This is the preprint version of the contribution published as:

Henneberger, L., Mühlenbrink, M., Heinrich, D.J., Teixeira, A., Nicol, B., **Escher, B.I.** (2020): Experimental validation of mass balance models for in vitro cell-based bioassays *Environ. Sci. Technol.* **54** (2), 1120 – 1127

The publisher's version is available at:

http://dx.doi.org/10.1021/acs.est.9b06144

1	Experimental Validation of Mass Balance Models for in vitro
2	Cell-based Bioassays
3	Luise Henneberger, ^{$\dagger,*$} Marie Mühlenbrink, [†] Daniel J. Heinrich, [#] Alexandre Teixeira, [§] Beate
4	Nicol, [§] Beate I. Escher ^{†,#}
5	
6	[†] Helmholtz Centre for Environmental Research – UFZ, Department of Cell Toxicology,
7	Permoserstr. 15, 04318 Leipzig, Germany
8	[#] Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied
9	Geoscience, 72074 Tübingen, Germany
10	§ Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire
11	MK44 1LQ, UK

14 ABSTRACT

15 The freely dissolved concentration in the assay medium (C_{free}) and the total cellular concentration 16 (C_{cell}) are essential input parameters for quantitative *in vitro*-to-*in vivo* extrapolations (QIVIVE), 17 but available prediction tools for C_{free} and C_{cell} have not been sufficiently validated with 18 experimental data. In this study, medium-water distribution ratios $(D_{FBS/w})$ and cell-water 19 distribution ratios ($D_{cell/w}$) for four different cells lines were determined experimentally for 12 20 neutral and five ionizable chemicals. Literature data for seven organic acids were added to the 21 dataset, leading to 24 chemicals in total. A mass balance model based on bovine serum albumin-22 water $(D_{BSA/w})$ and liposome-water distribution ratios $(D_{lip/w})$ of the chemicals was used to 23 calculate $D_{\text{FBS/w}}$ and $D_{\text{cell/w}}$. For all neutral and basic test chemicals, the mass balance model 24 predicted $D_{\text{FBS/w}}$ and $D_{\text{cell/w}}$ within a factor of 3 and 3.4, respectively, indicating that existing models can reliably predict Cfree and Ccell for these chemicals. For organic acids a further 25 26 refinement of the model will be required as large deviations between modelled and measured 27 binding to assay medium and cells of up to a factor of 370 were found. Furthermore, saturation of 28 medium proteins should be further explored for organic acids and neutral chemicals with moderate 29 hydrophobicity.

30 Introduction

31 Understanding the exposure to chemicals in *in vitro* cell-based bioassays is a prerequisite for quantitative in vitro-to-in vivo extrapolation (QIVIVE). Previous studies have suggested to use the 32 33 freely dissolved concentration in the assay medium ($C_{\rm free}$), the total cellular concentration ($C_{\rm cell}$) 34 or the concentration in the cellular membranes (C_{membrane}) as improved metrics of effective concentrations.¹⁻⁴ C_{free} can be determined experimentally in *in vitro* test systems,^{1, 3, 5, 6} and is the 35 main metric for QIVIVE, while C_{cell} and C_{membrane} cannot easily be derived by measurements but 36 37 are useful to estimate critical membrane concentrations and the degree of specificity of the effect.⁷ 38 Models have been developed to calculate the different concentration metrics either from nominal 39 or from measured freely dissolved or total concentrations based on the partition constants (neutral 40 chemicals) or distribution ratios (ionizable chemicals) of the test chemicals between air and water 41 (D_{aw}) , medium and water (which is essentially the partitioning between fetal bovine serum (FBS) and water $(D_{\text{FBS/w}})$, polystyrene (PS) and water $(D_{\text{PS/w}})$, cells and water $(D_{\text{cell/w}})$ and membrane 42 43 lipids and water ($D_{lip/w}$, Figure 1).

44

48

Figure 1. Distribution of chemicals in *in vitro* test systems between water, air, medium proteins
and lipids from fetal bovine serum (FBS), well plate plastic (polystyrene) and cells and within the
cells between the intracellular water phase and the cell membranes.

Most models assume that equilibrium between all phases in the *in vitro* test system is attained during the exposure time. Evaporation is a continuous loss process for volatile chemicals but also leads to cross-contamination on the well plates,⁷ therefore standard *in vitro* assays should only be performed with non-volatile chemicals. Cellular uptake is typically fast and equilibrium is reached within hours.⁸ Diffusion into well plate plastic is very slow and was shown to have a minor influence on *in vitro* exposure when protein-rich media are applied.⁹ Therefore, the equilibrium assumption is justified unless chemicals are strongly metabolized during the experiment.

56 Three different mass balance models for the prediction of *in vitro* exposure have been developed 57 that share similar structure and are based on the same set of equations. The first model published by Kramer et al. 2012³ was based on measured values for D_{aw} , $D_{FBS/w}$, $D_{PS/w}$ and $D_{cell/w}$ for the 58 59 calculation of C_{free} in the assay medium. This approach is applicable to many different classes of 60 chemicals because all input parameters are derived experimentally but to date the model has only been applied to a small number of chemicals. The model published by Armitage et al. 2014¹⁰ was 61 62 developed for chemicals that are predominantly neutral at the pH value of the assay medium and 63 relied on predicted input parameters. The *in vitro* exposure of large numbers of chemicals can be screened with this approach, because only the air-water (K_{aw}) and octanol-water partition constant 64 65 (K_{ow}) of the chemicals are required for the calculation of partitioning between water, air, serum albumin, serum lipids, dissolved organic matter, and cells. The mass balance model of Fischer et 66 al. 2017⁴ was an extension of the Armitage model that is applicable to non-volatile chemicals but 67 68 also extends it to ionizable chemicals. Fischer et al. 2017⁴ calculated the distribution between assay medium and cells, and both, medium and cells were assumed to be composed of proteins, lipids, 69 70 and water (for equations see section "Data evaluation"). All cellular and medium proteins were 71 modelled as albumin and all lipids as phospholipids. This model requires only serum albuminwater distribution ratios ($D_{BSA/w}$) and phospholipid-water distribution ratios ($D_{lip/w}$) of the test chemicals at pH 7.4 for the calculation of distribution. Well plate plastic is not included in this model, because its contribution is minimal for bioassays using protein- and lipid-rich cell culture media.^{9, 11} Air-medium partitioning can be easily included in the model, e.g. to define which chemicals can be tested under standard bioassay test set ups.⁷

77 More sophisticated modelling approaches also considered cellular metabolism and other kinetic processes¹² and differences in ionization of the test chemicals between the intracellular and 78 79 extracellular environment.¹³ The main problem of all models mentioned above is that they have 80 rarely been validated with experimental data. Ideally those models should be validated by measuring C_{free} and C_{cell} in the actual test system, but the effort required to do so using currently 81 82 available analytical methods limits this approach to few chemicals and assay formats.^{1, 3, 5} 83 However, to build some confidence into these predictive models, the basic assumptions of the 84 models can be scrutinized. The multimedia equilibrium-based mass balance models from Armitage et al.¹⁰ and Fischer et al.⁴ assumed that $D_{\text{FBS/w}}$ and $D_{\text{cell/w}}$ can be calculated from the distribution 85 86 ratios of the chemicals to proteins and lipids and the protein and lipid content of assay medium and cells. Comparison of experimental $D_{\text{FBS/w}}$ and $D_{\text{cell/w}}$ with model predictions for a set of diverse 87 88 chemicals will allow the validation of these assumptions.

In a previous study on the partitioning of organic acids to different biological materials (proteins, lipids, cells etc.)¹⁴ we showed that the model by Fischer et al.⁴ can only predict binding to the medium-added fetal bovine serum (FBS) at low concentrations of the organic acids, because binding to medium proteins was found to be saturable, which is not considered in any of the simple partitioning models. Furthermore, cell-water distribution ratios ($D_{cell/w}$) were overestimated, likely because cellular proteins are assumed to be equivalent to serum albumin in the model, but the

95 majority of cellular proteins are structural protein of the cytoskeleton, which have different binding properties.¹⁵ This study was built on our previous work with organic acids¹⁴ and likewise applied 96 the solid-phase microextraction method based on C18-fibers. The binding to serum albumin, 97 98 phospholipid liposomes, different cell culture media and cell lines was determined for ten neutral 99 chemicals varying widely in hydrophobicity, four organic bases and one chemical with complex 100 speciation. Additionally, distribution ratios of two superhydrophobic chemicals, benzo[a]pyrene 101 (B[a]P) and benzo[k]fluoranthene (B[k]F), were derived using a passive dosing approach based 102 on PDMS-fibers. The combined data set of both studies, containing 24 chemicals, 12 neutral and 103 12 ionizable chemicals with diverse physicochemical properties, was used for the validation of the mass balance model of Fischer et al.⁴ for the prediction of *in vitro* exposure, especially C_{free} and 104 105 C_{cell} .

106 Materials and methods

107 <u>Test chemicals</u>

108 Twenty-four organic test chemicals that are not prone to loss by medium-air partitioning (medium-air partition constants ($K_{\text{medium/air}}$) >10,000 L/L, see Table S1)⁷ were included in this 109 110 study (Table 1) seven of which had already published literature data. More details on the test 111 chemicals (i.e., CAS No., supplier, chemical class, acidity constant (pK_a) and K_{ow} of the neutral 112 chemicals) can be found in Table S1, Supporting Information (SI). The neutral chemicals covered 113 a broad range of hydrophobicity, indicated by their log K_{ow} which was ranging from -0.07 for 114 caffeine to 6.13 for B[a]P. The ionizable chemicals included seven organic acids used in a previous 115 study,¹⁴ four organic bases, and labetalol, which shows a complex speciation (47 % cationic and 116 53 % zwitterionic) at pH 7.4.

117 <u>Materials</u>

118 Two different types of SPME fibers were used. Nitinol-based fibers coated with C18-particles 119 embedded in polyacrylonitrile were used for the majority of the test chemicals. The C18-fibers 120 with 45 µm coating thickness were purchased from Supelco (MilliporeSigma) with three different 121 coating lengths (2, 5, and 15 mm) with calculated coating volumes of 69, 173, and 520 nL, 122 respectively. Type and volume of fiber coating were selected based on the partitioning properties 123 of the test chemicals (Table S2). Shorter coating length were used for chemicals that showed strong 124 binding to the fibers to meet the criterium of a fraction bound ≥ 20 % in the samples with biological 125 materials. For B[a]P and B[k]F glass fibers with poly(dimethylsiloxane) coating (coating thickness 126 30 µm) with a length of 1.5 cm (coating volume approx. 198 nL per fiber) from Polymicro 127 Technologies were used, because the PDMS-water partition constant ($K_{PDMS/w}$) of these chemicals was available from the literature,¹⁶ while the fiber-water distribution for the C18-fibers would have 128 129 been difficult to measure. For the majority of the test chemicals the samples were prepared in 130 amber glass HPLC vials sealed with screw caps with PTFE-coated silicone septa and the SPME 131 fibers were inserted through the septa using blunt cannulas from Braun (0.8×22 mm). For B[a]P, 132 B[k]F, bisphenol A, triclocarban, quinoxyfen, fluoranthene amber glass vials sealed tightly with 133 crimp caps with aluminum septa were used and the fibers were inserted completely. For all 134 experiments the same buffers, basal media, bovine serum albumin (BSA), liposomes, FBS and cell 135 lines were used as in our previous study with organic acids.¹⁴

136 <u>Solid-phase microextraction with C18-fibers</u>

The protocol published by Henneberger et al.¹⁴ was used for the determination of fiber uptake kinetics, fiber sorption isotherms, FBS sorption isotherms, fiber-water ($D_{f/w}$), fiber-basal medium ($D_{f/basal medium}$), BSA-water ($D_{BSA/w}$), liposome-water ($D_{lip/w}$), and cell-water distribution ratios ($D_{cell/w}$) for all chemicals except B[a]P and B[k]F (see below). The standard operating procedure (SOP) for the C18-SPME experiments can be found in the SI. In short, stock solutions of all 142 chemicals were prepared in methanol and either directly spiked to the samples (PBS, OptiMEM, 143 DMEM, BSA, liposomes and FBS) or diluted in PBS and mixed with the sample (cell 144 suspensions). As the chemicals showed very different binding affinities for the biological 145 materials, the concentration of BSA, liposomes and FBS and the cell number in the cell 146 suspensions had to be adjusted for each chemical so that the fraction bound in the samples was >20 % and the concentration in the SPME fiber was still quantifiable by HPLC (see below and 147 148 section S2, SI). The amount of biological material used for each chemical and experiment is 149 indicated in Table S2.

150 The C18-SPME fibers were conditioned in methanol (2 h) and water (20 min) and added to the 151 samples individually. The samples were incubated at 37°C using either an orbital shaker set to 250 152 rpm or a vortex shaker operated at 1200 rpm (see also Table S1). Fibers were taken from the 153 samples after different time points: between 15 min to 72 h for the kinetic experiments to derive 154 the fiber uptake kinetics and after a fixed time for all subsequent experiments (24 h for the majority of the experiments, see ref ¹⁴ for more details). The fibers were extracted with 180 μ L – 1000 μ L 155 156 of desorption solution (composition for the different test chemicals can be found in Table S1) for 157 2 h using the same shaker and speed as for the equilibration with the samples. For all partition 158 experiments control samples in PBS were run in parallel to determine $D_{f/w}$ and stability (mass 159 balance) of the chemicals. The concentration of test chemicals was quantified in the fiber extracts, 160 the PBS samples and the basal media using either an HPLC system equipped with a UV and a 161 fluorescence detector or an LC-MS/MS system, both from Agilent, as detailed in the SI, Table S3 162 and S4.

163 <u>Passive dosing with PDMS-fibers</u>

164 The PDMS-fibers were loaded with the test chemicals in 1.5 mL methanol/water (50/50) 165 containing 5 mg/L B[a]P and 1.2 mg/L B[k]F for 7 days. Four fibers were extracted directly after

166 loading. Either 10 mL OptiMEM, 10 mL DMEM, 1 mL PBS containing 1% FBS, or 1 mL PBS 167 containing 1 mg/mL BSA (4 replicates each), or 1 mL of cell suspension (approx. 5×10⁵ cells/mL, 3 replicates per cell line) were prepared under sterile conditions. The BSA solution was filtered 168 169 $(0.2 \ \mu m)$ before the experiments. These samples were filled into autoclaved vials under a clean 170 bench and each sample received one of the loaded PDMS-fibers. After an incubation period of six 171 days on a vortex shaker at 1200 rpm, the fibers were removed from the samples and extracted with 172 180 – 1000 µL of MeOH for 2 days at 1200 rpm. 500 µL of the remaining sample were transferred 173 to a new vial and extracted with 1000 μ L of ethyl acetate for 15 min on an orbital shaker at 150 174 rpm. To facilitate phase separation the samples were centrifuged at 4000 rpm (Thermo Scientific 175 Multifuge X1R, rotor TX-400) and 600 µL of the supernatant were transferred to HPLC vials. 176 Ethyl acetate was evaporated under a nitrogen stream and the samples were re-dissolved in 100 177 µL of methanol. The concentration of B[a]P and B[k]F was quantified in the fiber and sample 178 extracts by HPLC-FLD as described in section S2, SI.

179 *Data evaluation*

Fiber-water distribution ratios ($D_{f/w}$) were calculated and fiber uptake kinetics were fitted as described previously.¹⁴ The log-transformed Freundlich model (eq. 1) was used to fit the fiber and FBS sorption isotherms. Freundlich coefficient and Freundlich exponent are indicated by K_{Fr} and n_{Fr} , respectively and C_f and C_w are the concentration of the chemical in the fiber and in water, respectively.

$$\log C_{\rm f} = \log K_{\rm Fr} + n_{\rm Fr} \cdot \log C_{\rm w} \qquad \text{eq. 1}$$

Because the SPME experiments were performed under depletive conditions, the full mass balance (eq. 2) was used to calculate the distribution ratios between the biological materials and 188 water ($D_{i/w}$, *i* refers to BSA, liposome, or the sum of proteins and lipids in FBS) as described by 189 Neale et al.¹⁷ and Henneberger et al.¹⁴

190
$$D_{i/w}(pH 7.4) [L_w/L_i] = \frac{C_{bound}}{c_w} = \frac{\frac{n_{tot} \cdot D_{f/w} \cdot V_f - V_w - V_f \cdot D_{f/w}}{V_i}}{V_i}$$
 eq. 2

The concentration of the test chemical bound to the total amount of proteins and lipids in the solution is indicated by C_{bound} and V_{w} , V_{f} and V_{i} are the volumes of water, fiber coating, and of all proteins and lipids in the sample, respectively. For the experiments with the C18-fibers n_{tot} was assumed be the total amount of chemical added to the vial. For the passive dosing experiments with PDMS-fibers n_{tot} was calculated for each sample from the amount of chemicals extracted from the PDMS-fiber and extracted from the corresponding dosed sample. Cell-water distribution ratios ($D_{\text{cell/w}}$) were calculated based on the total cell volume:

198
$$D_{\text{cell/w}}(\text{pH 7.4}) [L_w/L_{\text{cell}}] = \frac{C_{\text{cell}}}{C_w} = \frac{\frac{n_{\text{tot}} \cdot D_{f/w} \cdot V_f - V_w - V_f \cdot D_{f/w}}{N_{\text{cell}}}$$
 eq. 3

The total volume of cells in the vial (V_{cell}) was calculated from the cell count of the cell suspensions using previously published conversion factors (HEK293T 1.38 × 10¹¹ cells/L, HEK293H 3.48 × 10¹¹ cells/L, MCF7 9.99 × 10¹⁰ cells/L and H4lle 2.83 × 10¹¹ cells/L).^{4, 14} For all experiments, the mass balance was calculated for the samples containing no biological material. Only experiments with a mass balance of 85-115 % were considered for the data evaluation.

The mass balance model of Fischer et al.⁴ was used to predict $D_{\text{FBS/w}}$ and $D_{\text{cell/w}}$ (eq. 4 + 5). Experimental values from previous studies were used for the required volume fractions of proteins ($VF_{\text{prot,FBS}}$) and lipids ($VF_{\text{lip,FBS}}$) in FBS⁴ and of proteins ($VF_{\text{prot,cell}}$), lipids ($VF_{\text{lip,cell}}$) and water ($VF_{\text{w,cell}}$) in the cells.^{4, 14}

208
$$D_{\text{FBS/w}}(\text{pH 7.4})[L_w/L_{\text{prot+lip}}] = VF_{\text{prot,FBS}} \cdot D_{\text{BSA/w}} + VF_{\text{lip,FBS}} \cdot D_{\text{lip/w}}$$
 eq. 4

209
$$D_{\text{cell/w}}(\text{pH 7.4})[L_w/L_{\text{cell}}] = VF_{\text{prot,cell}} \cdot D_{\text{BSA/w}} + VF_{\text{lip,cell}} \cdot D_{\text{lip/w}} + VF_{\text{w,cell}}$$
 eq. 5

210 **Results and discussion**

211 *Fiber-water distribution*

212 Kinetics of fiber uptake and reproducibility between fibers (i.e., $D_{f/w}$ calculated for ten replicate 213 extractions from PBS) were measured for 22 chemicals using the C18-fibers (Table 1), including 214 the data for eight chemicals from this study and from two previous studies for seven organic acids¹⁴ 215 and for bisphenol A, quinoxyfen, coumarin, caffeine, metoprolol, propranolol and labetalol.⁵ As 216 expected, the time to reach equilibrium with the C18-fibers (195%, Table 1 and Figure S1) increased 217 with increasing hydrophobicity of the test chemicals and $D_{f/w}$ (Figure S2). For the hydrophilic 218 chemicals caffeine, coumarin, zingerone, and lamotrigine t95% was below 1 h at a shaking speed of 219 250 rpm compared to the more hydrophobic gingerols for which $t_{95\%}$ at 250 rpm was 6 - 7.8 h. For 220 even more hydrophobic chemicals the samples were equilibrated using a vortex shaker set to 1200 221 rpm. Increased shaking speed decreases the thickness of the unstirred water layer on the surface of 222 the fibers that controls the kinetics of fiber uptake for hydrophobic chemicals and therefore decreases $t_{95\%}$ (<9 h for the tested chemicals). $D_{f/w}$ also increased with increasing hydrophobicity. 223 224 For neutral chemicals there was nearly a 1:1 relationship between $\log D_{f/w}$ and $\log K_{ow}$ (Figure 225 S3B).

226

Table 1. Equilibration times ($t_{95\%}$) and logarithmic fiber-water distribution ratios (log $D_{f/w}$) determined at a constant nominal concentration (C_{nom} , n = 10). Fiber sorption isotherms in PBS at pH 7.4 and 37°C were fitted with the log-transformed Freundlich model (eq. 1) and compared to linear sorption ($n_{Fr} = 1$) using the extra sum-of-squares F test. Significant deviation from linear sorption is indicated by a P value <0.05.

Chemical	t95% [h]	log <i>D</i> _{f/w} (pH 7.4) [L _w /L _f]	SD	log C _{nom} [M]	Isotherm	P value	<i>n</i> Fr [-]	log K _{Fr} [(mmol/L _f)· (mmol/L _w) ^{-nFr}]
Benzo[a]pyrene (B[a]P)	n.a.	5.24 ^a	0.02 ^a	n.a.	n.a.	n.a.	n.a.	n.a.
Benzo[k]fluoranthene (B[k]F)	n.a.	5.23ª	0.03 ^a	n.a.	n.a.	n.a.	n.a.	n.a.
Bisphenol A	1.2 ^b	3.10 ^b	0.21 ^b	-5.05 ^b	n.a.	n.a.	n.a.	n.a.
Quinoxyfen	5.0 ^b	5.16 ^b	0.16 ^b	-6.70 ^b	n.a.	n.a.	n.a.	n.a.
Triclocarban	8.1	5.06	0.06	-6.70	n.a.	n.a.	n.a.	n.a.
Fluoranthene	5.7	4.86	0.05	-6.70	n.a.	n.a.	n.a.	n.a.
6-Gingerol	6.0	3.99	0.25	-5.15	non-linear	0.0008	0.79	3.31
8-Gingerol	7.8	4.68	0.05	-5.22	linear	0.95	0.98	4.57
Caffeine	<1 ^b	1.42 ^b	0.03 ^b	-4.30 ^b	linear	0.70	0.99	1.35
Coumarin	<1 ^b	1.71 ^b	0.05 ^b	-4.52 ^b	linear	0.56	0.99	1.80
Zingerone	<1	1.92	0.06	-4.52	non-linear	0.001	0.91	1.81
Lamotrigine	0.5	1.72	0.12	-4.70	linear	0.39	1.02	1.80
Metoprolol [B]	2.3 ^b	2.45 ^b	0.08 ^b	-5.52 ^b	non-linear	< 0.0001	0.83	2.04
Propranolol [B]	8.1 ^b	3.10 ^b	0.10 ^b	-5.15 ^b	non-linear	< 0.0001	0.76	2.48
Diphenhydramine [B]	1.6	3.11	0.10	-5.15	non-linear	< 0.0001	0.73	2.46
Venlafaxine [B]	2.4	2.66	0.12	-5.22	non-linear	< 0.0001	0.78	2.24
Diclofenac [A]	3.5°	2.47°	0.04 ^c	-4.80 ^c	linear ^c	0.1°	0.96°	2.53°
2,4-Dichlorophenoxyacetic acid (2,4-D) [A]	0.3°	1.50 °	0.06 ^c	-5.05°	non-linear ^c	<0.0001°	0.79°	1.10 ^c
Ibuprofen [A]	0.8°	2.52°	0.13°	-5.05°	non-linear ^c	<0.0001°	0.74 ^c	1.90 ^c
Naproxen [A]	1.5°	2.23°	0.06 ^c	-5.05°	non-linear ^c	0.02 ^c	0.95°	2.16 ^c
Torasemide [A]	2.4°	3.16°	0.06 ^c	-5.22°	linear ^c	0.67°	1.01°	3.16 ^c
Warfarin [A]	6.0°	1.96°	0.05°	-5.22°	non-linear ^c	<0.0001°	0.91°	1.73°
Genistein [A]	3.3°	2.62°	0.03 ^c	-5.15°	linear ^c	0.05 ^c	0.95°	2.51°
Labetalol [C]	6.0 ^b	3.04 ^b	0.09 ^b	-5.30 ^b	non-linear	0.006	0.88	2.61

^a data from Ter Laak et al.¹⁶; ^b data from Henneberger et al.⁵; ^c data from Henneberger et al.¹⁴,
 [B] organic bases, [A] organic acids, [C] chemical with complex speciation.

Fiber sorption isotherms were measured for six of the neutral and for all ionizable chemicals and 235 236 fitted using the Freundlich model (Figure S4). The determined Freundlich exponents were 237 significantly different from one (extra sum-of-squares F test) for two neutral chemicals (6-gingerol 238 and zingerone) and nine of the 12 ionizable chemicals tested, indicating non-linear and 239 consequently concentration-dependent sorption to the C18-fibers (Table 1). For bisphenol A, 240 quinoxyfen, triclocarban, and fluoranthene no isotherms were measured, because the concentration 241 range that could be tested was very limited, determined on the upper end by the aqueous solubility 242 of the chemicals and on the lower end by the detection limit of instrumental analysis. To account 243 for the non-linear sorption to the C18-fiber when evaluating the data for binding to BSA, 244 liposomes, FBS and cells, control samples in PBS were prepared for all chemicals at fiber

concentrations similar to the samples with the biological materials to derive the corresponding $D_{\rm f/w}$ required in eq. 2 and 3.

Table 2. Experimentally determined distribution ratios at pH 7.4 and 37°C between bovine serum albumin (BSA) and water ($D_{BSA/w}$), liposomes and water ($D_{lip/w}$), fetal bovine serum (FBS) and water ($D_{FBS/w}$, normalized to the total lipid and protein content of FBS), medium and water ($D_{medium/w}$, calculated from $D_{FBS/w}$ using eq. 6 for a medium with 10 % FBS) and cells and water ($D_{cell/w}$, normalized to the total volume of cells; the average value of all cell lines tested was calculated for each chemical, individual $D_{cell/w}$ are given in the SI, Table S6).

	bovine serum albumin			liposomes			fetal bovine serum			medium cells			
Chemical	log D _{BSA/w} (pH 7.4) [L _w /L _{BSA}]	SD	n	log <i>D</i> _{lip/w} (pH 7.4) [L _w /L _{lip}]	SD	n	log D _{FBS/w} (pH 7.4) [L _w /L _{prot+lip}]	SD	n	log D _{medium/w} (pH 7.4) [L _w /L _{medium}]	log <i>D</i> _{cell/w} (pH 7.4) [L _w /L _{cell}]	SD	n
B[a]P	4.98	0.04	4	7.05°	-	-	5.31	0.10	4	3.05	4.46	0.15	12
B[k]F	4.74	0.06	4	6.92°	-	-	5.18	0.11	4	2.92	4.34	0.16	12
Bisphenol A	3.01 ^a	-	-	3.50 ^d	-	-	2.86	0.17	12	0.69	1.66	0.37	24
Quinoxyfen	3.96	0.11	4	5.32	0.31	12	3.59	0.18	10	1.35	3.90	0.33	15
Triclocarban	4.73	0.04	4	6.29	0.09	12	4.24	0.08	12	1.98	3.91	0.26	21
Fluoranthene	4.41 ^a	-	-	5.41°	-	-	4.01	0.14	12	1.75	3.71	0.32	12
6-Gingerol	3.08	0.16	4	3.45	0.30	12	2.92	0.13	12	0.74	2.81	0.58	12
8-Gingerol	3.80	0.34	4	4.70	0.14	8	3.09	0.23	12	0.89	3.52	0.35	12
Caffeine	1.66	0.05	4	0.08 ^e	-	-	1.80	0.33	11	0.13	n.a.	-	-
Coumarin	2.05	0.02	4	2.09	0.16	12	1.59	0.12	16	0.08	1.19	0.55	12
Zingerone	2.54	0.27	4	1.97	0.21	12	2.67	0.22	12	0.55	1.04	0.40	12
Lamotrigine	2.16	0.13	4	2.06	0.16	12	1.50	0.18	16	0.07	0.59	0.06	3
Metoprolol [B]	1.51	0.20	4	1.42^{f}	$0.06^{\rm f}$	4	1.46	0.33	16	0.06	0.80	0.13	3
Propranolol [B]	1.78	0.10	4	2.73	0.15	12	1.30-2.42 ^h	-	16	$0.04-0.38^{h}$	0.80	0.30	6
Diphenhydramine [B]	1.99	0.20	4	2.17	0.28	12	1.90	0.23	16	0.15	n.a.	-	-
Venlafaxine [B]	1.58	0.15	4	1.64 ^f	0.05^{f}	4	1.69 ⁱ	0.23	12	0.10 ⁱ	n.a.	-	-
Diclofenac [A]	4.40^{b}	0.08 ^b	4	2.64 ^g	-	-	2.74-3.40 ^{b,h}	-	30	0.60-1.17 ^{b,h}	1.46 ^b	0.25 ^b	11
2,4-D [A]	3.56 ^b	0.02 ^b	4	2.02 ^b	0.16 ^b	6	2.04-3.01 ^{b,h}	-	20	0.20 - $0.82^{b,h}$	1.15 ^b	0.25 ^b	12
Ibuprofen [A]	4.02 ^b	0.09 ^b	4	1.81 ^g	-	-	2.36-3.37 ^{b,h}	-	21	0.35-1.14 ^{b,h}	1.31 ^b	0.40 ^b	12
Naproxen [A]	5.21 ^b	0.11 ^b	4	2.17 ^b	0.08 ^b	6	2.80-4.85 ^{b,h}	-	16	0.65-2.59 ^{b,h}	1.55 ^b	0.57 ^b	12
Torasemide [A]	3.81 ^b	0.07 ^b	4	2.05 ^{b,f}	$0.05^{b,f}$	4	3.26 ^b	0.13 ^b	25	1.04 ^b	1.67 ^b	0.67 ^b	15
Warfarin [A]	3.46 ^b	0.08^{b}	4	1.62 ^b	0.30 ^b	6	2.15-2.90 ^{b,h}	-	20	0.25-0.73 ^{b,h}	1.19 ^b	0.57 ^b	11
Genistein [A]	2.83 ^b	0.03 ^b	4	3.32 ^b	0.11 ^b	6	2.71 ^b	0.22 ^b	25	0.58 ^b	1.08 ^b	0.15 ^b	12
Labetalol [C]	1.24	0.08	4	3.26	0.12	12	1.79	0.28	16	0.12	0.67	0.33	4

^a data from Endo et al.¹⁸; ^b data from Henneberger et al.¹⁴; ^c data from van der Heijden et al.¹⁹; ^d data from Kwon et al.²⁰; ^e no measurable binding, predicted with UFZ-LSER database²¹; ^f determined with equilibrium dialysis, four replicate dialysis cells measured at three different time points; ^g data from Avdeef et al.²²; ^h non-linear sorption isotherm, log $D_{FBS/w}$ were concentration-dependent and the ranges were reported; ⁱ highest concentration excluded from calculation; n.a. - not analyzed, [B] organic bases, [A] organic acids, [C] chemical with complex speciation.

259 <u>Bovine serum albumin- and liposome-water distribution ratios</u>

260 For the validation of the mass balance model reliable data for BSA-water and liposome-water 261 distribution were required for all chemicals as input parameters. Data from literature were used, if 262 available (e.g., for bisphenol A and fluoranthene) or from a previous study for the seven organic 263 acids.¹⁴ In this study $D_{BSA/w}$ of 15 chemicals and $D_{lip/w}$ of ten chemicals were additionally measured 264 (Table 2). For caffeine the binding to liposomes was too weak for experimental determination 265 (fraction bound <20% at a liposome concentration of 49.5 g/L) and $D_{lip/w}$ was predicted using a 266 polyparameter linear free energy relationship (PP-LFER).²¹ For metoprolol and venlafaxine the 267 $D_{\text{lip/w}}$ determined with the C18-SPME method had very high standard deviations (up to 0.6 log-268 units), and therefore $D_{\text{lip/w}}$ was determined with equilibrium dialysis as described by Henneberger et al.¹⁴ For neutral chemicals $D_{BSA/w}$ and $D_{lip/w}$ were linearly correlated, while no correlation was 269 270 observed for the charged chemicals (see SI section S7 for further discussion).

271 Distribution in cell culture media

272 The basal media OptiMEM and DMEM had very small sorption capacity for ionizable and 273 neutral chemicals and the fractions bound to the proteins and lipids of the basal media were often 274 too small to be calculated. This can best be visualized by comparing $D_{f/w}$ and the distribution ratio 275 between the C18-fibers and the basal medium ($D_{f/basal medium}$). For both basal media and nearly all 276 tested chemicals $D_{f/basal medium}$ was very close to $D_{f/w}$ (Figure 2A). Sorption of the chemicals to the 277 proteins and lipids of the basal medium would lead to a decrease of $D_{f/basal medium}$ compared to $D_{f/w}$. 278 This was only the case for the three chemicals with the highest $D_{\text{lip/w}}$ (triclocarban, B[a]P, B[k]F) 279 and only for the medium OptiMEM, indicating that this basal medium did indeed contain small 280 amounts of lipids. Based on the protein and lipid content of the cell culture basal media OptiMEM 281 and DMEM measured in a previous study⁴ a significant binding to the colloids in the basal media 282 (fraction bound >20 %) was expected for 19 of the 24 chemicals. As already stated in our previous

study with organic acids,¹⁴ the detected proteins and lipids in the basal media might be small 283 284 peptides and fatty acids that do not offer attractive binding sites for the test chemicals. We therefore 285 recommend to determine protein and lipid content of the complete assay medium (e.g., as 286 described in reference 5) and not of the individual medium constituents. Because of the minimal 287 contribution of the basal medium to the sorption capacity of the complete cell culture medium 288 (basal medium plus FBS supplement), the medium-water distribution ratio is essentially the same 289 as the FBS-water distribution ratio $(D_{FBS/w})$ of the test chemicals.

290

291 **Figure 2.** Comparison of (A) fiber-water $(D_{f/w})$ and fiber-basal medium distribution ratios $(D_{f/basal})$ 292 medium) for two cell culture basal media (OptiMEM and DMEM), (B) modelled (mass balance 293 model (MBM) of Fischer et al.⁴) and measured fetal bovine serum-water distribution ratios 294 $(D_{\text{FBS/w}})$ and (C) modelled (MBM, Fischer et al.⁴) and measured cell-water distribution ratios 295 $(D_{cell/w})$. Error bars are plotted for all experimental values (exp.) but are often hidden by the data 296 points.

299 The proteins and lipids of FBS showed a high sorption capacity for neutral and ionizable 300 chemicals. For all neutral and basic chemicals, as well as for labetalol linear binding to FBS was 301 measured in the tested concentration range (see FBS sorption isotherms in SI, Figure S6) and all 302 measured data were combined to calculate a single FBS-water distribution ratio ($D_{FBS/w}$). The 303 experimental log $D_{\text{FBS/w}}$ were ranging from 1.46 for metoprolol to 5.31 for B[a]P (Table 2). Note 304 that medium-water distribution ratios ($D_{\text{medium/w}}$ or $D_{\text{FBS/w}}$) can be expressed in different units. 305 Fischer et. al⁴ defined $D_{\text{medium/w}}$ as the ratio of the concentration in the complete medium (protein, 306 lipid and water phase) and in a hypothetical pure water phase. The resulting $D_{\text{medium/w}}$ had the unit 307 L_w/L_{medium} . In this study $D_{FBS/w}$ was calculated as the ratio of the concentration bound to medium 308 proteins and lipids and the freely dissolved concentration in the water phase of the medium (unit: 309 $L_{w/L_{prot+lip}}$) derived from the Freundlich isotherms. If the total medium volume (V_{medium}), the 310 volume of water (V_w) and of medium proteins and lipids $(V_{prot+lip})$ are known both distribution 311 ratios are easily convertible (eq. 6). Table 2 also lists $D_{\text{medium/w}}$ of the test chemicals calculated 312 from the experimental $D_{\text{FBS/w}}$ for a medium containing 10 % FBS.

313
$$D_{\text{medium/w}}(\text{pH 7.4})[L_w/L_{\text{medium}}] = \frac{D_{\text{FBS/w}} \cdot V_{\text{prot+lip}} + V_w}{V_{\text{medium}}}$$
 eq. 6

Saturation of FBS binding was observed for the organic acids (for sorption isotherms see ref ¹⁴) and for the base propranolol (Figure S6L). Therefore, the range of $D_{\text{FBS/w}}$ (highest concentration tested to lowest concentration tested) is depicted in Table 2. For the neutral chemicals $D_{\text{FBS/w}}$ was linearly correlated with log K_{ow} (Figure S3E).

The mass balance model was able to predict the measured $D_{\text{FBS/w}}$ for the chemicals that showed linear binding to FBS (petrol blue circles in Figure 2B) and $D_{\text{FBS/w}}$ at low concentrations for the chemicals that showed non-linear binding (petrol blue triangles in Figure 2B) very well (RMSE = 0.48 log-units). As expected, $D_{\text{FBS/w}}$ was overestimated by up to 2.4 log-units (naproxen) at high 322 concentrations for the chemicals that showed non-linear binding, because saturation of binding 323 sites was not included in the model (pink triangles in Figure 2B). For all chemicals with linear 324 FBS sorption isotherms $D_{\text{FBS/w}}$ given in Table 2 can be used to calculate the medium-water 325 distribution ratio for any FBS-containing medium, if the total protein and lipid content of the 326 medium is known, assuming that the ratio between protein and lipid content is similar among 327 different FBS types.

328 *Estimation of protein saturation*

Mass balance models should be used with caution for the prediction of C_{free} at high concentrations of the test chemicals as strong saturation effects were observed for organic acids,¹⁴ but also for the base propranolol in this study. In theory, protein saturation can be estimated using mass balance models by calculating the molar ratio of chemical to BSA (v in [mol_{chemical}/mol_{BSA}]), which is the number of test molecules bound to one molecule of BSA. This calculation only requires C_{free} in the assay medium (modelled or measured in [mol/L_w]) and $D_{\text{BSA/w}}$ [L_w/L_{BSA}] of the test chemical:

$$336 \quad \nu = C_{\text{free}} \cdot D_{\text{BSA/w}} \cdot V_{\text{m,BSA}} \qquad \text{eq. 7}$$

The molar volume of BSA ($V_{m,BSA} = 48.87 L_{BSA}/mol_{BSA}$) can be derived by dividing the molar 337 338 mass of BSA (66.463 kg/mol) by a protein density of 1.36 kg/L. For chemicals that have only one 339 specific binding site (e.g., organic acids like naproxen) saturation can be expected if v is >0.1 (i.e., 340 more than 10 % of the binding sites are occupied). For neutral chemicals the threshold is probably much higher, as the binding is likely happening at multiple non-specific binding sites.^{18, 23} We 341 342 estimated v of the neutral chemicals at the solubility limit (C_{free} = water solubility, SI, Table S5). 343 For the neutral hydrophilic chemicals coumarin and caffeine v was >200. However, the determined 344 $D_{\text{FBS/w}}$ of this study and experimentally determined C_{free} in *in vitro* cell-based bioassays from a

previous study⁵ suggest that the free fraction of neutral hydrophilic chemicals and bases in assay 345 346 medium is high (>50 %) in any case and even if saturation of the medium proteins occurs this will 347 not lead to a significant change in C_{free} . For hydrophobic chemicals like B[a]P and B[k]F saturation 348 of the water phase is expected to be reached before saturation of the proteins, since the v was well 349 below 0.1 for these chemicals at C_{free} = water solubility. For neutral chemicals with moderate 350 hydrophobicity (e.g., bisphenol A, fluoranthene and 6-gingerol) v was up to 600. Therefore, for 351 organic acids that show very strong and specific binding to serum albumin and neutral chemicals 352 with moderate hydrophobicity saturation phenomena should be further explored in the future. The 353 most important question is, whether saturation of medium proteins happens at the concentrations 354 typically tested in *in vitro* bioassays. First results from our group indicate that this is indeed the 355 case for organic acids like diclofenac, but not for neutral and basic chemicals.⁵ We suggest to 356 consider saturation of binding if v is >0.1 for all chemicals that are known to have only one specific 357 binding site on albumin (e.g., the majority of organic acids) and for all other chemicals if v is >10, 358 which means that more than 10 molecules of the test chemical are bound to one molecule of 359 albumin. This threshold allows no quantitative assessment of protein saturation, but can be used 360 for prioritizing chemicals for experimental exposure assessment.

361 <u>Cell-water distribution ratios</u>

The cell-water distribution ratios at pH 7.4 (log $D_{cell/w}$) were measured for 21 chemicals for up to four different cell lines (Table S6). When the data for the individual cell lines were plotted against the average of all cell lines, the data agreed within a factor of ten and no systematic differences between cell lines were visible (Figure S7), which was confirmed by statistical tests (SI section S10, Table S8-S10). Therefore, all measured data were combined to calculate a single $D_{cell/w}$ for each chemical (Table 2). These average values of $D_{cell/w}$ were compared with the $D_{cell/w}$ predicted by the mass balance model (Figure 2C). Protein and lipid contents were available from the literature^{4, 14} for seven cell lines and the average of all cell lines was used for the comparison (see also Table S7). For all chemicals except the organic acids (orange triangles in Figure 2C) the model predicted $D_{cell/w}$ very well (RMSE = 0.53 log-units). Again, larger deviations from the model prediction of up to 2.57 log-units were found for the organic acids.

373 In a previous study, the prediction of $D_{cell/w}$ could be improved for organic acids by using structural proteins as surrogates for cellular proteins.¹⁴ For all neutral test chemicals of this study 374 375 the structural protein-water distribution ratios $(D_{SP/w})$ could be predicted using poly-parameter linear free energy relationships (pp-LFER) included in the UFZ-LSER database.^{21, 24} For four of 376 377 the ionizable test chemicals (propranolol, diclofenac, ibuprofen, naproxen) $D_{SP/w}$ was available from the literature. For the other chemicals, $D_{SP/w}$ was estimated using different models (see SI 378 379 Section S11), because there is no generally applicable prediction tool available so far. The $D_{cell/w}$ 380 predicted using structural proteins to represent cellular proteins agree much better with the 381 measured data for all test chemicals (RMSE = 0.57, Fig. S8), supporting the results of our earlier study.¹⁴ 382

383 <u>Recommendations for future improvements of mass balance models and in vitro</u> 384 <u>exposure assessment</u>

385 The results of this study indicate that multimedia equilibrium-based mass balance models can reliably predict C_{free} and C_{cell} for neutral chemicals and organic bases. Because the model gives 386 387 reliable predictions for organic bases the use of serum albumin as surrogate for medium proteins 388 is likely to be sufficient and other proteins like α_1 -acid glycoprotein do not need to be considered. 389 For organic acids there is definitely a need for further improvements, because both, $D_{\text{FBS/w}}$ (at 390 high concentrations of the test chemicals) and $D_{cell/w}$ were overestimated by the model.¹⁴ 391 Quantitatively predicting protein saturation is difficult, but the estimation method presented in this 392 study can be used to assess whether protein saturation can be relevant for the tested concentrations.

For a better prediction of $D_{cell/w}$ a better surrogate than BSA for cellular proteins would be required and structural proteins appear to be the best available alternative. However, considering the fact that C_{free} is not linearly related to C_{nom} for organic acids and that purification of structural proteins is at least as labor-intense as cell culture, measuring C_{free} in the actual *in vitro* bioassay medium at different concentrations and $D_{cell/w}$ for the cell line of interest might be more pragmatic for organic acids than generating the sorption isotherms for the medium and the binding data for structural proteins that would be required for improving the mass balance model.

Mass balance models are also not applicable to chemicals that undergo loss processes like cellular metabolism or abiotic degradation (e.g., hydrolysis or photolysis), as well as to volatile and semi-volatile chemicals that can be lost extensively from the bioassay system.²⁵ For these chemicals time-resolved kinetic models are required to predict freely dissolved and total cellular concentrations.

405 ASSOCIATED CONTENT

Supporting Information. More detailed list of test chemicals, overview of fiber types and concentrations of serum albumin, liposomes, FBS and cell numbers used for SPME experiments, information on chemical analysis, additional figures comparing the determined distribution ratios with octanol-water partitioning of neutral chemicals, BSA-water and liposome-water distribution ratios, kinetics of fiber uptake, fiber sorption isotherms and FBS sorption isotherms, cell-water distribution ratios for individual cell lines and ANOVA test (PDF). Standard operating procedure for the C18-SPME experiments (PDF). Compilation of all distribution ratios (Excel file).

413 AUTHOR INFORMATION

414 **Corresponding Author**

- 415 * Address: Helmholtz Centre for Environmental Research GmbH UFZ, Department of Cell
- 416 Toxicology, Permoserstraße 15, 04318 Leipzig, Germany, Phone +49 341 235 1092, E-mail:
- 417 luise.henneberger@ufz.de.

418 Funding Sources

- 419 This work was funded by the CEFIC Long-Range Research Initiative (LRI), project ECO36 and
- 420 Unilever.

421 ACKNOWLEDGMENT

- 422 We thank Maria König, Jenny John and Lisa Glauch for culturing the cells, Sophia Mälzer for
- 423 supporting the experiments and Mick Wu for his advice on the statistical tests.

424 REFERENCES

- 425 1. Heringa, M. B.; Schreurs, R. H. M. M.; Busser, F.; Van Der Saag, P. T.; Van Der Burg,
- 426 B.; Hermens, J. L. M., Toward More Useful In Vitro Toxicity Data with Measured Free
- 427 Concentrations. *Environmental Science & Technology* **2004**, *38*, (23), 6263-6270.
- 428 2. Groothuis, F. A.; Heringa, M. B.; Nicol, B.; Hermens, J. L. M.; Blaauboer, B. J.; Kramer,
- N. I., Dose metric considerations in in vitro assays to improve quantitative in vitro-in vivo dose
 extrapolations. *Toxicology* 2015, 332, 30-40.
- 431 3. Kramer, N. I.; Krismartina, M.; Rico-Rico, A.; Blaauboer, B. J.; Hermens, J. L. M.,
- 432 Quantifying Processes Determining the Free Concentration of Phenanthrene in Basal
- 433 Cytotoxicity Assays. *Chemical Research in Toxicology* **2012**, *25*, (2), 436-445.
- 434 4. Fischer, F. C.; Henneberger, L.; König, M.; Bittermann, K.; Linden, L.; Goss, K. U.;
- 435 Escher, B. I., Modeling Exposure in the Tox21 in Vitro Bioassays. *Chem. Res. Toxicol.* 2017, *30*,
 436 (5), 1197-1208.
- 437 5. Henneberger, L.; Mühlenbrink, M.; König, M.; Schlichting, R.; Fischer, F. C.; Escher, B.
- 438 I., Quantification of freely dissolved effect concentrations in in vitro cell-based bioassays. *Arch.*
- 439 *Toxicol.* **2019**, *93*, (8), 2295-2305.
- 440 6. Groothuis, F. A.; Timmer, N.; Opsahl, E.; Nicol, B.; Droge, S. T. J.; Blaauboer, B. J.;
- 441 Kramer, N. I., Influence of in Vitro Assay Setup on the Apparent Cytotoxic Potency of
- 442 Benzalkonium Chlorides. *Chemical Research in Toxicology* **2019**, *32*, (6), 1103-1114.
- 443 7. Escher, B. I.; Glauch, L.; König, M.; Mayer, P.; Schlichting, R., Baseline Toxicity and
- Volatility Cutoff in Reporter Gene Assays Used for High-Throughput Screening. *Chemical Research in Toxicology* 2019, *32*, (8), 1646-1655.
- 446 8. Fischer, F. C.; Abele, C.; Droge, S. T. J.; Henneberger, L.; König, M.; Schlichting, R.;
- 447 Scholz, S.; Escher, B. I., Cellular Uptake Kinetics of Neutral and Charged Chemicals in in Vitro
- 448 Assays Measured by Fluorescence Microscopy. *Chem. Res. Toxicol.* **2018**, *31*, (8), 646-657.
- Fischer, F. C.; Cirpka, O. A.; Goss, K. U.; Henneberger, L.; Escher, B. I., Application of
 Experimental Polystyrene Partition Constants and Diffusion Coefficients to Predict the Sorption
- 451 of Neutral Organic Chemicals to Multiwell Plates in in Vivo and in Vitro Bioassays. *Environ*.
- 452 Sci. Technol. 2018, 52, (22), 13511-13522.
- 453 10. Armitage, J. M.; Wania, F.; Arnot, J. A., Application of Mass Balance Models and the
- Chemical Activity Concept To Facilitate the Use of in Vitro Toxicity Data for Risk Assessment.
 Environmental Science & Technology 2014, 48, (16), 9770-9779.
- 456 11. Fischer, F. C.; Henneberger, L.; Schlichting, R.; Escher, B. I., How To Improve the
- 457 Dosing of Chemicals in High-Throughput in Vitro Mammalian Cell Assays. *Chemical Research* 458 *in Toxicology* **2019**, *32*, (8), 1462-1468.
- 459 12. Paini, A.; Sala Benito, J. V.; Bessems, J.; Worth, A. P., From in vitro to in vivo:
- 460 Integration of the virtual cell based assay with physiologically based kinetic modelling.
- 461 *Toxicology in Vitro* **2017**, *45*, 241-248.
- 462 13. Fisher, C.; Siméon, S.; Jamei, M.; Gardner, I.; Bois, Y. F., VIVD: Virtual in vitro
- 463 distribution model for the mechanistic prediction of intracellular concentrations of chemicals in
- 464 in vitro toxicity assays. *Toxicology in Vitro* **2019**, *58*, 42-50.
- 465 14. Henneberger, L.; Mühlenbrink, M.; Fischer, F. C.; Escher, B. I., C18-Coated Solid-Phase
- 466 Microextraction Fibers for the Quantification of Partitioning of Organic Acids to Proteins,
- Lipids, and Cells. *Chemical Research in Toxicology* **2019**, *32*, (1), 168-178.

- 468 15. Henneberger, L.; Goss, K. U.; Endo, S., Partitioning of Organic Ions to Muscle Protein:
- 469 Experimental Data, Modeling, and Implications for in Vivo Distribution of Organic Ions.
 470 Environ. Sci. Technol. 2016, 50, (13), 7029-36.
- 471 16. ter Laak, T. L.; Barendregt, A.; Hermens, J. L. M., Freely Dissolved Pore Water
- 472 Concentrations and Sorption Coefficients of PAHs in Spiked, Aged, and Field-Contaminated
- 473 Soils. *Environmental Science & Technology* **2006**, *40*, (7), 2184-2190.
- 474 17. Neale, P. A.; Antony, A.; Gernjak, W.; Leslie, G.; Escher, B. I., Natural versus
- wastewater derived dissolved organic carbon: Implications for the environmental fate of organic
 micropollutants. *Water Research* 2011, 45, (14), 4227-4237.
- 477 18. Endo, S.; Goss, K. U., Serum albumin binding of structurally diverse neutral organic
- 478 compounds: data and models. *Chem. Res. Toxicol.* **2011**, *24*, (12), 2293-301.
- 479 19. van der Heijden, S. A.; Jonker, M. T. O., Evaluation of Liposome-Water Partitioning for
- 480 Predicting Bioaccumulation Potential of Hydrophobic Organic Chemicals. *Environmental* 481 Science & Technology 2009, 43, (23), 8854-8859.
- 482 20. Kwon, J.-H.; Liljestrand, H. M.; Katz, L. E., Partitioning Thermodynamics of Selected
- 483 Endocrine Disruptors between Water and Synthetic Membrane Vesicles: Effects of Membrane
- 484 Compositions. *Environmental Science & Technology* **2007**, *41*, (11), 4011-4018.
- 485 21. Ulrich, N.; Endo, S.; Brown, T. N.; Watanabe, N.; Bronner, G.; Abraham, M. H.; Goss,
- 486 K. U., UFZ-LSER database v 3.2 [Internet]. 2017.
- 487 22. Avdeef, A.; Box, K. J.; Comer, J. E. A.; Hibbert, C.; Tam, K. Y., pH-Metric logP 10.
- 488 Determination of Liposomal Membrane-Water Partition Coefficients of Ionizable Drugs.
 489 *Pharmaceutical Research* 1998, *15*, (2), 209-215.
- 490 23. Vandenbelt, J. M.; Hansch, C.; Church, C., Binding of apolar molecules by serum 491 albumin. J. Med. Chem. **1972**, 15, (8), 787-789.
- 492 24. Endo, S.; Bauerfeind, J.; Goss, K.-U., Partitioning of Neutral Organic Compounds to
- 493 Structural Proteins. *Environmental Science & Technology* **2012**, *46*, (22), 12697-12703.
- 494 25. Birch, H.; Kramer, N. I.; Mayer, P., Time-Resolved Freely Dissolved Concentrations of
- 495 Semivolatile and Hydrophobic Test Chemicals in In Vitro Assays-Measuring High Losses and
- 496 Crossover by Headspace Solid-Phase Microextraction. *Chemical Research in Toxicology* 2019,
 497 32, (9), 1780-1790.