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ABSTRACT  

Geoscientists invest significant effort to cope with uncertainty in Earth system observation 

and modeling. While general discussions exist about uncertainty and risk communication, 

judgment and decision making, and science communication with regard to Earth sciences, in 

this paper, we tackle uncertainty from the perspective of Earth science practitioners. We argue 

that different scientific methodologies have to be used to recognize all types of uncertainty 

inherent to a scientific finding. Following a discovery science methodology results in greater 

potential for the quantification of uncertainty associated to scientific findings than staying 

inside hypothesis-driven science methodology as is common practice. Enabling improved 

uncertainty quantification could relax debates about risk communication and decision making 

since it reduces the room for personality traits when communicating scientific findings.  
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INTRODUCTION 

Mankind lives in a dynamic environment and is exposed to ever-changing environmental 

conditions. Since ancient times Earth system observation has been triggered by the desire to 

adapt to dynamic processes, e.g., by foreseeing hazardous events, extracting or dumping 

materials and/or utilizing Earth system processes. The latter experienced sustainability as a 

growing side condition to be met since mankind became increasingly aware that their actions 

interact with Earth system dynamics (e.g., Liverman and Roman Cuesta 2008; Brondízio and 

Moran 2014). Foresighted adaptation and sustainable utilization require insight into the Earth 

system and its dynamics in order to understand and foresee functionality and reactive 

behavior, respectively. While Earth system observation can be seen as a fundamental 

scientific paradigm (Hey et al. 2009), asking for the collection of (potentially useful) data 

about state variables of the Earth system, process functionality understanding goes beyond 

and requires the subsequent definition of a current-state or process description model with its 

theoretical foundation accessible to human cognition and in line with available observations.  

Since the development of modern science, vast knowledge advancement strongly rooted 

in experimentation and reasoning as scientific methodology rather than doctrines has led to 

generalized descriptions of Earth system functionalities. Early modern Earth science generally 

considered the world around us a nomological reality, and thus strived to develop theories 

expressed by deterministic models linking observed state variables of the Earth system and 

their process dynamics, e.g., as described in the Newtonian clockwork cosmos and culminated 

in Laplace’s demon
1
 (e.g., Solomon and Higgins 2009).  

For more than a century, scientists have been aware that the concept of determinism 

does not hold for modeling many phenomena, e.g., stream phenomena in the atmosphere or 

the Earth’s outer core. Beginning in the 19
th

 century, theories of chaos, fuzziness, or 

probability became an integral part of scientific work when striving to model the functionality 
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of the Earth system. It required moving away from the idea of a purely nomological reality 

leading to model concepts beyond determinism.  

Figure 1 summarizes the work flow of today’s geoscientific efforts dedicated to gaining 

insight into Earth system functionality comprising phases of data acquisition, data processing, 

and decision making. The key steps of this work flow are (i) observing/sampling nature 

resulting in data imaging (aspects of) reality, (ii) assessing observational quality, e.g., by 

describing observational precision and accuracy during data acquisition, (iii) data processing 

for derivation/construction/emphasis of features (hypothetically) considered particularly 

useful, (iv) developing a model of reality, and (v) making decisions based on interpretation of 

data processing and modeling results in order to (a) adapt to reality, (b) foresee functionality 

and reactive behavior of the Earth system, or (c) hypothesize about expected but not yet 

confirmed/observed effects thus defining promising future research directions.  

The final decision-making step is critical, since it governs how we adapt to the Earth 

system and its dynamics by relying on process understanding as expressed by the modeled 

Earth system evolution. Rooted in the scope of science, it must match the information content 

of the database. In the sense of modern science, this should ideally be the only basis for 

decisions. If there were no informational uncertainty about the Earth system by the database 

and its processing, deterministic decision making would be possible and justified. However, if 

the information content of the database and processing methodology left room for adding 

personality traits of human interpreters or decision makers to the decision making process, 

e.g., ability to cope with reality complexity, ego, risk shift, anxiety level, etc. (e.g., Bezerra et 

al. 1996) determinism in the final interpretations cannot exist. The consequences, including, 

for example, uncertainty and risk communication, judgment and decision making, science 

communication etc., have been broadly discussed for a long time, often using examples from 

Earth system science (e.g. Oreskes and Conway 2010, Fischhoff 2011, Parker 2017).  
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Practical limitations of observational accuracy and precision (e.g., Taylor 1996) and 

observational effort will prohibit ever reaching a deterministic state for decision making, even 

if the process of interest underlying the experimental and reasoning efforts were be truly 

deterministic. Earth scientists are mostly aware of the indeterminate nature of their object of 

study and the consequences of the limited number and accuracy of available observations. For 

various reasons, including for example methodological limitations, convenience, and lack of 

communication tools, they partly produce and/or present their findings in a way that 

uncertainty information inherently present in the context of discovery is neglected, e.g., 

tomographic image reconstruction in geophysics (Hoffmann and Dietrich 2004). This does 

not necessarily mean that these scientists are not aware of the uncertainty associated to their 

discoveries or models, but they rely on the expectation that contemplators (peer scientists or 

laymen) will be aware of (and consider) the presence of some, albeit (yet) unspecified, 

unquantified, and uncommunicated, uncertainty
2
.  

In this contribution, we review uncertainty occurring in Earth sciences and explain why 

we see it in Earth system observation and analysis as a key driver for research progress. We 

compare the potential of model-based Earth system analysis to data-driven analytics for the 

quantification of uncertainties associated to data processing and geoscientific findings. Acting 

as practitioners in Earth science and science communication, with this contribution we want 

to redirect attention to the role of uncertainty in the dynamics surrounding knowledge 

development in Earth system science. With this discussion we hope to stimulate deeper 

studies illuminating the tense issue between uncertain science and the societal willingness to 

accept scientific indetermination.  

 

UNCERTAINTY AND FIELDS OF SCIENTIFIC RESEARCH 
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Limited observational accuracy and precision as well as a limited number of observations are 

the fundamental sources for practical indetermination of natural processes when observed 

(e.g., Friedel 2003). In decision making, they are classically related to aleatory and epistemic 

uncertainty, and sometimes not properly differentiated (Kiureghian and Ditlevsen 2009). 

Aleatory uncertainty of measured data can be quantified if observational accuracy and 

precision are known (e.g., JCGM 2012)
3
. It can be reduced by more precise and accurate 

observations. Practically, it is not possible to fully overcome aleatory uncertainty in Earth 

observation. Traditionally, experimental design in measurement equipment engineering is 

concerned with the development of optimal measurement devices (e.g., Arora 2016). This 

does not necessarily mean that all possible efforts are made to minimize the aleatory 

uncertainty of the observational output of a measurement device. Instead, observational 

quality and observational effort are compromised by striving to optimize accuracy and 

precision of observations at moderate costs. 

Epistemic uncertainty of measured data results from the bandwidth limitation of 

experiments discretely sampling the Earth system. Bandwidth limitations can be of spatial, 

temporal, or physical nature, e.g., by facing a minimal and/or maximal resolution limit in 

space and/or time or technology-specific limitations, such as signal frequency ranges emitted 

or recorded by a measurement device. Despite usually knowing the bandwidth limitations of 

an experiment, it is impossible to quantify the amount of information an experiment has 

missed. It could even be that nothing of relevance could have been observed outside the range 

and resolution limits of an experiment – but we cannot know without extra experimental 

effort. Epistemic uncertainty can be reduced by increasing the information return of 

experiments, e.g., by careful experimental design which is the task of the domain scientist 

researching on Earth and environment, but it can never be quantified.  
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Ontological uncertainty (Lane and Maxfield 2005) is related to the general 

appropriateness of experiments and methods used for sampling the Earth system and 

subsequent data processing, since design of devices, experiments, and subsequent data 

processing is impacted by hypotheses about Earth system functionality and their relation to 

the state variables observed. Ontological uncertainty cannot be quantified and scientists are 

usually unaware of its presence in their work flows and efforts when learning or doing Earth 

science within a scientific paradigm, i.e., a canon of insights, theories, and models widely 

accepted by the members of a scientific community (Kuhn 1970). Earth science strives to 

search for generally new methods, processing techniques, etc. to retrospectively reveal and 

potentially overcome ontological uncertainty of current methodology.  

In addition, semantic uncertainty (Beven 2016) may occur in communications among 

scientists, but (mutual) misunderstanding leading to erroneous believes or model concepts in 

the mind of individual scientists or scientific groups commonly conducting experimental 

observation, data processing, and/or interpretation can be broken down to individual 

perception of aleatory, epistemic, or ontological uncertainty accompanying the available 

information. In this paper we will exclude this rather social uncertainty from our discussions.  

These types of uncertainty are well recognized within some Earth science domains, e.g., 

hydrology (e.g. Beven, 2016). Sometimes, subdivisions with regard to modeling or 

measurement-related uncertainty are made for epistemic uncertainty. We want to emphasize 

that no dualism of aleatory and epistemic uncertainty exists, albeit both are often treated as 

closely linked, since these are the only uncertainties to be evaluated by probabilistic statistics. 

Note that even the selection of a distribution function for modeling aleatory uncertainty in 

statistical data analyses comes with ontological uncertainty about the appropriateness of the 

choice made.   
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Science classically addresses aleatory, epistemic, and ontological uncertainty 

individually (Table 1). Alternatively, epistemic uncertainty can also be reduced by data 

integration in the sense of multi-sensor data fusion (Liggins et al. 2008), i.e., motivated by the 

idea to replace epistemic uncertainty inherent to an experiment and the resultant data set by 

co-located information provided by another experiment and data set. Over the last three to 

four decades growing automation of data acquisition reduced costs for Earth observation 

leading to the trend to acquire physically disparate multi-sensor databases over the same 

survey area, thus relaxing the need to select the most suitable sensor or data set during the 

planning stage of an experiment (Figures 1a and b), which cannot be done without ontological 

uncertainty.  

Data integration immediately raises the question of how to link different data sets. This 

can most easily be achieved qualitatively by a joint interpretation, which bears an interpreter-

dependent level of ontological uncertainty. Alternatively and more reproducibly, data 

integration can be done by means of models learned independently from the given database 

and considered as transferable and valid by the scientific community
4
. This means that the 

linkage model f: X  Y defining the integration of the data domains X and Y is a priori 

considered to be known. For example, f can be expressed by a (stochastic) differential 

equation or a rather empirically found function, e.g., by regression analysis of other data. 

Following this concept adds ontological uncertainty to data integration and thus complicates 

interpretation and final decision making. Strictly speaking, the assumption to know the 

linkage model deterministically would even question the necessity to measure more than one 

data set. Instead, often the general nature of the linkage model is assumed to be known under 

uncertainty. Hence, calibration is required to fit f to i observed data readings xi  X and yi  

Y. This can be realized by tuning model coefficients based on the available data sets so that f 

matches the observation results in X and Y sufficiently well. Since the individual 
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measurements in X and Y suffer aleatory uncertainty, it is impossible to solve the calibration 

problem in a deterministic sense by finding the right tuning parameters. Instead, we must 

consider it more as probabilistic definition of calibrated model coefficients, e.g., in the sense 

of coefficient ranges associated a suitable distribution function (e.g., Tronicke and Paasche 

2017). However, this gives the integration problem a probabilistic character, but such 

stochastic uncertainty analyses exclude the ontological uncertainty added to the integration 

problem by a priori selection and acceptance of a distinct type of f. Even a meta-analysis 

including several human-generated types of f does not allow for ontological uncertainty 

assessment since independency of the chosen models and representativeness for all possible 

models cannot be granted (Pirtle et al. 2010).   

Alternatively, the data linkage function f can be learned based on the information 

provided by available observations in X and Y. Methodologies can range from simple 

regression analysis to sophisticated data analytics, e.g., deep learning algorithms with low 

suitability for cognitive understanding of the learned linkage function by humans. Particularly 

critical is the learning limit, which is controlled by the aleatory uncertainty associated to the 

data sets sampling X and Y discretely (Figures 2a and b). Away from this, any learned 

continuous function f becomes a predictive model, which goes along with assumptions about 

validity and inter-/extrapolation of the learned model, adding ontological uncertainty in 

regions where X and Y have not been sampled (Figure 2c). Reduction of epistemic 

uncertainty in the data sets by good experimental design can help to narrow the extension of 

predictive regions of the model (Figure 2d). If aleatory uncertainty is quantitatively recorded 

and is acquired with the data, learning f can be reasonably limited to find f: xi+eix  yi+eiy. ex 

and ey are aleatory uncertainties for the ith pair of x and y and should be considered as 

samples drawn from potentially different and unknown random distributions. This makes 

learning f an indeterminate task when not overfitting the problem. Accuracy and precision of f 
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are directly related to accuracy and precision of the information about X and Y. Such data-

driven integration is a promising way of turning epistemic uncertainty into quantifiable 

aleatory uncertainty. It avoids adding ontological uncertainty by a priori selection of f. The 

final decision making step after data-driven integrated analysis remains uncertain, but 

uncertainty is more accurately quantifiable since it comes to a large extent as aleatory 

uncertainty. This will reduce the importance of personality traits in decision making and 

reduces the amount of ontological uncertainty in decisions about adaptation to the Earth 

system.  

 

DISCOVERY-SCIENCE VERSUS HYPOTHESIS-DRIVEN SCIENCE AND THEIR 

DEALING WITH UNCERTAINTY 

Traditionally, experimental design in Earth system sciences is hypothesis-driven.  For 

example, experimental setup and observations are designed following a hypothesis postulating 

expected behavior or states of the Earth system and may even postulate which observational 

data might be particularly suitable. This is done based on process understanding and accepted 

conventions (“good practices”) forming the theory and model canon of a geoscientific domain 

(Kuhn 1970). For practical reasons, other data are often not acquired or considered in the 

experiments and subsequent data processing, but random deviations may occur depending on 

opportunities, dependencies, and skills (Knorr Cetina 1984). Hypotheses can be falsified by 

the following experiments and resultant data, but never universally verified (Glass and Hall 

2008). Working with hypotheses bears the risk of distorted experimental design or reasoning 

during data processing thus increasing chances to meet the hypothesis. This is directly related 

to ontological uncertainty in the hypothesis-driven science approach when developing models, 

i.e., in the simplest case turning an unfalsified hypothesis into a confirmed hypothesis 



11 
 

(Refsgaard and Henriksen 2004) employed from here on to model states or processes of the 

Earth system.  

Hypothesis-driven approaches are often rooted in the assumption that the Earth system 

can be described by generalized theories or models, usually described in mathematical-

analytical form (Figure 3) found by means of induction from observations made elsewhere in 

space or time or deduction from existing theory. This scientific method is often taught as the 

working method of a distinct geoscientific domain and has experienced no change over the 

last decades (compare for example the textbooks of Berckhemer (1990) and Clauser (2016): 

both provide introductions to geophysics)  Earth system models match reality more or less 

closely, but critically suffer from ontological and possibly epistemic uncertainty. History 

shows that proven and once widely accepted models had to be given up or became special 

cases of a more general process description when new or improved experimental 

methodology became available or scientific paradigms with their portfolio of theories, under 

which hypotheses and models were developed, were superseded. Hypothesis-driven scientific 

approaches are learned when experiencing the training necessary to become member of a 

scientific community. Scientific methodology means here to learn the existing theory and 

modeling canon of a specific community and, based on that, how to hypothesize to explore 

promising research directions intended to prove and expand the paradigm of the community 

(Kuhn 1970). Flaws in the learned scientific paradigm due to ontological uncertainty when 

developing the paradigm accepted by the community are hard to recognize from inside the 

domains paradigm (Kuhn 1970).    

Discovery science approaches (e.g., Aebersold et al. 2000; Figure 3) usually ignore 

process functionality models, and are thus sometimes referred to as hypothesis-free, which is 

strictly not true. Compared to hypothesis-driven approaches, employed preconceptions are 

more general, e.g., the assumption that disparate data sets sampling the same reality must be 
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compliant and thus justify a common (integrated) analysis, but the actual definition of 

“compliant” may remain unclear or specified on a cross-domain meta level, e.g., segmentation 

or continuity are considered proper hypotheses for integrated data analysis. Learning “rules” 

or “pattern” from a given database opens the way to learn interrelations between data types 

for which no integrating mathematical-analytical model concept exists yet
5
. This clearly 

allows moving beyond some inherent limitations of hypothesis-driven science (which has no 

reason to hypothesize that data types not included in current models and the underlying theory 

may be of relevance). This allows for cross-domain data integration learning data linkage 

models f beyond methodological limits of geophysics, hydrology, and all the other domains of 

Earth sciences and thus broadens the potential capability to replace epistemic by aleatory 

uncertainty. In turn, any newly considered data set adds its aleatory uncertainty which is 

unwanted in terms of error propagation, particularly if the added aleatory uncertainty of a data 

set exceeds the reduction of epistemic uncertainty in the database. This comparison suffers 

uncertainty in itself since epistemic uncertainty cannot be quantified. The error propagation 

point of view suggests that a hypothesis-based a priori selection of “the most suitable” data 

sets may appear promising to prevent inflating aleatory uncertainty by considering data sets 

not really contributing relevant information, but instead brings in ontological uncertainty 

(which is not included in classical error calculus and stochastic uncertainty analyses) if the 

selection rules are rooted in accepted paradigms or models.  

To unfold its full potential, discovery science requires a change in measurement system 

experimental design. Here, the objective should move away from developing more precise 

and accurate observation methods (a traditional goal that cannot be reached in ultimate 

perfection), but instead observational uncertainty must be realistically quantified. A reduction 

of the considered database, and thus an exclusion of the aleatory uncertainty of some data sets 

with marginal information contribution, is only justified in discovery science approaches 
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recursively run with reduced databases thus allowing posteriorly identifying importance of 

distinct data sets to find good models. Results of such analyses will not be transferable 

without ontological uncertainty. Discovery science as a scientific method is often neglected in 

the training of young Earth and environmental scientists since their training program is 

defined by the classical theory paradigm of their geoscientific domain. This is also partly 

reflected by the discussions about uncertainty and uncertainty handling in distinct 

geoscientific communities, e.g., in hydrological sciences (e.g., Refsgaard et al. 2007; Gupta 

and Nearing 2014; Beven 2016; Nearing et al. 2016; Carsteanu et al. 2016) since discussions 

largely stay inside the paradigm of the community. For example, hydrological process 

simulation and prediction relying on mathematical-analytical process understanding models 

bear ontological uncertainty that cannot be assessed by the various techniques developed and 

discussed for uncertainty appraisal by the community (e.g., Refsgaard et al. 2007). Instead, a 

different scientific methodological approach, e.g., discovery science, is required to benchmark 

process-description-based modeling results relying on an a priori accepted theory. Limited 

observation capacities may currently hamper the application of discovery science approaches 

on continental or global scale Earth simulation and prediction tasks with reasonable local-

scale resolution, but hypothesis-based simulations matching output of discovery science 

approaches at least on the regional scale may help to assess and understand ontological 

uncertainty potentially present in process-model-based simulations of the Earth system.  

Discovery science has already changed some research areas in recent past, like biology, 

medicine, or economy. We expect it to be of growing importance in Earth sciences, too. 

However, uncertainty cannot diminish by following discovery science approaches. 

Ontological uncertainty due to unrecognized misconceptions can be reduced and scientific 

results come with an increased component of aleatory uncertainty. This makes uncertainties of 

scientific research results generally more quantifiable which should be the desire of 



14 
 

individuals and societies asking for a good informational basis for adaptation to Earth 

systems. Earth system models can only approach reality, and uncertainty is the measure of 

dissimilarity between model and reality. To be of maximal value, uncertainty must be small 

and quantifiable, and this is what current developments in discovery science with its potential 

for cross-domain integrated data analysis strive to improve. However, we are still far from 

reaching this goal since even at the first step, the data acquisition, state-of-the-art practices 

have to be changed. For example, instead of building new measurement devices reducing 

costs and measurement errors, realistic quantification of measurement errors must become an 

equally considered optimization goal in optimal measurement device design.  

Discovery science approaches can lead to an apparent increase of uncertainty compared to 

results of uncertainty analysis techniques from hypothesis-driven science approaches, such as 

error propagation, expert elicitation, stochastic uncertainty analysis, etc., all done under the 

same paradigm and its unrecognized ontological uncertainty. Despite the increase in aleatory 

uncertainty, model uncertainty can be better quantified which makes uncertainty information 

a better value on its own that should be considered in processing, interpretation, 

communication, and decision making when concerned with Earth system observation and 

modeling. In the desire to adapt to dynamic processes and in combination with the awareness 

that uncertainty will never diminish, quantification of uncertainty is a fundamental and 

naturally inherent goal of Earth science progression, independent of external incentives.        

 

CONCLUDING THOUGHTS 

Earth system observation and modeling inherently include uncertainty. This arises from truly 

non-deterministic causality in Earth system functionality as well as epistemic and aleatory 

uncertainty inherent to Earth observation. The latter prohibits, even in cases of deterministic 

causality, determined statements about Earth system states and dynamics.  
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Developments in the recent past, such as multi-sensor sampling of Earth processes and data 

and information integration techniques, reflect the desire to better cope with uncertainty in 

Earth system data processing and modeling, forming the basis for adaptation decisions to 

Earth system dynamics. To be of real value, aleatory uncertainty reduction must accompany 

quantification during Earth observation.  

Uncertainty assessment of scientific findings cannot be achieved when staying within a single 

scientific methodology, e.g., hypothesis-driven science. A priori acceptance of theories and 

models, e.g., in stochastic analysis of model parameters, excludes ontological uncertainty and 

results in overoptimistic uncertainty quantification. In turn, focusing exclusively on discovery 

science without an accompanying process understanding bears the ontological uncertainty of 

relying on rather arbitrary pattern matches related to processes not stable beyond the 

observation period.  

Individuals and stake holders should request scientific advice about adaptation to Earth 

system dynamics together with maximally quantified uncertainty. Incentives putting 

exploitation interests over understanding interests hamper honest uncertainty quantification 

and communication. Instead, uncertainty must be considered a valuable outcome inherent to 

any scientific endeavors addressing complex systems like Earth and environment. Uncertainty 

can never be overcome but different types of uncertainty can be converted into other types 

and different scientific methods can be combined. Pushing awareness of uncertainty 

quantification as a cross-methodological task and development of incentives better rewarding 

uncertainty quantification of scientific findings would reduce the room for personality traits in 

the interpretation of scientific findings and thus relax debates about risk communication, 

judgment, framing, and decision making in Earth sciences.  
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NOTES 

1: Even nowadays many fields of geosciences maintain deterministic model concepts, 

e.g., pedo- or petrophysical transfer functions in soil science and geophysics, respectively 

(e.g., Schön 2004). Irrationally, geoscientific communities sometimes accept the parallel 

existence of concurrent deterministic models (e.g., see table 5.3 in Wair et al. 2012), and even 

additions (e.g., Mola-Abasi et al. 2015). We think that such behavior reflects a diffuse 

traditional desire for causal determinism as well as a lack of alternative non-deterministic 

concepts accepted throughout or developed within a distinct geoscientific community. 

2: External incentives may reinforce this behavior. For example, if utilization and 

exploitation interests take precedence over understanding and cognitive interests, be it on the 

level of national innovation strategies or the evaluation of individual scientists, then scientific 

findings are considered products which have to demonstrate their usefulness soon after 

finishing the production process (Weingart 2008). Uncertainty quantification and 

communication may then be considered disturbing by the users of scientific products and 

financiers of scientific endeavors as well as scientists themselves.        

3: Precision and accuracy refer to random and systematic measurement errors, 

respectively. Random errors could be assessed by repeated measurements made with the same 

device at the same location under the assumption that no significant change of the observed 

state variables occurred during repeated observations.  Systematic errors are specific for 

measurement devices. They could be assessed when employing a sufficiently large number of 

devices at the same location simultaneously. If the random errors for the measurements of 
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each device are known, the systematic error components could be analyzed. Note, laboratory 

calibration of devices does not guarantee for reliable quantification of systematic errors under 

field observation conditions. Unfortunately, many data sets in Earth and environmental 

science come nowadays with no or poor aleatory uncertainty quantification, e.g., by only 

paying attention to random errors assessed by a very low number of repeated measurements 

and often simply described under the assumption of a distinct model, e.g., the normal 

distribution considered in Gaussian error statistics and their simple measures such as standard 

deviation.  

4: Scientific models are rooted in observations and built on one or more hypotheses 

retrospectively drawn from the analysis of information, e.g., available in the form of measured 

data and/or other models. Turning retrospectively drawn hypothesis into a priori valid models 

that can be transferred over space and time bears always ontological uncertainty, since the 

correctness of this conversion cannot be ultimately proven (e.g. Popper 1989).  

5: This scientific method also bears ontological uncertainty, e.g., by facing the risk to 

recognize and accept patterns as scientific findings which do not hold beyond the periods of 

observation. A popular example is the apparent linkage of the heliacal rise of the Sirius and 

the Nile flood cycle identified by the ancient Egyptians. Over the long existence of the 

Ancient Egyptian culture, the apparent pattern broke.  
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FIGURE CAPTIONS 

Figure 1: Work flow towards gaining insight into Earth system functionality and decision 

making for adaptation to system dynamics. (a) Relying on “the best/most suitable” data 

set. (b) Relying on a multi-sensor database comprising disparate but co-located data 

sets. Each data set is processed individually and a joint interpretation is done prior to 

decision making. (c) The same as in (b) but with information exchange between 

different data sets during the processing to realize a quantitative data fusion. d
0
 denotes 

observed data, j equals the number of data processing steps, n denotes the number of 

data sets, a and b denote two different data sets, e quantifies aleatory uncertainty, E is 

the final decision, and Pk are the personality traits of the k
th

 member of the 

interpreting/decision making group of human individuals. Note, from (a) to (c) the 

information content of the database increases as well as the level of data fusion. When 

following discovery science principles in (c) this leads to reduced importance of Pk thus 

approaching towards the ideal status of E=f(d1
end

,….dn
end

);     

Figure 2: Linkage of data domains X and Y. (a) Dots locate samples labeled x1 to x4, coming 

with no aleatory uncertainty. Observations could be modeled by a linear function 

depicted by the dashed gray line. (b) The same as in (a) but now with aleatory 

uncertainty in Y indicated by the length of the arrows. For simplicity, aleatory 

uncertainty in X is ignored. Note that now different linear models fit the data 

sufficiently well. (c) Epistemic uncertainty resultant from discrete sampling and limited 

bandwidth when probing X leaves also room for finding other simple models explaining 

the samples equally well. Between the sampling locations and beyond the sampled 

range limited by x1 and x4 all models are predictive. (d) The same as in (c) but with 
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reduced epistemic uncertainty by extending the sampled bandwidth in X by x6 and 

reduced sampling interval by considering x5. The added samples eliminate some 

models, but nevertheless leave room for more than one continuous model. Note, 

compared to x3 and x4, x5 has been sampled in a region of higher model sensitivity, since 

the considered models differ significantly at this location.  

Figure 3: Based on data, two different scientific methodologies can be followed when 

striving towards scientific findings. Hypothesis driven science comprises the paradigms 

of generalized theory and models and numerical simulation. Discovery science focuses 

on pattern recognition and data science. Examples for each paradigm are provided in 

parentheses. Note, examples for data science are not taken from Earth sciences, since 

we do not see substantial achievements of this emerging paradigm in this domain yet 

(Hey et al. 2009, modified).      
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TABLE CAPTION 

Table 1: Types of uncertainty in Earth observation and data processing and attempts to reduce 

them.  
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Figure 2 
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Figure 3 
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Table 1 

Uncertainty Aleatory Epistemic Ontological 

Cause Limited observational 

accuracy and 

precision 

Band-limited 

experiments 

Inappropriate 

methodology 

Recognizable Yes Yes No 

Quantifiable Yes No No 

Reduction 

by  

Individual 

approach  

Increase 

observational 

accuracy and 

precision 

Increase experimental 

information return 

New methodology 

Data 

integration 

Requires linkage model f for linking the information content of data sets 

di and dj,  di=f(dj); Epistemic uncertainty is reduced by replacing it with 

aleatory uncertainty: 

Data-driven linkage model f 

learned by the given database, 

diei=f(djej). Aleatory 

uncertainties ei and ej for both data 

sets are never zero and must be 

quantitatively known to avoid 

overfitting of f; Finding f is a non-

deterministic problem. 

ontological uncertainty: 

f is defined by a model, which is 

transferred to the given database. 

Appropriateness of the transferred 

model is hypothesized but cannot 

be validated.  

 

 

 


