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Abstract 31 

In respect to the high number of released nanomaterials and their highly variable properties, novel 32 

grouping approaches are required based on the effects of nanomaterials. Proper grouping calls for 33 

a combination of an experimental setup with a higher number of structurally similar nanomaterials 34 

and for employing integrated omics approaches to identify the mode of action.  35 

Here we analyzed the effects of seven well characterized NMs comprising different chemical 36 

compositions, sizes and chemical surface modifications on the rat alveolar macrophage cell line 37 

NR8383. The NMs were investigated at three doses ranging from 2.5 - 10 µg/cm2 after 24 h 38 

incubation using an integrated multi-omics approach involving untargeted proteomics, targeted 39 

metabolomics and src homology 2 (SH2) profiling. By using Weighted Gene Correlation Network 40 

Analysis (WGCNA) for the integrative data, we identified correlations of molecular pathways with 41 

physico-chemical properties and toxicological endpoints. The three investigated SiO2 variants 42 

induced strong alterations in all three omics approaches and were therefore be classified as 43 

”active”. Two organic phthalocyanines showed minor responses and Mn2O3 induced a different 44 

molecular response pattern than the other NMs. WGCNA revealed that agglomerate size and 45 

surface area as well as LDH release are among the most important parameters correlating with 46 

nanotoxicology. Moreover, we identified key drivers that can serve as representative biomarker 47 

candidates, supporting the value of multi-omics approaches to establish integrated approaches to 48 

testing and assessment (IATAs).  49 

  50 
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Introduction 51 

Due to their specific and often unique properties nanomaterials (NMs) are applied in a wide range 52 

of different applications (Stark et al., 2015) and physico-chemical properties of NMs can be fine-53 

tuned resulting in a broad range of NM variants. However, altering size, shape, morphology and 54 

surface chemistry of a NM may modify its biologic interactions, activity and/or biokinetics 55 

(Landsiedel et al., 2012, Arts et al., 2015, Louro, 2018), thus influencing the potential toxicity 56 

(Oberdörster et al., 2005, Rahi et al., 2014).  57 

In the last decades, nanosafety research has generated a huge amount of studies describing 58 

potential NM hazards in vitro. These have increased our general understanding of nanotoxicity but 59 

are of limited relevance for risk assessment (Krug, 2014). Regulatory risk assessment of chemicals 60 

including NMs still mainly depends on in vivo testing to fulfill information requirements, even 61 

though animal tests are time-consuming, costly and ethically questionable. In addition, there are 62 

debates on whether the underlying mechanisms are conserved between species (Olson et al., 2000, 63 

Wall and Shani, 2008, Shanks et al., 2009). Unfortunately, it is neither easy nor straightforward to 64 

replace animal tests by in vitro assays. The current state-of-the art is to develop integrated 65 

approaches to testing and assessment (IATAs) combining several in chemico, in vitro and in vivo 66 

tests in a structured manner employing specific decision trees (OECD, 2018). For this purpose the 67 

inclusion of mechanism-linked bioactivity assays along with traditional cytotoxicity assays for in 68 

vitro screening as well as the correlation of toxicity effects with physico-chemical properties has 69 

been shown to be advantageous (Xia et al., 2013, Feliu et al., 2016). Furthermore, the development 70 

of IATAs is strongly connected to the development of Adverse Outcome Pathways (AOPs) 71 

(OECD, 2012).  72 
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The development of IATAs and AOPs for NMs has made great progress recently (Shatkin and 73 

Ong, 2016, Gerloff et al., 2017). However, it is hampered by a still limited understanding of NM 74 

toxicity mechanisms and mode of actions (MoAs). A few MoAs concerning some toxicological 75 

endpoints of some NMs are already quite well understood. Examples are the release of toxic ions 76 

for some metal and metal oxide NMs, the fibre paradigm following inhalation of bio-persistent 77 

high aspect ratio NMs, and the generation of oxidative stress due to a highly specific surface area 78 

and/or surface reactivity (Donaldson et al., 2006, Nel et al., 2006, McShan et al., 2014, Arts et al., 79 

2015, Dong and Ma, 2015, Tee et al., 2016). However, for many NMs the underlying MoAs are 80 

not well understood but toxicogenomics techniques have been shown to be in particular useful to 81 

elucidate NM toxicity mechanisms and MoAs (Lin et al., 2013, Riebeling et al., 2017). 82 

Furthermore, there are several studies that used a single omics technique to understand molecular 83 

changes induced by NMs (Nath Roy et al., 2017). However, each technique individually provides 84 

only limited insights into the overall appearance which was demonstrated in a multi-omics study 85 

conducted with ten different CNTs (Scala et al., 2018). Thus, the number of studies using 86 

complementary omics approaches is increasing (Scala et al., 2018, Gallud et al., 2019), where 87 

often transcriptomics and proteomics have been combined, while posttranslational modifications 88 

or metabolomics have been included less frequently. 89 

Here we applied a multi-omics approach comprising untargeted proteomics, targeted 90 

metabolomics and SH2 profiling to investigate the effects of seven NMs in an alveolar macrophage 91 

cell line (NR8383). The chosen NMs possess different chemical compositions, sizes, shapes and 92 

surface chemistries and have been extensively characterized. Moreover, most of them were already 93 

well characterized with respect to their inhalation toxicity by in vivo short-term inhalation studies 94 

(STIS) and standard in vitro assays in the same cellular model (Wiemann et al., 2016). Hence, 95 
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plenty of existing toxicological and physico-chemical data are available for correlation with our 96 

multi-omics approach. For this purpose Weighted Gene Correlation Network Analysis (WGCNA), 97 

a p-value independent co-expression network approach, was used (Zhang and Horvath, 2005). 98 

WGCNA has been shown to be a valuable tool in systematically deciphering cellular responses or 99 

identifying pathways relevant to key traits or conditions (Pei et al., 2017). Additionally, this type 100 

of analysis allows the correlation with external conditions or sample traits as for example physico-101 

chemical properties (Langfelder and Horvath, 2008). Thus, we characterized not only NM specific 102 

effects on proteome and metabolome but also effects linked to physico-chemical properties.  103 

  104 
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Materials and Methods 105 

Selected NMs and NM characterization 106 

A set of seven NMs with specifically selected properties was investigated. Unmodified SiO2_15 107 

(precipitated) was provided by BASF SE. Phthalocyanine Blue and Phthalocyanine Green were 108 

provided by BASF Colors and Effects in technical grade. SiO2_7 (pyrogenic) and SiO2_40 109 

(pyrogenic) were manufactured by Evonik Industries. Graphene Oxide was obtained from Sigma-110 

Aldrich. All NMs were delivered as powders, except SiO2_15, which was provided in suspension. 111 

The supplement contains a description of the NMs physico-chemical properties (Table S1) and 112 

average values in F12K cell culture medium (Table S2 - Table S4). Selected properties are 113 

summarized in Table 1. 114 

NM Dispersion 115 

NMs were dispersed freshly prior use by an indirect probe sonication protocol with a Bandelin 116 

Cup Horn (Bandelin, Germany). A 0.5 mg/ml stock solution was prepared in water or serum-free 117 

cell culture medium. The centrifuge vial was placed in the middle of the Cup Horn or in a multi-118 

vial holder and sonicated to a final power input of 6 W during continuous water exchange 119 

(Taurozzi et al., 2011). 120 

NM Characterization 121 

For the basic physical chemical characterization the NMs were suspended in deionized water (0.5 122 

mg/ml) and in various cell media (F12K and DMEM plus Fetal Calf Serum) and analyzed by 123 

different techniques (or data were given by literature or provider) towards their primary particle 124 

size (Scanning Electron Microscopy – SEM, Brunauer-Emmett-Teller – BET), agglomeration size 125 
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(SEM, Dynamic Light Scattering – DLS), specific surface area (BET, DLS, SEM), pH-dependent 126 

zeta potential (Electrophoretic Light Scattering - ELS), isoelectric point (ELS), pH value & redox 127 

potential (Electrodes), oxidative potential (spin trap and spin probe based EPR spectroscopy), 128 

solubility/dissolution (in a steady state system after 24 h and 48 h shaking by Inductive Coupled 129 

Plasma Optical Emission Spectrometry - ICP-OES), morphology (SEM), density (literature) and 130 

band gap (Ultraviolet-Visible spectroscopy - UV/VIS). Dispersion and analysis were performed 131 

according to former NM characterization procedures published by nanOxiMet, nanoGEM, 132 

MARINA. Slight adjustments to NanoToxClass NM characterization can be found in specific 133 

SOPs (www.nanotoxclass.eu). 134 

Cell culture 135 

NR8383 alveolar macrophages (ATCC, CRL-2192, USA) were cultivated in Ham’s F12K medium 136 

(Thermo Fisher Scientific, #21127030, USA), supplemented with 15 % FCS (heat-inactivated, 137 

PAN Biotech, P30-1506, Germany), 100 U/mL penicillin and 100 µg/mL streptomycin (PAN 138 

Biotech, P06-07100, Germany). Cells were exposed to 45, 22.5 and 11.25 µg/mL NM for 24 h 139 

under serum free conditions. Thus, nominal doses assuming complete sedimentation were 10, 5 140 

and 2.5 µg/cm2. 141 

In vitro toxicity 142 

Cytotoxicty of NMs was assessed by lactate dehydrogenase (LDH) and β-glucuronidase (GLU) 143 

release. In addition, H2O2 formation and tumor necrosis factor alpha (TNF) release were 144 

investigated. Information were taken from literature, if available (Wiemann et al., 2016). For the 145 

remaining NMs, toxicity was investigated using the same methods as described before (Wiemann 146 
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et al., 2016) with one exception. TNF levels were determined by ELISA (BMS622, Thermo 147 

Fisher Scientific, Austria), following manufacturer’s instructions.  148 

For the H2O2 assay NR8383 cells were seeded at a density of 5 × 105 cells/ml in 96-well plates and 149 

were exposed to NMs in serum free Ham’s F12K medium for 16 h, and 1.5 h. Blanks (cell free 150 

medium ± NMs) corresponding to each sample were used to eliminate any interference. Three 151 

biological replicates from each sample were acquired using a FlexStation 3 multiplate reader 152 

(Molecular Devices, San Jose, CA). The obtained values are summarized in Table S9 for NM 153 

screening and in Table S10 for concentration-dependent effects. 154 

Sample Preparation for Omics Studies  155 

Cells (4 x 106) were seeded in complete cell culture medium into 22 cm2 cell culture dishes (TPP, 156 

Switzerland) and rested overnight. Freshly dispersed NMs were added, followed by incubation for 157 

24 h in serum-free medium. For the initial screening NMs were applied at 10 µg/cm2, which 158 

corresponds to in vivo overload conditions in rat lungs (Kroll et al., 2011). Protein samples were 159 

generated in three to five biological replicates, containing untreated control samples, while 160 

metabolites were extracted from four to six replicates. Dose-dependent effects were investigated 161 

for selected NMs at doses of 2.5, 5 and 10 µg/cm2 with three to four biological replicates. Detailed 162 

information can be revealed from Additional file 1. Proteins and metabolites were extracted from 163 

individual samples prepared at the same day. 164 

Proteins for proteomics and SH2 profiling were extracted from the same samples using RIPA 165 

buffer containing 0.05 M Tris/ HCl (pH 7.4, Roth, Germany), 0.15 M Na-chloride (Roth, 166 

Germany), 0.001 M EDTA (Roth, Germany), 1 % Igepal (Sigma Aldrich, Germany), 0.25 % Na-167 

deoxycholate (Sigma Aldrich, Germany), 10 mM Na-Pyrophosphate (Sigma Aldrich, Germany), 168 
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10 mM β-Glycerolphosphate (Sigma Aldrich, Germany), 1 mM Na-orthovanadate (Sigma Aldrich, 169 

Germany), 10 µl/ml Protease-inhibitor (Merck Millipore, USA), 10 µl/ml β-Mercaptoethanol, 10 170 

µl/ml Na-fluoride and 2 µl/ml Na-pervanadate. Protein concentrations were determined using 171 

Bradford assay (Bio-Rad, USA). Metabolites were extracted using 5 % (v/v) chloroform, 45 % 172 

(v/v) methanol, 50 % (v/v) water. 173 

Targeted Metabolomics, untargeted Proteomics and SH2 profiling 174 

For Metabolomics, the AbsoluteIDQ p180 Kit (Biocrates, Austria) was used as described 175 

previously (Potratz et al., 2017). Samples were analyzed with an API 5500 triple quadrupole mass 176 

spectrometer (ABSciex, Germany) coupled to an Agilent 1260 Infinity HPLC system (Agilent, 177 

USA). Analyst® software and MetIDQ were used for data analysis. Values below the limit of 178 

detection were excluded. Fold changes (FCs, treatment vs. control) were calculated prior further 179 

analysis. 180 

For proteomics, tandem mass tag (TMT)-labeling (TMT-10-plex, Thermo Scientific, USA) was 181 

applied. In case of the screening the workflow was as specified in manufacturer’s instructions and 182 

as described before but with 50 µg protein (Thompson et al., 2003, Wewering et al., 2016). For 183 

the investigation of dose-dependent effects, TMT labeling was performed on paramagnetic beads 184 

(Supplement: Using tandem mass tags on paramagnetic beads), which leads to an improved sample 185 

quality and allows for fractionation (Hughes et al., 2014, Hughes et al., 2018).  186 

In both cases, labeled samples obtained from one biological replicate were combined and analyzed 187 

on a nano-UPLC system (Ultimate 3000, Dionex, USA). After trapping (Acclaim PepMap 100 188 

C18, 3 µm, nanoViper, 75 µm × 5 cm, Thermo Fisher, Germany), peptides were separated on a 189 

reversed-phase column (Acclaim PepMap 100 C18, 3 µm, nanoViper, 75 µm × 25 cm, Thermo 190 
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Fisher, Germany), applying a non-linear gradient of 150 minutes. Obtained MS raw data were 191 

processed using ProteomeDiscoverer 2.1.0.81, where we applied a co-isolation threshold of 50 % 192 

to minimize ratio compressions (Sandberg et al., 2014). The database search was performed 193 

against the UniprotKB reference proteome of rattus norvegicus (28 April 2017), resulting in FCs 194 

(treatment vs. control) for 2051 proteins, which were log2-transformed and median normalized 195 

before further analyses.  196 

SH2 profiling was performed as described previously (Dierck et al., 2009). In brief, RIPA extracts 197 

were separated by SDS-PAGE, transferred to PVDF membranes, blocked with 10% skim milk in 198 

TBST buffer and probed with different SH2-domains pre-complexed with 199 

streptavidin/horseradish-peroxidase conjugate. Tyrosine phosphorylated proteins were detected by 200 

chemiluminescence, films were scanned and signal intensities of individual phosphoprotein bands 201 

were quantified applying ImageJ software package. Mean signal intensities of phosphoprotein 202 

bands were calculated from minimum three (to five) biological replicates and FCs of 203 

phosphorylation were determined in comparison to mean signals obtained from controls. 204 

Statistical Analysis 205 

Statistical analysis of the log2-transformed FCs was performed in R-3.5.0. To unravel significant 206 

(p-value ≤ 0.05) changes compared to control, the Student’s t-test with Benjamini & Hochberg 207 

adjustment was performed for proteins and metabolites that were quantified in at least three 208 

biological replicates over all the treatments. Hierarchical clustering was conducted with Euclidean 209 

distance measure and complete clustering algorithm. FCs and adjusted p-values for all data sets 210 

can be found in Additional file 1. 211 
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Integrative Analysis 212 

For integrative analysis, Log2(FCs) of all proteins and metabolites obtained in the initial screening 213 

with seven NMs (independently of the p-value) were scaled to integer values between 0 and 100, 214 

without changing the distribution of the values per sample (Additional file 2) (Langfelder and 215 

Horvath, 2008, Love et al., 2014).  216 

Soft power in WGCNA was set to 18, cut-height to 0.1 and minimum module size to 25. 10 217 

modules of co-expressed analytes were obtained (Figure S2). A summary of analytes that have 218 

been assigned to each of the modules can be found in Additional file 3. For each of the obtained 219 

modules significantly enriched pathways were determined using Ingenuity Pathway Analysis 220 

(IPA, Qiagen, Germany).  221 

  222 
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Results 223 

NM characterization 224 

NMs have been characterized extensively. Key physico-chemical properties are summarized in 225 

Table 1. More details are given in Table S1 - Table S4. Characterizations of several materials have 226 

also been published elsewhere (Landsiedel et al., 2014, Driessen et al., 2015, Wiemann et al., 227 

2016).  228 

Table 1: Summary of physico-chemical properties.  229 
Summarized are core materials, provided primary particle sizes (PPS) determined using BET, the agglomerate sizes 230 
in F12K determined using DLS as well as the zeta potential at pH 7.4. *(Wiemann et al., 2016, Wiemann et al., 2018) 231 

Substance 

(CAS Nr.) 

Short Name PPS 

(provided) 

PPS 

(BET) 

Agglomerate 

Size in F12K 

(z.average) 

Zeta 

Potential 

Name in 

Literature* 

  

[nm] [m2/g] [nm] [mV]  

Silica 

(7631-86-9) 

SiO2_15 15 - 42.2 ± 5.4 -35.5 ± 3.6 SiO2.naked 

SiO2_40 40 
66.2 ± 

1.0 
255.0 ± 2.1 -38.8 ± 19.4 F1 

SiO2_7 8 9.1 ± 0.2 275.1 ± 7.6 -26.6 ± 1.2  

Graphene Oxide 
Graphene 

Oxide 
NA 

15.1 ± 

0.1 
1927.2 ± 594.4 -16.2 ± 10.9  

Cu-phathalo-

cyanine 

(147-14-8) 

Phthalocyani

ne Blue 
17 

75.6 ± 

0.4 
1760.1 ± 27.2 -24.1 ± 3.4 

Pigment blue 

15:1 

Halogenated 

Cu-phathalo-

cyanine 

(14832-14-5) 

Phthalocyani

ne Green 
NA 

45.6 ± 

0.1 
1783.9 ± 304.1 -37.0 ± 4.3  

Manganese Mn2O3 50 
22.9 ± 

0.1 
675.6 ± 71.4 -24.6  

  232 
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Proteomics, SH2 Profiling and Metabolomics 233 

To get mechanistic information about NM effects on alveolar macrophages (NR8383) at a dose of 234 

10 µg/cm2, a multi-omics approach was applied. From proteomics, fold changes (FCs) of protein 235 

abundances relative to the control were obtained for 1200 proteins. Hierarchical clustering of 236 

protein FCs that is shown in Figure 1A revealed two groups of NMs: Silica NMs SiO2_7, SiO2_15 237 

and SiO2_40 led to significant (p-value ≤ 0.05) changes in the proteome (Figure 1B), while 238 

Phthalocyanine Blue, Phthalocyanine Green, Mn2O3 and Graphene Oxide showed almost no 239 

significant alterations. SiO2_7 had a similar pattern as SiO2_15 and SiO2_40 but with 240 

considerably more significant changes. Thus, the silica NMs were classified to be “active”.  241 

SH2 profiling was performed to gain insights into changes of the global state of tyrosine 242 

phosphorylation after NM treatment. Profiling was performed with 11 different SH2 domains and 243 

the mean phosphoactivity of 648 phosphoprotein bands was determined (Figure S1). Clustering of 244 

the SH2 profiles revealed two major groups, in which SiO2_40, Mn2O3 and SiO2_15 were clearly 245 

separated from phthalocyanines and Graphene Oxide, while SiO2_7 was apart (Figure 1C). 246 

Significant (p-value ≤ 0.05) changes in the phosphorylation state of different proteins are 247 

summarized in Figure 1D, demonstrating that SiO2_7, SiO2_15 and SiO2_40 as well as Mn2O3 248 

are among the top scorers leading to a strong decrease in tyrosine phosphorylation, while treatment 249 

by phthalocyanines and Graphene Oxide led to only few changes. Based on these findings, Mn2O3 250 

and the three silica NMs tested here were classified to be “active”.  251 

The hierarchical clustering of metabolome data showed again the formation of three major clusters: 252 

SiO2_15 and SiO2_40 on the one hand and Phthalocyanine Blue, Phthalocyanine Green, Mn2O3 253 

and Graphene Oxide on the other hand. SiO2_7 was separated from the other silica NMs due to its 254 
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considerably different expression profile (Figure 1E). Anyway, the comparison of significantly (p-255 

value ≤ 0.05) altered metabolites (Figure 1F) highlights that SiO2_7, SiO2_15 and SiO2_40 are 256 

the NMs which induced significant changes, rendering these again as “active”.  257 

 258 

Figure 1: Summary of obtained proteins, phosphoproteins and metabolites. 259 
Presented are Euclidean clustering analyses for proteins, phosphoproteins and metabolites in A, C and E, respectively, 260 
that are colored by Log2(FCs). B, D and F show numbers of analytes with significantly (p-value ≤ 0.05) altered 261 
abundances. 262 

Next, we performed an integrated data evaluation, for which the data from proteome, 263 

phosphoproteome and metabolome at NM doses of 10 µg/cm2 were scaled to the same range from 264 
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-2 to 2. Noticeably, the overall clustering remained the same (Figure 2). Again, SiO2_7 was located 265 

in a different cluster, pointing to a different MoA compared to SiO2_15 and SiO2_40. Since 266 

Mn2O3 is located in the middle of both clusters, we classified this NM as equivocal. The fact that 267 

the clusters derived from each individual method were highly comparable to the integrated clusters 268 

demonstrates that the gained multi-omics results are consistent. 269 

 270 

Figure 2: Results from integrative hierarchical clustering analysis. 271 
Presented is a Euclidean clustering analysis conducted with protein, phosphoprotein and metabolite Log2(FCs) scaled 272 
to the same ranges (min = -2, max = 2). Coloring was performed based on the scaled Log2(FCs). 273 

  274 
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Integrative Analysis 275 

To get information about the NMs MoAs and on physico-chemical properties influencing 276 

biological effects, we performed a WGCNA of proteins and metabolites. Co-expressed analytes 277 

were summarized into color-coded modules, followed by correlation of the obtained module 278 

eigengenes (modules first principal components) with traits (summarized in Table S5 - Table S9). 279 

WGCNA revealed ten modules which were analyzed by Ingenuity Pathway Analysis (IPA). A 280 

summary of WGCNA and IPA is provided in Table S11. Significant correlations with NM 281 

treatments were observed for SiO2_7, SiO2_15, SiO2_40, Mn2O3 and Phthalocyanine Blue 282 

(Figure 3A). Interestingly, the only but clearly significant correlation of Mn2O3 was associated 283 

with DNA methylation, Guanosine Nucleotides Degradation and Glycolysis indicating that 284 

Mn2O3 led to different cellular effects than the other tested NMs. Again, Mn2O3 was located in 285 

the middle of both trees (Fig. 3A). The significant correlations of the NM treatments with several 286 

of the modules and comprised pathways (Table S11) were analogous to the correlation patterns 287 

observed for the respective core materials and morphologies (Figure 3B, C). Furthermore, the 288 

clustering (Fig. 3A) was identical to the single omics analyses. Graphene Oxide and both 289 

phthalocyanines showed similarities although they are chemically different. The involved modules 290 

contained analytes linked to chemokine signaling, oxidative stress response and cell death (Table 291 

S11). In contrast, all silica variants showed negative correlations with the yellow module, which 292 

is positively associated with Mn2O3, Graphene Oxide and the phthalocyanines, promoting the 293 

assumption of different MoAs. Mn2O3 and SiO2_7 were clearly separated from the other two, but 294 

furthest apart. However, SiO2_15 and SiO2_40 were both positively correlating with the brown 295 

module, containing analytes connected to NRF2-mediated oxidative stress response and IL-8 296 
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signaling. SiO2_7 was the only NM significantly correlating with the turquoise module, containing 297 

analytes related to mitochondrial dysfunction and DNA damage response. 298 

Significant correlations of modules with physico-chemical properties and toxicological endpoints 299 

(Figure 3D) were observable for agglomerate size and LDH release. These were anti-correlating, 300 

indicating larger agglomerate forming NMs  to lead to lower LDH release and concludingly to 301 

higher cell viability. Results for agglomerates surface areas (SA (z.average)), DMPO reactivity, 302 

band gap and TNF release were analyzed in more detail below.  303 

 304 
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Figure 3: Results from module-trait correlation performed for WGCNA. 305 
Shown are modules of co-expressed analytes that were correlated with NM treatments (A), base materials (B), 306 
morphologies (C), physico-chemical properties and toxicological endpoints (D), respectively. The heatmaps are 307 
colored according to the correlation and significance of correlation is indicated (*: p-value ≤ 0.1, **: p-value ≤ 0.05, 308 
***: p-value ≤ 0.01). 309 
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Silica-specific effects 310 

In the present study three silica NMs with different sizes and synthesis routes (pyrogenic and 311 

precipitated) were investigated. Hence, silica-specific effects were analyzed. Silica was the only 312 

core material that positively correlated with the turquoise module (Figure 3B), with enrichment of 313 

mitochondrial dysfunction, DNA damage response and cell death (Table S11). Furthermore, 314 

significant negative correlation was observable for modules with enriched central carbon 315 

metabolism, ERK/MAPK signaling, NRF2-mediated oxidative stress response and cytokine 316 

signaling. 317 

Physico-chemical properties 318 

Next, we aimed to correlate alterations in proteome and metabolome of NR8383 cells with 319 

physico-chemical properties to get hints into the property-activity relationship. Most significant 320 

correlations were found for agglomerate size, showing positive correlation with cytokine signaling, 321 

phagocytosis, NRF2-mediated oxidative stress response and mitochondrial dysfunction.  322 

DMPO reactivity showed significant correlations with the red and grey modules. The correlation 323 

pattern was similar to the one observed for Mn2O3 (Figure 3A), suggesting that changes could be 324 

Mn2O3-specific, according to its high oxidative potential (Delaval et al., 2017). Importantly, no 325 

significant correlation was observed with the surface area corrected DMPO reactivity, indicating 326 

that their reactivity is mainly determined by the available surface area. 327 

The band gap showed significant correlation with ERK/MAPK Signaling and NRF2-mediated 328 

oxidative stress response for instance (magenta module). NMs positively correlating with this 329 

module (Figure 3A) were Graphene Oxide, Phthalocyanine Blue and Phthalocyanine Green, 330 

suggesting this module to be specific for these NMs. 331 
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Toxicological endpoints 332 

From the toxicological endpoints, LDH release led to most significant correlations. This parameter 333 

showed a negative correlation with the agglomerate size, indicating that NMs such as SiO2_15, 334 

SiO2_7 and SiO2_40 forming small agglomerates led to higher LDH release, and hence low cell 335 

viability. 336 

TNFrelease showed significant positive correlation with analytes related to NRF2-mediated 337 

oxidative stress response and chemokine signaling. Furthermore, significant negative correlations 338 

were observed for production of nitric oxide and reactive oxygen species in macrophages and cell 339 

death. Interestingly, TNFrelease clustered with LDH release.  340 

Key driver analysis 341 

To identify key drivers involved in the NMs MoA, we determined analytes highly connected to 342 

particular modules and traits (e.g. silica, surface area, LDH or TNFrelease), suggesting their 343 

importance as mediators of the observed effects (Figure 4). The list of key drivers (Figure 5) 344 

comprises proteins from different pathways and different biological functions ranging from 345 

immune response to DNA damage (Table S12). Taken together, all of them allowed distinguishing 346 

between the tested silica NMs and the others, with the exception of Mn2O3. 347 

 348 
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Figure 4: Identified key drivers. 349 
Plotted are analytes with absolute gene significance ≥ 0.75 and absolute module membership ≥ 0.75 for traits highly 350 
correlating with at least one module. Analytes are colored based on their assigned module. 351 

Especially Idh1 and Sod2 allowed the differentiation of SiO2_7, SiO2_15 and SiO2_40 from both 352 

phthalocyanines and Graphene Oxide. In these cases, Mn2O3 showed similar behavior as the silica 353 

NMs but with less intensity. Interestingly, Idh1 and Sod2 are both related to oxidative stress, which 354 

is consistent with the observation that oxidative stress is one of the most common routes upon NM 355 

treatment (Lujan and Sayes, 2017). 356 

 357 
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Figure 5: Proteins that were identified to be key drivers. 358 
Shown are protein Log2(FCs) (left axis) and p-values (right axis) with respect to the control. Significantly (p-value ≤ 359 
0.05) altered proteins are highlighted (*). Furthermore, assigned modules are indicated by the color behind the analyte 360 
name. 361 

Metabolites suggested to be key drivers are shown in Figure 6. Interestingly, most metabolites 362 

clearly separated the supposedly “active” silica NMs from others, again with exception of Mn2O3. 363 
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Relevant molecules were lysoPC.a.C.16.0 and lysoPC.a.C.16.1 (phosphatidylcholines), Asn, His 364 

and Pro (amino acids), spermidine and putrescine (biogenic amines). 365 

 366 

Figure 6: Metabolites that were identified to be key drivers. 367 
Shown are metabolite Log2(FCs) (left axis) and p-values (right axis) with respect to the control. Significantly (p-value 368 
≤ 0.05) altered metabolites are highlighted (*). Furthermore, assigned modules are indicated by the color behind the 369 
analyte name. 370 

Dose dependency 371 

To get deeper insights into dose-dependent effects, the silica NMs were assessed at 2.5, 5 and 372 

10 µg/cm2 using proteomics and metabolomics. The dose-dependent abundances for several key 373 

drivers that were initially identified based on the screening (Figures 5 and 6) indicate that SiO2_7 374 

induced the highest concentration-dependent responses, followed by SiO2_15 and SiO2_40 375 

(Figure 7). This is true for spermidine as well as several proteins. Especially Sod2, B2m, Thrap3 376 

and Trap1 showed concentration dependencies, which confirms the findings from the screening 377 

and renders them interesting biomarkers candidates. Thus, several key drivers, that confirm the 378 

separation of “active” NMs from “passive” NMs, were identified, which might facilitate future 379 

risk assessment. The dose-dependent effects for the three silica NMs were also investigated by the 380 
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assessment of toxicological endpoints (Table S10) that showed dose-dependent signals as well. 381 

Thereby, the highest response was achieved by SiO2_7, followed by SiO2_15 and SiO2_40, which 382 

is in accordance with the obtained results for the key drivers. 383 

384 
Figure 7: Concentration dependency of selected key drivers. 385 
Shown are Log2(FCs) (left axis) and p-values (right axis) for selected key drivers that were extracted from data 386 
obtained by applying proteomics and metabolomics with different NM doses. Significantly (p-value ≤ 0.05) altered 387 
analytes are highlighted (*). Furthermore, assigned modules are indicated by the color behind the analyte name. 388 

  389 
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Discussion 390 

A detailed understanding of NM toxicity mechanisms and NM MoAs is useful for the distinction 391 

and/or grouping of NMs. Here we applied a multi-omics approach including proteomics, SH2 392 

profiling and metabolomics to a set of seven NMs with different properties. Interestingly, all three 393 

omics approaches led to similar outcomes with respect to NM categorization, indicating the 394 

reliability of our approach. Moreover, the integrative hierarchical clustering analysis of this multi-395 

omics data set (Figure 2) gave a refined view with respect to the existing classification into “active” 396 

and “passive” NMs, confirming SiO2_7, SiO2_15 and SiO2_40 to be “active” in vitro. This 397 

classification was also supported by the analysis of key drivers and toxicological endpoints in the 398 

concentration-dependent follow-up studies. Based on the data of the four toxicological endpoints 399 

(Table S10), these particles were all to be classified as "active" according to the existing 400 

classification, under consideration of the NMs surface areas. SiO2_15 has been shown to be 401 

“active” in vitro (Wiemann et al., 2016) and in vivo (Landsiedel et al., 2014) before, which is 402 

consistent with our findings.  403 

Phthalocyanine Blue, Phthalocyanine Green and Graphene Oxide showed almost no changes, 404 

suggesting them to be “passive” in vitro. Phthalocyanine Blue has been shown before to be “active” 405 

in vitro (Wiemann et al., 2016) and “passive” in vivo (Landsiedel et al., 2014, Arts et al., 2016), 406 

showing that a more detailed investigation as done here can support the previous in vivo 407 

observations even though simple toxicity assessment in the same cell model has suggested that 408 

this NM can be “active”, which is an additional evidence that the MoA should be considered to 409 

establish NM grouping. 410 



26 

 

When taking together all evidences, Mn2O3 should be classified as “active” as well. While it did 411 

not induce significant changes in the metabolome, there were significant changes observable in 412 

the proteome. Furthermore, it was located between the supposedly “active” and “passive” 413 

materials within the WGCNA (Figure 3A) and in case of several of the key drivers the abundances 414 

had the same direction as in case of the NMs that were classified to be “active” within this study. 415 

Examples are Stat5a, Stat3, Idh1, and Sod2 (Figure 5). Nevertheless, we would have expected 416 

stronger and more pronounced effects for Mn2O3 since this material has already been described 417 

as cytotoxic and inducing high cellular oxidative stress levels (Zhang et al., 2012, Hsieh et al., 418 

2013). This was not the case in this study. However, differences in NM dispersion methods 419 

resulting in differences in agglomerate sizes or differences in cell treatment may account for these 420 

variations and need further investigations.   421 

The integrative analysis of the results from proteomics and metabolomics in this study was 422 

conducted using WGCNA, that allows not only the identification of relevant physico-chemical 423 

properties or toxicological endpoints but also to unravel key drivers that are highly connected to 424 

particular traits, thus rendering them representative biomarker candidates for future NM toxicity 425 

assessment. The conducted key driver analysis revealed several interesting candidates. On the 426 

proteome level especially the proteins that are related to oxidative stress response or mitochondrial 427 

dysfunction (e.g. Sod2, Cox5a) allow to distinguish the supposedly “active” NMs from the others 428 

and show concentration dependencies. However, most of the other identified proteins did not show 429 

significant (p-value ≤ 0.05) changes in protein abundances for all the supposedly “active” NMs, 430 

which makes categorization based on these data alone challenging. Importantly, there were also 431 

several metabolites identified to be key drivers, from which especially phosphatidylcholines, 432 

amino acids and biogenic amines seem to be suitable to distinguish “active” and “passive” NMs. 433 
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In summary, consistent results for a systematically selected set of NMs were obtained within this 434 

multi-omics approach, revealing important insights into potential toxicity mechanisms, including 435 

immune responses, oxidative stress response and cell death, which is in accordance with the 436 

literature (Li et al., 2008). Furthermore, our study identified physico-chemical properties that can 437 

be correlated with observed effects, which allowed distinguishing supposedly “active” from 438 

“passive” NMs. Finally, we identified biomarker candidates that might facilitate future hazard and 439 

risk assessment. 440 

Conclusions 441 

In this study, a set of seven different NMs was investigated, including three silica NMs with 442 

varying properties. Biological effects were identified using a multi-omics approach with 443 

untargeted proteomics, SH2 profiling and targeted metabolomics. Interestingly, all conducted 444 

hierarchical clustering analyses revealed overall similar categorization outcomes, showing that 445 

results from different omics data sets were highly consistent. The integrative hierarchical 446 

clustering analysis involving all three data sets was the most predictive one in terms of the 447 

classification confirming that more parameters allow a more reliable categorization. The 448 

conducted WGCNA was a valuable tool to assess NM toxicity since it revealed insights into the 449 

NMs MoAs and unraveled physico-chemical properties that were related to observed effects. 450 

Furthermore, key drivers were identified based on WGCNA results that might be representative 451 

biomarkers for future risk assessment. While metabolites and phosphoproteins where shown to be 452 

already suitable indicators of NM toxicity, the proteome is necessary to unravel MoAs due to the 453 

information about key events and regulated pathways. In summary, the obtained insights may be 454 

useful for future approaches to facilitate targeted hazard and risk assessment and grouping. 455 
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Additional Files 610 

Reference File name Description 

Additional file 1 Additional file 1.xlsx Replicate values, FCs and p-values obtained from 

proteomics, metabolomics and SH2 profiling. 

Additional file 2 Additional file 2.xlsx Scaled data from proteomics and metabolomics 

that were used for WGCNA. 

Additional file 3 Additional file 3.xlsx Lists of analytes and their assignment to obtained 

modules. 

Additional file 4 Additional file 4.xlsx Summary of enriched pathway for each module. 

Additional file 5 Additional file 5.xlsx Calculated module memberships and gene 

significances together with identified key drivers. 

Supplement Supplement.pdf All tables and figures that were mentioned to be 

in the Supplement within the text. 
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