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Abstract 28 

Soil organic carbon (SOC) has a large impact on soil quality and global climate change. It is therefore 29 

important to be able to predict SOC accurately to promote sustainable soil management. Although the 30 

synthetic aperture radar (SAR) has many advantages and has been widely used in soil science research, 31 

it has rarely been used in previous SOC mapping studies based on remote sensing images. The purpose 32 

of this study was to investigate the ability of multi-temporal Sentinel-1A data in SOC prediction, by 33 

comparing the predictive performance of random forest (RF) and boosted regression tree (BRT) models 34 

in the Heihe River Basin in northwestern China. A set of 162 topsoil (0-20 cm) samples were taken and 35 

15 environmental variables were obtained including land use, topography, climate, and remote sensing 36 

images (optical and SAR data). Using a cross-validation procedure to evaluate the performance of the 37 

models, three statistical indices were calculated. Overall, both RF and BRT models effectively 38 

predicted SOC content, exhibiting similar performance and producing similar spatial distribution 39 

patterns of SOC. The results showed that the addition of multi-temporal Sentinel-1A images improved 40 

prediction accuracy, with the root mean squared error (RMSE), the mean absolute error (MAE) and the 41 

coefficient of determination (R2) improving by 9.0%, 8.3% and 13.5%, respectively. Furthermore, the 42 

combination of all environmental variables had the best prediction performance explaining 75% of 43 

SOC variation. The most important environmental variables explaining SOC variation were 44 

precipitation, elevation, and temperature. The multi-temporal Sentinel-1A data in RF and BRT models 45 

explained 9% and 7%, respectively. The results from our case study highlight the usefulness of 46 

multi-temporal Sentinel-1 data in SOC mapping. 47 

Keywords: soil organic carbon, remote sensing, digital soil mapping, random forests, boosted 48 

regression tree 49 



3 
 

1. Introduction 50 

Soil is the largest reservoir of organic carbon on the earth's surface with soil organic carbon (SOC) 51 

pools playing an important role in terrestrial ecosystem functioning by affecting soil quality and 52 

properties (Schillaci et al., 2017).  Even slight changes in SOC storage can have a significant impact 53 

on atmospheric carbon concentrations (Chen et al., 2016). In recent decades global warming has 54 

attracted widespread attention, and the global average annual air temperature has increased by 55 

0.3-0.6 °C over the past 100 years (Cox et al., 2000). SOC pools are susceptible to human disturbance, 56 

with land-use change being one of the most important factors affecting soil carbon storage on time 57 

scales over several decades (Yang et al., 2016a). Up-to-date SOC maps are essential when trying to 58 

understand the spatial variability of SOC, which can help us to maintain soil quality and come up with 59 

measures to mitigate global climate change. Therefore, an accurate prediction of SOC content and its 60 

distribution patterns is essential. 61 

Taking soil samples from a large number of points for analysis and then performing SOC 62 

predictions over large areas is both difficult and costly (Yang et al., 2016b). Digital Soil Mapping 63 

(DSM) on the other hand is one way to reduce sampling and analysis costs to predict large-area soil 64 

properties and categories from discrete samples (Jeong et al., 2017). Most DSM techniques have been 65 

developed from soil landscape models and establish a quantitative relationship between soil 66 

observations in the field and readily available environmental variables (Lagacherie et al., 2006; 67 

Minasny and McBratney, 2016). Some statistical techniques for predicting SOC have been developed, 68 

including mixed linear regression (Doetterl et al., 2013), multiple linear regression (Meersmans et al., 69 

2008), geographically weighted regression (Kumar et al., 2013), and regression kriging based on 70 

regression rules (Adhikari et al., 2014). In addition, techniques developed from data mining and 71 
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machine learning methods to predict SOC have become a popular applied approach (Wang et al., 72 

2018e). Moreover, some studies have reported that tree-based models have better SOC prediction 73 

performance, such as boosted regression trees (BRT) (Yang et al., 2016b) and random forests (RF) 74 

(Wang et al., 2018b).  75 

The prediction of soil properties requires sufficient environmental data, such as climate, 76 

topography, land use/land cover, and satellite imagery, which are commonly used predictors in SOC 77 

prediction (Mishra et al., 2010; Ottoy et al., 2017; Zhang et al., 2019). As a data source with broad 78 

application prospects, remote sensing data has also been used and made significant contributions to 79 

SOC prediction (Grinand et al., 2017). The most commonly used are optical satellite images, whose 80 

applications in SOC prediction have been widely developed, although they are affected by clouds. For 81 

example, Wang et al. (2018c) used the optical sensor (Landsat 5 TM) to carry out SOC prediction 82 

research in Northeast China, and found that optical images provide important information for SOC 83 

prediction. Bou Kheir et al. (2010) used different optical image vegetation indices combined with other 84 

environmental variables to obtain good prediction results in SOC mapping in Denmark. Similar results 85 

were found in other previous SOC prediction studies using different optical images (Forkuor et al., 86 

2017; Mondal et al., 2017; Siewert, 2018). Compared with optical sensors, the synthetic aperture radar 87 

(SAR) has the advantages of all-day and all-weather monitoring, but its application in DSM has not 88 

been explored or developed to its full potential. 89 

Remote sensing data provide information about soil properties from directly imaging bare soils 90 

(Ben‐Dor et al., 2008). However, soils are usually covered by vegetation, which obviously affects the 91 

application of remote sensing in soil mapping because remote sensing sensors cannot directly detect 92 

soils (Yang et al., 2019). Given this background, many previous DSM studies have incorporated 93 
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vegetation indices taken from optical images and put into soil prediction models in areas covered by 94 

vegetation (Mulder et al., 2011). This approach is promising because vegetation affects the spatial 95 

variability of soil properties due to its effects on soil biophysical processes and in turn, the distribution 96 

of plant communities is affected by soil properties (Ballabio et al., 2012). Previous studies have 97 

demonstrated the effectiveness of using optical remote sensing to characterize soil-vegetation temporal 98 

responses to map various soil physicochemical properties (Demattê et al., 2017; Maynard and Levi, 99 

2017). In addition to optical satellite imagery, recent studies have also found that multi-temporal SAR 100 

data has the ability to capture soil-vegetation relationships and thus successfully predict soil chemical 101 

properties (Ceddia et al., 2017; Yang and Guo, 2019b). The ability to detect vegetation features using 102 

SAR data has been demonstrated (Kumar et al., 2019; Wang et al., 2019a). Yang and Guo (2019b) 103 

found that the backscatter coefficient of the multi-temporal Sentinel-1 data is a useful indicator to 104 

characterize the spatial variability of soil properties in coastal wetlands in eastern China. The recently 105 

launched SAR satellites (e.g., Sentinel-1, TerraSAR-X, RISAT-2B and Gaofen-3) have been attracting 106 

researchers to predict soil properties using SAR remote sensing techniques, with Sentinel-1 showing 107 

good application potential in soil property mapping (Poggio and Gimona, 2017). Although SAR data 108 

may provide new opportunities to predict the spatial distribution of soil properties, its application in 109 

predicting SOC content is still limited and rarely reported in the literature. 110 

Therefore, the purpose of this study was to evaluate the capability of multi-temporal Sentinel-1A 111 

data in SOC prediction by comparing the predictive performance of different tree-based models in 112 

Northwest China under complex terrain conditions. For this purpose, 15 environmental variables were 113 

used to construct SOC content models with and without multi-temporal Sentinel-1A images, with 114 

remote sensing variables including optical (Landsat-8) and SAR (Sentinel-1A) images. The SOC 115 
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prediction performance from different combinations of 15 environmental variables was then compared 116 

based on RF and BRT techniques to explore the contribution and potential of different environmental 117 

variables. We then explored the role of including multi-temporal Sentinel-1A images into SOC 118 

mapping and quantified the effects of various environmental variables on SOC variation.  119 

2. Materials and methods 120 

2.1. Study area 121 

The study area was the middle and upper reaches of the Heihe River Basin (HRB) in northwestern 122 

China (latitude 37°50′–42°40′ North, longitude 98°–102° East), which is the second largest inland river 123 

in China (Gaofeng et al., 2010). It covers 142,900 km2, but this study was mainly located in Gansu 124 

Province and a small part of Qinghai Province (Fig. 1). The Heihe River originates from the Qilian 125 

Mountains (Zang et al., 2012), where the elevations in the upper and middle reaches are between 1700 126 

and 5000 m and between 1300 and 1700 m, respectively, while the elevations in the lower reaches are 127 

between 900 and 1300 m. The HRB has an arid continental monsoon climate (Luo et al., 2016). The 128 

upper reaches are cold and humid with a mean annual temperature (MAT) of 0.7 °C and a mean annual 129 

precipitation (MAP) of 400–500 mm. In the middle reaches, the MAT is 7.1 °C and the MAP is 160.1 130 

mm, whereas in the lower reaches, the MAT is 8.4 °C, and the MAP is 40.1 mm. The main land cover 131 

types in the HRB are farmland, forests, grassland and barren land (Hu et al., 2015). The main soil types 132 

are as follows: Leptosols, Arenosols, Fluvisols, Solonchaks, Greyzems, Gypsisols, Kastanozems, 133 

Phaeozems, Anthrosols, Gleysols and Calcisols, etc. (Song et al., 2016). 134 
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 135 

Fig. 1. The study area is located in the Heihe River Basin of China, and the sampling points are 136 

displayed in the Sentinel-1A (a) and Landsat-8 (b) composite images of the study area. 137 

2.2. Soil data 138 

Part of the soil data was obtained from the Cold and Arid Regions Science Data Center at Lanzhou 139 

(CARD) including 162 topsoil (0–20 cm) samples (Fig. 1), and soil surveys were conducted between 140 

2011 and 2014. The latitude and longitude of all sampling points were located by a hand-held GPS 141 

(global positioning system) receiver, and a 1–1.5 m deep soil pit was dug at each soil sample site. In the 142 

laboratory, the soil samples were air-dried, ground, and sieved with a 2-mm sieve. The SOC content of 143 

the soil samples was then measured by the Walkley–Black method (Nelson and Sommers, 1996). The 144 

soil survey dataset recorded the physicochemical properties of soil data such as soil bulk density, soil 145 

pH, nutrient concentrations, SOC content etc. In addition, this field survey also investigated the 146 

environmental factors of the sites (including landforms, slope, vegetation types, and land-use types, 147 

among others). In this study, we only focused on the SOC content of the topsoil because some soil data 148 
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only investigated the properties of the topsoil.  149 

2.3. Environmental data 150 

2.3.1. Topographic variables 151 

Topographic variables are one of the most commonly used predictor variables for SOC content 152 

prediction (Wang et al., 2018a). Topographic variables were extracted from an ASTER GDEM product 153 

at 30 m resolution including elevation, slope, aspect, and topographic wetness index (TWI). Among 154 

these variables, TWI has become a popular method for characterizing hydrological conditions such as 155 

soil moisture and groundwater flow (Naito and Cairns, 2011) and has been widely used in SOC 156 

mapping (Lamichhane et al., 2019; Pei et al., 2010). With the use of ArcGIS 10.2 and SAGA GIS, we 157 

were able to perform ASTER GDEM processing and calculate these four topographic variables. TWI 158 

was calculated using SAGA GIS (Conrad et al., 2015), and the remaining topographic variables were 159 

obtained using ArcGIS 10.2.  160 

2.3.2. Land-use data 161 

The land use data used in this study was a raster map provided by the CARD. The land use types in the 162 

study area were divided into croplands, forests, grasslands, wetlands, barren lands, and villages. 163 

2.3.3. Climate variables 164 

The climate variables used in this study included the MAP and the MAT of the study area over 50 years 165 

(1961-2010), which were provided by the CARD (Yue et al., 2013). The climate variables data were 166 

derived as a 500 m grid obtained by interpolating observational data from 34 meteorological 167 
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observation stations in the HRB, including 21 meteorological observation stations in the HRB and 168 

surrounding areas, and 13 national reference stations around the HRB.   169 

2.3.4. Remote sensing variables 170 

Multi-source remote sensing variables extracted from SAR (Sentinel-1A) and optical images 171 

(Landsat-8 OLI) were used for SOC prediction. As one of the two satellites of Sentinel-1, Sentinel-1A 172 

is equipped with a C-band SAR instrument and was launched on 3rd April, 2014 (Navarro et al., 2016; 173 

Zhou et al., 2018). Four Sentinel-1A images (single-look complex (SLC) products) from 2014 and 174 

2015 covering the study area were downloaded from the European Space Agency and are in IW 175 

(interferometric wide swath) mode (Table 1). The Landsat-8 OLI images from 13th September, 2015 176 

were collected from the Earth Explorer website with cloud cover < 10%. We used ENVI 5.3 software 177 

to pre-process Landsat-8 OLI data, including radiance calibration and atmospheric correction (Jia et al., 178 

2014). Atmospheric correction was performed by the ENVI FLAASH model. Preprocessing of all SAR 179 

images was performed in SARscape 5.2 software, including multi-look, co-registration, speckle 180 

filtering, geocoding, and radiometric calibration. In this study, the Lee filter (Lee, 1986) was used to 181 

filter the speckle noise in the SAR data. The digital numbers (DN) of the SAR data were converted to a 182 

decibel (dB) scale backscatter coefficient and the images were geocoded using the ASTER GDEM.  183 

Table 1 The parameter information of the Sentinel-1A data obtained in this study. 184 

Date Imaging model Polarization Incident Angle (◦) Direction 

26th October 2015 IW VH 39.36 Ascending 

2nd October 2015 IW VV 39.35 Ascending 

11th May 2015 IW VV 39.35 Ascending 

12th November 2014 IW VV 39.35 Ascending 

  185 
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A total of eight environmental variables were derived from remote sensing images, including four 186 

variables from Sentinel-1A data, and four variables from Landsat-8 OLI images. The four SAR data 187 

predictors were constructed using backscatter coefficients from four Sentinel-1A images, respectively. 188 

Landsat imagery has been effectively used to predict SOC, where visible red, near-infrared, and 189 

short-wave infrared bands (representing vegetation growth, cover, and biomass, respectively) have 190 

been selected and reported as key variables for predicting SOC in previous studies (Qi et al., 2019; 191 

Yang et al., 2016c). For example, Bian et al. (2019) selected these three bands combined with terrain 192 

variables to predict SOC in the coastal areas of Northeast China, and found these bands to be the main 193 

predictor variables for mapping SOC. In this study, these three bands from Landsat-8 OLI (red band 4, 194 

near-infrared band 5, and shortwave infrared band 6) were also selected as environmental variables. In 195 

addition, the normalized difference vegetation index (NDVI) was calculated as a predictor using 196 

Landsat-8 OLI data.  197 

2.4. Modelling techniques 198 

This study selected and compared two commonly used machine learning techniques for SOC mapping: 199 

RF and BRT. Both modeling techniques have the ability and the advantage of being able to measure the 200 

relative importance of environmental variables (see Triviño et al. (2011) for the evaluation methods of 201 

importance provided by RF and BRT) and were also used to assess the importance of the variables in 202 

this study. They have been reported to perform well in SOC prediction for various types of landscapes 203 

(Martin et al., 2014; Veronesi and Schillaci, 2019; Wang et al., 2018a).  204 

2.4.1. Random forest 205 

RF is a tree-based ensemble learning method introduced by Breiman (2001) for classification and 206 
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regression purposes (Rial et al., 2017; Zhou et al., 2017), which generates multiple trees without 207 

pruning (Grimm et al., 2008). During training, each tree is produced based on a unique bootstrap 208 

sample (with replacement) from the entire training sample dataset (Wang et al., 2018b). Compared to 209 

decision trees, the bootstrap sampling method makes RF less sensitive to over-fitting (Heung et al., 210 

2014). In the RF model, the data are classified into ―in-bag‖ data and ―out-of-bag (OOB)‖ data (Wang 211 

et al., 2018d). The OOB samples were the training data left over from the bootstrap samples, which 212 

were used to estimate general errors and the importance of the variables (Were et al., 2015). The 213 

―in-bag‖ samples were used for model training.  214 

The RF algorithm requires the following three parameters to generate a prediction model: (i) the 215 

number of regression trees (ntree), (ii) the number of randomly selected variables at each node (mtry), 216 

and (iii) the minimum number of terminal nodes (node size) (Friedman and Meulman, 2003). To 217 

optimize these parameters, we tested and compared different combinations of these parameters. In this 218 

study, these combinations finally determined the optimal values for the ntree, mtry and node size by 219 

performing a grid-search approach using the ―caret‖ package (Siewert, 2018; Wang et al., 2018b

2.4.2. Boosted regression trees 221 

The BRT method is a machine learning algorithm developed by Friedman et al. (2000), which 222 

combines many regression trees and a boosting technique to improve the predictive performance of 223 

many single models (Wang et al., 2018a). By using an iterative method, the boosting algorithm 224 

develops a final model and gradually adds trees to the model (Muller et al., 2013). BRT relies on a 225 

stochastic gradient boosting procedure that can improve model performance and reduce the risk of 226 

over-fitting through numerical optimization and regularization (Friedman, 2002).  227 
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BRT modeling is controlled by the following four parameters: the learning rate (LR), tree 228 

complexity (TC), the number of trees (NT) and the bag fraction (BF). LR determines the contribution 229 

of each tree to the growing model. BF sets the proportion of data selected in each step of the modeling 230 

process, TC controls the number of splits, while NT is determined by the combination of LR and TC 231 

(Wang et al., 2016). The BRT model needs to be adjusted by setting the parameters before making 232 

predictions (Elith et al., 2008). To optimize these four parameters, some combinations of parameter 233 

values (LR, TC, NT and BF) were tested. We also performed a grid-search approach using the ―caret‖ 234 

package in the R software to determine the optimal values for these parameters. The combination with 235 

the minimum predictive deviance was determined as the best combination of parameters. 236 

2.5. Statistical analyses 237 

We used SPSS 24.0 software to conduct a descriptive statistical analysis of SOC data and 238 

environmental variables. The RF and BRT models were developed using R-software. In this study, we 239 

fitted the RF and BRT models using the ―randomForest‖-package and the ―gbm‖-package, respectively. 240 

2.6. Model evaluation 241 

We used the RF and BRT methods to construct SOC content models with and without multi-temporal 242 

Sentinel-1A images (Fig. 2), allowing an evaluation of the contribution of the multi-temporal 243 

Sentinel-1A images to the SOC content prediction. The above models were constructed from different 244 

combinations of environmental variables: Model I and Model II were constructed using optical 245 

(Landsat-8 OLI) and SAR (Sentinel-1A) images, respectively, while Model III was a combination of 246 

optical and SAR images; Model IV included climate, land use, optical images, and topography, while 247 

Model V was constructed by adding SAR images to Model IV (Table 2). The predictive quality of these 248 
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models was evaluated by a 10-fold cross-validation procedure and the following three common 249 

statistical indices were calculated: the mean absolute error (MAE), the root mean square error (RMSE) 250 

and the coefficient of determination (R2). Cross-validation avoids testing training data and is a useful 251 

technique for evaluating model performance. Recent studies using the DSM model for SOC prediction 252 

have been reviewed and found cross-validation techniques to be one of the most commonly used 253 

methods for evaluating results (Lamichhane et al., 2019). These indicators were calculated as follows:  254 
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 258 

where n represents the number of samples and Pi and Oi represent the predicted and observed SOC 259 

content at site i, respectively.  260 

 261 

Fig. 2. Workflow diagram for predicting SOC content in this study. 262 
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 263 

Table 2 Different combinations of predictor variables for SOC content. 264 

NO. Model Variables 

a Model I Optical imagery 

b Model II SAR imagery 

c Model III SAR and optical images 

d Model IV Land use + climate + topography + optical imagery 

e Model V Land use + climate + topography + remote sensing data (including SAR and 

optical images) 

3. Results and Discussion 265 

3.1. Descriptive statistics of sampled SOC content 266 

Table 3 Summary statistics of measured SOC content and values of environmental variables at sample 267 

locations. 268 

 Minimum Maximum Mean Median Standard deviation 

(SD) 

Skewness 

SOC (g/kg) 1.75 139.83 41.44 30.55 36.68 0.94 

LnSOC (g/kg) 0.56 4.94 3.24 3.41 1.08 -0.31 

Elevation (m) 1347.00 4329.00 2604.44 2927.00 838.19 -0.34 

Aspect (degree) 0.00 347.32 173.98 193.39 109.58 -0.12 

Slope (degree) 0.00 44.89 14.60 13.14 11.33 0.65 

TWI 2.38 9.32 4.45 4.31 1.18 0.73 

BC_1 (dB) -21.47 -0.51 -11.99 -11.78 3.75 0.14 

BC_2 (dB) -20.02 -1.29 -10.16 -10.08 3.54 -0.01 

BC_3 (dB) -18.63 -2.50 -10.04 -9.44 3.42 -0.22 

BC_4 (dB) -21.72 -2.88 -16.55 -16.59 2.82 0.77 

band_4 (digital 

number) 

156.00 2420.00 813.75 549.50 592.07 1.23 

band_5 (digital 

number) 

1506.00 5469.00 3049.88 2997.00 787.85 0.28 

band_6 (digital 

number) 

547.00 3795.00 2058.16 1964.00 736.27 0.25 

NDVI 0.03 0.85 0.59 0.69 0.23 -1.01 

MAP (mm) 108.31 754.35 389.84 449.32 203.28 -0.14 

MAT (degree 

celsius) 

-8.61 8.03 0.79 -0.63 5.05 0.29 

Notes: LnSOC, log-transformed SOC; BC_1, BC_2, BC_3, and BC_4 correspond to the backscatter 269 

coefficients of Sentinel-1A images from different acquisition dates: 12th November 2014, 11th May 2015, 270 

2nd October 2015, and 26th October 2015, respectively; Band_4, band_5, and band_6 correspond to bands 271 

4 to 6 of the Landsat-8 OLI image (September 13th, 2015), respectively. 272 
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 273 

The statistical characteristics of the measured SOC content and the values of the environmental 274 

variables at the sample location are shown in Table 3. The measured SOC content showed a slightly 275 

skewed distribution (with a skewness value of 0.94), varying from 1.75 to 139.83 g kg-1, with an 276 

average of 41.44 g kg-1. Therefore, for all prediction models in this paper, the SOC content was 277 

converted by using the natural logarithm of SOC (LnSOC) to reduce the rightward skew of the 278 

untransformed SOC (reducing skewness from 0.94 to 0.31). The standard deviation of raw SOC and 279 

LnSOC were 36.68 and 1.08 g kg-1, respectively, which were both less than their mean value. 280 

3.2. Evaluation of model predictions 281 

To assess the ability of multi-temporal Sentinel-1A data for predicting SOC content, we used RF and 282 

BRT methods to construct SOC content models: Model I and Model II included only optical and SAR 283 

data, respectively, while Model III used both optical and SAR data. Model V (land use, climate, 284 

topography, SAR and optical images) and Model IV (land use, climate, topography, and optical 285 

imagery) were combinations of environmental variables with and without SAR data, respectively. Table 286 

4 shows the predictive power of each of the above models. 287 

Table 4 Comparison of the predictive power using different combinations of predictor variables.  288 

Modeling technique Model MAE RMSE R2 

RF Model I 0.63 0.78 0.50 

 Model II 0.86 1.01 0.19 

 Model III 0.58 0.73 0.56 

 Model IV 0.46 0.57 0.74 

 Model V 0.44 0.55 0.75 

BRT Model I 0.60 0.77 0.52 

 Model II 0.85 1.00 0.22 

 Model III 0.55 0.70 0.59 

 Model IV 0.46 0.57 0.74 

 Model V 0.45 0.55 0.75 

Notes: Model I, optical imagery alone; Model II, SAR imagery alone; Model III, SAR and optical images; 289 

Model IV, Land use + climate + topography + optical imagery; Model V, Land use + climate + 290 
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topography + remote sensing data (including SAR and optical images).  291 

 292 

Overall, our results showed that the prediction accuracy levels of the BRT and RF methods were 293 

similar; for the RF model, the range of the verification indices were: MAE (in the range of 0.44 to 294 

0.86), RMSE (in the range of 0.55 to 1.01) and R2 (in the range of 0.19 to 0.75); the range of the 295 

verification indices for the BRT model were: MAE (in the range of 0.45 to 0.85), RMSE (in the range 296 

of 0.55 to 1.00) and R2 (in the range of 0.22 to 0.75). The RF and BRT models have been reported to 297 

have a stable predictive power for SOC mapping (Yang et al., 2016b). There are some uncertainties in 298 

SOC research, including the variability of measured SOC values, sampling errors, laboratory analysis 299 

errors and modeling errors (Krishnan et al., 2007; Terribile et al., 2011). Although we did not compare 300 

RF and BRT models with other predictive models, some previous studies have shown better 301 

performance for BRT and RF models in SOC prediction compared to other models, such as multiple 302 

linear models (Razakamanarivo et al., 2011) or support vector machine (SVM) models (Forkuor et al., 303 

2017). However, other studies have reported opposing performance results from the tree-based model, 304 

with SVM showing better performance in SOC prediction than RF (Rossel and Behrens, 2010; Were et 305 

al., 2015). The results of this study were consistent with the results of Yang et al. (2016b), who reported 306 

that BRT and RF models have a similar ability to predict SOC concentrations in the Qinghai-Tibet 307 

Plateau. Lamichhane et al. (2019) reviewed the SOC mapping studies from 2013 to February 2019 and 308 

found that 13 out of 17 studies using RF models showed that RF models obtained better predictions 309 

than other DSM techniques. It would appear that there is no single machine learning algorithm that 310 

works best for all ecosystems. Hence, it is important to evaluate the performance of different models 311 

under different conditions and environmental input variables.  312 

For both RF and BRT techniques, Model I performed better than Model II, indicating that the 313 
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predictive power of optical images was superior to that of SAR images in this study area. The 314 

predictive performance of SOC improved when optical images were combined with multi-temporal 315 

Sentinel-1A data. The addition of multi-temporal Sentinel-1A data using the BRT model compared to 316 

the use of only optical images improved RMSE (from 0.77 to 0.70), MAE (from 0.60 to 0.55) and R2 317 

(from 0.52 to 0.59) by 9.0%, 8.3% and 13.5%, respectively. Similar improvements were also observed 318 

for the RF model. This was expected because the prediction accuracy improved when more useful 319 

information was added. Previous studies have also explored the usefulness of other remote sensing 320 

variables in SOC prediction. For example, Wang et al. (2018b) looked at the effect of adding seasonal 321 

fractional cover data on SOC prediction and was able to improve the RMSE by 2.8–5.9% at 0–30 cm 322 

soil depths. The results of Yang et al. (2015) showed how useful optical imagery (Landsat TM) was in 323 

predicting SOC content. However, previous studies on SOC prediction mainly used optical images 324 

such as Landsat and MODIS, ignoring the potential of SAR data. Compared with a single sensor, the 325 

method of multi-sensor (i.e., Landsat-8 OLI and Sentinel-1A sensors) SOC mapping in this study 326 

improved the prediction accuracy, indicating that multi-temporal Sentinel-1A images are useful for 327 

SOC prediction in the study area. This was also supported by Poggio and Gimona (2017) who used 328 

multi-source remote sensing data to predict soil properties, proving that Sentinel-1 is useful for 329 

predicting soil physical and chemical properties.  330 

Similar to the improvement in accuracy between Model I and Model III, an improvement in 331 

prediction performance was also observed between Model IV and Model V due to the addition of 332 

multi-temporal Sentinel-1A data. However, the latter only observed a relatively slight improvement in 333 

accuracy, which was lower than the former. These results further demonstrated the potential of 334 

multi-temporal Sentinel-1A data as a predictor to improve SOC prediction accuracy in the study area. A 335 
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previous study found that the backscatter coefficient of C-band SAR data under frozen conditions can 336 

represent vegetation and surface structure properties associated with soil properties, particularly SOC 337 

(Bartsch et al., 2016). In a soil mapping study of coastal wetlands in eastern China, Yang and Guo 338 

(2019a) found that multi-temporal Sentinel-1 data can capture the dynamic characteristics of vegetation 339 

and the relationship between soil properties and vegetation to help predict soil properties. Model V 340 

which combined all environmental variables had the highest value R2 (0.75) and achieved the lowest 341 

values for MAE (0.44) and RMSE (0.55). This R2 value revealed that Model V could explain 75% of 342 

SOC variation. Compared with previous studies conducted in this study area, the method based on 343 

multi-source remote sensing variables in this study yielded a more promising SOC prediction 344 

performance. For example, Zhang and Shao (2014) also conducted a SOC mapping study in the HRB, 345 

explaining only 47% of SOC variation. Wang et al. (2014) carried out SOC mapping based on MODIS 346 

data and climate variables, explaining 69% of SOC variation. Yang et al. (2015) also developed a BRT 347 

model to map SOC content near the HRB using Landsat 5 TM combined with topographic and climate 348 

variables, explaining 71% of SOC variation.  349 

Although the prediction accuracy obtained with multi-source remote sensing variables was 350 

satisfactory for this study, further improvement is still needed. The predictor variables used in this 351 

study had different spatial scales, but we used a single analytical scale typically performed in DSM. It 352 

is well known that the spatial scale of predictor variables can have a significant impact on prediction 353 

accuracy (Drăguţ et al., 2009). Siewert (2018) used different environmental variables combined with 354 

machine learning algorithms to predict SOC in the northernmost part of Sweden, and found that the 355 

power of predicting SOC dropped significantly between 30 and 100 m resolution. Chi et al. (2019) 356 

compared the prediction accuracy of soil total nitrogen using environmental variables with different 357 
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spatial scales (100 m, 200 m, 400 m, and 800 m) on Chongming Island in China, and found that the 358 

100 m scale obtained the highest accuracy. At the same time, they found that soil total nitrogen 359 

prediction models with different spatial resolutions produced similar spatial patterns of soil total 360 

nitrogen. In addition, land surface characteristics change with time and the acquisition time of remote 361 

sensing data for predicting soil properties also affects the prediction accuracy (Forkuor et al., 2017). 362 

Therefore, it would be worth exploring these avenues further to improve prediction accuracy.  363 

3.3. The relative importance of environmental data 364 

The relative importance of each environmental factor obtained from the RF and BRT methods in Model 365 

V is shown in Figure 3, and we increased the factor comparability by normalizing the environmental 366 

factors to 100%. For both RF and BRT models, the four most important variables were MAP, elevation, 367 

MAT, and band_4, with MAP being the most important environmental variable. This indicated that 368 

these environmental variables were the main environmental variables affecting SOC variation in the 369 

study area. For the BRT model, climate variables (relative importance of 51%) were the main 370 

explanatory variables for SOC variation, followed by topographic variables (27%) and remote sensing 371 

variables (21%). In the RF model, remote sensing variables, topographic and climate variables 372 

explained 34%, 32% and 30% of SOC variation, respectively. In addition, the SAR remote sensing 373 

variables in the RF and BRT models explained 9% and 7% SOC variation, respectively.  374 

Precipitation and temperature were the main climate variables affecting SOC distribution. For 375 

both RF and BRT models, both MAP and MAT were located in the top three most important 376 

environmental variables affecting SOC spatial variation. This is mainly due to the close relationship 377 

between climate variables and soil moisture, affecting plant growth and net primary productivity (Wang 378 
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et al., 2018b). Climate variables have a profound impact on the decomposition and accumulation of 379 

SOC. In the Alpine ecosystem, climate variables affect hydrological and ecological functions, which in 380 

turn affect SOC variation. This was consistent with previous studies that also emphasize the importance 381 

of climate variables in predicting SOC (Hobley et al., 2015; Richardson et al., 2017).  382 

 383 

Fig. 3. The relative importance of each environmental factor obtained from the RF and the BRT methods 384 

in Model V (increasing factor comparability by normalizing the environmental factors to 100%). Model 385 

V, Land use + climate + topography + remote sensing data (including SAR and optical images); BC_1, 386 

BC_2, BC_3, and BC_4 correspond to the backscatter coefficients of Sentinel-1A images from different 387 

acquisition dates: 12th November 2014, 11th May 2015, 2nd October 2015, and 26th October 2015, 388 

respectively; Band_4, band_5, and band_6 correspond to bands 4 to 6 of the Landsat-8 OLI image 389 

(September 13th, 2015), respectively. 390 

Our research showed that remote sensing images were important variables in SOC prediction, 391 

including optical remote sensing data and multi-temporal Sentinel-1A data. Therefore, the spectral 392 

reflectance, the backscatter coefficient of multi-temporal Sentinel-1A data, and the derived vegetation 393 

index are practical indicators of SOC prediction. Zhong et al. (2018) found that SOC dynamics were 394 

mainly affected by vegetation and soil characteristics under similar climate conditions. Derived 395 

vegetation indices can significantly represent vegetation biomass and density (Li et al., 2019; Zhao et 396 
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al., 2016), so they were important environmental variables for predicting SOC. Using SAR data to 397 

predict soil properties depends on the sensitivity of the backscatter coefficient to changes in land 398 

surface conditions and soil moisture (Kasischke et al., 1997). Yang et al. (2019) reported that a 399 

successful use of SAR data to predict soil properties can be explained by the relationship observed in 400 

the soil-vegetation system based on multi-temporal Sentinel-1 data. The relationship in the 401 

soil-vegetation system observed by remote-sensing techniques can help explain the spatial variation of 402 

SOC (Yang and Guo, 2019b) and is supported by other previous studies (Ceddia et al., 2017; Maynard 403 

and Levi, 2017). In addition, some studies have reported that Sentinel-1 images can provide useful 404 

information for detecting vegetation (e.g., Castillo et al., 2017; Muro et al., 2016). The results showed 405 

that not only optical remote sensing images can be used for SOC prediction, but also the backscattering 406 

coefficients of multi-temporal Sentinel-1 images are useful for SOC mapping. However, this finding 407 

using RF model was different from the results of previous studies, which reported that topographic 408 

variables were more important environmental variables than remote sensing variables for predicting 409 

SOC (Wang et al., 2018c; Wang et al., 2017). This difference was mainly due to the fact that the use of 410 

multi-temporal Sentinel-1A data in this study improved the predictive power of remote sensing 411 

variables compared to previous studies using only optical remote sensing data. 412 

As one of the five soil forming factors, topography can affect water temperature conditions and 413 

the distribution of soil-forming materials. Among the four terrain variables, elevation had the highest 414 

relative importance. The topographic variables determine the direction and the rate of material 415 

migration, where elevation affects the vertical distribution of water heat and affects the decomposition 416 

and transformation of SOC (Martin et al., 2014). Similar to this study, the results of Wang et al. (2019b) 417 

and Dong et al. (2019) also found that elevation was the most important topographic variable for 418 
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predicting SOC. However, the relative importance of topographic variables was lower than climate 419 

variables in the BRT model. This was consistent with the results of the SOC prediction study conducted 420 

by Yang et al. (2016b) on the Qinghai-Tibet Plateau, which explained that the influence of topography 421 

was mediated by vegetation.  422 

3.4. The spatial prediction of SOC content 423 

The SOC content maps were obtained in Model V based on RF and BRT techniques, respectively 424 

(Figure 4). For Model V, the average and SD values of the predicted SOC content obtained by the RF 425 

method were 24.14 and 20.12 g kg-1, respectively, whereas the average and SD values of the predicted 426 

SOC content obtained by the BRT method were 24.91 and 21.67 g kg-1, respectively. The average and 427 

SD values of the predicted SOC content obtained by all models were lower than the observed SOC. 428 

The predicted SOC variation was less than the measured value. These results were consistent with the 429 

results of previous studies that had conducted SOC predictions (Adhikari and Hartemink, 2015; Wang 430 

et al., 2018c).   431 

 432 

Fig. 4. SOC content maps obtained from the Model V based on RF and BRT techniques (Model V: Land 433 

use + climate + topography + remote sensing data (including SAR and optical images)).  434 
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The spatial distribution maps of SOC content obtained from different models were similar, and a 435 

strong SOC spatial variation was observed on all of the distribution maps. The predicted SOC content 436 

in the southern part of the study area was the highest. The main land type in the southern part of the 437 

study area was the plateau forests and grasslands, displaying higher elevations. This part of the study 438 

area also had higher rainfall and lower average temperatures, which favored low SOC turnover and 439 

explained the high SOC content. This was similar to the results of the SOC prediction study conducted 440 

by Song et al. (2016) in the HRB. In addition, previous studies reported an increase in SOC content as 441 

altitude increased (Tsui et al., 2013; Wang et al., 2018c). Correspondingly, the northern region 442 

dominated by cultivated land, barren and urban areas had a low SOC content. Compared with the 443 

southern part of the study area, the precipitation in the north was lower and the temperature was higher. 444 

Agro-ecosystems near rivers had a relatively high predicted SOC.  445 

4. Conclusions 446 

We applied RF and BRT models to predict the SOC content in the HRB of China using multi-source 447 

remote sensing variables. The following main conclusions can be drawn from this study: (1) Both BRT 448 

and RF models effectively and accurately predicted SOC, showing similar performance. (2) The 449 

addition of the multi-temporal Sentinel-1A data improved the predictive performance, with RMSE, 450 

MAE and R2 improving by 9.0%, 8.3% and 13.5%, respectively. The combination of all environmental 451 

variables achieved the best results with the highest value of R2 (0.75) and the lowest values of MAE 452 

(0.44) and RMSE (0.55). (3) Precipitation, elevation, and temperature were the main variables 453 

explaining SOC variation. (4) RF and BRT models produced similar spatial distribution maps of SOC 454 

content, with SOC content levels in the southern regions significantly higher than elsewhere. In future 455 
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research it would be worth exploring the implementation of other remote sensing sensors to predict 456 

other soil properties. 457 
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