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Significance 

The functionality of and within a microbial community is generally inferred based on the taxonomic 

annotation of the organism. However, our understanding of functional diversity and how it relates to 

taxonomy is still limited. Here we predict the total microbiome functionality in bacteria and fungi on 

Earth using known and annotated protein-coding sequences in species accumulation curves. Our 

estimates reveal that the majority of functionality (>99%) could be assigned to yet unknown and rare 

functions, highlighting that our current knowledge is incomplete and functional inference is thus 

lackluster. 

Robert Starke (on behalf of the authors) 
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The total microbiome functions in bacteria and fungi 

Robert Starke1, Petr Capek2, Daniel Morais1, Stephen J. Callister3, Nico Jehmlich4 

1Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Praha, Czech Republic, 

2Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, 

Washington, United States of America, 3Biological Science Division, Pacific Northwest National 

Laboratory, Richland, Washington, United States of America, 4Molecular Systems Biology, Helmholtz-

Center for Environmental Research, UFZ Leipzig, Germany 

Unveiling the relationship between phylogeny and function of the microbiome is crucial to determine its 

contribution to ecosystem functioning. However, while there is a considerable amount of information on 

microbial phylogenetic diversity, our understanding of its relationship to functional diversity is still 

scarce. Here we predicted the total microbiome functions of bacteria and fungi on Earth using the total 

known functions from level 3 of KEGG Orthology by modelling the increase of functions with increasing 

diversity of bacteria or fungi. For bacteria and fungi, the unsaturated model described the data 

significantly better (for both P < 2.2e-16), suggesting the presence of two types of functions. Widespread 

functions ubiquitous in every living organism that make up two thirds of our current knowledge of 

microbiome functions are separated from rare functions from specialized enzymes present in only a few 

species. Given previous estimates on species richness, we predicted a global total of 35.5 million 

functions in bacteria and 3.2 million in fungi; of which only 0.02% and 0.14% are known today. Our 

approach highlights the necessity of novel and more sophisticated methods to unveil the entirety of rare 

functions to fully understand the involvement of the microbiome in ecosystem functioning. 

Ecosystem functioning is mediated by biochemical transformations performed by a community 1 

of microbes from every domain of life [1]. A wide range of ecosystem processes in the form of individual 2 

functions that contribute to the decomposition of organic carbon [2], deposition of recalcitrant carbon 3 

[3–6] and transformations of nitrogen and phosphorus [7,8] are performed by both bacteria and fungi. 4 

In every microbial community, multiple organisms from different taxonomic groups can play similar if 5 

not identical roles in ecosystem functioning and contribute with similar function, the so-called functional 6 

redundancy [9]. In fact, functional redundancy of certain functions was shown to be very high with 7 

several hundreds to thousands of different taxa expressing the same function within one habitat [10]. 8 

These functions can be statistically inferred based upon homology to experimentally characterized 9 

genes and proteins in specific organisms to find orthologs in other organisms present in a given 10 
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microbiome. This so-called ortholog annotation can be performed by the Kyoto Encyclopedia of Genes 11 

and Genomes (KEGG) database [11,12] with a similar coverage of bacteria and fungi compared to other 12 

phylogenomic databases such as eggNOG or OMA (Figure S1). KEGG is a database resource that 13 

integrates genomic, chemical and systemic function information commonly used to describe functional 14 

traits in microbiomes as it covers a wide range of functional classes (level 1 of KEGG) comprising cellular 15 

processes, environmental information processing, genetic information processing, human diseases, 16 

metabolism, organismal system and brite hierarchies. However, the bottleneck of describing 17 

microbiome functions is the low number of fully annotated genomes of microbial species as they are 18 

mostly limited to those that have undergone isolation and extensive characterization while the vast 19 

majority of organisms were not yet studied [13,14] and the annotation is based on the similarity to the 20 

genomes of the very few studied model organisms. Hence, microbiome functions are normally inferred 21 

based on the composition of the microbiome and its relation to functional parameters [15] as indicated 22 

by the frequent use of amplicon sequencing of DNA or RNA to target the 16S rRNA gene in prokaryotes 23 

and the ITS2 rRNA gene in eukaryotes that only describes the bacterial microbiome composition but not 24 

its function directly (45,657 publications in PubMed with the search term “16S rRNA sequencing” and 25 

537 with “ITS2 rRNA sequencing” as of December 2019) opposed to other possible techniques that 26 

describe both phylogeny and function such as metagenomics (9,322), metatranscriptomics (534) or 27 

metaproteomics (442). Logically, the relationship between phylogeny and function is still uncertain, and 28 

the inference of microbiome functions based on phylogeny derived from sequencing is prone to 29 

limitations such as quantitative accuracy [16,17] or methodological bias introduced by DNA extraction, 30 

PCR, sequencing and the bioinformatic pipeline [18]. To unveil the relationship between phylogeny and 31 

function, and to predict the total microbiome functions of bacteria and fungi on Earth, we used species 32 

accumulation curves (SAC) [19] with the publicly available data from KO to identify the total possible 33 

diversity of KO functions. Given the difference in lifestyle as bacteria are confined to micro-34 

environments as niche specialists present in matrix pores or bound to surfaces in biofilms [20] compared 35 

to filamentous fungi that typically sense a much larger volume of the environment, i.e. through 36 

mycorrhizal networks in soil [21], we hypothesise that (i) functional redundancy is higher in fungi and 37 

that (ii) both species richness and functional richness in the KO database are higher in bacteria. For this, 38 

we extracted all protein-coding genes with taxonomic annotation on species level and functional 39 

annotation on level 3 of KO from Uniprot (https://www.uniprot.org/, as of November 5th, 2018 [22]) as 40 

it comprises all available information from different annotation tools, estimated the SAC with ten 41 

random permutations, and fitted the resulting data to a saturated and an unsaturated model.  42 

https://www.uniprot.org/
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In line with our first hypothesis of niche-specialised bacteria [20], fungi were indeed found to be 43 

functionally more redundant than bacteria as indicated by the median of the relative amount of 44 

bacterial (3±21%) and fungal organisms (46±22%) that share one randomly chosen function (Figure 1a). 45 

The number of KO functions shared between the two kingdoms (1,175) was smaller than the functions 46 

unique to either bacteria (8,597) or fungi (3,420) (Figure 1b), highlighting not only that the difference in 47 

lifestyle between the two kingdoms guides a difference in particular functions but also that two 48 

different KO functions could perform functionally similar processes. In fact and among others, the 49 

malate dehydrogenases (K00024-K00029) all perform the same function. Even though fungi were 50 

functionally more redundant than bacteria, one fungal species contributed 1.65±3.42 rare KO functions 51 

to the total functional richness as compared to only 0.18±0.88 in bacteria (Figure 1c), presumably due to 52 

the larger eukaryotic genomes derived from higher morphological complexity [23,24]. In addition to 53 

that, if each fungal genome adds more phylogenetic diversity, it could potentially also add more 54 

functional diversity as a higher taxonomic redundancy and closely relatedness exist in the bacterial 55 

genomes of the database (75.2% in bacteria compared to only 38.3% in fungi). In fact, the average fungi 56 

in the database contained more KO functions (1,918.8±1,709.2) than bacteria (1,404.5±974.7). The SAC 57 

were fitted to a saturated model (Equation 1) with the hypothesis of limited microbiome functions 58 

where the functional richness plateaus despite further increasing species richness. Otherwise, the 59 

unsaturated model (Equation 2) with the hypothesis of unlimited microbiome functions is the increase 60 

of functional richness with increasing species richness without ever reaching a plateau. The difference 61 

between the two is the addition of an additive term in the unsaturated model. The unsaturated model 62 

of both bacteria (AICbacteria = 51,495.75) and fungi (AICfungi = 1,721.39) fitted the SAC significantly better 63 

(P < 2.2E-16) than the saturated model (AICbacteria = 59,174.37; AICfungi = 2,327.99). The unsaturated 64 

model is described by the maximum functional richness fmax, the accretion rate of functions with an 65 

increasing number of species Af and the constant of the additive term k. In line with our second 66 

hypothesis, we found more than double fmax in bacteria than in fungi and an Af of only two fungal species 67 

but 22 in bacteria (Figure 2). Similarly, the unsaturated model described the SAC significantly better (for 68 

all P < 2.2E-16) when only 90%, 80%, 70%, 60% and 50% of the bacterial (Table 1) and fungal species 69 

were used (Table 2). The better fit of the unsaturated models inferred the presence of two types of 70 

microbiome functions within KO that are similarly present in bacteria and fungi based on the frequency 71 

of appearance in the database. On the one hand, widespread KO functions rapidly increase with the 72 

number of species and are ubiquitously abundant in every living organism. Among those, enzymes such 73 

as the glyceraldehyde 3-phosphate dehydrogenase gapA (EC 1.2.1.12, K00134) found in 79.9% of 74 
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bacteria and 59.2% of fungi in the KO database are counted. As comparison, the genome-based 75 

database comprises of in total 67,631 genomes with that protein found in archaea, bacteria and 76 

eukaryotes. The number of widespread KO functions is limited and the majority has been identified thus 77 

far amounting to, in total, 6,397 in bacteria and 3,173 in fungi. Logically, the difference in lifestyle 78 

between bacteria and fungi must influence widespread KO functions since the two kingdoms shared 79 

only 1,175 KO functions. On the other hand, rare KO functions, separated from widespread KO functions 80 

by the critical point, increase at a much slower rate with the number of species but require time and the 81 

evolution of “dead ends”, i.e. species that were unable to evolve a particular function. Among those, 82 

specialised enzymes such as the D-nopaline dehydrogenase (EC 1.5.1.19, K00296) are only found in one 83 

bacterial taxonomic unit in the protein-based database. As comparison, the genome-based database 84 

comprises of in total eight organisms with that protein; all of which are bacteria. Given the estimated 85 

number of species of 100 million bacteria [25,26] and 1.5 million fungi [27] on Earth and assuming that 86 

the yet unknown microbiome functions are indeed rare KO functions, the propagation of the 87 

unsaturated model predicted the total microbiome functions on Earth to be 3,180,114±48,582 (with 88 

3,084,709-3,275,474 as 95% confidence intervals) in fungi and 35,487,366±216,109 (with 35,063,316-89 

35,910,407 as 95% confidence intervals) in bacteria. For bacteria, the estimate is likely imprecise as the 90 

confidence intervals of the prediction when only subsets of the SAC were used did not overlap (Table 1) 91 

whereas, otherwise for fungi, all confidence intervals for the prediction overlapped and the estimate of 92 

microbiome functions is therefore likely precise (Table 2). At large, based on our estimates, our 93 

understanding of microbiome functions is limited to 0.14% in fungi (4.5 thousand from 3.2 million) and 94 

0.02% in bacteria (9.7 thousand from 35.5 million). Of those, the majority belong to ubiquitously present 95 

widespread KO functions. SAC with error bars as black area of the KO functions of functional classes 96 

(level 1 of KO) revealed that our current knowledge is differently divided among bacteria and fungi. 97 

Since the saturation means that most if not all of the functions are covered, cellular processes, 98 

environmental information and human disease in bacteria (Figure S2) together with cellular processes 99 

and genetic information in fungi are well-understood as of today (Figure S3). Otherwise, unsaturated 100 

relationships were found for genetic information, metabolism, organismal system, brite hierarchies and 101 

functions not included in the annotation of the two databases pathway or brite in bacteria together with 102 

environmental information, human disease, metabolism, organismal system, brite hierarchies and 103 

functions not included in the annotation of the two databases pathway or brite. The two latter 104 

represent the functional classes on which future research must focus to reach the saturation in total 105 

microbiome functions as our current knowledge is incomplete. 106 



5 

Taken together, we suggest based on known protein-coding sequences the presence of two 107 

types of microbiome functions in bacteria and fungi; widespread and rare KO functions. Our predictions 108 

revealed millions more yet unknown rare KO functions that, logically, can only be unveiled by novel and 109 

more sophisticated methods. However, due to the vast amount of yet unknown functions, it is 110 

questionable if the relationship between phylogeny and function is in fact explained by an unsaturated 111 

model, if only two types of KO functions (widespread and rare) exist and if it is similar when different 112 

phylogenomic tools for the functional annotation or genome-centric databases are used. In fact, as one 113 

isolated genome comprised of on average only 171 KO functions it is further questionable if rare and 114 

widespread KO functions is a feasible discrimination of functions or if the rather smooth transitions 115 

require more groups of functions such as less rare and super rare. Moving forward, estimates on total 116 

microbiome functions must include a higher coverage of species richness and functional richness 117 

through the discovery of both novel species and novel functions. 118 

Materials and Methods 119 

Metadata collection of the total known microbiome functions 120 

The data used to quantify functional richness and species richness was downloaded from Uniprot 121 

(https://www.uniprot.org/, as of November 5th, 2018 [22]) using the search parameters “bacteria” and 122 

“fungi”. To standardise the overall classification system, we used only genes containing functional 123 

annotation from the level 3 of KEGG Orthology (KO) [11,12] with the search parameter “KEGG”. Level 3 124 

of KO was used to provide sufficient depth to estimate the species accumulation curves as level 1 125 

comprises of eight and level 2 of 54 categories, which would represent the maximum functional 126 

diversity. In total, our database comprised of 15,411,107 non-redundant protein-coding genes, which 127 

are related to 9,755 KO functions assigned to 4,092 bacteria, and 4,578 KO functions assigned to 196 128 

fungi. A different organism was considered as taxonomic unit regardless of the depth of annotation. Of 129 

the 4,092 bacterial taxonomic units, 3,003 and 18 were annotated on the strain or the genus level, 130 

respectively. In total, the bacterial taxonomic units comprise of 1,017 bacterial genera. Of the 196 131 

bacterial taxonomic units, 177 and 0 were annotated on the strain or the genus level, respectively. In 132 

total, the fungal taxonomic units comprise of 121 fungal genera. In every taxonomic unit, any one 133 

function can be encoded by multiple copies of a gene, the so-called gene redundancy [28]. Otherwise, 134 

one gene can have multiple functions, the so-called pleiotropy [29]. For our estimates, we only 135 

considered one gene for each function per taxonomic unit, disregarding both gene redundancy and 136 

pleiotropy. The functional redundancy in bacteria and fungi was determined as the median of the 137 
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functional redundancy of every individual function. For each individual functions, the number of 138 

bacterial or fungal species that share this specific function were estimated relative to the total number 139 

of species in each database. To determine the unique KO functions per kingdom, the number of KO 140 

functions unique to bacteria or fungi were extracted together with how many KO functions are shared 141 

between the two kingdoms. To determine the unique KO functions per species, the number of KO 142 

functions that are present in only one bacterial or fungal species were counted. 143 

Species accumulation curves 144 

For bacteria and fungi separately, species were randomly added in intervals of one up to the maximum 145 

species richness within each domain with ten permutations per step using the function specaccum from 146 

the R package vegan [30]. Similarly the species accumulation curves (SAC) were permuted for the 147 

functional classes (level 1 of KO) of KO functions. SAC of the database permutation from bacteria or 148 

fungi were then fitted to a saturated (Equation 1) and an unsaturated model (Equation 2) with the 149 

critical point estimated by the term 3Af as previously described [31]. The fit of the models was compared 150 

by the analysis of variance (ANOVA) and the Akaike’s An Information Criterion (AIC) [32] with a penalty 151 

per parameter set to k equals two. The total number of KO functions in bacteria and fungi on Earth was 152 

predicted using the global species richness estimates of 100 million bacteria [25,26] and 1.5 million fungi 153 

[27], and the function predictNLS in the R package propagate [33]. Lastly, the species richness of the 154 

bacterial and fungal SAC was subsampled to 90%, 80%, 70%, 60% and 50% of the maximum species 155 

richness and again fitted to a saturated and an unsaturated model as described above to validate the 156 

precision of the prediction. 157 

Eq. 1:                     
                       

                     
 158 

Eq. 2:                   
                       

                     
                      159 

Here, fmax is the maximum functional richness, Af the accretion rate of functions with an increasing 160 

number of species and k the constant of the additive term. 161 
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Figures 256 

Figure 1: Total share of KO functions within bacteria in blue and fungi in red as functional redundancy 257 

relative to the total number of species in each kingdom in the database (a), the number of KO functions 258 

unique to bacteria in blue or fungi in red and those common to both in grey (b), and the number of KO 259 

functions unique to one species within bacteria in blue and fungi in red (c). 260 

Figure 2: The unsaturated model of the species accumulation curves as grey points with error bars for 261 

the total known microbiome functions derived from the KO database by ten random permutations for 262 

every one species richness of bacteria in blue and fungi in red with 95% confidence intervals. The 263 

maximum functional richness at infinite species richness is represented by fmax, Af is the accretion rate of 264 

functions with increasing number of species, and k is the constant of the additive term. Significance of 265 

the parameter estimates are indicated by asterisks (*** equals P < 0.001).  266 
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Tables 267 

Table 1: The fit of the saturated and the unsaturated model to the different amount of coverage of the 268 

species accumulation curve indicated by the Akaike’s An Information Criterion (AIC), the P-value at 269 

which the unsaturated model gives a better fit than the saturated model, and the mean prediction with 270 

standard deviation (SD) and 95% confidence intervals (CI) at 100 million bacterial species.  271 

Table 2: The fit of the saturated and the unsaturated model to the different amount of coverage of the 272 

species accumulation curve indicated by the Akaike’s An Information Criterion (AIC), the P-value at 273 

which the unsaturated model gives a better fit than the saturated model, and the mean prediction with 274 

standard deviation (SD) and 95% confidence intervals (CI) at 1.5 million fungal species.  275 
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Coverage (%) AICunsat AICsat P-value Prediction SD Lower CI Higher CI

100 51,495.75 59,174.37 2.20E-16 35,487,366 216,109 35,063,316 35,910,407

90 46,190.99 53,080.57 2.20E-16 38,841,560 249,651 38,352,496 39,330,613

80 40,893.62 47,028.51 2.20E-16 43,063,588 292,920 42,488,069 43,639,301

70 35,596.20 40,998.98 2.20E-16 48,487,877 350,996 47,801,109 49,177,219

60 30,379.72 34,969.69 2.20E-16 55,263,177 436,089 54,408,161 56,119,307

50 25,234.50 28,940.99 2.20E-16 64,176,709 574,565 63,049,975 65,302,445

Table 1
Click here to download Table: Table 1.xlsx

http://ees.elsevier.com/jprot/download.aspx?id=705387&guid=155cd146-3c76-4cd5-9bce-f87388777b9a&scheme=1


Coverage (%) AICunsat AICsat P-value Prediction SD Lower CI Higher CI

100 1,721.39 2,327.99 2.20E-16 3,180,114 48,582 3,084,709 3,275,474

90 1,543.28 2,049.80 2.20E-16 3,304,410 59,462 3,187,645 3,421,034

80 1,386.50 1,799.95 2.20E-16 3,415,251 74,457 3,269,025 3,561,628

70 1,228.09 1,531.89 2.20E-16 3,411,586 100,613 3,214,075 3,609,491

60 1,074.71 1,282.71 2.20E-16 3,368,669 139,977 3,094,092 3,643,280

50 910.37 1,033.48 2.20E-16 3,345,225 212,630 2,927,000 3,762,746

Table 2
Click here to download Table: Table 2.xlsx

http://ees.elsevier.com/jprot/download.aspx?id=705388&guid=46a7ca68-1a70-4d82-832e-e6a02fa25ed0&scheme=1
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