
This is the author's draft version of the contribution published as: 
 
Obringer, R., Kumar, R., Nateghi, R. (2019): 
Analyzing the climate sensitivity of the coupled water-electricity demand nexus in the 
Midwestern United States 
Appl. Energy 252 , art. 113466 
 
The publisher’s version is available at: 
 
http://dx.doi.org/10.1016/j.apenergy.2019.113466 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Analyzing the climate sensitivity of the coupled water-electricity demand
nexus in the Midwestern United States

R Obringer1,∗, R Kumar2 and R Nateghi1,3

1 Environmental and Ecological Engineering, Purdue University, 500 Central Drive, West Lafayette, Indiana, 47907, USA

2 Department Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Permoserstr.15, 04318
Leipzig, Germany

3 School of Industrial Engineering, Purdue University, 315 N. Grant Street, West Lafayette, Indiana, 47907, USA

∗ Corresponding Author. Email: robringe@purdue.edu

Abstract

Accounting for the nexus between water and electricity demand is critical for ensuring efficiency and con-

servation measures are successful in lowering the net water and electricity use in a city. Considering the

nexus is also critical for accurately estimating the price elasticity of demand and designing effective de-

mand response programs. The importance of the water-electricity demand nexus is rapidly increasing as

cities are stressed by factors such as global climatic and socioeconomic changes as well as unprecedented

rates of urbanization and growth. Despite the extensive recent research efforts on electricity and water

demand modeling, significant knowledge gaps remain that are primarily rooted in (i) the use of univariate

approaches that cannot adequately account for the nexus and (ii) the lack of a comprehensive assessment

of the role of climate drivers on the demand nexus. To address these gaps, we propose a multivariate (i.e.,

multi-response), algorithmic framework for assessing the climate-sensitivity of the coupled water-electricity

demand nexus. To illustrate the applicability of the proposed framework, we selected six Midwestern cities

as our test cases. The results indicated that climate variability alone could account for 23%–71% of vari-

ability in the water-electricity demand nexus with the seasonally adjusted dataset, and 47%–87% of the

variability on the non-adjusted dataset. The results also revealed that water use was more climate-sensitive

than electricity use. Additionally, we demonstrated the importance of the variability in the global climate

drivers such as the El Niño/Southern Oscillation cycle, which explained the majority of the covariance in

the water-electricity nexus. Our modeling results suggest that stronger El Niños lead to an overall decrease

in the climate-sensitive portion of the water and electricity use in the selected cities. Since the El Niño

cycle is a well-documented phenomenon, it would be possible for utility managers to make broad predictions

about the following season’s water and electricity demand and plan accordingly. Moreover, as the climate

continues to warm, it is likely that El Niños will become stronger, potentially leading to a reduction in the

climate-sensitive portion of the water-electricity demand nexus in the Midwest.

Keywords: Water-Energy Nexus, Multivariate Tree Boosting, Climate Sensitivity, Multidimensional

Modeling
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1. Introduction

The water-electricity nexus is a concept dating back to the late 1980’s, however applying the concept

to urban areas began around 2010’s [1]. Since the release of these studies and reports, there have been

many initiatives surrounding the water-electricity nexus calling for researchers to evaluate the nexus and its

impacts at various spatiotemporal scales and for numerous applications. The idea behind studying the nexus,

as opposed to studying water and/or electricity in isolation, is that the two systems are interrelated and

studying them separately will likely lead to (i) attenuated effects in efficiency and conservation programs

to reduce residential energy and water consumption, (ii) overestimating price elasticity of demand, and

(iii) designing ineffective demand response programs. On the other hand, considering their co-benefits in

conservation measures has demonstrated potential to achieve savings at no net cost in some regions [2].

There are a variety of ways to study the water-electricity nexus, including water for electricity analyses

and electricity for water analyses. To understand water for electricity, researchers frequently evaluate the

water that is used during electricity generation [3]. An estimated 90% of the electricity in the US comes

from thermoelectric power plants, which require water for cooling [4]. The amount of water withdrawn by

these plants accounted for 40% of the water withdrawals in the US during 2005 [5], making these plants a

crucial aspect to studying water availability in the US, especially during heatwaves and droughts. Higher

temperatures and drought conditions have been shown to increase electricity demand, which ultimately

leads to increased water withdrawals by electricity generators [4]. Electricity for water analyses, on the

other hand, focus on quantifying the electricity it takes to treat and distribute water [3]. It was estimated

that in 2012, water utilities in the United States consumed 38,100 GWh of electricity [6], which will likely

increase as utilities continue to expand to keep up with urban growth. Given that water-related electricity

use is expected to increase in states that are already water stressed, such as Florida, Texas, and Arizona [7],

analyses that focus on the water-electricity nexus are becoming increasingly important.

Climate change will likely exacerbate the stress on urban water and electricity utilities, which are already

facing unprecedented growth in many parts of the world, including the United States [8]. Water and electricity

utilities depend on each other to maintain their respective services, but under the more variable conditions

brought on by climate change, including higher temperatures and increased frequency and intensity of drought

events [9, 10], utilities may begin to face challenges related to their supply. For example, as mentioned

earlier, higher temperatures will increase the demand for cooling in thermoelectric power plants, which will

lead to more water withdrawals by the power plants [4]. The higher temperatures and increased frequency

of droughts will also put pressure on water resources and the utilities that own them to provide water for

public supply and any other major users, including thermoelectric power plants. This pressure could result in

temporary reductions in electricity production, such as those that have occurred in a few European countries

in the past few years [11]. In this sense, the electricity sector puts pressure on the water sector by requiring

2



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

a large amount of water supply, and the water sector puts pressure on the electricity sector when there

are shortages. This will be compounded by climate change, ultimately putting additional pressure on both

sectors.

In addition to the supply-based (inter)dependencies discussed above, there are many aspects of water

and electricity use that are interconnected. For example, watering landscapes, washing clothes, taking hot

showers, and using a dishwater all require both water and electricity. These dependencies are critical for

both electric and water utilities trying to reduce peak load to lower the likelihood of supply inadequacies

and service disruption risks, and reduce operations and maintenance cost [12].

In comparison to the studies of water-electricity supply nexus, research on the water-electricity demand

nexus is more nascent [13]. The majority of the work on the demand-side has primarily focused on human

behavior and specific tasks (e.g., heating water, using a dishwasher, or landscaping) [14, 15]. These stud-

ies provide a wealth of information on people’s behaviors and the coupling between the urban water and

electricity systems, but there is very little work on the subject that takes climate variability and change

into account. The handful of studies that do consider climate, employ only simple and limited measures

(e.g., change in precipitation or temperature) to determine the impact [16, 17, 18]. The climate measures

impacting the water-electricity nexus likely go beyond simple measures such as precipitation and tempera-

ture that have yet to be explored. In particular, the El Niño/Southern Oscillation cycle, which has been

shown to impact the water-energy-food nexus [19], has not been included in urban water-electricity demand

nexus studies. Moreover, the majority of the existing studies have not harnessed a multivariate approach to

simultaneously estimate the water and electricity demand as a function of exogenous factors such as climate

variability and change.

The purpose of this study is to bridge these gaps by proposing a multivariate paradigm to harness the

dependencies in the urban water and electricity demand data and allow for simultaneously estimating the

climate-sensitive portion of the water demand, electricity demand, and their nexus. Given the focus on

the climate-sensitive portion of the demand nexus, only climatic variables were used as predictors in the

study. The central goal of this paper is to comprehensively assess the climate sensitivity of the urban water-

electricity demand nexus, which has largely been overlooked in previous studies. Our proposed framework

is designed to handle multiple interdependent response variables. Since the coupled water-electricity nexus

model takes the correlation between the response variables into account, it was hypothesized that this

multivariate modeling framework would predict the water and electricity use better than similar univariate

models. To test this hypothesis, we applied our framework to six large-range cities in the Midwestern United

States and evaluated the impacts of climate variability on the demand nexus. We also hypothesized that

both local climatic variables, such as precipitation and temperature, and large climatic drivers, such as the El

Niño/Southern Oscillation index, would be important predictors of end-use demand for water and electricity.

3
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Figure 1: A map of the cities chosen for this study. From left to right: Minneapolis (MN), Madison (WI), Chicago (IL),

Indianapolis (IN), Columbus (OH), and Cleveland (OH). The locations of the weather stations used to collect the

meteorological data are also included. The inset plot shows the mean ± one standard deviation for both water and electricity

use for each city. The water use is in 100 gallons/customer (or metered account) and the electricity use is in

kilowatt-hours/customer.

2. Data and Methods

To demonstrate the applicability of the proposed approach, we used the Midwest region in the United

States as a case study. In this section, we will first describe the study sites and the input data used for

the analyses presented in this paper, and will then delve into the proposed methodology for assessing the

coupled water-electricity nexus in the case study areas.

2.1. Site Description

In this study, we focused on the northern and eastern parts of the Midwest, including Ohio, Indiana,

Illinois, Wisconsin, and Minnesota. Within this study area, depicted in Figure 1, six cities of varying pop-

ulation sizes were selected: Chicago (IL), Columbus (OH), Indianapolis (IN), Minneapolis (MN), Cleveland

(OH), and Madison (WI). These cities were selected in order to capture a variety of different sizes, while

still focusing on some of the most populous cities in the region. Moreover, each city, though they have
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different demand patterns, will likely experience similar impacts of climate change due to their geographical

proximity. In particular, it is likely that the Midwest region as a whole will have higher temperatures and

more precipitation as CO2 levels continue to rise [20], which will in turn affect the urban water-electricity

demand nexus.

2.2. Data Description and Preprocessing

The data for this study was obtained from four main sources—the US Energy Information Administration

(EIA), National Centers for Environmental Information (NCEI), National Oceanic and Atmospheric Admin-

istration (NOAA), and local water utilities. Specifically, monthly residential electricity use was obtained

from the EIA [21], meteorological and climate data from the NCEI [22] and NOAA [23], and residential wa-

ter use was obtained through records requests to local water utilities. The meteorological data was collected

from several meteorological towers stationed around each city and aggregated to get an average monthly

value for each city between 2007 and 2016. Specifically, there were four active towers in Chicago, Columbus,

and Minneapolis, three in Cleveland, and one in Indianapolis and Madison (see Figure 1). Meteorological

variables used in the analysis included temperature (dry bulb and dew point), relative humidity, wind speed,

and precipitation. The El Niño/Southern Oscillation strength index was also included in the analysis, as a

large-scale climatic driver that has been shown to impact the climate of the Midwest [24].

In this study, there were two response variables: residential electricity use and residential water use, both

normalized by the number of customers reported by the utility. Often water and electricity are provided

by separate utilities, with potentially different service areas, this normalization allowed us to compare these

two variables regardless of the differences in service area. Additionally, the response data was adjusted for

seasonality to ensure that our results were demonstrating the effect of climate on the water-electricity demand

nexus, independent of the natural seasonality present in the usage patterns. In the seasonality adjustment,

the time series were decomposed and the seasonality components were subtracted from the original time series

[25] (see Supplemental Methods for more information). There were also eight meteorological and climatic

predictors (see Table 1), that were included in the initial model run. There was a focus on variables that

are easily measured by meteorological stations due to the availability of such data, as well as the results of

previous studies, which showed the importance of meteorological variables on water and electricity demand

[26, 27, 28? ]. Both average and maximum values of meteorological variables were included to establish which

statistic (i.e., maximum or mean) would better capture the intensity of the signals in the water and electricity

demand data. Similarly, it has been shown that the El Niño/Southern Oscillation plays an important role

in affecting hydroclimatic processes across the US [24, 29, 30], making it an important variable to include in

the analysis of the climate impact on residential water and electricity use.

2.3. Methodology

The interconnectivity between water and electricity use has been well documented throughout the liter-

ature [1, 6, 7], with a few studies focusing on the impacts of climate [14, 16]. However, this is the first time,

5
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Table 1: The input variables used for developing the coupled water-electricity demand nexus model. Each variable was

collected at the city-scale from January 2007 through December 2016 and aggregated to ensure a consistent monthly time

scale.

Variable Type Variable Name Units Source

Response

(2007-2016)

Monthly Water Use (normalized) gal. Local Utilities

Monthly Electricity Use (normalized) MWh EIA-861M [21]

Predictor

(2007-2016)

Average Maximum Dry Bulb

Temperature

◦F NCEI [22]

Average Dew Point Temperature ◦F NCEI [22]

Average Relative Humidity % NCEI [22]

Average Maximum Relative Humidity % NCEI [22]

Average Wind Speed mph NCEI [22]

Average Maximum Wind Speed mph NCEI [22]

Accumulated Precipitation in NCEI [22]

El Niño/Southern Oscillation index – NOAA [23]

to our knowledge, that the impact of climate on the water-electricity nexus has been evaluated through a

multivariate framework based on statistical learning theory. The advantages of this framework include (i)

assessing the role of a wider range of climatic variables on the water-electricity demand nexus than previous

studies, and (ii) leveraging a robust, non-parametric technique to assess the climate-sensitivity of both wa-

ter and electricity use simultaneously, while taking their complex and non-linear interactions into account.

Moreover, the required inputs to the modeling framework are readily available, such that utility managers,

researchers, or other interested parties can easily apply the model to their city or cities of interest.

There are four main steps in the modeling process: (1) data collection, preprocessing and aggregation, (2)

model training and testing, (3) statistical inferencing, and (4) comparative analysis with a univariate model.

A schematic of this process can be seen in Figure 2. The first step was to collect the data, normalize the

response variables and implement seasonality adjustments (as described in Section 2.2), and to aggregate

the meteorological data spatially across weather stations and temporally from daily to monthly values.

The initial model training and testing was performed—within a 5-fold cross validation loop—with all the

predictor variables (see Table 1). Cross validation was used for both model hyperparameter tuning as well

as model performance assessment. The initial model runs were then followed by a variable selection step

to establish the key predictors (see section 2.3.3 for more details). Finally, the statistical inferencing was

6
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Figure 2: Schematic of the modeling process.

performed using the results from the final best model that included the reduced input variable set, based

on the variable selection step (see section 2.3.4 for more details). Each of these steps will be described in

further detail in the following sections.

2.3.1. Supervised Learning Theory

The algorithm used throughout this study fall into a larger category of statistical learning theory known

as ‘supervised learning’. Supervised learning algorithms are built to predict target variable(s) of interest (i.e.,

the response variable(s)), given a number of predictor variables. Supervised learning can be mathematically

described as:

Y = f(X) + ε (1)

where Y is the response variable(s) of interest, X is the series of predictor variables used to predict the

response, and ε is the irreducible error (ε ∼ N(0, σ2)) [31]. In supervised learning, the aim is to predict the

response variable(s) such that the the expected error is minimized as shown below [31].

7
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min
1

N

N∑
i

∆[f̂(Xi), f(Xi)] (2)

Here f̂(Xi) and f(Xi) represent the estimated and true functions, respectively, and ∆ represents some

measure of distance (e.g. the Euclidean or Manhattan distance).

Among the wide library of supervised learning algorithms, tree-based methods are one of the most popular

non-parametric learning techniques [31]. Tree-based models offer competitive predictive accuracy compared

to most of the state-of-the art statistical machine learning algorithms [32], and lend themselves more easily to

interpretation and inferencing compared to other “black box” algorithms, such as deep learning and support

vector machines [31]. In this paper, we used a multivariate extension of an ensemble-of-trees approach, as

described below.

2.3.2. Algorithm Description

We used an advanced supervised learning technique—based on an ensemble-of-trees approach—that

leverages the covariance structure of multiple response variables to better estimate the complex interactions

between the target variables. Specifically, the predictive model of the coupled residential water and electricity

demand was developed based on a multivariate extension of the gradient boosted regression trees algorithm

[33].

Gradient boosted regression trees is an ensemble-of trees method that takes advantage of the boosting

meta-algorithm to increase the predictive accuracy [33]. The boosting meta-algorithm works by sequentially

fitting models (in this case decision trees), where in each iteration more weight is given to the better classifiers

and the misclassified points in order to reduce the overall loss function and enhance the predictive accuracy.

Boosting is represented mathematically in the equation below.

G(x) =

M∑
m

αmCm(x) (3)

Here G(x) is the final ensemble model, M is the total number of iterations to be completed, αm is the weight

of each prediction, and Cm is the tree models fitted to the input variable x at iteration m.

In this paper, we leverage multivariate tree boosting which extends gradient boosted regression trees

to a multivariate (i.e., multi-response) case. Thus, the multivariate extension of the algorithm enables the

simultaneous prediction of multiple response variables [34]. Specifically, this algorithm iteratively builds trees

by minimizing the squared error loss for each response variable and maximizing the covariance discrepancy in

the multivariate response. In other words, at each iteration, a prediction is made for each response variable,

such that the loss function is minimized and the covariance discrepancy between the current and previous

predictions is maximized. This allows each subsequent prediction to be incrementally more accurate than

the previous, while ensuring the predictors that account for the most covariance in the nexus of the response

variables are selected. The steps of the algorithm are summarized below:

8
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Algorithm 1 Multivariate Ensemble Tree Boosting Algorithm D [34]

1: for m in 1, . . . ,M steps (regression trees) do

2: for r in 1, . . . , R quantitative response variables (e.g., water and electricity demand) do

3: train tree m(r) to residuals, and estimate the covariance discrepancy Dm,r

4: end for

5: Select the response y(r) corresponding to the regression tree that yielded the maximum Dm,r

6: Update residuals by subtracting the predictions of the tree fitted to y(r), multiplied by step-size.

7: end for

This algorithm has been tested in a few multivariate predictive applications, ranging from psychological

well-being [34] to multi-dimensional infrastructure resilience assessment [28], and we hypothesized would be

a good candidate for energy-water nexus modeling.

2.3.3. Variable Selection

Per Occam’s razor, we aimed to establish the simplest model (containing a subset of input variables)

that best captured the data dependencies and covariance. In other words, we conducted variable selection to

reduce model complexity via retaining only the most important or influential predictors in the final model.

In our framework, variable selection was based on establishing the relative influence of each variable, via

measuring the sum of squared errors obtained on any split of a given predictor, summed over all trees in the

the prediction model [31]. The calculated sums of squared errors provide a basis for ranking the predictor

variables. Thus, the relative influence is related to the amount of reduction in total error that can be

attributed to a given predictor—the higher the reduction in error, the more influential (and important) the

variable is in the model. For multi-dimensional response variables, the univariate relative influence is first

measured for each independent variable and for each response. Summing the importance over all response

variables renders a ‘global’ measure of influence for the independent variables across all target variables.

In this study, the variables were selected for the final model if they had a relative influence greater than

5% in at least 4 of the 6 cities. Using this threshold, we retained the following five predictors in the final

model: average maximum dry bulb temperature, average dew point temperature, average relative humidity,

average wind speed, and the El Niño/Southern Oscillation index. These variables were used in the final

model run and subsequent analyses/inferencing.

2.3.4. Statistical Inferencing and Analyses

The statistical inferencing for the multi-dimensional water-electricity nexus model—developed using the

multivariate tree boosting algorithm described in section 2.3.2—was conducted using the following methods:

(1) evaluating the model performance (i.e., model goodness-of-fit and predictive accuracy), (2) assessing the

covariance explained by each predictor on individual response variables and identifying the clusters of input

variables that jointly influence one or both response variables, (3) visualizing the partial dependence between

9
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the important predictors and the response variables, and (4) comparing the multivariate model performance

to a similar univariate model.

• Model Performance

To evaluate model fit and predictive accuracy, the algorithm was run—within the 5-fold cross validation

loop—for each city simultaneously (Figure 2), resulting in one prediction per city per response variable. The

performance of the model was assessed using two statistical measures: the out-of-sample root-mean-squared

error (RMSE) and the out-of-sample coefficient of determination (R2). RMSE provides a measure of error

that heavily penalizes large deviations, making it ideal for prediction applications. The out-of-sample R2

value demonstrates the fit of the model predictions made by the test dataset.

• Heat Maps of the Covariance Structure

The leveraged algorithm can help identify the pairs of the predictor variables that explain the variance

in individual response variables and/or the covariance between multiple response variables. The hierarchical

clustering technique can then be used to group the predictors that explain covariance in similar pairs of

response variables, and the pairs of responses that are dependent on similar subsets of predictors; the results

can then be illustrated as a heat map [34].

• Partial Dependence

A crucial aspect of statistical inferencing is determining the nature of the statistical relationship between

the most important predictors and the response variables. For non-parametric models, partial dependency

analyses are conducted to characterize the association between the inputs and the response variable(s). The

partial dependence can be calculated using the following equation [31]:

f̂(x) =
1

n

n∑
i=1

f̂(x, x
(i)
C ) (4)

Where x is the predictor of interest and x(i)C represents the other predictor variables that are not of interest.

The estimated partial dependence, f̂(x), is the average value of the response variable, when only the predictor

variable of interest is considered.

• Model Comparison

Finally, the results from the multivariate model were compared to results from a similar univariate model.

Specifically, we used gradient tree boosting [33] to predict the water and electricity use as isolated variables.

Gradient tree boosting is the basis for multivariate tree boosting [34], thus the main difference between the

multivariate and univariate algorithms is the consideration of response variable dependencies. The purpose

of this final analysis was to demonstrate the value of the multivariate framework, as this is the first time

this coupled methodology has been applied to predicting the climate-sensitive portion of the water-electricity

nexus.
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3. Results

Following the modeling process outlined above (see Figure 2), we estimated the climate-sensitive portion

of the interdependent water and electricity use for each city in the study area. In this section, we will first

describe the model performance, then discuss the results from the various statistical inferencing techniques,

including the covariance explained evaluations and the partial dependence visualizations, before describing

the comparison between the multivariate and univariate model performance.

3.1. Model Performance

To develop a predictive model of interdependent urban water and electricity demand, we leveraged the

multivariate tree boosting algorithm described in Section 2.3.2. In the initial training of model, several

independent variables that could potentially affect water and/or electricity demand were included (see Table

1). The final model included a reduced variable set based on the relative influence each predictor had over the

predictive accuracy. The variables in the final model included maximum dry bulb temperature, average dew

point temperature, average relative humidity, average wind speed, and the El Niño/Southern Oscillation

index. The selected variables were similar to previous studies on the sensitivity of water and electricity

demand [26, 27, 35, 36].

3.1.1. Treatment of Seasonality

As part of the data preprocessing, the response variables were adjusted for seasonality. It has been shown

that seasonality aids in the predictive accuracy, but in such a way that is misrepresentative of the actual

system [25]. Here we present the results from the model performance using both the original dataset and

the seasonally adjusted dataset. Without the seasonality adjustment, the model performance was better

(see Table 2a and Figure 3a), however, the seasonality present in the data was likely masking the true signal

from the model, thus the improved performance compared to the seasonally adjusted dataset (see Table 2b

and Figure 3b).

3.1.2. Measures of Model Performance

The performance of the final model was assessed based on the out-of-sample estimates of the coefficient of

determination (R2) and the root-mean-squared error (RMSE). These measures of error were calculated using

the test set. The results from the seasonally adjusted dataset are summarized in Table 2b, which demonstrates

that climate variables alone can account for a significant fraction of variability in the electricity and water

demand data (ranging from 43%-73% in the in-sample performance, and 30%-71% in the out-of sample

performance, for the seasonally adjusted dataset). Thus, while the previous literature primarily focused on

explaining the variance in the demand as a function of socioeconomic and technological factors as well as

cultural norms, in this study, we focused on isolating the effects of climate variability and demonstrated the

significant role of climate in explaining the covariance of the water-electricity demand nexus.
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Table 2: The model performance for each city for the final model run. Table 2a shows the results using the original dataset

(i.e., the dataset with seasonality intact) and Table 2b shows the results using the seasonally adjusted dataset. The in-sample

measures were calculated using the same data used to train the model, while the out-of-sample measures were calculated using

the test dataset, which was not included in the model training (see Figure 2).

Table 2a: Model performance for each city using the original dataset (i.e., the dataset with seasonality).

City

Water Use Electricity Use

in-

sample

R2

in-

sample

RMSE

out-of-

sample

R2

out-of-

sample

RMSE

in-

sample

R2

in-

sample

RMSE

out-of-

sample

R2

out-of-

sample

RMSE

Chicago 0.71 0.333 0.47 0.731 0.85 0.235 0.76 0.499

Columbus 0.82 0.285 0.78 0.619 0.89 0.218 0.84 0.496

Indianapolis 0.89 0.222 0.83 0.491 0.94 0.160 0.87 0.385

Minneapolis 0.88 0.221 0.81 0.468 0.91 0.197 0.83 0.431

Cleveland 0.51 0.452 0.31 0.876 0.81 0.306 0.77 0.566

Madison 0.79 0.290 0.71 0.623 0.85 0.226 0.77 0.450

Table 2b: Model performance for each city using the seasonally adjusted dataset.

City

Water Use Electricity Use

in-

sample

R2

in-

sample

RMSE

out-of-

sample

R2

out-of-

sample

RMSE

in-

sample

R2

in-

sample

RMSE

out-of-

sample

R2

out-of-

sample

RMSE

Chicago 0.69 0.344 0.51 0.720 0.53 0.457 0.39 0.932

Columbus 0.63 0.416 0.62 0.894 0.49 0.500 0.31 0.975

Indianapolis 0.73 0.327 0.71 0.739 0.53 0.455 0.41 0.934

Minneapolis 0.69 0.333 0.55 0.761 0.50 0.467 0.42 1.113

Cleveland 0.44 0.490 0.23 0.910 0.46 0.509 0.34 0.943

Madison 0.54 0.444 0.34 0.925 0.43 0.512 0.30 1.003

The results summarized in Table 2 indicate that a significant fraction of variability in the water-electricity

demand nexus can be explained by the input climate variables. This is futher demonstrated in Figure 3,

which shows the predicted values plotted against the actual values for both the original dataset (Figure 3a)

and the seasonally adjusted demand data (Figure 3b). The results are illustrative of the fact that climate

variability is an important driver of water and electricity use in Midwestern cities.
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Figure 3: Out-of-sample model performance for (a) the original dataset (i.e., the dataset with seasonality) and (b) the

seasonally adjusted dataset with the multivariate model. The response variables, water and electricity use, have been scaled to

account for different units of measurement. The lines are best fit lines plotted through the predicted versus actual points, with

a 45◦ dashed line for reference.

3.2. Statistical Inferences from the Multivariate Model

One of the advantages of our proposed multivariate approach is the ability to determine the covariance

explained by the predictors for each individual response variable and the nexus between response variables.

This feature allows us to see what variables have the most impact on the water-electricity nexus and if those

variables differ from those most greatly impacting water or electricity use alone.
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Figure 4: Clustered heat maps showing the covariance explained by each predictor variable in each city, after the seasonality

was removed from the dataset. The darker blues represent higher values of covariance explained, while the lighter blues

represent less. The variables have been grouped using hierarchical clustering, a method used to group similar objects together.

In this figure, predictors clustered together explain the covariance in similar outcome pairs, therefore, the position of the

variables on the axes is different for each city due to each city has a different clustering outcome.

Figure 4 shows the clustered heat maps of the covariance explained for each city. These heat maps are

clustered via hierarchical clustering, which indicates which predictors are affecting the response variables

in similar ways, as well as which response variables pairs are being influenced by similar subsets of pre-

dictors. Overall, assessing the covariance explained allows us to investigate the similarities and differences

14



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

between the cities, as well as any differences between the isolated water use, isolated electricity use, and the

water-electricity use nexus. The results from the heat maps demonstrate that although the model itself is

generalizable across the different cities, as indicated by the model performance (see Table 2), the covariance

explained by the variables will differ from city to city. For example, in the land-locked cities of Columbus,

Indianapolis, and Minneapolis, average relative humidity explains the most covariance in water use. This

is different than the coastal cities of Chicago and Cleveland, where the ENSO index explains much of the

water use and relative humidity has less of an impact.
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Figure 5: Partial dependence plots between the most important predictor variable and water use in each city. Note that the

water use has been scaled, so there are no units.

The covariance explained, however, does not give any indication to the direction of the relationship

between the predictors and the response variables—just the magnitude of it. Thus, it is necessary to perform

other analyses to determine if higher relative humidity will lead to higher or lower water use in Indianapolis,
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for example. To answer this question, we evaluated the partial dependence of the predictors on the individual

response variables. A selection of these partial dependence plots are shown in Figure 5 (additional partial

dependence plots can be seen in Supplemental Figure S2).

These plots show the relationship between the most important variables and water use in each city. In

particular we can see that in the cities of Columbus, Indianapolis, and Minneapolis, as relative humidity

increases, the water use decreases. A similar pattern appears in Chicago and Cleveland—as the El Niño

gets stronger, the water use decreases. This suggests that utility managers trying to reduce water use in

Columbus or Indianapolis should focus on the days with intermediate relative humidity, as that is when

people are using the most water. Likewise, a manager in Chicago or Cleveland should focus their demand

reduction efforts during the cold phase of the El Niño cycle (i.e., La Niña).

3.3. Univariate Model Comparison

One of the goals of this work was to demonstrate the power of including both water and electricity use

in the model as interdependent response variables. This was done through a model performance comparison

of the multivariate tree boosting model and a univariate version: gradient tree boosting. The results from

the univariate model run are shown in Table 3.

Table 3: The in-sample and out-of-sample model performance (R2 and RMSE) of the univariate model, gradient tree

boosting, for each city after the seasonality was removed from the data.

City

Water Use Electricity Use

in-

sample

R2

in-

sample

RMSE

out-of-

sample

R2

out-of-

sample

RMSE

in-

sample

R2

in-

sample

RMSE

out-of-

sample

R2

out-of-

sample

RMSE

Chicago 0.60 0.437 0.50 0.747 0.36 0.600 0.32 0.981

Columbus 0.55 0.500 0.53 0.860 0.36 0.601 0.26 0.987

Indianapolis 0.62 0.429 0.64 0.732 0.39 0.577 0.29 0.938

Minneapolis 0.56 0.451 0.55 0.756 0.32 0.599 0.32 1.003

Cleveland 0.34 0.614 0.36 0.860 0.30 0.630 0.28 0.991

Madison 0.41 0.548 0.37 0.883 0.28 0.663 0.28 1.036

Both approaches revealed that a significant fraction of the variability in the water and electricity use

could be accounted for by climate variables alone. Additionally, the relative performance of the various cities

matched between the univariate and multivariate models. For example, in both approaches, Indianapolis’s

water use was found to be most climate-sensitive, while Cleveland’s revealed the least amount of climate

sensitivity (based on their estimated coefficients of determination). Overall, however, the multivariate model

was better at capturing the climate sensitivity of two demands than the univariate model, with the exception

of Cleveland’s and Madison’s water use.
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The main difference between the univariate and multivariate models was the inclusion of response variable

interdependencies within the multivariate model. This is indicative that, in most cases, the consideration

of the interconnectivity between water and electricity use improves the final prediction of both water and

electricity use. Of the cities tested as a part of this analysis, the climate sensitivity of water use in Cleveland

and Madison—smallest cities included in this study—were better accounted for by the univariate model,

which suggests a loose coupling between the climate-sensitive portion of the water and electricity use in

those cities than the other cities studied. Additional research is necessary to determine the reason behind

this reduced coupling between the climate-sensitive portion of the water and electricity demand.

4. Discussion

This study focused on analyzing the water-electricity demand nexus based solely on climate variables.

This allowed us to isolate the effect of climate on residential water and electricity use—a factor that is often

not included in demand analyses. Our results show that water use is more climate-sensitive in most of the

cities included. This suggests that water use is more dependent on the climate than electricity use, which

is an interesting finding, given the documented increase in electricity with increasing temperatures in the

Midwest [28].

Given that the model performance for the electricity sector was more impacted by the seasonality ad-

justment than the water sector, we conclude that in the Midwest, the long-term climatic conditions are

more likely to drive changes in water use, while the short-term weather patterns are more likely to act as

a driver for electricity use. That is not to say that climate is the only driver of changing water use, but

rather it is a potentially important driver that has often been left out of many demand analyses. In this

sense, water demand studies, which often focus on population, socioeconomic, and/or cultural factors, ought

to also include climatic factors in their analyses. This will become especially important as we try to predict

water demand under climate change.

One of the main findings of this study was the importance of the El Niño cycle on the residential water

and electricity demand in the region of interest. The ENSO index was consistently among the predictors that

explained the most covariance in the response variables. Given that the El Niño cycle is a well-documented

climate phenomenon that can be predicted relatively easily, it is an ideal variable for making more general or

broad predictions. For example, a common ENSO-based prediction is the type of winter that a given region

will have (e.g., a strong El Niño usually leads to warmer, drier winters in the Midwest [24]). Our modeling

framework allows us to make a simple, first order forecast for the demand nexus based on large scale climate

predictor. In other words, our results suggest that a strong El Niño is more likely to lead to lower water

and electricity use . This knowledge would allow utility managers to prepare for the upcoming season based

on the predicted El Niño strength that is determined on a monthly basis. The importance of the ENSO

index also has implications for climate change. It is likely that El Niños will become stronger as sea surface

temperature continues to increase [37], and our results suggest that if this holds true, water and electricity
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use in the Midwestern cities studied, will decrease as a result of the change in climate, should everything else

in the cities remain constant. This assumption—that the population, socioeconomic breakdown, culture, etc.

of a city will remain constant—is, of course, highly unlikely; however, the results demonstrate the importance

of including climate variables in the overall analysis of water and electricity demand.

Finally, one of the goals of this study was to compare the results from the multivariate model, which

considers the coupling between water and electricity demand, and a univariate model that is based on

the same algorithm. Our results demonstrate that the multivariate framework is able to better capture

the climate-sensitivity of water and electricity use in most cases. Since both models were based on the

same algorithm, the only difference between them being the inclusion of multiple interconnected response

variables, our results suggest that system coupling are an important consideration for the prediction of

water and electricity demand. Ultimately, our results indicate that there needs to be an increased effort to

(i) consider the increasing role of climate drivers on demand and (ii) harness a multivariate framework to

better account for the interdependent response variables in demand analyses.

5. Conclusions

The purpose of this study was to build a multi-response predictive model of the portion of the urban

residential water-electricity demand nexus that was sensitive to climate, using the multivariate tree boosting

algorithm. In this study, there were two response variables: water use and electricity use, and five main

predictors. The model was tested on six Midwestern cities of variable size, demonstrating the generalizability

of the model to the region of interest. The results of the study indicated that a significant fraction of the

water-electricity demand nexus can be explained by climate variability alone. Urban water and electricity

demand are impacted by a number of factors, including population density, socioeconomic status, and cultural

values, in addition to the climate. However, the role of climate has been understudied in comparison to other

important drivers of urban water and electricity demand. For this reason, the goal in this study was to isolate

the effects of climate and demonstrate the value of their inclusion in future analyses. Our results indicated

that water and electricity use are sensitive to climate variables, and will likely be affected by future climate

change. The impact of the El Niño cycle was especially important in each city, as the variable consistently

explained much of the covariance in the water-electricity nexus and in the individual response variables.

Our proposed framework can be used by utility managers that are interested in tailoring conservation

interventions to the times at which they will be most effective. For example, focusing on conservation during

the cold cycle of the El Niño (i.e., La Niña) will likely be more effective and result in greater reductions

than the same campaign during a strong El Niño. Finally, we compared the model performance to a similar

univariate algorithm, known as gradient tree boosting. Our results demonstrated that in the majority of

cities studied, the multivariate (i.e., multi-response) algorithm outperforms the univariate version. Since the

main difference between the algorithms is the inclusion of multiple interdependent response variables, we

recommend that future studies, especially in the Midwest, focus on modeling the water-electricity nexus,
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even if they are only interested in one of the response variables. Although the focus of this study was to

isolate and analyze the effect of climate variables on the water-electricity nexus, the framework could easily

be expanded to included other important factors, such as socioeconomic status, housing characteristics,

or population density. Moreover, while we focused on modeling the water-electricity demand nexus, our

proposed framework could be easily extended to include other critical urban services (e.g., food).
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