledge can76

also be derived by spectral indices such as the normalized difference vegeta-77

tion index (NDVI) to determine the season of main photosynthetic activity78

(Griffiths et al., 2013).79

Within a thematically detailed land cover classification, however, few80

target days or long time intervals would disregard the different phenological81

patterns of the individual species. Cereals, for example, undergo a phenolog-82

ical cycle of nine growth stages from germination to senescence (Lancashire83

et al., 1991; Witzenberger et al., 1989). The distinction between cereal crops84

can only succeed if the temporal shifts in their growth phases can be identi-85

fied. Once target days/intervals have been defined, their application in other86

regions may be undermined by changing climatic conditions and by the pres-87

ence of plants with different vegetation dynamics. APiC is therefore less88

about when but rather how often growth phases can be captured in image89

composites without drawing on regional prior knowledge. That makes our90

data-driven approach easily applicable to regionalized studies. Accordingly,91

we have applied APiC not only once for the whole of Germany, but separately92

for six landscape regions.93

One could argue that fixed, very narrowly defined time intervals would94

be even better suited to resolve plant dynamics. However, cloud-free pixel95

observations may be missing at these shorter intervals. Temporal data gaps96

in composites can be filled, for example, by regression imputation or mean97

imputation (Griffiths et al., 2019). In APiC, compositing is only based on98

available surface reflectance data, leading to very dense sequence of composite99

periods or - in times of persistently high cloud coverage - to larger temporal100
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gaps between periods.101

In summary, APiC differs from common classification methods in two102

main respects. First, APiC uses only available ground reference data and103

corresponding cloud-free Sentinel-2 pixels to define composite periods. Max-104

imising their number requires composite periods be adaptable in length and105

temporal arrangement. Second, data imputation methods are not applied in106

APiC. Instead, multiple classification models are used for region-wide clas-107

sification in order to account for cloud-free observation times on a pixel-by-108

pixel basis. The different prediction errors of the classification models allow109

a better understanding of the processes within APiC and a comprehensive110

evaluation of the results.111

Our paper is structured as follows: The data used for regionalised land112

cover mapping are presented in section 2. The method section 3 first describes113

common methods used in APiC. Hereafter, central elements of APiC are114

defined: composite periods, the compiled training dataset, and the use of115

multiple prediction models for a region-wide classification. The classification116

result and other outcomes of APiC are presented and discussed in sections 4117

and 5, respectively. Our concluding remarks are given in section 6.118

2. Data119

2.1. Satellite data120

Sentinel-2A data were used to classify Germany’s agricultural land for121

the year 2016 (Sentinel-2B was launched not until 2017). We opted for the122

higher spectral resolution (9 spectral bands) at 20 meter ground resolution to123

benefit from the spectral bands in the near-infrared (red edge) and shortwave-124
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infrared. The spatial resolution is suitable for our classification problem on125

the landscape level and resolves most field parcel sizes in Germany. In total126

7200 Sentinel-2A tiles of the year 2016 were downloaded from the ’Coperni-127

cus Open Access Hub’ (https://scihub.copernicus.eu), which were converted128

from radiance to bottom of atmosphere reflectances using ESA’s processor129

Sen2Cor (Louis et al., 2016) in a (semi-) automatic processing routine. In ad-130

dition, a so-called scene classification (SCL) image is generated by Sen2Cor,131

which identifies pixels that have been influenced by clouds or haze. For clas-132

sification purposes, only pixels were used assigned to the classes ”dark area133

pixels”, ”vegetation” or ”bare soil” in the SCL image and thus identified as134

cloud-free. For the sake of simplicity, our definition of the term ’cloud-free’135

comprises all pixels showing land surface reflectances and therefore excludes136

not only cloud contaminated data but also missing data (’blackfilled areas’).137

Since winter crops of the following year are already sown in autumn, we have138

only used the satellite images from January to the end of October for the139

land cover classification in 2016.140

A total of 470,578,123 Sentinel-2 pixels were classified, which is approx-141

imately 188231.2 square kilometers. With a total size of Germany of about142

357578.2 square kilometers, this results in a relative proportion of 52.64%.143

This corresponds very well to the official figures according to which 50% of144

the land area is used for agriculture.145

2.2. Ground observational data / Ancillary Data146

Digital landscape model147

The digital landscape model (DLM) of the official topographic-cartographic148
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information system (ATKIS) from 2015 was used to differentiate between149

agricultural and non-agricultural areas. The numerous polygons of this vec-150

tor data set were aggregated accordingly into the following categories: 1.151

urban, 2. water, 3. forest, 4. other vegetation and 5. farmland (including152

grassland, stone fruit plantations and hops). Subsequently, the shapefile was153

tailored to the geometric specifications of the Sentinel-2 tiles and rasterised154

to a 20 metre grid. Only the Sentinel-2A pixels matching the ”farmland”155

class pixels were considered in the subsequent classification.156

157

Landscape regions158

Germany is characterized by different climate conditions and its landscape159

was influenced by different glacial-morphological and soil formation pro-160

cesses. Growth conditions vary respectively across the country. As a result161

our classification was separately performed in predefined landscape regions162

whose demarcation is based on those biogeographical conditions (Fig. 1,163

U.Hauke & A. Ssymank, Federal Agency for Nature Conservation (not pub-164

lished) based on IFAG (1979); Meynen et al. (1953-62)). The region Alps in165

the original dataset has been joined to the region Alpine Foreland for this166

study.167

The sandy, hilly plains of the two lowland regions in the northwest (NW)168

and northeast (NE) part of Germany are closest to the sea and were mainly169

formed by ice age glaciers. The Upland regions are characterised by steeper170

and forested low mountain ranges. The Alpine Foreland is shaped by hilly171

meadows and forests in the north and end moraine landscapes in the south.172

In general, all western regions are more affected by the mild marine climate173
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so that Germany’s warmest places on average can be found in the southwest174

(SW-Upland region). A more continental climate characterises the eastern175

regions and the Alpine Foreland. Due to fertile loess deposits, the largest176

agricultural plains can be found in the NE-Lowland and E-Upland regions.177

First, since phenology is the main driver for the differentiation of land178

cover types, we think that the consideration of landscape regions will improve179

the classification result. Second, we want to demonstrate that establishing180

composite periods is indeed an adaptable process to the given data availabil-181

ity and cloud coverage at the study site.182

183

Integrated administration and control system184

The EU Member States are accountable to maintain an integrated admin-185

istration and control system (IACS) that was introduced to harmonise the186

agricultural policy between the countries and to support fair EU-payments187

to the landowners. This vector data set was provided by the state authorities188

we contacted and describes the geometry of individual field parcels, including189

the land cover types cultivated in the year 2016. These anonymised infor-190

mation was used for calibration (training) and validation of the land cover191

classification. The IACS data is distributed across Germany over about 25%192

of the total area, but differ in their extent within landscape regions (Fig.193

1). The clustered data distribution in southern Germany is based on rect-194

angular geometries, which we have provided for the states of Hesse, Baden-195

Wuerttemberg and Bavaria. This allowed us to cover the main agricultural196

areas in these regions. Similar to the DLM, the IACS shapefiles were tailored197

to the geometric specifications of the Sentinel-2 tiles and rasterised to a 20198
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metre grid. We have found that the land cover types in the reference data are199

unbalanced, meaning that for the most wide-spread land cover types, such as200

winter wheat or grassland, many millions of pixels are available, for others201

only a few thousand (Table 1). However, in order to include the most common202

crops (including smaller classes like spelt or spring oat) in the classification,203

we have set the minimum number of pixels to be available for each land cover204

type to the absolute threshold of 20,000 pixels. Due to its local relevance, we205

made an exception for the class stone fruits in the Alpine Foreland region,206

which was only represented by about 12,000 pixels. The strawberries class207

in the SW-Uplands was also included despite the lower 18,000 pixels. Given208

this threshold and including all landscape regions, a total of 19 land cover209

types were mapped: winter wheat, spelt, winter rye, winter barley, spring210

wheat, spring barley, spring oat, maize, legumes, rapeseed, leeks, potatoes,211

sugar beets, strawberries, stone fruits, vines, hops, asparagus and grassland212

(Table 1).213
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Fig. 1: The landscape regions of Germany (from South to North, black lines): Alpine

Foreland (1), SW-Uplands (2), W-Uplands (3), E-Uplands (4), NE-Lowlands (5) and NW-

Lowlands (6). Around 25% of Germany and thus approx. 50% of the total agricultural

area is covered by reference data (IACS) (grey + magenta). Reference data used for pixel-

based compositing of the training data is shown in magenta. The grey colored areas were

used for validation.
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3. Methods214

3.1. Random forest classifier and validation215

In APiC, a machine learning classifier, random forest (RF) (Breiman216

et al., 1984), is used for a supervised pixel-based land cover classification. RF217

is well-suited to solving high-dimensional problems and thus for the analysis218

of multispectral satellite time series. We applied Breiman and Cutler’s RF219

implemented in R (’randomForest’ package from Liaw and Wiener (2013)).220

Here, we set the internal RF parameters ntree (the number of internally221

grown trees) to 500 and mtry (the number of variables at each split) to the222

square root of the number of input variables.223

Out-of-bag error224

Besides its ability to work with numerous predictor variables, RF internally225

calculates estimates of the prediction error. Since RF trees are drawn by226

boostrapping it is referred to as the out-of-bag (OOB) error (Breiman, 2001).227

Due to our adaptable classification approach, in which multiple RF models228

are computed, we have used the OOB error to handle class imbalances in the229

compiled training dataset, to map the model prediction error at pixel level,230

and to determine the importance of composite periods.231

Validation232

An independent accuracy assessment of our classification result was per-233

formed based on the Sentinel-2A pixels and reference data that were not234

used for pixel-based compositing of the training data. For validation we235

have computed the confusion matrix, user accuracy (UA), producer accu-236

racy (PA), overall accuracy and the Kappa coefficient (Congalton, 1991).237
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The calculated class-specific accuracy measures were also used to validate238

the class OOB error and gain insight into the general model behavior.239

3.2. Latin hypercube sampling240

For very large, multispectral datasets, such as the compiled training241

dataset in APiC, it would be beneficial to work only with samples that cover242

the original value range of each spectral band. Latin hypercube sampling243

(LHS) (McKay et al., 1979), a constrained Monte-Carlo sampling scheme244

is used to select samples which cover the hypercube of the feature space245

(Minasny and McBratney, 2006). We applied the R-package Conditioned246

Latin Hypercube Sampling (Roudier, 2011) that implemented LHS with a247

search algorithm based on heuristic rules combined with an annealing sched-248

ule (Metropolis et al., 1953; Minasny and McBratney, 2006).249

3.3. Normalized difference vegetation index250

The normalized difference vegetation index (NDVI) is considered as an251

indicator of vegetation activity. In a natural seasonal growth cycle, rising252

NDVI values up to +1 indicate vegetation with increasingly dense and greener253

leaves, while senescence is associated with declining NDVI values. Thus,254

NDVI has frequently been used for monitoring vegetation phenology and255

other ecological variables. It is calculated from reflectance values in the near256

infrared and the red visible range. The NDVI ratio for the Sentinel-2 bands257

is defined as:258

Band 8865 − Band 4665
Band 8865 +Band 4665

, (1)

where the lower case number refers to wavelength in nm unit.259
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Fig. 2: Flow chart of the proposed adaptable pixel-based compositing and classification

approach (APiC). During pixel-based compositing of training data (i.e. related to cloud-

free Sentinel-2A pixels that are covered by reference data) composite periods are defined

within an iterative process. At its end, composite periods were created whose length

and temporal arrangement are adapted to the cloud cover in the satellite data and to

the land cover information in the reference data. Additionally, a training dataset with a

minimum sample size per land cover class has been compiled. For each composite period,

reflectance values must be available in the compiled training data set (non-sparse). Due

to class imbalances and excessive data volumes, the size of the training dataset is reduced

via LHS. Pixel-based compositing of prediction data is based only on composite periods

in which cloud-free pixel observations are available. According to these combinations of

composite periods, temporal subsets are extracted from the compiled training dataset and

passed to random forest. The number of prediction models to be computed therefore

reflects the satellite observation density and/or temporal cloud coverage at pixel level.

The OOB error output of each random forest model is used to create a map of prediction

error estimates that complements the final land cover map. The windows marked with

the letters A, B, C illustrate respective terms in the flow chart.16



3.4. APiC260

The following methodological description of APiC corresponds to the261

workflow shown in Fig. 2. Please note that in this study APiC was ap-262

plied separately for each landscape region.263

3.4.1. Pixel-based compositing of training data264

In APiC, composite periods are used to compile a multitemporal and265

multispectral training dataset from cloud-free Sentinel-2A pixels that are266

covered by IACS reference data. A high temporal resolution of the compiled267

training dataset allows the vegetation phenology to be spectrally mapped268

more accurately. We therefore aim to maximise the number of composite269

periods within the classification year.270

Composite periods271

We consider a time period in which cloud-free pixels are compiled to be272

adaptable, since it is data-driven established, i.e. its length and temporal273

localisation are not fixed in advance. A composite period is defined by its274

maximal length, which must not exceed 14 days (lCP ≤ 14). Phenologi-275

cal studies have shown that, on average, there is no substantial progress in276

plant growth within two weeks and that the temporal shift between identical277

growth stages of different land cover types is - in most cases - more than278

two weeks (Xu et al., 2017). Thus, the spectral fingerprint of a growth stage279

should be well captured for each land cover type given this time window.280

Compiled training dataset281

Each sample (pixel) of the compiled training dataset is labelled with a land282

cover class from the reference data. In our classification context, land cover283
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describes the outcome/dependent variable, while the associated spectral data284

of all composite periods represent the predictor/independent variables.285

(1) The compiled training dataset is defined as a non-sparse matrix, that286

is, spectral values must be available for each composite period (NA values287

are not permitted). Hence, the number of predictor variables is given by288

the number of composite periods and the spectral resolution of the satellite289

system. For example, given the nine Sentinel-2A spectral bands, a compiled290

training dataset based on 12 established composite periods would have 108291

predictor variables.292

(2) It is defined, that the compiled training dataset consists of at least293

5000 samples per land cover class (nLC ≥ 5000). Our empirical analyses294

showed that 5000 training pixels cover most of the spectral variance of a295

land cover class. This may be subject to modification depending on the size296

of the study area, land management and land cover types to be classified.297

Iterative process298

Compositing starts with analysing Sentinel-2A images from the first obser-299

vation date of the year. The first composite period is established when 5000300

cloud-free pixels per land cover class are available, otherwise the Sentinel-2A301

images of the next observation date are additionally included. In the latter302

case the same pixel may occur cloud-free in more than one satellite image.303

For compositing, this pixel is then taken from the image with the least total304

cloud coverage. If the length of a composite period reaches 14 days but the305

minimum 5000 pixels have not been found for all land cover classes, the sec-306

ond observation date of the year will be considered as the new start date for307

the compositing procedure. This process continues until the first composite308
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period is established. All the following composite periods are created accord-309

ingly. Their earliest possible start date marks the first satellite observation310

after the end of the previous composite period.311

Since the compiled training dataset must be non-sparse, samples with312

missing spectral values for any composite period are removed. As the number313

of composite periods increases, it is more likely that land cover classes will314

no longer be represented by at least 5000 samples. Therefore, maximising315

the number of composite periods becomes an indefinite iterative process:316

ni = min(nLC) + I ∗ i, (2)

where ni is the number of samples that must be contained in the com-317

piled training dataset of the current iteration and only refers to the land318

cover class(es) that were underrepresented (< 5000 samples) in the previous319

iteration, min(nLC) equals 5000 and refers to the minimum number of sam-320

ples per land cover class that a compiled training dataset must contain after321

completion of the iteration process, I is set to 1000 and defines the increment322

of ni per iteration. i is initially set to zero and then increased by 1 for each323

iteration (0, 1, 2, . . . ).324

Starting the second iteration of pixel-based compositing (i = 1) with325

increased ni forces some composite periods to be adjusted in length and326

rearranged in time, as more cloud-free pixels need to be found for certain327

classes. The iterative process is aborted once a compiled training dataset328

has been created that is non-sparse and contains at least 5000 samples per329

land cover class.330
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3.4.2. Class imbalances331

Depending on the given reference data, the compiled training dataset can332

be affected by strong class imbalances, with some land cover classes being333

overrepresented by several orders of magnitude. These land cover classes334

inflate the compiled training dataset unnecessarily and increase the classifier’s335

computational load. It is also known that class imbalances in the training336

data affect the classification result of RF and the validation outcome (Janitza337

and Hornung, 2018; Karpatne et al., 2016; Stumpf and Kerle, 2011).338

Aiming at an operational classification framework, we automated the de-339

termination of appropriate class proportions in the compiled training dataset.340

Ten subsamples were created with increasing degrees of class imbalances us-341

ing LHS. In the first subsample all classes are evenly represented with 1000342

samples. In the next subsample, the size of the largest class was incremented343

by 5000 to 6000, 11000, ..., 46000. The other classes were sampled propor-344

tionally between 1000 and the respective maximum value. 1000 samples for345

the smallest class ensure the representation of its spectral variance and limit346

the size of the entire subsample. All ten subsamples were subsequently passed347

to RF to analyse the evolution of the OOB error geometrically. The error348

difference between a straight line connecting the OOB error value of the first349

(balanced) and last (most unbalanced) subsample and the OOB error curve350

was calculated. We expect the subsample where the calculated difference is351

largest to hold the best compromise between model performance and sample352

size. Its RF model will also provide more realistic class proportions in the353

land cover map and will therefore be used as the (reduced) compiled training354

dataset in our classification.355
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3.4.3. Pixel-based compositing of prediction data356

The compiled training dataset would be best qualified for training a pre-357

diction model for land cover classification as it promises the highest temporal358

resolution. However, this means that each pixel to be classified would need359

to be observed cloud-free at least once in each composite period. In this360

case, the number of predictor variables of compiled prediction data would be361

identical to those in the compiled training dataset. For pixels not covered362

by reference data and therefore not considered during compositing of the363

trainings data this is unlikely. Rather pixel-based compositing leads to data364

gaps at different composite periods due to missing vegetation reflectance val-365

ues. Theoretically, there are 2n − 1 possible combinations of how data gaps366

can occur across the compiled prediction data, where n refers to the num-367

ber of composite periods. Assuming that our compiled training dataset is368

based on 12 composite periods, it may be that for some pixels to be clas-369

sified, cloud-free observations are available only in the first six composite370

periods (to name just one possible combination of 4095). To classify this371

set of compiled prediction data while avoiding data imputation, we rather372

ignore respective periods in the compiled training dataset. This means that373

the corresponding temporal subset (in our example the first six composite374

periods) is extracted from the compiled training dataset and then passed375

to RF. The trained model is then applied to the particular set of compiled376

prediction data for land cover classification.377

Prior to pixel-based composition of the prediction data, the length of378

composite periods is maximally extended to the permissible 14 days, so that379

potentially further satellite images can be taken into account. A temporal380
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extension of composite periods includes both previous and subsequent days381

equally, but avoids temporal overlaps with other composite periods. Closely382

spaced composite periods may therefore be shorter than 14 days.383

3.4.4. Using RF’s OOB error384

Multiple RF models are computed within APiC to dynamically account385

for different satellite observation densities and temporal cloud coverage at386

pixel level. Just as each model is based on different temporal subsets of the387

compiled training dataset, a different combination of predictor variables was388

used for each model. Since predictor variables of each composite period have389

different effects on model performance, corresponding changes in OOB error390

estimates also occur for each model run. Hence, pixels are now assigned391

different OOB error values and the land cover map can be interpreted taking392

model error estimates into account.393

Importance of composite periods394

To capture land surface phenology as accurately as possible, we were aim-395

ing to maximise the number of composite periods within the classification396

year. We then let RF decide on their importance. In contrast to the vari-397

able importance, which RF generates by default, namely Mean Decrease Gini398

or Mean Decrease Accuracy, we wanted to analyze the impact of individual399

composite periods on model performance instead of referring to individual400

predictor variables, namely the spectral bands. The importance for a par-401

ticular composite period and land cover class was determined by the class402

OOB error difference between the RF model based on all composite periods403

and the models where data from a particular period was not included. The404
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difference was then averaged and normalized by the standard deviation of the405

differences. We have addressed the land cover classes individually in order406

to take the different phenological behaviours into account.407

4. Results408

4.1. Composite periods409

We applied APiC for each landscape region separately, which is reflected410

in the different temporal arrangement of the composite periods for each re-411

gion (Fig. 3). The composite periods established within the iterative process412

of pixel-based compositing (black boxes) usually extend to the maximum of413

14 days but may be shorter in periods of low cloud coverage. In many cases,414

it is a single, largely cloud-free observation at the end of a composite period415

from which samples of the compiled training dataset originate (visualized as416

a long red line on the right side of a black box). However, the first composite417

period of the NW-Lowlands, for example, shows that 5000 pixels per land418

cover class can also be compiled equally from several observation dates. The419

fourth composite period for W-Uplands, on the other hand, was established420

based on one observation only. This example illustrates that without the ex-421

tension of this composite period to 14 days (black + white boxes), additional422

satellite images could not have been used for the compilation of prediction423

data. The arrangement of composite period varies in each landscape region,424

which is most evident in spring, with the number of composite periods be-425

ing lower in the southern regions (SW-Uplands and Alpine Foreland) than426

in the northern regions. For SW-Uplands only six composite periods could427

be established during the year, less than half the number compared to W-428
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Uplands (14 composite periods). In all regions no composite periods could429

be identified in January and February 2016.430

Fig. 3: Temporal arrangement of composite periods in six landscape regions. The total

number of periods is given in brackets. Established composite periods are shown as black

boxes. The cyan dots mark the date on which satellite observations were available during

this period. The length of the red lines shows how many pixels from respective satellite

observations of a composite period were included in the compiled training dataset. The

black boxes + its adjacent white space correspond to the composite period length used

for prediction. This only applies in cases where the black box comprises less than 14 days

and could be extended to 14 days without a temporal overlap with subsequent and/or

preceding composite periods. Since winter crops of the following year are already sown in

autumn, possible composite periods for November and December are excluded from the

classification and are not shown here.
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4.2. Compiled training dataset and class imbalances431

Table 1 lists the number of samples per land cover class of the compiled432

training dataset (column Train). Class imbalances become particularly ev-433

ident between winter wheat or grassland as the most common land cover434

types and smaller classes such as leeks, strawberries or hops. Our analyses435

have shown that this would favor larger classes being classified at the expense436

of smaller classes. Therefore, it was our goal to systematically determine the437

appropriate class proportions in the compiled training dataset. Fig. 4 shows438

that the OOB error decrease exponentially as a function of increased imbal-439

ances (and increased sample size). Finally, we used the fourth subsample440

(marked by a vertical grey line) as the (reduced) compiled training dataset441

in our classification (third column in Table 1). The sample size has been442

reduced by at least 85% compared to the original training dataset, which443

accelerates the calculation of many RF models. The lower class imbalance444

in the reduced compiled training dataset leads to a more realistic class rep-445

resentation in the land cover map in average and to more balanced UA and446

PA results in the validation result.447
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Fig. 4: The evolution of RF’s OOB error (lines) and sample size (dots) between ten

subsamples of the compiled training dataset with reduced class imbalances. The results

for all six landscape regions are shown. At subsample number 1 all land cover classes

are represented equally (1000 samples). The class imbalance of the original compiled

training dataset is gradually approximated in the remaining 9 subsamples. The OOB error

decrease exponentially as a function of increased imbalances. The vertical grey line marks

the trade-off between reduced class imbalances and acceptable OOB error (corresponding

approximately with the knee of the curves). This subsample will be used as the (reduced)

compiled training dataset in our classification.
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4.3. Multiple prediction models (= combinations of composite periods)448

During pixel-based compositing of the prediction data it turned out that449

cloud-free pixel observations were often not available in all composite pe-450

riods, but rather in different combinations of composite periods. For each451

combination, a temporal subset of the compiled training dataset was passed452

to RF to train individual prediction models. A comparison of the regional453

results thus shows that the number of computed prediction models grows454

exponentially with the number of established composite periods (Table 2).455

While the classification of the SW-Uplands region (six composite periods) is456

based on 63 prediction models (the maximum possible), 7291 models (45%457

of the maximum possible) are used to classify the region W-Uplands (14458

composite periods).459

Table 2: Number of RF models used per landscape region

Landscape region Number of

RF models

Alpine Foreland 1017

SW-Uplands 63

W-Uplands 7291

E-Uplands 1848

NE-Lowlands 511

NW-Lowlands 1990

Total 12720
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4.4. Importance of composite periods460

The calculated importance of composite period is shown in Fig. 5 for five461

landscape regions, four crop types (winter wheat, spring barley, rapeseed,462

sugar beets), stone fruits and the grassland class. We have also calculated the463

NDVI for each composite period and land cover type to interpret importance464

in relation to land cover phenology. For better illustration, composite periods465

are presented as single points in time in Fig. 5 (red and green dots) by466

calculating the weighted time average from respective observation dates.467

For the classification of spring cereals, early observation periods in spring468

are most important, coinciding with the time of NDVI rise. In contrast, pe-469

riods in early/mid summer when NDVI begins to decline are more relevant470

for winter cereals. This pattern can also be found in the model results of471

the other spring/winter cereal species. The plant growth of sugar beets and472

maize begins at about the same time, but thereafter the NDVI for sugar473

beets reaches its maximum values faster. The highest plant vitality for both474

crop types is reached in late summer, followed by a faster decline in NDVI for475

maize. The composite period at the beginning of plant growth is especially476

important for sugar beets, while for maize the periods a few weeks later are477

weighted higher. The NDVI for rapeseed usually drops briefly towards May.478

We explain this occurrence with the yellow rape blossom. According to this479

pronounced phenological event, the period is considered the most important.480

As expected, the NDVI values for grassland and stone fruits remain consis-481

tently high throughout the year. In contrast to other classes, here the esti-482

mated importance in relation to NDVI varies more strongly. Although higher483

importance values for both classes do not match any pronounced NDVI fea-484
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tures, for stone fruits composite periods in spring are assigned usually more485

weight. For grassland, higher importance values are computed for periods in486

summer.487

Fig. 5: Importance of composite periods (red dots) defined by the normalized differences

of the prediction error between models for which respective composite period was omitted

and the highest temporally resolved model. The higher the prediction error rates, the more

important is the corresponding composite period for the overall model performance. The

normalized difference vegetation index (NDVI) per composite period was also calculated

(green dots). The evolution of importance and NDVI values over the year (red and green

lines) are presented for five landscape regions, Alpine Foreland, W-Uplands, E-Uplands,

NE-Lowlands, NW-Lowlands, and four crop types (winter wheat, spring barley, rapeseed,

sugar beets), as well as the stone fruits and the grassland class.
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4.5. Classification Accuracy488

Fig. 6 shows the classification result for Germany and close-ups of four se-489

lected regions that were not covered by the IACS reference data. The classifi-490

cation map can be viewed at http://ufz.maps.arcgis.com/apps/Styler/491

index.html?appid=84a36f4e815e4aa88f38a6d0f8382590 and downloaded492

at http://PANGAEA...TO-BE-COMPLETED. In general, single agricultural parcels493

are clearly identifiable in the land cover map, indicating that our classification494

well reproduces both, inter-field heterogeneity and intra-field homogeneity.495

Parcel sizes differ mainly between West- and East-Germany, while they are496

generally larger in the east (close-up 2). Winter wheat is predominantly cul-497

tivated in the Magdeburger Boerde (close-up 2) and in the Schleswig-Holstein498

Morainic Uplands (eastern part of close-up 1), whereas maize dominates the499

northwest and south regions (western part of close-up 1 and close-up 4).500

Sugar beets are mainly cultivated in the region of close-up 3.501

A statistical validation of the classification result was performed by cal-502

culating PA and UA for individual land cover classes of the regions (Table 3).503

The overall accuracy and Kappa coefficient of the regions are also given in504

the table. The average overall accuracy over all regions accounts to around505

88%. Despite the different number of composite periods, the overall accuracy506

differs only by a maximum of 4.38% between the regions.507

Land cover classes with very high PA and UA (mainly >= 90%) are508

grassland and winter wheat (with a tendency towards higher PA than UA)509

as well as maize, rapeseed and sugar beets (with the tendency towards higher510

UA than PA). Generally good results were achieved for the classes winter511

barley and hops (higher UA) and vines (higher PA). Good to moderate results512
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Fig. 6: Land cover map of Germany. In total 19 land cover classes were classified: winter

wheat, spelt, winter rye, winter barley, spring wheat, spring barley, spring oat, maize,

legumes, rapeseed, leeks, potatoes, sugar beets, strawberries, stone fruits, vines, hops,

asparagus and grassland. The land-cover classes forest, other vegetation, urban area, and

waters were taken from the ATKIS data base.

were achieved for spring barley and potatoes (rather higher UA) and without513

clear tendencies in UA/PA for legumes, leeks and asparagus. The stone fruits514

class received good UA (up to 87%) (but clearly worse in W-Uplands) with515

mostly lower PA (up to 65%). Spelt and winter rye also show much higher UA516

on average (up to 78%) than PA (rarely higher than 30% but with 65% quite517

high for winter rye in NE-Lowlands). On average, the classes spelt, spring518

wheat, spring oat and strawberries were assigned lowest accuracy. In regions519

where the classes stone fruits and grassland occur together, the former is520
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usually classified as the latter, which is reflected in a low PA for stone fruits.521

The same applies to cereals, where low PA values of spelt, winter rye and522

spring wheat are mainly due to their misclassification as winter wheat.523

Classification performance can vary substantially among the regions. Pota-524

toes were classified with over 90% accuracy in the Alpine Foreland region,525

but only with 67% in the E-Uplands and mostly 70-80% in the other regions.526

Stone fruits’ UA differs by almost 50% between the regions E-Uplands and527

W-uplands. Generally, the classes best reproduced show not only the most528

balanced results between PA and UA, but they are also very stable across529

all regions.530
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4.6. Model prediction error531

Fig. 7 shows the spatial distribution of the OOB error over Germany.532

Some regions are characterized by generally lower (W-Uplands, E-Uplands)533

or higher (SW-Uplands) prediction errors and thus stand out clearly. Cross-534

regional features are three strips of high OOB errors, narrowing from south-535

west to northeast according to the satellite orbit. Adjacent swaths do not536

overlap in these areas and therefore only one image is captured per satellite’s537

orbit cycle. On closer inspection, high OOB errors can be also attributed to538

individual cloud patterns (close-up 1 and 2).539
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Fig. 7: The mapped averaged OOB (Out-Of-Bag) error for Germany. The OOB error

originates from various random forest models, each trained with a different temporal subset

of the compiled training dataset. Differences in the overall prediction error between the

landscape regions, e.g. between Alpine Foreland and SW-Uplands, are clearly visible. The

”stripes” with higher OOB errors running from northeast to southwest indicate areas with

no overlap of adjacent satellite tracks and hence fewer satellite observations. Different

OOB errors within regions are also due to clouds.

To better assess the significance of the class OOB error (based on mod-540

eling), we have investigated its relationship to classification accuracy (based541

on reference data) (Fig. 8). Here the class OOB errors of the different pre-542

diction models (grey dots) are compared with the producer accuracy from543

Table 3.544
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Per land cover class the value range of the OOB error is large (gray dots)545

except for the classes that achieved highest PA. However, the distribution546

of the class OOB error is strongly skewed (less so for SW-Uplands) to its547

lower values (higher accuracy) as shown by the averaged class errors (black548

dots). In all regions, higher PA is well represented by the averaged class OOB549

errors, while with decreasing PA the errors are usually underestimated (offset550

to the 1:1 line). The slope of the regression line (black line) for SW-Uplands551

corresponds most closely to the 1:1 line. Relative PA differences between552

classes are generally well reproduced by the class OOB error, as indicated by553

the given R2 value, which represents the average coefficient of determination554

of each linear model.555
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Fig. 8: Modelled class accuracy versus validation’s producer accuracy for all landscape

regions. Modelled class accuracy is expressed by 1 − class OOB error. The grey dots

represent the different class OOB errors of the random forest models. The averaged error

values per land cover class are visualized as black dots and the corresponding linear model

is shown as black line. The averaged value of the correlation coefficients (R2) of the linear

models of all model runs is given.

5. Discussion556

The high spatial and temporal resolution of Sentinel-2 poses the challenge557

of how to use information from complex data for land cover classification, and558
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specifically, how to deal with the obstacle of frequent cloud cover that hinders559

optical remote sensing worldwide. Therefore, our motivation was to develop560

a data-driven classification method based solely on measured reflectance val-561

ues. Thus in APiC i) the establishment of composite periods is a dynamic562

process and involves the compilation of non-sparse training data, ii) the data563

availability at pixel level determines the total number of prediction models564

to be computed.565

In previous studies, a single prediction model was used to classify a time566

series of seamless, cloud-free image composites of the entire study area. At567

shorter time intervals, cloud-free pixel observations are increasingly missing,568

which were then calculated by statistical data imputation methods. However,569

the effect of imputed data on the classifier’s performance remains usually570

unclear, even though the number of clear-sky observations for each pixel has571

been reported in some studies (Frantz et al., 2017; Griffiths et al., 2019).572

To our knowledge, the number of interpolated data points per time interval573

and land cover class has not yet been reported, but would nevertheless limit574

the interpretation of the classification result (and the importance of time575

intervals used). The results of this study demonstrate, that a data-driven576

and dynamic approach at pixel level allows qualitative conclusions to be577

drawn about the predictive power of classification models, which go beyond578

mere data availability.579

5.1. Regionalisation and composite periods580

Especially in continental or global classification studies biogeographical581

characteristics of a region should be taken into account as they determine582

the phenology of a plant community. In other parts of the world, cloud cover583

38



may be more frequent, species composition more diverse, and phenological584

cycles more complex, contradicting a standardised classification procedure.585

As a result, there can be no general solution for fixed or predefined temporal586

intervals. For this reason, we have introduced (adaptable) composite periods587

that are tailored to respective cloud-free satellite observations and reference588

data availability of the study site.589

The separate classification of six landscape regions has demonstrated that590

our methodology can be used in an operational framework for regionalised591

studies outside Germany, since the user only decides on the maximum length592

of composite periods and the minimum sample size of land cover classes in593

the training dataset. Thereafter, the definition of composite periods is au-594

tomated. This flexibility of APiC was shown in Fig. 3, where for Alpine595

Foreland and SW-Uplands only one composite period was defined in spring596

and thus less than in other regions. This can be attributed to different597

weather conditions and/or the lower amount of reference data. Neverthe-598

less, no decrease in classification accuracy was observed for both regions. It599

appears that phenological differences between land cover types, which are600

more pronounced in spring, have been well captured in this single composite601

period. It also shows that the results are not determined by the quantity but602

by the spatial distribution of the reference data and therefore by the regional603

representativeness of the compiled training dataset.604

As with other classification approaches, APiC is expected to perform605

poorly in regions with very heavy cloud cover such as the tropics. In such606

cases, the region to be classified should be extended to less cloudy areas,607

even if they have different biogeographical characteristics. Depending on the608
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availability of reference data, this can significantly increase the density of609

composite periods. In areas with high cloud coverage, higher model predic-610

tion errors are then assigned to the classification result.611

5.2. Classification accuracy612

Our classification result has been extensively validated against the large613

IACS dataset. Depending on the land cover class, between 2.8% (asparagus,614

NW-Lowlands) and and 65% (spelt, SW-Uplands) of the reference data were615

used for the compiled training dataset before it was reduced via LHS. The616

samples in the reduced compiled training dataset, which was finally passed617

to RF for the computation of prediction models, were based on only 0.04%618

(maize, NW-Lowlands) or 8% (stone fruits, Alpine Foreland) of the reference619

data. Compared to standard validation methods, which are rather based on620

30% of the data while 70% are used for training, our classification perfor-621

mance has been reviewed more extensively.622

The good validation results achieved for maize and sugar beets are cer-623

tainly due to the relatively late sowing date between mid-April to mid-May624

and the late ripening phase. On the contrary, phenological and morphologi-625

cal similarities among the cereal types hamper their spectral differentiation,626

resulting in lower classification accuracy for the smaller classes spelt, winter627

rye, spring wheat and spring oat. Smaller parcel sizes may also have affected628

classification accuracy as the risk of mixed pixels is increased. Potatoes,629

strawberries, leeks and asparagus are often grown on fields that are not or630

barely larger than a Sentinel-2 pixel, mixing spectral properties of the adja-631

cent land cover in the recorded signal. This hampers both, the compilation632

of representative training data and subsequent land cover prediction.633
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5.3. Class imbalances634

Class imbalances in the reference data have a strong effect on classifica-635

tion accuracy, with the larger classes having the greatest impact on overall636

accuracy. Furthermore, dominant land cover classes in the training data637

are classified at the expense of smaller classes. Overrepresentation of larger638

classes in a land cover map mainly affects the validation results (lower PA)639

of the smaller class. We observed such effects, for example between grass-640

land, the larger class, and stone fruits, the smaller class, which were often641

confused due to their related species composition and spectral similarities.642

In the case of balanced class proportions (not shown in the results section),643

PA could be improved for stone fruits, but only with a concurrent decrease644

in UA. For grassland, only minor changes in accuracy were noticed. We used645

an empirical approach to find a reasonable level of class imbalances in the646

training dataset that balances UA and PA well for most land cover classes647

(Janitza and Hornung, 2018; Stumpf and Kerle, 2011). The proposed pro-648

cedure uses LHS to reduce the number of samples in the compiled training649

dataset while preserving the original spectral variance. The reduced dataset650

size accelerates the runtime of RF, which is advantageous for the calculation651

of multiple prediction models.652

5.4. Multiple prediction models653

Our dynamic classification approach uses multiple prediction models at654

pixel level, which is more computationally intensive than using a single model655

based on entire cloud-free image mosaics. For example, having 14 composite656

periods established for a region, a maximum of 214 − 1 = 16383 model runs657

(= combinations of composite periods) may be necessary to classify the total658
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area. However, on a Linux-based computing cluster with a total of 2564659

cores, 25.8 TB RAM and a parallel high performance file system, computing660

time was kept within days. We actually turned the alleged disadvantage661

to our advantage by relating the classified land cover to the mapped model662

prediction error. Additionally, we used the class OOB error for calculating663

the importance of composite periods.664

5.5. Model prediction error665

Comparing model performance with the PA from the validation revealed666

that our RF models mostly overfit. We assume that higher number of com-667

posite period come with increased (multi-) collinearity between the predictor668

variables and thus favoring overfitting (Dormann et al., 2013; Rodriguez-669

Galiano et al., 2012; Shih et al., 2019). The overfitting applies in particular670

to the smaller classes with lower PA and has therefore only slightly affected671

the overall accuracy of the validation result. Nevertheless, it could also be672

shown that there is a clear relationship between modelled class accuracy and673

PA. This can be useful for continental or global applications where validation674

data is insufficient or may even be missing. However, due to the different675

degree of overfitting, a cross-regional comparison of the OOB error is not676

always meaningful. Fig. 7 gives the impression that SW-Uplands has been677

classified worst, which could not be verified by our validation. Rather, it is678

the only region where almost no overfitting has been observed.679

5.6. Importance of composite periods680

The presence of highly correlated predictors impacts the importance mea-681

sure of single variables (Gregorutti et al., 2017; Strobl et al., 2007). Likewise,682
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in our study, the interpretation of importance becomes more difficult with a683

higher number of composite periods. Here, collinearity is certainly the main684

reason why consecutive composite periods often showed similar importance685

scores. A comparison of the importance measure between the regions should686

take into account the different composition of land cover classes, number687

of composite periods and their temporal arrangement. Nonetheless, we were688

able to show that i) class specific traits occur across regions, ii) closely spaced689

composite periods may have significant differences in their importance and690

iii) composite periods established at times of photosynthetic change are usu-691

ally of higher importance. In this respect, we can draw the conclusion that it692

is indeed worth to maximise composite periods within the classification year693

to ensure the detection of important phenological events (such as rape flow-694

ering). Although composite periods in spring and early summer tend to have695

higher importance, there is no evidence that months of other seasons per se696

can be neglected. It should be left to the classifier how composite periods697

are weighted according to region-specific conditions. However, to keep the698

number of predictor variables low, composite periods with consistently low699

importance can be excluded successively in subsequent classification runs.700

Whether this counteracts overfitting and thus leads to better classification701

accuracy with more realistic OOB error estimates has to be analyzed in a702

follow-up study.703

6. Conclusions and outlook704

In this work we presented a highly automated pixel-based compositing705

and classification approach that was used to produce thematically detailed706
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land cover maps in six landscape regions. The agricultural area of Germany707

was thus classified into a total of 19 land cover classes. APiC works largely708

data-driven, making it easily applicable to other study sites with different709

reference data (data extent and land cover composition), regional cloud cov-710

erage and satellite data availability. Time windows in which cloud-free satel-711

lite observations are used for classification adapt to these conditions and rely712

on only a few user-defined specifications. The classification result shown is713

based on more than 10,000 individual classification models, which allow the714

spatial representation of the estimated prediction error in addition to the715

actual land cover. While a high number of composite periods is necessary to716

detect relevant phenological phases, RF models might overfit with too many717

predictor variables (Karpatne et al., 2016), leading to highly optimistic OOB718

error estimates. The effect of collinearity has already been investigated for a719

large number of algorithms (Dormann et al., 2013). It should now be further720

investigated how other classifiers and their internally calculated prediction721

error estimates behave given a similar spectral data set.722

The new high-resolution thematic map can be used to analyse land cover723

changes and intensities in more detail than before. The associated ecological724

issues such as nutrient fluxes, pollination and insect mortality could thus725

be addressed more comprehensively. An answer to these questions is urgent726

and must be given across borders, so that an upscale of the classification to727

continental level is necessary. Currently, such an approach is hampered by the728

lack of or limited access to reference data in landscape regions with different729

biogeographical characteristics. Upcoming German-wide classifications for730

the years 2017+ will differ in that additional observations from the Sentinel-731
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2B satellite will be available. Analyzes will show whether and to what extent732

denser time series have an impact on the establishment of composite periods733

and resulting classification accuracy. In future studies the APiC concept can734

also be applied to other types of land cover classifications. For example, a735

map of agricultural land cover classes in combination with the most common736

tree species would open up new opportunities in many scientific areas such737

as ecological modelling and ecosystem services and will certainly be of great738

interest to farmers, forest managers and policy makers.739
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List of Figures930

931

Fig. 1:932

The landscape regions of Germany (from South to North, black lines): Alpine933

Foreland (1), SW-Uplands (2), W-Uplands (3), E-Uplands (4), NE-Lowlands934

(5) and NW-Lowlands (6). Around 25% of Germany and thus approx. 50%935

of the total agricultural area is covered by reference data (IACS) (grey +936

magenta). Reference data used for pixel-based compositing of the training937

data is shown in magenta. The grey colored areas were used for validation.938

939

Fig. 2:940

Flow chart of the proposed adaptable pixel-based compositing and classi-941

fication approach (APiC). During pixel-based compositing of training data942

(i.e. related to cloud-free Sentinel-2A pixels that are covered by reference943

data) composite periods are defined within an iterative process. At its end,944

composite periods were created whose length and temporal arrangement are945

adapted to the cloud cover in the satellite data and to the land cover informa-946

tion in the reference data. Additionally, a training dataset with a minimum947

sample size per land cover class has been compiled. For each composite948

period, reflectance values must be available in the compiled training data949

set (non-sparse). Due to class imbalances and excessive data volumes, the950

size of the training dataset is reduced via LHS. Pixel-based compositing of951

prediction data is based only on composite periods in which cloud-free pixel952

observations are available. According to these combinations of composite pe-953

riods, temporal subsets are extracted from the compiled training dataset and954
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passed to random forest. The number of prediction models to be computed955

therefore reflects the satellite observation density and/or temporal cloud cov-956

erage at pixel level. The OOB error output of each random forest model is957

used to create a map of prediction error estimates that complements the fi-958

nal land cover map. The windows marked with the letters A, B, C illustrate959

respective terms in the flow chart.960

961

Fig. 3:962

Temporal arrangement of composite periods in six landscape regions. The963

total number of periods is given in brackets. Established composite periods964

are shown as black boxes. The cyan dots mark the date on which satellite965

observations were available during this period. The length of the red lines966

shows how many pixels from respective satellite observations of a composite967

period were included in the compiled training dataset. The black boxes +968

its adjacent white space correspond to the composite period length used for969

prediction. This only applies in cases where the black box comprises less970

than 14 days and could be extended to 14 days without a temporal overlap971

with subsequent and/or preceding composite periods. Since winter crops of972

the following year are already sown in autumn, possible composite periods973

for November and December are excluded from the classification and are not974

shown here.975

976

Fig. 4:977

The evolution of RF’s OOB error (lines) and sample size (dots) between ten978

subsamples of the compiled training dataset with reduced class imbalances.979
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The results for all six landscape regions are shown. At subsample number980

1 all land cover classes are represented equally (1000 samples). The class981

imbalance of the original compiled training dataset is gradually approximated982

in the remaining 9 subsamples. The OOB error decrease exponentially as a983

function of increased imbalances. The vertical grey line marks the trade-off984

between reduced class imbalances and acceptable OOB error (corresponding985

approximately with the knee of the curves). This subsample will be used as986

the (reduced) compiled training dataset in our classification.987

988

Fig. 5:989

Importance of composite periods (red dots) defined by the normalized differ-990

ences of the prediction error between models for which respective composite991

period was omitted and the highest temporally resolved model. The higher992

the prediction error rates, the more important is the corresponding com-993

posite period for the overall model performance. The normalized difference994

vegetation index (NDVI) per composite period was also calculated (green995

dots). The evolution of importance and NDVI values over the year (red996

and green lines) are presented for five landscape regions, Alpine Foreland,997

W-Uplands, E-Uplands, NE-Lowlands, NW-Lowlands, and four crop types998

(winter wheat, spring barley, rapeseed, sugar beets), as well as the stone999

fruits and the grassland class.1000

1001

Fig. 6:1002

Land cover map of Germany. In total 19 land cover classes were classified:1003

winter wheat, spelt, winter rye, winter barley, spring wheat, spring barley,1004
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spring oat, maize, legumes, rapeseed, leeks, potatoes, sugar beets, straw-1005

berries, stone fruits, vines, hops, asparagus and grassland. The land-cover1006

classes forest, other vegetation, urban area, and waters were taken from the1007

ATKIS data base.1008

1009

Fig. 7:1010

The mapped averaged OOB (Out-Of-Bag) error for Germany. The OOB1011

error originates from various random forest models, each trained with a dif-1012

ferent temporal subset of the compiled training dataset. Differences in the1013

overall prediction error between the landscape regions, e.g. between Alpine1014

Foreland and SW-Uplands, are clearly visible. The ”stripes” with higher1015

OOB errors running from northeast to southwest indicate areas with no1016

overlap of adjacent satellite tracks and hence fewer satellite observations.1017

Different OOB errors within regions are also due to clouds.1018

1019

Fig. 8:1020

Modelled class accuracy versus validation’s producer accuracy for all land-1021

scape regions. Modelled class accuracy is expressed by 1−class OOB error.1022

The grey dots represent the different class OOB errors of the random for-1023

est models. The averaged error values per land cover class are visualized as1024

black dots and the corresponding linear model is shown as black line. The1025

averaged value of the correlation coefficients (R2) of the linear models of all1026

model runs is given.1027
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