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Abstract 14 

Saturated hydraulic conductivity (Ks) is a crucial hydraulic property for assessing soil water 15 

dynamics. Understanding the spatial variability of Ks in a field is important for site-specific 16 

resource management. However, direct measurement of hydraulic conductivity K as a function of 17 

soil water pressure head h [K(h)] is time consuming and laborious. Alternatively, pedotransfer 18 

functions (PTFs) have been developed to predict Ks indirectly based on more easily measurable 19 

soil properties. Although PTFs have been used for decades, their validity for estimating the field-20 
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scale spatial variability of Ks remains unclear. The objectives of this study were to characterize 21 

the spatial pattern of K(h) at and near saturation in an agricultural field by a coregionalization 22 

technique, and in comparison, to evaluate the performance of ROSETTA PTF in characterizing 23 

the spatial variability of K(h) at the field scale. Surface soil (7-13 cm) K(h) in the vertical 24 

direction was measured at 48 locations in a 71-m by 71-m grid within a no-till farmland. 25 

Apparent electrical conductivity was densely measured using a contact sensor Veris 3150 and 26 

used as ancillary variable in a coregionalization approach. Experimental semivariograms and 27 

cross semivariograms were derived and applied in cokriging to generate K(h) maps. 28 

Geostatistical analysis presented similarities in maps of measured K(h) with ROSETTA-29 

predicted K(h) data for a matric potential of -10 cm. However, the strong spatial heterogeneity of 30 

measured Ks, which was caused by macropores, observed in the field was not captured by 31 

ROSETTA estimates. The results indicated that texture dominated PTFs like ROSETTA, in 32 

which soil structure is not considered, might be useful in characterizing the spatial pattern of 33 

unsaturated hydraulic conductivity rather than Ks. Field scale Ks maps based on PTF estimates 34 

should be evaluated carefully and handled with caution. 35 
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1. Introduction 43 

Hydraulic conductivity at and near saturation of the soil surface layer plays an important role in 44 

partitioning precipitation and irrigation water into surface runoff and soil water, and regulating 45 

water transport in the vadose zone (Jarvis et al., 2013; Ugarte Nano et al., 2015; Gadi et al., 46 

2017). Soil saturated hydraulic conductivity (Ks), which determines the maximum rate of soil to 47 

transmit water, is a crucial hydraulic parameter for hydrological models (e.g., HYDRUS, 48 

RZWQM2) (Mallants et al., 1997; Zhao et al., 2016). In many field soils, Ks is strongly 49 

influenced by structural macropores and exhibits high spatial heterogeneity (Jarvis et al., 2002; 50 

Strudley et al., 2008). Due to the high spatial variability of Ks, the optimum application rate and 51 

amount of irrigation water differs between specific areas within the same field (Al-Karadsheh et 52 

al., 2002). Accurate characterization of the spatial variation of Ks at the field scale is therefore 53 

important for precision irrigation management and indentifying local management zones 54 

(Gumiere et al., 2014). A map of the spatial distribution of Ks can become useful for guiding site-55 

specific irrigation, helping farmers to apply the right amount of water in the right areas at the 56 

right intensity while minimizing the environmental risks, e.g., leaching, surface runoff, oxygen 57 

deficiency through over-irrigation, and plant-water stress and yield loss through under-irrigation. 58 

Saturated hydraulic conductivity can be measured either in the field with in-situ methods (e.g., 59 

borehole infiltrometer, Amoozemeter) or in the laboratory with a permeameter (Klute and 60 

Dirksen, 1986; Amoozegar, 1989; Stephens, 1992). However, Ks is a parameter that exhibits 61 

enormous spatial variability (Nielsen et al., 1973; Schaap and Leij, 1998b). Large numbers of 62 

soil samples are generally required to accurately characterize Ks in a study area (Yao et al., 2015). 63 

For example, Vieira et al. (1981) characterized the spatial variability of infiltration rate based on 64 

1280 measurements. By comparing different scenarios, they found that at least 128 field-65 
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measured values were required in order to obtain useful spatial information in a field with an 66 

area of 0.88 ha. Accurate characterization of Ks using direct measurements, therefore, are 67 

laborious, time-consuming, and expensive (Li et al., 2007; Wang et al., 2012). To overcome 68 

these limitations and to quantify Ks for large regions, alternative approaches have been 69 

developed to estimate Ks indirectly through more easily measurable soil properties that may 70 

already exist from soil surveys or from existing soil databases (Zhang et al., 2019). Among these 71 

alternative approaches, pedotransfer functions (PTFs) are increasingly used to estimate Ks 72 

(Wösten et al., 2001; McBratney et al., 2011). In the past decades, the accuracy and reliability of 73 

PTFs for estimating Ks have been critically evaluated (Tietje and Hennings, 1996; Schaap and 74 

Leij, 1998a; Wagner et al., 2001; Alvarez-Acosta et al., 2012; Yao et al., 2015). The PTF 75 

estimate at a single point is usually compared with the measured value at the same location. 76 

Although estimation of Ks at a single point is necessary for modeling water flow and solute 77 

transport in a soil profile, a detailed description of the spatial variability or distribution of Ks is 78 

needed for field water management with distributed hydrological models (Liao et al., 2011). 79 

Several authors have studied the spatial characterization of unsaturated hydraulic conductivity 80 

(soil water pressure, h, less than -10 cm) by using both measured data and PTF predictions (e.g., 81 

Romano, 2004; da Silva et al., 2017), however, far fewer studies investigated the performance of 82 

PTFs in describing spatial structure or characterizing spatial patterns of Ks in a field and the 83 

results are inconsistent (Springer and Cundy, 1987; Leij et al., 2004). Although PTF estimates 84 

revealed stronger spatial dependence than independently measured data and the generated spatial 85 

pattern of hydraulic conductivity depended on the choice of PTFs, kriged maps of unsaturated 86 

hydraulic conductivity based on measurements and on PTFs estimates showed similarities in 87 

their spatial variations. (Romano, 2004; da Silva et al., 2017). 88 
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Unsaturated water flow at h < -10 cm mainly takes place in the soil matrix and soil texture places 89 

a significant impact on unsaturated hydraulic conductivity (Lin et al., 1999b; Schaap and Leij, 90 

2000). For saturated or near-saturated water flow (h ≥ -10 cm), the behavior differs. Hydraulic 91 

conductivity at or near saturation is sensitive to even small volume fractions (0.1%-5%) of 92 

macropores, which are affected by agricultural management and biological activities (Rienzner 93 

and Gandolfi, 2014). Inter-aggregate macropores form the primary pathways for rapid water flow. 94 

Water flow through soil is influenced not only by macropores size and shape, but also by their 95 

vertical continuity (Bouma et al., 1977). The presence and connectivity of macropores are 96 

governed by soil structure. In general, soil with granular structure has high infiltration rate, while 97 

block- and prism-like structure has moderate infiltration rate. Platy soil structure impedes water 98 

infiltration and encourages lateral flow (Germán Soracco et al., 2010). Thus, soil structure also 99 

impacts the anisotropy of Ks. In well-structured soil, water is mostly stored in the intra-aggregate 100 

micropores due to the inter-aggregate macropores rapidly drain at the end of infiltration and 101 

water slowly redistributes via a network of contacting aggregates (Berli et al., 2008). Soil 102 

micropores is determined by texture. Therefore, soil structure is important for saturated and near-103 

saturated water flow, while unsaturated water flow is influenced more by soil texture. In field 104 

soils with structural macropores, a large decrease (e.g., several orders of magnitude) in hydraulic 105 

conductivity is often observed as water pressure even slightly drops from saturation to near-106 

saturated conditions (-10 cm < h < 0 cm) (Jarvis and Messing, 1995; Jarvis et al., 2002; Braud et 107 

al., 2017). Hydraulic conductivity at near saturation, therefore, can be used to identify macropore 108 

effects in a field. Although basic soil physical properties (e.g., texture, bulk density, and organic 109 

matter) are commonly used as PTF predictors, their influence on Ks is usually masked by 110 

macropore effects (Buttle and House, 1997). However, soil structure or macropore information is 111 
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not included in most published PTFs (Lin et al., 1999b; Weynants et al., 2009; Vereecken et al., 112 

2010). PTFs that relate Ks to basic soil physical properties alone may therefore not accurately 113 

estimate Ks for soils with pronounced structural macropores (Lin et al., 1999a).  114 

Since PTF predictors (i.e., basic soil physical properties) can only be sampled for a limited 115 

number of points in an area, PTF estimates at these points have to be combined with spatial 116 

interpolation to make predictions at unsampled locations with the result that the estimated spatial 117 

variability reflects the behavior of the target variable less than the PTF input variables. At each 118 

sampled location, the uncertainty (e.g., measurement errors) in the input variables also causes 119 

uncertainty in the PTF estimates. This uncertainty is further propagated to the interpolation 120 

process and is the larger the farther away an interpolated point is located from the next measured 121 

point (Chirico et al., 2007). Moreover, the spatial interpolation of PTF-predicted data is 122 

dominated by the spatial variability pattern of the underlying predictors, which may deviate from 123 

the spatial variability pattern of measured hydraulic conductivity data, especially if soil structural 124 

features affect their magnitude, such as macropores. Springer and Cundy (1987) compared 125 

measurements of Ks with predicted data obtained from two published PTFs at the field scale, and 126 

the semivariogram of the measured data was well reproduced by one of the PTFs. They also 127 

found that the correlation length was shorter for the field-measured data. Leij et al. (2004) did 128 

similar work in a field with structural soil, however, their findings were discouraging since all 129 

the selected PTFs failed to capture the spatial structure of observed Ks. Furthermore, Pringle et al. 130 

(2007) emphasized that PTFs are scale dependent. PTF-estimated data is unable to provide a 131 

reasonable portrayal of the spatial variations exhibited by measured data at all spatial scales. 132 

These studies indicate that there are still significant uncertainties about whether the spatial 133 

variability of Ks observed in a field can be captured by PTF-predicted data. Therefore, 134 
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characterizing the field-scale spatial pattern of Ks predicted with a PTF still needs to be critically 135 

evaluated. To this end, the primary objective of this study was to characterize the spatial 136 

variability of hydraulic conductivity at and near saturation in an agricultural field by 137 

geostatistical analysis using both measured and PTF estimated data. 138 

2. Materials and Methods 139 

2.1. Site description and soil sampling 140 

This study was conducted in an agricultural field (~30 ha) located in Caldwell County, Kentucky, 141 

United States (37°1′42″-37°1′58″N, 87°51′11″-87°51′33″W) (Fig. 1). The climate in the 142 

investigated area can best be described as humid subtropical (Reyes et al., 2018). In this area, the 143 

mean annual precipitation is 1300 mm with a mean annual temperature of 15 °C (Zhang et al., 144 

2019). Soil in this area is formed from loess mantle over residuum from limestone. According to 145 

USDA-NRCS soil survey, the soil was categorized into Crider series and classified as fine-silty, 146 

mixed, active, mesic Typic Paleudalfs. Wheat/ double-crop soybean/ corn rotation is practiced in 147 

this field under no till soil management (Zhang et al., 2019). After planting corn, undisturbed soil 148 

cores were sampled in a 71 m by 71 m grid at 48 locations from 7 to 13 cm depth by using 149 

cutting rings (diameter: 8.4 cm, height: 6 cm, volume: 332 cm
3
) in May 2017 when soil had 150 

appropriate moisture. Bulk soil samples were also collected from each location. Soil cores were 151 

used to measure hydraulic conductivity at saturated and near-saturated conditions, and bulk 152 

density. Disturbed soil samples were air-dried and passed through a 2-mm sieve for analyzing 153 

soil texture. 154 

2.2. Laboratory analysis 155 
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The sieving and the pipette method was used to determine soil texture (Gee and Or, 2002). The 156 

volumetric cylinder method (or core method) was used to measure bulk density (ρb) (Grossman 157 

and Reinsch, 2002). A permeameter (Eijkelkamp, Netherlands) was used to measure saturated 158 

hydraulic conductivity based on Darcy’s law under either constant or falling head condition 159 

depending on the permeability of individual soil sample (Zhang et al., 2019). A self-developed 160 

double pressure plate-membrane apparatus, which has two tension plates at the upper and lower 161 

ends of the soil sample, was used to measure near-saturated hydraulic conductivity at the matric 162 

potential of -1 cm (K-1), -5 cm (K-5) and -10 cm (K-10) (Wendroth and Simunek, 1999). This 163 

device is similar to those used with tension infiltrometers (Zhang et al., 2019). Near-saturated 164 

hydraulic conductivity was computed based on Buckingham-Darcy’s law. 165 
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 166 

Fig. 1. Study area and sampling locations. 167 

 168 
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2.3. Estimates with pedo-transfer functions 169 

A large number of PTFs have been developed to predict hydraulic conductivity in the past three 170 

decades. Soil texture, bulk density and organic matter were widely used as input data in these 171 

established PTFs (Wösten et al., 2001). Among these published PTFs, ROSETTA (based on 172 

1306 soil samples in temperate to subtropical climates of North America and Europe from 173 

heterogeneous databases consisted of data from different sources and measurement procedures) 174 

and HYPRES (derived from 1139 soil samples in Europe) are the most widely used PTFs 175 

(Wösten et al., 1999; Schaap and Leij, 1998a; McBratney et al., 2011).  176 

ROSETTA was developed based on artificial neural network analysis and includes five 177 

hierarchical models (H1 - H5) (see Schaap et al., 2001 for detail). The hierarchical structure in 178 

ROSETTA provides users with flexibility towards available input data. ROSETTA is able to 179 

estimate Ks as well as unsaturated hydraulic conductivity function parameters for the Mualem-180 

van Genuchten model. A user-friendly computer program was developed to make the estimation 181 

with ROSETTA even more convenient. Therefore, ROSETTA was selected as an example to 182 

investigate whether PTFs reliably describe the spatial variability of hydraulic conductivity 183 

observed in a field. Based on available measured soil physical properties, the H3 model (which 184 

uses sand, silt, clay, and bulk density as input) was used to predict hydraulic conductivity in this 185 

study. Wösten (1997) emphasized that the estimation of hydraulic properties based on PTFs 186 

should be restricted to soils that fall within the range of soil textures that were used to develop 187 

the PTFs. In this study, local soil properties are within the range of the dataset that was used to 188 

develop ROSETTA. 189 

Ks was indirectly estimated from ROSETTA. Mualem-van Genuchten model parameters were 190 

also predicted by ROSETTA using soil texture and bulk density. Using predicted Ks as a 191 
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matching point combined with estimated Mualem-van Genuchten model parameters, the near-192 

saturated hydraulic conductivity (h = -1, -5, -10 cm) was calculated by Eq. 1 (van Genuchten, 193 

1980): 194 

                                                                                                                                            (1) 195 

where Ks (cm day
-1

) is the ROSETTA estimated saturated hydraulic conductivity, h (cm) is soil 196 

water pressure, α (cm
-1

) is related to the inverse of the air-entry pressure head, m (-) and n (-) are 197 

empirical shape parameter (m=1- 1/n). α and n were predicted by ROSETTA (H3). 198 

2.4. Geostatistical analysis 199 

Hydraulic properties in field soils are highly variable, and any individual measurement can only 200 

provide information about the immediate vicinity of the sampled location. Information about 201 

hydraulic properties at places where no measurements are taken has to be inferred from the 202 

known values at the sampled points since only a limited number of measurements can be taken in 203 

an area (Nielsen et al., 1973; Jury and Horton, 2004). Various strategies (e.g., inverse distance 204 

weighting, kriging, cokriging) can be used to interpolate spatial data (Webster and Oliver, 2007). 205 

Geostatistics (i.e., kriging and cokriging) is generally considered as the best method for spatial 206 

interpolation and has been successfully used in studying the spatial variation of soil hydraulic 207 

properties (Vieira et al., 1981; Vauclin et al., 1983; Goovaerts, 1999; Ferrer Julià et al., 2004; 208 

Romano, 2004; Iqbal et al., 2005; Wang et al., 2013; Fu et al., 2015). Kriging is a linear 209 

interpolation that utilizes a semivariogram to estimate a variable at an unsampled location using 210 

weighted neighboring measured values (Nielsen and Wendroth, 2003). The performance of 211 

kriging in interpolating spatial data greatly depends on the quantity and quality of the 212 

measurements and their spatial continuity (Miller et al., 2007) as well as their behavior in the 213 
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scale-triplet (i.e., research domain, sampling interval, and sample size) (Blöschl and Sivapalan, 214 

1995). In a field with high spatial variability of Ks, it can be a challenge to create a set of 215 

measured Ks at a resolution that reveals a satisfactory variability structure to support kriged 216 

estimates of Ks at unsampled locations with acceptable accuracy. When Ks is undersampled, 217 

kriging is not well supported and the uncertainty of estimation poses a challenge as well. 218 

However, the estimation of Ks at unobserved locations can be improved by utilizing the 219 

relationship between Ks and easily measurable soil properties (Ersahin, 2003). Cokriging utilizes 220 

spatial information of two or more variables (one is the primary variable, the other is the 221 

ancillary variable) along with spatial cross-correlation between the two variables to estimate the 222 

undersampled variable (i.e., primary variable) at unobserved locations. The ancillary variable is 223 

spatially correlated with the variable of interest, and can be easily measured and densely sampled 224 

(Alemi et al., 1988; Nielsen and Wendroth, 2003). By using clay content (Alemi et al., 1988), 225 

bulk density (Ersahin, 2003) or water-stable aggregates (Basaran et al., 2011) as ancillary 226 

variable, cokriging has been proven to be superior to kriging in characterizing the spatial 227 

variability of Ks when Ks is only sparsely sampled in an area. Although apparent electrical 228 

conductivity has not been used as an ancillary variable in cokriging to estimate Ks, investigating 229 

the spatial association of Ks to apparent electrical conductivity might be another promising way 230 

to estimate the spatial distribution of Ks across a field. Apparent electrical conductivity (ECa) is a 231 

simple, efficient and inexpensive measurement, and can be densely measured over large areas 232 

(Sudduth et al., 2005). Similar to water flow in soil, apparent electrical conduction (mainly 233 

through electrolyte in sufficiently moist soil) occurs in the same network of pores and channels 234 

(Corwin and Lesch, 2003; Doussan and Ruy, 2009). Apparent electrical conductivity is 235 

influenced by a variety of soil properties including soil clay content, porosity, pore connectivity, 236 
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moisture, temperature, salinity, and organic matter (Corwin and Lesch, 2005; Friedman, 2005; 237 

Doussan and Ruy, 2009; Chaplot et al., 2010). These factors influencing ECa also affect soil 238 

hydraulic conductivity. In recent studies, ECa was successfully used as a predictor in linear 239 

regression PTFs to calculate Ks (Chaplot et al., 2011; Rezaei et al., 2016). Therefore, ECa can be 240 

considered as an ancillary variable and was used in cokriging to facilitate the estimation of 241 

hydraulic conductivity in this research.  242 

Soil ECa at shallow depth (0-30 cm) was densely measured in the field (Fig. 1) (the distance 243 

between two neighboring transects was about 17 m and the distance between two neighboring 244 

points along each transect was approximately 2 m) using a Veris 3150. For details of the 245 

measurement procedure, the reader is referred to Reyes et al. (2018). Apparent electrical 246 

conductivity and hydraulic conductivity were not measured at exactly the same coordinates. In 247 

order to perform a classic cross semivariogram, the values of ECa points (3-5 points) located 248 

within a radius of 2 m around each hydraulic conductivity sampling location were averaged and 249 

this averaged value was used as ECa value in the point of hydraulic conductivity.  250 

Geostatistical analysis was then conducted to characterize the spatial pattern of hydraulic 251 

conductivity and to assess the capability of ROSETTA in describing the spatial variability of 252 

hydraulic conductivity in the field. Prior to geostatistical analysis, the Kolmogorov-Smirnov (K-253 

S) test (at the 5% significance level) was used to evaluate the normality of each data distribution 254 

(Bitencourt et al., 2016). The Kolmogorov-Smirnov test quantifies the maximum difference 255 

between the observed distribution function of the sample and the theoretical distribution function 256 

(Massey, 1951). All the data (hydraulic conductivity data was log-transformed) passed the K-S 257 

test, since the calculated maximum differences were below the critical value at the 5% 258 

significance level (Table 1). The results indicated that the dataset in this study tended to follow 259 
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the normal distribution. Note that ECa data (N = 48) at the locations of hydraulic conductivity 260 

was a subset of all ECa measurements (N= 7416) in the studied field. Apparent electrical 261 

conductivity data including all the points failed the K-S test as a result of the huge number of 262 

samples considerably reduce the critical value (for α= 5%, critical value is 1.36/  ). Since ECa 263 

data (N = 48) had the same number of observations as hydraulic conductivity data and was 264 

normally distributed, ECa data (N= 7416) distribution can still be considered as a normal 265 

distribution for practical purpose (Reyes et al., 2018). 266 

Experimental semivariograms and cross semivariograms were calculated to describe the spatial 267 

variance structure and identify the input parameters for cokriging spatial interpolation (Nielsen 268 

and Wendroth, 2003). The experimental semivariogram and cross semivariogram were computed 269 

by Eq. 2 and Eq. 3, respectively. 270 

                                                                                                                         (2) 271 

                                                                                                       (3) 272 

where h is the separation distance or lag distance, N(h) is the number of data pairs for the 273 

separation distance h, Zi(xi) is a measured variable at spatial location xi, Zi(xi + h) is a measured 274 

variable at spatial location xi + h, Ai and Bi indicate the primary and the ancillary variables, 275 

respectively. 276 

Experimental semivariograms and cross semivariograms were fitted to an empirical model 277 

including an exponential component and a Gaussian component (Eq. 4) (Oliver and Webster, 278 

2014) on top of the nugget contribution to variance. 279 

                                                                                                      (4) 280 
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where C0 represents the nugget effect; C1 and C2 are the partial sills of exponential and Gaussian 281 

components, respectively, and sill (total variation) equals to C0+C1+C2; a1 and a2 are the ranges 282 

of exponential and Gaussian components, respectively; h is the lag distance. The two model 283 

functions were selected and determined principally on sum of square residuals (SSR), coefficient 284 

of determination (r
2
) as well as visual fit (Cambardella et al., 1994; Wang et al., 2013). 285 

The spatial distribution maps of hydraulic conductivity were generated using fitted 286 

semivariograms and cross semivariograms parameters through cokriging, which estimated the 287 

values of hydraulic conductivity at unobserved locations by utilizing Eq. 5. 288 

                                                                                                                      (5) 289 

where A
*
(x0) is the value of primary variable to be estimated at the location of x0, Ai(xi) is the 290 

known value of primary variable at the sampling site xi, Bj(xj) is the known value of ancillary 291 

variable at the sampling site xj, λAi and λBj are weights (          ,           ), p and q are 292 

the number of observed sites around x0 that are within the zone of correlation. 293 

All the data analyses and visualization were accomplished by libraries (Gstat and Nortest) 294 

included in the R statistics environment (R Development Core Team, 2016) and ArcGIS 10.4.1. 295 

3. Results and Discussion 296 

3.1. Descriptive statistics of soil physical and hydraulic properties 297 

According to USDA textural classification, three textural classes (silt loam, silt, and silty clay 298 

loam) were observed in the field (Fig. 2). Silt loam was the predominant soil texture. The bulk 299 

density ranged from 1.33 to 1.77 g cm
-3

 (Table 1). ECa values at the points of hydraulic 300 

conductivity ranged from 2.80 to 8.40 mS m
-1

 with a mean of 4.64 mS m
-1

 (Table 1). 301 



-16- 
 

 302 

Fig. 2. Textural distribution of soils investigated in this study. 303 

Soil hydraulic conductivity (cm day
-1

) follows log-normal distribution. Measured hydraulic 304 

conductivity data was log-transformed. The ranges of log10 Ks, log10 K-1, log10 K-5, and log10 K-10 305 

were between -1.80 and 4.21, -1.15 and 2.34, -1.22 and 1.42, and -1.40 and 0.75 log10 (cm day
-1

), 306 

respectively (Table 1). Note that the hydraulic conductivity near water saturation (K-1, K-5 and K-307 

10) was slightly higher than Ks for several soil samples with low permeability. According to 308 

Vereecken et al. (2010), those slight inconsistencies might be attributed to different measurement 309 

methods. The hydraulic conductivity of soils with low permeability changed little regardless of 310 

whether the soil was measured at saturation or slight unsaturation since these samples remain 311 

fully saturated due to capillary forces even under slightly negative pressure. The measurement 312 

results obtained with different methods just reflected measurement uncertainty. The falling head 313 

method was used to determine Ks of soils with low permeability. Evaporation cannot be 314 
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completely avoided during this process since the measurement took a relatively long time (Zhang 315 

et al., 2019). This might be another explanation for the underestimation of Ks. 316 

ROSETTA-estimated hydraulic conductivity data (cm day
-1

) was also log-transformed (Table 1). 317 

The ranges of log10 Ks, log10 K-1, log10 K-5, and log10 K-10 were between 0.37 and 1.49, 0.26 and 318 

1.46, 0.13 and 1.40, and 0.02 and 1.35 log10 (cm day
-1

), respectively. 319 

Table 1 320 

Descriptive statistics for observed and ROSETTA estimated hydraulic conductivity, and basic 321 

soil physical properties over the field (N= 48). 322 

Variables † Maximum Minimum Mean S.D. ‡ K-S ‡ 

Observed data 

Ks, log10 (cm day
-1

) 4.21 -1.80 1.49 1.36 0.08 

K-1, log10 (cm day
-1

) 2.34 -1.15 0.58 0.74 0.14 

K-5, log10 (cm day
-1

) 1.42 -1.22 0.15 0.54 0.07 

K-10, log10 (cm day
-1

) 0.75 -1.40 -0.10 0.44 0.11 

Sand, % 11  2  4  1  0.14 

Silt, % 85  57  79  6  0.15 

Clay, % 33  10  17  5  0.18 

ρb, g cm
-3

 1.77 1.33 1.61 0.07 0.10 

ECa, mS m
-1

 8.40 2.80 4.64 1.23 0.09 

ROSETTA estimated data 

Ks, log10 (cm day
-1

) 1.49 0.37 0.87 0.22 0.12 

K-1, log10 (cm day
-1

) 1.46 0.26 0.82 0.24 0.11 

K-5, log10 (cm day
-1

) 1.40 0.13 0.73 0.25 0.12 

K-10, log10 (cm day
-1

) 1.35 0.02 0.65 0.26 0.12 

† Ks, saturated hydraulic conductivity; K-1 K-5 and K-10, near-saturated hydraulic conductivity at potentials of -1 cm, -323 

5 cm and -10 cm; ρb, bulk density; ECa, apparent electrical conductivity. 324 

‡ S.D., standard deviation; K-S, Kolmogorov–Smirnov test for normality (for α=5%, critical value is 0.196). 325 

The overall performance of ROSETTA (H3) in estimating hydraulic conductivity at the field 326 

scale was assessed and shown in Table 2. There was a weak relationship between measured and 327 

predicted Ks. Although the performance of ROSETTA (H3) in predicting near-saturated 328 

hydraulic conductivity was also less satisfied, it is better than the estimation of Ks. 329 
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Table 2 330 

The performance of ROSETTA in estimating hydraulic conductivity at the field scale 331 

Evaluation criteria† Ks K-1 K-5 K-10 

RMSE, log10 (cm day
-1

) 1.44 0.69 0.74 0.83 

r
2
 0.07 0.26 0.26 0.32 

† RMSE (root mean square error) was calculated by                 , while r
2 
(coefficient of determination) was 332 

calculated by                                                      . q is the number of observations, mi and pi are the i
th

 measured and 333 

predicted K (h) values, respectively,    is mean of measured K (h), and    is mean of predicted K (h). 334 

3.2. Spatial structure of hydraulic conductivity 335 

Semivariograms and cross semivariograms based on measured and ROSETTA-estimated data are 336 

shown in Figures 3 and 4. A nested model including an exponential and a Gaussian component 337 

was used to fit the experimental semivariograms and cross semivariograms. Theoretically, 338 

semivariance increases with lag distance to a plateau or constant value (total semivariance) at a 339 

given separation distance (the range of spatial dependence) (Trangmar et al., 1986). Samples 340 

separated by distances less than the range are spatially correlated, while those separated by 341 

distances beyond the range are not spatially correlated (Wang et al., 2013). The range indicates the 342 

maximum distance over which neighboring observations are spatially related. Beyond the range, 343 

lag distances should be disregarded for interpolation (Nielsen and Wendroth, 2003). The shorter 344 

the range, the more heterogeneous the variable is; while the longer the range, the more 345 

homogeneous or spatially continuous the variable behaves (Marín-Castro et al., 2016). The non-346 

zero semivariance at lag distance of zero is called nugget semivariance (C0), which represents 347 

measurement errors or microvariability of the variable occurring over smaller distance than the 348 

sampling interval (Trangmar et al., 1986; Nielsen and Wendroth, 2003). The ratio between nugget 349 
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and total semivariance (or relative nugget effect, RNE), C0/(C0+C1+C2), was used to evaluate the 350 

strength of spatial dependence with the sampling interval taken: strong if the ratio was less than 351 

25%, moderate if the ratio was between 25% and 75%, and weak if the ratio was greater than 75% 352 

(Cambardella et al., 1994). 353 

The measured Ks was weakly spatially dependent (RNE= 81%), while measured near-saturated 354 

hydraulic conductivity was moderately spatially dependent with the relative nugget effect 355 

ranging from about 46% to 48% (Fig. 3 a-d). Ks revealed a high relative nugget effect, which 356 

means short range effects (or microheterogeneity) of Ks in the field cannot be detected at the 357 

scale of sampling (Trangmar et al., 1986). Ks might exhibit stronger spatial dependence at a scale 358 

smaller than the sampling interval. In Fig. 3 b-d, note that the range values for near-saturated 359 

hydraulic conductivity were significantly larger than the range for Ks. For instance, Ks had a 360 

range value of 209 m, while the range values for near-saturated hydraulic conductivity (K-1, K-5 361 

and K-10) were 389 m, 418 m, and 474 m, respectively. This result indicated that the spatial 362 

distribution of Ks was more heterogeneous than the spatial distribution of near-saturated 363 

hydraulic conductivity. The high heterogeneity of Ks might be caused by potential macropore 364 

effects. At saturation, all pores conduct water and macropores greatly contribute to water flow. 365 

The presence of one single macropore is barely manifested in the total porosity, however, can 366 

greatly contribute to Ks if the pore is continuous and connected to other pores. As the matric 367 

potential decreases, the water-transmitting pores are those with smaller diameters (meso- and 368 

micro-pores). Since macropores are determined by soil structure, which is significantly 369 

influenced by external disturbance, their variation would be larger than that of smaller pores 370 

inherent in the soil matrix (Mohanty et al., 1994). The inherent relationship between Ks and 371 
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macropores is therefore critical for the spatial structure of Ks at the field scale (Marín-Castro et 372 

al., 2016).  373 

 374 
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Fig. 3. Semivariograms for measured hydraulic conductivity and apparent electrical conductivity (ECa). 375 

(a-d: semivariograms of measured hydraulic conductivity, e-h: semivariograms of ECa, i-l: cross 376 

semivariograms of measured hydraulic conductivity and ECa) 377 

Note: Ks is saturated hydraulic condcutivity, while K-1, K-5 and K-10 are near-saturated hydraulic 378 

conductivity at matric potentials of -1 cm, -5 cm and -10 cm. 379 

 380 

Fig. 4. Semivariograms for estimated hydraulic conductivity with ROSETTA 381 

Note: Ks is saturated hydraulic condcutivity, while K-1, K-5 and K-10 are near-saturated hydraulic 382 

conductivity at matric potentials of -1 cm, -5 cm and -10 cm. 383 

For the ROSETTA estimated hydraulic conductivity under saturated and near-saturated 384 

conditions, the corresponding relative nugget effect ranged from 28% to 32% (Fig. 4). Therefore, 385 

ROSETTA estimated hydraulic conductivity showed a moderate spatial dependence that is more 386 

pronounced than that of the measured hydraulic conductivity, especially for Ks, which had an 387 

RNE of 81%. Semivariances for hydraulic conductivity predicted by ROSETTA (Fig. 4) were 388 

consistently smaller than those for measured hydraulic conductivity (Fig. 3 a-d). Also, the range 389 



-22- 
 

values for ROSETTA-predicted data were larger than those for measured data. For example, 390 

predicted Ks had a range value of 456 m, while the range values for measured Ks was only 209 m. 391 

These results indicated that ROSETTA-estimated hydraulic conductivity was more 392 

homogeneous or continuous than measured data in the field. This phenomenon might be a result 393 

of the estimates being calculated mainly based on soil texture-related properties. The spatial 394 

structure of ROSETTA-estimated hydraulic conductivity followed the spatial structure of clay 395 

content in the same field (Reyes et al., 2018). The spatial variability exhibited by ROSETTA 396 

estimates was therefore dominated by textural properties, which represented the intrinsic 397 

variation (e.g., texture, mineralogy) inherited from soil genesis. However, the field in this study 398 

has a narrow range of soil texture and bulk density. Moreover, at the field scale, wet-range 399 

hydraulic conductivity is rather sensitive to soil structure, which has high variation and is 400 

strongly influenced by extrinsic variations (e.g., biological activity, agricultural management) 401 

(Jarvis et al., 2002). Therefore, the variability of saturated and near-saturated hydraulic 402 

conductivity in the field cannot be reflected by the variation in texture and bulk density (Zhang et 403 

al., 2019). Both intrinsic and extrinsic factors (sometimes the internal factors can be masked by 404 

the external factors) dominated the semivariograms based on measurements, whereas only 405 

intrinsic factors influenced the semivariograms of PTF estimates and the following interpolated 406 

maps. Compared with intrinsic factors, extrinsic factors show much more spatial heterogeneity 407 

(Cambardella et al., 1994; Romano, 2004). Therefore, measured hydraulic conductivity exhibited 408 

more heterogeneity and weaker spatial dependence than ROSETTA estimates. 409 

Based on measured data, there was a good spatial correlation (RNE ranged from about 8% to 410 

42%) between hydraulic conductivity and apparent electrical conductivity (Fig. 3 i-l). This 411 

spatial relationship was represented by a rapidly decreasing cross semivariance calculated 412 
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between hydraulic conductivity and ECa values, which indicated that high values of hydraulic 413 

conductivity corresponded to low values of ECa, and vice versa. This result suggested that ECa 414 

could be used as an ancillary variable to predict the spatial distribution of saturated and near-415 

saturated hydraulic conductivity with co-regionalization analysis in the field. This approach 416 

would be preferred, as ECa can be easily and accurately determined.  417 

3.3. Spatial distribution of hydraulic conductivity 418 

The fitted semivariogram and cross semivariogram models for measured hydraulic conductivity 419 

were used in cokriging to generate hydraulic conductivity maps with a resolution of 2 × 2 m
2
. 420 

Based on measured data, Ks (Fig. 5 a) showed very strong spatial variability and was markedly 421 

different from the spatial patterns of near-saturated hydraulic conductivity (Fig. 5 b-d). As soil 422 

water pressure approached zero, hydraulic conductivity may depend to a large extent on small 423 

number of large pores (Bodhinayake and Si, 2004). Soil pores with equivalent diameters larger 424 

than 300 μm (i.e., soil water pressure of -10 cm) have profound influence on water movement in 425 

a field with well-structured soils (Jarvis et al., 2002; Jarvis, 2007). Hydraulic conductivity close 426 

to saturation (h ≥ -10 cm) is therefore important to illustrate macropore effects. 427 
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 428 

Fig. 5. Spatial patterns of hydraulic conductivity based on measured data (a-d) and predicted data 429 

from ROSETTA (e-h). 430 
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 431 

Fig. 6. Spatial patterns of macropore hydraulic conductivity based on measured data (left) and 432 

predicted data from ROSETTA (right). 433 

A significant reduction in hydraulic conductivity near saturation can be detected in soil with 434 

structural macropores when these pores drain under slight pressure and do not contribute to flow 435 

anymore (Jarvis et al., 2002). Macropore hydraulic conductivity can be defined as the difference 436 

between Ks and K-10 (i.e., Ks - K-10) (Jarvis et al., 2013). By comparing measured hydraulic 437 

conductivity maps, a large reduction (~95%) in hydraulic conductivity was observed in the field 438 

when soil water pressure head decreased from 0 to -10 cm. The decrease in hydraulic 439 

conductivity was due to emptying of continuous macropores. The spatial pattern of macropore 440 

hydraulic conductivity (Ks - K-10) in the field was further characterized and was shown in Fig. 6. 441 

The macropore hydraulic conductivity calculated from measured data also exhibited high 442 

heterogeneity in the field (left in Fig. 6). Note that the Ks map (Fig. 5a) and macropore hydraulic 443 

conductivity map generated from measured data (left in Fig. 6) showed similarity for major areas 444 

in the field. This result indicated that macropore effects were predominant in the studied field 445 

and had a great contribution to Ks. The presence of large pores increased the spatial variability of 446 

Ks in the field. 447 
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The spatial patterns of hydraulic conductivity in the same field were also generated with 448 

ROSETTA-predicted data (Fig. 5 e-h). The ROSETTA-estimated Ks map behaved similar to the 449 

corresponding spatial distributions of near-saturated hydraulic conductivity. Compared with 450 

measured data, the Ks map obtained using PTF-estimated data showed less heterogeneity. Also, 451 

the macropore hydraulic conductivity calculated based on PTFs estimates was much more 452 

homogeneous in the field and had relatively small magnitude (right in Fig. 6). This result 453 

indicated that ROSETTA is incapable of identifying the macropore effects observed in the field. 454 

Structural macropores are particularly important in the wet range of hydraulic conductivity 455 

function (Weynants et al., 2009). Soil pore space is influenced by particle-size distribution, 456 

however, it cannot be estimated solely from soil texture (Lin et al., 1999a). Although bulk 457 

density, which is an indicator of soil porosity, is included in ROSETTA, it is hardly related to 458 

hydraulic conductivity close to saturation (Zhang et al., 2019). Few macropores have very little 459 

contribution to total porosity and therefore bulk density, however, they can cause rapid water 460 

flow in aggregated or no-till soil with a hierarchical pore organization (Beven and Germann, 461 

1982). Unfortunately, soil structural macropore information is rarely incorporated in established 462 

PTFs, since this information is unavailable in most databases. Therefore, the variance of Ks 463 

observed in this field was significantly underestimated by ROSETTA, which is a texture-464 

dominated PTF. Although pseudosand (the cementing action of iron oxides and other inorganic 465 

compounds produces very stable small aggregates in some highly weathered clayey soils, such as 466 

Ultisols and Oxisols) is less common in Alfisols (Weil and Brady, 2016), it might be another 467 

explanation for the discrepancies between measured and PTF-estimated Ks. Soil hydraulic 468 

conductivity can be influenced by these small aggregates, which were destroyed by chemical 469 

treatments during sieving and the pipette method. However, most PTFs (e.g., ROSETTA) were 470 
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based on soil textural information that was determined according to this standard lab protocols 471 

(Wösten et al., 2001). It would certainly be important to derive a dataset that is based on 472 

“effective” particle size and then derive relationships between this effective particle size 473 

composition and hydraulic properties. 474 

Based on measured hydraulic conductivity, near-saturated hydraulic conductivity exhibited a 475 

spatially more homogeneous pattern than measured Ks (Fig. 5 b-d). Note that although ROSETTA 476 

slightly overestimated the values, the spatial patterns of measured hydraulic conductivity in major 477 

areas can still be captured by estimated data when the matric potential decreased to -10 cm (Fig. 5 478 

d and h). This result suggested that established PTFs, in which soil structure or macropore effects 479 

are not taken into account, might be still suitable for studying the spatial variability of unsaturated 480 

hydraulic conductivity that is not strongly influenced by soil structure as Ks, but will lack precision 481 

when used for characterizing spatial distribution of Ks in a field with structural soils. This result is 482 

consistent with the observations reported by da Silva et al. (2017), who found that the observed 483 

spatial pattern of unsaturated hydraulic conductivity can be reasonably predicted by ROSETTA-484 

estimated data. The findings also indicated that hydraulic conductivity measured at saturation, 485 

which is sensitive to macropore effects, might not be an appropriate matching point for unsaturated 486 

hydraulic conductivity function. The unsaturated flow, which occurs in the soil matrix, might be 487 

overestimated by using measured Ks as matching point for hydraulic conductivity function (Schaap 488 

and Leij, 2000; Jarvis et al., 2002). Hydraulic conductivity measured at slightly unsaturated 489 

condition (Ehlers, 1977) or PTFs-estimated Ks might be a better alternative to be used as a 490 

matching point. 491 

4. Conclusions 492 
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In this study, the spatial variability of wet range hydraulic conductivity observed in a no-till 493 

farmland was characterized with co-regionalization analysis and compared with the spatial 494 

variability of the results simulated with the ROSETTA PTF. In the studied field, measured 495 

saturated hydraulic conductivity showed high spatial heterogeneity because of macropore effects. 496 

The strong spatial variation in saturated hydraulic conductivity was not captured by PTF 497 

estimates since soil structure information is not included, although ROSETTA could reasonably 498 

generate the relative spatial pattern of unsaturated hydraulic conductivity. The Ks map based on 499 

PTF estimates should be evaluated carefully and handled with caution, especially when the map 500 

is used for precision resources management. This study also indicated that saturated hydraulic 501 

conductivity should be measured at closer intervals to obtain more spatial information and 502 

improve the performance of spatial interpolation. 503 
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