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Abstract 21 

Large-scale information on several vegetation properties (‘plant traits’) is critical to assess ecosystem 22 

functioning, functional diversity and their role in the Earth system. Hyperspectral remote sensing of plant 23 

canopies offers a key tool to map multiple plant traits. However, we are still lacking generalized methods 24 

to translate hyperspectral reflectance into a suite of relevant plant traits across biomes, land cover and 25 

sensor types. The absence of globally representative data sets and the gap between the available 26 

reflectance data with corresponding in-situ measurements have hampered such approaches. In recent 27 

years, the scientific community acquired multiple data sets encompassing canopy hyperspectral reflectance 28 

and plant traits from different plant types and sensors. To combine these heterogeneous data sets, we 29 

propose three multi-trait modeling approaches based on Convolutional Neural Networks (CNNs) to 30 

simultaneously infer a broad set of 20 structural and chemical traits (e.g. leaf mass per area, leaf area 31 

index, pigments, nitrogen). The performance of these multi-trait CNN models predicting these traits was 32 
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compared against single-trait CNN as well as single-trait partial least squares regression (PLSR). We found 33 

that the multi-trait CNNs performances significantly increased from single-trait CNNs (nRMSE = 0.027- 34 

19.61%) and the state-of-the-art PLSR models (nRMSE = 1.94 - 40.07%) across a broad range of 35 

vegetation types (crops, forest, tundra, grassland, shrubland) and sensor types. Thus, providing a single 36 

model for multiple traits not only proved to be computationally more efficient, but also more accurate, since 37 

it enabled the model to incorporate traits’ co-variation. Despite the data heterogeneity of the merged data 38 

set, our models performances’ were comparable or exceeded those of previous studies. Overall, this study 39 

highlights the potential of weakly supervised approaches to overcome the scarcity of in-situ measurements 40 

and take a step forward in creating efficient predictive models of multiple biochemical and biophysical 41 

vegetation properties. 42 

 43 

Keywords: Hyperspectral remote sensing, Plant trait retrieval, Deep learning, Biophysical variables, 44 

Imaging spectroscopy, Canopy properties, Weakly supervised learning, Multi-task regression 45 
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Plant functional traits are key for assessing and monitoring terrestrial ecosystem properties. They provide 61 

insights on functional diversity and can enhance our understanding of ecosystem functioning (Lavorel and 62 

Garnier, 2002; Migliavacca et al., 2021). Traits determine plant productivity and stress resistance and thus 63 

also how plants compete for growth and survival in different environments (Funk et al., 2017). For example, 64 

leaf mass per area (LMA) is positively related to photosynthetic productivity and negatively to structural 65 

robustness and depends on resource availability and environmental conditions (Díaz et al., 2016; Grime, 66 

1988; Poorter et al., 2009). Leaf pigments (e.g., chlorophyll, carotenoids) determine photosynthetic 67 

capacities and their variations can indicate changes in plant health due to stress (Feret et al., 2008; Zarco-68 

Tejada et al., 2019, 2018, Berger et al., 2022). Other leaf constituents such as nitrogen and carbon are 69 

directly linked to biosphere-atmosphere cycles (de Bello et al., 2010) and are important to parameterize 70 

vegetation in Earth system models (Yang et al., 2015). A comprehensive set of quantitative trait 71 

measurements is thus desirable to understand the functioning of ecosystems. 72 

 73 

Still, despite the efforts towards compiling field observations from a myriad of studies into global databases 74 

(e.g. TRY, Kattge et al., 2020), the available data are sparse in terms of geographical coverage, species 75 

and range of traits (Asner et al., 2015; Kattge et al., 2020). In this context, hyperspectral remote sensing 76 

data offer an efficient proxy to map plant traits (Cavender-Bares et al., 2020; Jetz et al., 2016). Such data 77 

enable repeatable and non-destructive optical observations using numerous platforms and sensors 78 

providing information on spectral reflectance across a wide range of the electromagnetic spectrum via 79 

continuous narrow bands. Given the mechanistic interactions of light with leaf and canopy traits (Billings 80 

and Morris, 1951; Gates et al., 1965; Kattenborn and Schmidtlein, 2019; Ustin and Gamon, 2010), 81 

hyperspectral observations have a high potential to reveal plant traits over remote and large areas (Hank 82 

et al., 2019, Asner and Martin, 2016; Homolová et al., 2013; Singh et al., 2015; van Cleemput et al., 2018, 83 

Danner et al., 2021; Wocher et al., 2022). Recently launched and forthcoming hyperspectral space missions 84 

such as PRecursore IperSpettrale della Missione Applicativa (PRISMA, Cogliati et al., 2021), 85 

Environmental Mapping and Analysis Program (EnMAP, Guanter et al., 2015) and Surface Biology and 86 

Geology (SBG, Cawse-Nicholson et al., 2021) along with the higher-resolution proximal and airborne 87 

instruments, support this potential and will provide an unprecedented source of data. However, in view of 88 
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the varieties of these hyperspectral data sources and potential applications, we are missing transferable 89 

retrieval methods across sensors, acquisition settings, ecosystems and plant functional types.  90 

 91 

From a methodological perspective, available retrieval methods range from data-driven statistical methods 92 

to the inversion of radiative transfer models (RTM) to hybrid methods (see Verrelst et al., 2019 for a review). 93 

RTMs simulate the interaction of light with vegetation properties and thus their inversion can represent a 94 

promising approach for plant trait retrieval (Berger et al., 2018; Dorigo et al., 2007; Feilhauer et al., 2018, 95 

2017; Jacquemoud et al., 2009). Yet, plant trait retrieval by RTM inversion is only possible for traits that are 96 

considered in the RTM itself. Moreover, RTM inversions are very sensitive to the RTM’s configuration and 97 

thus have to be specifically parameterized for different vegetation types, canopy structures, phenological 98 

stages or use cases (Dorigo et al., 2007; Atzberger and Richter, 2012; Verrelst et al., 2013). Conversely, 99 

data-driven approaches automatically learn the statistical relation between the spectral data and plant traits. 100 

Partial Least Squares regression (PLSR) (Geladi and Kowalski, 1986; Wold et al., 2001) can be considered 101 

as the benchmark approach given its long history in imaging spectroscopy (Asner and Martin, 2008; 102 

Feilhauer et al., 2010; Singh et al., 2015; Wang et al., 2020).  In recent years, new machine learning 103 

algorithms emerged as powerful approaches to solve retrieval tasks from hyperspectral data (Wang et al., 104 

2020, Prilianti et al., 2021, Shi et al., 2022).  105 

 106 

Despite the potentials of data-driven methods, there are multiple constraints:  107 

1) Commonly, data-driven models are trained with data sets representing limited variation in ecosystem 108 

properties, plant functional types, sensor systems and acquisition settings, thus limiting their transferability. 109 

For instance, previous studies (Asner et al., 2015; Berger et al., 2020; Wang et al., 2019) have concentrated 110 

on individual ecosystems such as croplands, forests, or grasslands using specific data sets. However, 111 

models developed from these data sets may produce significant uncertainties when employed on a new 112 

data set, making them less transferable to other ecosystems or alternative data sets (Wang et al. 2020). 113 

2) Data-driven models are often built independently for different traits. This prevents exploiting 114 

interrelationships between certain traits. For example, different traits may be driven by the same processes 115 

or may manifest in overlapping absorption features such as pigments or resource-investment related traits. 116 

Consequently, taking the trait interrelations into account might improve the overall retrieval quality. 117 
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Moreover, the simultaneous prediction of multiple traits may also enlarge computational efficiency. It is thus 118 

compelling to aim for a data-driven approach that is capable of predicting a set of traits simultaneously. We 119 

further refer to such an approach as ‘multi-trait’ model. 120 

3) Furthermore, most data-driven approaches for plant trait retrieval cannot easily be extended with new 121 

training data, which hinders continuous model improvements and knowledge transferability. 122 

Deep learning and particularly Convolutional Neural Networks (CNNs) may pave new avenues to alleviate 123 

such issues (Sosnin et al., 2019; Yosinski et al., 2014; Zhang and Yang, 2021). CNNs are a powerful 124 

method for automatic feature engineering and are increasingly being applied to remote sensing data 125 

(Kattenborn et al., 2021; Zhu et al., 2017). Due to their depth and large number of neurons such models 126 

are capable of learning complex relationships. Accordingly, given sufficient representativeness of the input 127 

data, such models may learn transferable relationships across application domains, sensor types and 128 

acquisition settings. Moreover, CNNs are commonly trained iteratively, enabling to exploit very large data 129 

sets and allowing for continuous updating and fine-tuning of models with new, unseen data (Shin et al., 130 

2016). 131 

The availability of canopy spectra and their corresponding trait observations from different studies 132 

encompassing different plant types and sensors constantly increases (e.g. Rogers et al., 2021; van 133 

Cleemput et al., 2019). This opens a way to harness the scalability of deep learning and test the robustness 134 

of the models when integrating multi-source hyperspectral and plant trait data (e.g. EcoSIS, Wagner et al., 135 

2018). However, due to the different context of these studies, a combination of such data sets is naturally 136 

sparse, meaning not all potential traits are covered across different data sets. Therefore, the objective of 137 

this study is to explore the potential of weakly supervised approaches to train models on sparse data for 138 

simultaneously predicting multiple traits (n = 20) from canopy hyperspectral data. This analysis is based on 139 

a combination of 42 data sets from heterogeneous data of different vegetation and sensor types. We 140 

implement three weakly-supervised multi-trait CNN approaches to investigate the hypothesis of whether 141 

the incorporation of trait-trait correlation in models’ calibration would improve the trait estimations. The 142 

performance of these strategies is compared to common single-trait PLSR and single-trait CNN models. 143 

 144 

 145 

 146 
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2. Material and Methods 147 

2.1 Data merging and cleaning 148 

We employed 42 data sets of full range canopy spectra (400-2500 nm) with corresponding trait 149 

measurements (e.g. LMA, pigments) that were available upon request or from archives (e.g. EcoSIS, 150 

PANGEA) (Burnett et al., 2021; Cerasoli et al., 2018; Chlus et al., 2020; Ewald et al., 2018b, 2020; Hank 151 

et al., 2016, 2015; Herrmann et al., 2011; Kattenborn et al., 2019a; Pottier et al., 2014; Rogers et al., 2021; 152 

Singh et al., 2015; van Cleemput et al., 2019; Wang et al., 2020; Wocher et al., 2018, Dao et al., 2021). 153 

The sites of the collected samples are distributed across different continents (America, Asia and Europe 154 

see Fig. SA.1) and vary in climate and vegetation type (see details Table SA.1). The data comprise 155 

observations from different natural and semi-natural ecosystems (forest, grassland, tundra and shrubland), 156 

agricultural sites (crops and pastures), as well as plant-pot-experiments. Hence, the resulting data 157 

represent an aggregation of large and heterogeneous multi-site and multi-ecosystem sources. 158 

2.1.1 Hyperspectral data 159 

Canopy reflectance spectra were acquired with proximal and airborne hyperspectral sensors (e.g. ASD 160 

FieldSpec, Spectra Vista Corporation, SVC; AVIRIS; NEON Airborne Observation Platform AOP) and have 161 

different spectral properties. Still, they cover a comparable wavelength range of the solar electromagnetic 162 

spectrum (see Table SA.1). A forward and backward linear interpolation was performed to unify the diverse 163 

measurements in the full range of 400-2500 nm in 1 nm steps. To deal with the known issues of atmospheric 164 

water absorption in open-sky canopy reflectance spectra, we removed water absorption regions (1351-165 

1430, 1801-2050 and 2451-2501 nm) and independently smoothed the three remaining parts of the spectra 166 

with a Savitzky-Golay filter (Savitzky and Golay, 1964) using a window size of 65 nm. Finally, 1721 167 

interpolated spectral bands were retained for the analysis. Given the heterogeneity of the different data 168 

sets, the 5573 processed spectra cover a wide range of reflectance values (Fig. 1).The data were checked 169 

for overall spectral artifacts or inconsistencies (Supplement B). Despite the heterogeneity in land cover and 170 

vegetation types, we observed smooth transitions between the spectral features of the different data sets 171 

originating from sensor or pre-processing procedures (Fig. SB.1). 172 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spectral-resolution
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 173 

Fig. 1. Distribution of canopy reflectance of the available samples (N = 5573). 174 

2.1.2. Leaf and canopy traits 175 

From the available reference data, we selected a variety of traits (Table 1) related to light harvesting and 176 

growth,e.g. leaf pigments, nitrogen, structure and resource investments, leaf area index (LAI), equivalent 177 

water thickness (EWT) and leaf mass per area (LMA). Where necessary, leaf traits were converted to area 178 

basis, in contrast to mass-based measurements, to avoid the high correlation with LMA (see also Fig. SB.2) 179 

and to facilitate the model to learn the actual absorption features of the respective constituent (Hill et al., 180 

2019; Kattenborn et al., 2019b; Ustin and Gamon, 2010, Zhao et al., 2021) (Fig. SB.2). Main conversions 181 

were based on the common relationships from literature (Kattenborn and Schmidtlein, 2019; Lichtenthaler, 182 

1987) (Table SA.2). Table 1 summarizes the quantity of observations for each trait, their value ranges and 183 

the number of associated data sets. For the further analyses and for the sake of the training stability and 184 

computational efficiency, the trait values were rescaled. For this, we used the power transformation, which 185 

is a monotonic transformation to transform and normalize the data to a more-Gaussian-like distribution. 186 

 187 

Table 1. Statistics of 20 selected functional traits available across 42 data sets. More details on the data 188 

sets can be found in Table SA.1. N = Number of samples, N Data sets = Number of data sets including 189 

the trait, Std = standard deviation, Min = minimum, Max = maximum.      190 

 191 

Trait name 
Trait 

description 
Unit N 

N Data 
sets 

Mean Std Min Max 

Anth 
Anthocyanin 
content 

(μg/cm²) 644 2 1.27 0.41 0.56 2.98 
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Boron Boron content (μg/cm²) 1086 14 0.39 0.26 0.01 2.34 

C 
Carbon 
content 

(mg/cm²) 1876 23 5.84 4.44 0.10 37.29 

Ca 
Calcium 
content 

(μg/cm²) 1045 16 107.25 101.97 0.69 988.73 

Car 
Carotenoid 
content 

(μg/cm²) 1859 21 8.75 2.77 1.18 40.44 

Cellulose Cellulose (mg/cm²) 1402 15 2.35 1.87 0.35 15.22 

Chl 
Chlorophyll 
content 

(μg/cm²) 2141 24 38.57 14.53 4.45 229.50 

Copper 
Copper 
content 

(μg/cm²) 1101 14 0.07 0.03 0.01 0.28 

EWT 
Equivalent 
Water 
Thickness 

(mg/cm²) 1918 19 15.65 9.27 0.23 80.62 

Fiber Fiber (mg/cm²) 1385 15 5.23 4.57 0.14 29.81 

LAI 
Leaf Area 
Index 

(m²/m²) 1643 15 3.35 1.64 0.06 7.67 

Lignin Lignin (mg/cm²) 1415 16 2.69 2.41 0.05 14.58 

LMA 
Leaf Mass per 
Area 

(g/m²) 3328 32 92.05 68.08 5.72 663.81 

Magnesium 
Magnesium 
content 

(μg/cm²) 1099 15 24.09 16.16 0.25 141.54 

Manganese 
Manganese 
content 

(μg/cm²) 894 14 3.09 2.31 0.01 15.19 

N 
Nitrogen 
content 

(mg/cm²) 2193 26 0.19 0.10 0.01 0.95 

NSC 
Non-Structural 
Carbohydrate
s 

(mg/cm²) 1093 14 3.21 2.85 0.28 21.83 

Phosphoru
s 

Phosphorus 
content 

(μg/cm²) 1289 16 14.42 9.45 0.29 73.43 

Potassium 
Potassium 
content 

(μg/cm²) 1008 15 102.64 62.73 0.40 470.07 

Sulfur Sulfur content (μg/cm²) 1039 14 13.31 9.13 0.62 57.23 

2.2. Multi-trait model development 192 

2.2.1. CNN implementation and training 193 

Given the one-dimensional nature of the spectral data, we used one-dimensional Convolutional Neural 194 

Networks (1D-CNN). The context of neighboring wavelengths of the spectra makes CNN-based models 195 
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preferable here to the naive multilayer perceptron architecture (MLP). CNNs can have a deep structure and 196 

conventionally include blocks (convolutional block) of successive layers including convolution, pooling, and 197 

activation layers. The convolution operation is a sliding dot product of a filter (kernel) applied to the spectral 198 

signal. Several filters are used in the convolutional layer where they serve as a feature extractor and are 199 

iteratively learned during the CNN training process. The kernel's sliding fashion enables feature detection 200 

to be applied across the full signal range. Subsequently, the pooling layers enable to condense  information 201 

from the output of the convolutional layers and facilitate a hierarchical feature extraction at multiple 202 

wavelength scales. For more details about CNNs, the reader is referred to Goodfellow et al. (2016). 203 

As backbone architecture, we used an adapted version of EfficientNet-B0 (Tan and Le, 2019), which is 204 

modified for one dimensional input data. EfficientNet architectures are composed of a sequence of the 205 

previously described CNN blocks with skip connections. They are designed to improve accuracy and 206 

efficiency by using a scalable structure that allows the network to learn effectively from larger resolutions 207 

while reducing computation costs. This is done through a combination of depthwise separable convolutions, 208 

1x1 convolutions and network scaling methods (Tan and Le, 2019). The output layer of the implemented 209 

architecture comprised 20 units corresponding to the number of traits to be predicted. 210 

The learning process of the model was based on the stochastic gradient descent algorithm, where the 211 

Adaptive Momentum estimation (Adam) optimizer was used to update the weights (Kingma and Ba, 2014). 212 

The number of epochs was set to 300 with a batch size of 32. We employed the Hubert loss function to 213 

reduce the effect of outliers. Given sparsity and resulting imbalance of trait observations in the merged data 214 

set, we used a weighted loss version. The weights of the samples w (%) were calculated for each sample 215 

as the complement of the number of non-null trait samples nnn to the total number of samples ntot in the 216 

corresponding original data set (Eq 1). Additionally, a random up-sampling with replacement was 217 

performed to have an equal number of samples from each data set on the training set.  218 

w = 100 – nnn / ntot * 100         (1) 219 

To avoid over-fitting, two conventional regularization techniques were used: data augmentation and drop 220 

out. Data augmentation introduces artificial variation in the data to help regulate the learning process. We 221 
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applied two random modifications for every epoch (a training cycle using all observations) with a 15% 222 

chance. This included 1) an addition of random noise with +/-30% of the spectral standard deviation per 223 

wavelength derived from all training samples and 2) an amplitude multiplication of the entire reflectance 224 

spectra with a random value between 0.98 and 1.02. As additional model regularization, we applied dropout 225 

(Hinton et al., 2012) after each block, which randomly drops learning units with a defined probability.  226 

Within the 300 epochs, we selected the final model according to the lowest root mean squared error of a 227 

20% hold-out from the training data. All CNN models were implemented in Python (3.9.5) with the 228 

TensorFlow (2.7.0) and Keras (2.7.0) frameworks. 229 

2.2.2. CNN multi-trait and weakly supervised learning 230 

In view of the sparsity of the merged data set (Table. 1), we tested three different strategies to train multi-231 

trait models using the above-mentioned CNN architecture: The first strategy, CNNmultiIncomplete, was trained 232 

on the original sparse data set. To overcome data sparsity, we modified the loss function to only update 233 

the weights according to traits where a corresponding reference observation was present (i.e. not a missing 234 

value). This approach falls within the incomplete supervision category in the context of weakly supervised 235 

learning (Zhou, 2018). This strategy is considered as the baseline approach in this study. 236 

The second strategy, CNNmultiInexact aims to maximize the identification of trait-trait relations during the 237 

learning process from all data samples and, hence, includes a gap-filling of missing trait values. The gap-238 

filling process is based on the predictions of the CNNmultiIncomplete. To avoid unrealistic values, trait predictions 239 

lower than the 1% quantile and exceeding the 99% quantile of the original data set (Table 1) were not 240 

considered for gap filling. This automated gap-filling approach does not require data on species or 241 

ecosystem characteristics, which might be missing or hard to define (Schrodt et al., 2015; Shan et al., 242 

2012). Instead, it directly learns trait-trait relationships from available hyperspectral data. CNNmultiInexact falls 243 

within the two weak supervision categories: incomplete and inexact supervision. The incomplete 244 

supervision is related to the gap-filling procedure, and the inexact supervision is performed when training 245 

on the completed but noisy labels (i.e. reference data with gap-filled values).  246 
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The third strategy, CNNmultiIncompleteTRY aims to fill data gaps with trait observations obtained from the TRY 247 

plant trait database (Kattge et al., 2020). The TRY database (version 5), includes more than 11.8 million 248 

trait observations across more than 270.000 taxa. For each dominant species found in the reference data, 249 

trait observations were queried from TRY using the species name. We applied fuzzy matching to deal with 250 

minor inconsistencies in the spelling of the species names with a Damerau-Levenshtein-Edit distance >89 251 

(Damerau, 1964; Konstantinidis, 2005). The dominant species mapping resulted therefore in 144 252 

correspondences with TRY species. For these species, the mean median trait values were then used to fill 253 

the missing values. This gap-filled data set was then used to train the multi-trait CNN models 254 

(CNNmultIincompleteTRY). This strategy falls also within the inexact and incomplete weak supervision categories 255 

as the model is trained on sparse and noisy labels (i.e. median trait values within species). 256 

2.3. Comparison to single-trait models 257 

To evaluate the benefit of the multi-trait models and the uncertainty introduced from the weakly supervised 258 

approaches (i.e. inexact and incomplete), we additionally trained single-trait CNN (CNNsingle) models, where 259 

a separate model was trained for each individual trait. Apart from the final layer (number of output units), 260 

the architecture for these models was the same as for the multi-trait models (Section 2.2.1). Moreover, we 261 

compared the CNN-based single and multi-trait models to partial least squares regression (Wold et al., 262 

1984). PLSR is currently one of the most frequently applied algorithms for imaging spectroscopy (Feilhauer 263 

et al., 2010; Homolová et al., 2013). For training PLSR models for each trait (PLSRsingle), we used scikit-264 

learn (version 0.24.2) Python libraries. To avoid over-fitting, the optimal PLSR number of latent components 265 

was selected by minimizing the predicted residual sum of squares (PRESS) in cross-validation (Chen et al., 266 

2004). 267 

2.4. Model evaluation 268 

Using trait measurements and the canopy reflectance data from 42 data sets described in (section 2.1), we 269 

compared the predictive performance of the 1) multi-trait CNN models to 2) single-trait CNN and 3) single-270 

trait PLSR models (Fig. 2). For a fair comparison, the same input data settings were adopted for the training 271 

and evaluation of all modeling approaches including data splitting, transformation and up-sampling. The up-272 

sampling procedure is a random sampling with replacement and was applied to all samples in the training 273 
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set to make sure that a comparable number of samples is included from each data set and to reduce the 274 

effect of bias towards data sets with more samples. 275 

After training, the models were evaluated for their performance 1) within the domain of the training data 276 

(internal validation) using randomly sampled hold-outs, and 2) with regard to their transferability to new 277 

domains (external validation), where each individual data set was once retained from model training. For 278 

the internal evaluation, we adopted a 5-fold cross-validation (CV) for all models. Given the unbalanced 279 

sampling frequency of the individual data sets, we performed a stratified cross-validation based on the data 280 

set provenance (data sets). This procedure ensures equal distribution of trait samples across the folds. For 281 

the hold-out test sets, only the original (and not the gap-filled) samples were used. The external validation 282 

consisted of training the models repetitively on 41 out of 42 data sets while keeping one data set as hold-283 

out for testing. To reduce computational load, the data set-CV was only applied for CNNmultiIncomplete and 284 

PLSRsingle..We evaluated the model performances using the coefficient of determination R² and the 285 

normalized root mean squared error (nRMSE, %). The nRMSE was derived by normalizing the root mean 286 

square error over the range of the observations (1-99% quantile). The final model performance was obtained 287 

by averaging the R² and nRMSE values over the 5 folds of the CV. 288 

 289 

Fig. 2. Model performance assessment (internal validation) of multi-trait and single-trait models. The 290 

evaluation is based on a stratified 5-fold cross-validation.  291 

2.5. Feature attribution 292 
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To visualize the spectral features learned by the CNNmultiIncomplete model, we estimated the feature 293 

importance of each input wavelength, which were interpreted and compared with known spectral plant 294 

features. As feature importance metrics, we derived medians of SHapley Additive exPlanations (SHAP, 295 

Lundberg and Lee, 2017) absolute values. The SHAP values present a unified approach to explain model 296 

predictions based on the optimal game theory Shapley values. The Shapley values represent the local 297 

marginal contribution (i.e. for individual samples in the data) of each feature in the input for a specific 298 

prediction. They attribute the change in the expected model prediction when conditioning on one feature 299 

by calculating the difference from the prediction in which the feature in question is not included (Lundberg 300 

and Lee, 2017). These values can be approximated with different algorithms. We used the gradient 301 

explainer class, which combines the integrated gradients (Sundararajan et al., 2017), SHAP and 302 

SmoothGrad (Smilkov et al., 2017) methods. All SHAP coefficients were rescaled between 0-1 and 303 

normalized by the mean SHAP value of all traits to eliminate the effect of the learned trait covariance. For 304 

comparison, we also displayed the PLSR regression coefficients. 305 

2.6. Uncertainty estimation 306 

As indicated by earlier studies, transferability of machine learning-based models to new, unseen data 307 

depends on the distance in feature space (Kattenborn et al., 2022; Ludwig et al., 2023; Mila et al., 2022). 308 

Therefore, we implemented an uncertainty estimation procedure to reveal the effect of spectral dissimilarity 309 

between new data and data used in model training. Such a procedure is particularly valuable in view of 310 

large-scale mapping across ecosystems and sensors. 311 

Inspired by Janet et al. (2019) and Meyer and Pebesma (2021), the implemented uncertainty estimation 312 

was based on the relationship between 1) CNN model residuals obtained from the internal evaluation and 313 

2) the distance in feature space (dissimilarity of training vs. test sets). To reveal spectral dissimilarity from 314 

the eye of the CNN, the feature space was obtained from the CNN model embedding space of the global 315 

pooling of the last convolutional layer. Based on this feature space, the dissimilarity for each test sample 316 

was calculated as the average distance to the five nearest neighbors of the training data. The model 317 

uncertainty was then estimated using the calculated dissimilarity as predictor in a 95% quantile regression. 318 

The predicted values can be seen as the worst-case error prediction of the model. This procedure was 319 

tested for the CNNmultiIncomplete model. 320 
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3. Results 321 

3.1. Summary of the merged data set 322 

3.1.1. Trait variations 323 

The trait values across the merged data sets varied highly due to the heterogeneity in vegetation types and 324 

species (Table 1). This yields a large range in the trait values. LMA, Chl and EWT showed the highest 325 

variability (Coefficient of Variation CV = 47.97, 42,91, 38.44%, see Fig SB. 3, 4) in the original data while 326 

all other traits had similar variations (on average 35%). The correlation analysis based on Spearman 327 

coefficient of the merged data set revealed high correlation between several traits (Fig. 3). As expected, 328 

leaf constituents related to plant resource investments showed a large correlation (e.g. LMA, Carbon, 329 

Lignin, Fiber, Cellulose). These resource-investment related traits were rather independent from leaf 330 

pigments, which in turn were highly correlated among each other (Chl, Car, Anth). Both resource investment 331 

related traits and pigments showed a considerable correlation with leaf N. Overall, rather weak correlations 332 

were found for LAI and leaf constituents, whereas for N and C a positive relationship was observed. Water 333 

content overall also showed a positive correlation with other leaf constituents. 334 
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 335 

Fig. 3. Correlation plot of traits based on Spearman's rank correlation coefficient. Refer to Table 1 for an 336 

explanation of the traits. A correlation of leaf traits on a mass-basis is given in Fig. SB.2. 337 

 338 

3.1.2. Canopy spectra 339 

The canopy reflectance spectra were relatively similar when averaged across land cover types (Fig. 4) and 340 

we found smooth transitions across data sets and biomes (Fig. SB.1). Higher reflectance values were 341 

observed for the Tundra data in the NIR region (Fig. 4a). Largest coefficients of variations were found in the 342 

SWIR 2 region (2000-2500 nm) followed by the VIS region (400-750 nm). Most of the spectral variation was 343 

found in the crop related samples whilst forest samples had the lowest spectral variation (Fig. 4b). 344 
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 345 

Fig. 4. Canopy average reflectance and the corresponding spectral variation (Coefficient of Variation, CV) 346 

across the different land cover types 347 

3.2. Trait predictions 348 

 349 
3.2.1. Prediction performances 350 

The model performances derived from the 5-fold cross-validation showed the overall predictive performance 351 

varied greatly for the different traits (Fig. 5). With all CNN-based models, the goodness-of-fit of the 352 

predictions was higher for LMA, C, NSC (Non-structural carbon) (R²> 0.69). Lower predictive performances 353 

of these models were obtained for EWT, N, Pigments, LAI, Cellulose, Lignin, Fiber, Copper and Phosphorus 354 

(R²: 0.46 – 0.69 and nRMSE: 12 – 17%). Overall, the trait estimation performances of the CNN-based 355 

models exceeded those of the PLSR models (R²: 0.18 to 0.66 and nRMSE: 11 – 22%). The PLSR models 356 

showed bias with high values for some traits, including LMA, Pigments and Carbon related traits (See Fig. 357 

SD.1). Only for a few traits, i.e. Boron, Ca and Manganese, the PLSR models showed higher performances 358 

than CNN models. Ca, Boron, Magnesium, Sulfur, Potassium and Manganese obtained the lowest validation 359 

performance for all models, especially with single-trait models (R² < 0.44 and nRMSE >15 %).  360 

 361 

According to a Wilcoxon signed-rank test, the multi-trait models performed significantly better than single-362 

trait models across all traits (e.g. CNNmultiIncomplete p < 0.001, w = 205, details see Supplement C). In 363 

comparison to CNNsingle, CNN-based, multi-trait models clearly improved the prediction performance for 364 

most of the traits. The prediction performance was particularly improved for traits where fewer samples were 365 

available or where a comparably lower correlation with spectral bands was observed (Fig SB.4), including 366 
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Anth, Sulfur, Ca and Potassium (Fig. 5b). Overall, the R2 across all traits was higher for CNN multi-trait 367 

models than for CNNsingle except for LMA, C and NSC (Fig. 5c, d).  368 

Similar performance was obtained among the different CNN-based multi-trait models, i.e. CNNmultiIncomplete, 369 

CNNmultiInexact and CNNmultiIncompleteTRY. The predictive performance for the CNNmultiInexact ranged from R² of 370 

0.21 – 0.70 and nRMSE of 10.41 – 18.79% , for CNNmultiIncomplete R² of 0.29 – 0.77 and nRMSE of 9.17 – 371 

17.81% and CNNmultiIncompleteTRY R² of 0.29 – 0.78 and nRMSE of 8.92 – 17.85%. Overall, the 372 

CNNmultiIncompleteTRY performed slightly better than the other two multi-trait strategies for most of the traits (Fig. 373 

5). The CNNmultiIncompleteTRY procedure is further discussed in section 3.2.2. 374 

 375 

Fig. 5. (a) and (b): Comparative predictive accuracies (R² (a) and nRMSE (b)) from the stratified 5-fold 376 

cross validation of the CNNmultiIncomplete, CNNmultiInexact and CNNmultiIncompleteTRY models as well as PLSRsingle 377 

and CNNsingle models for 20 traits. (c) and (d): The kernel density estimate (KDE) of the trait-based metric 378 

distributions (R² (c) and nRMSE (d)) with the associated median values (dashed lines). Refer to Table 1 for 379 

an explanation of the traits. Detailed performances can be found in Table SC.1 and 2 Supplement C. 380 

 381 

All multi-trait approaches resulted in relatively robust and similar prediction performances across the 382 

different vegetation types (Fig. 6, SD.3, 4). For some traits (e.g. LMA, N, EWT), the values are slightly 383 

clustered according to vegetation types, but we did not observe a prominent or systematic bias in predictive 384 



 
 
 
Cherif et al. RSE-D-22-02290 

18 
 

performance across these classes. For most traits, the model predictions are evenly scattered around the 385 

1:1 line, which is also underlined by slopes of the linear fit close to 1 between the predicted and observed 386 

trait values (Fig. 6, SD.3, 4).  387 

 388 

      389 
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 390 

Fig. 6. Internal validation: Correlation between observed and predicted values of 20 traits from the multi-391 

trait model CNNmultiIncomplete. The shown vegetation types only refer to the available types in the original 392 

associated data sets (not all land cover types are covered for each trait). Refer to Table 1 for an explanation 393 

of the traits. Scatter plots for the other models are given in supplement D. 394 
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Similar performance results were followed with the external evaluation, where CNN multi-trait model 395 

surpassed the performance of PLSRsingle models (Fig. 7, SE.1). With both modeling approaches, the 396 

performance across all traits with the external validation was lower than the internal validation,especially 397 

with PLSRsingle (Fig. 7, SE.1, Table SE.1). For CNNmultiIncomplete LMA and C were the most transferable traits 398 

with R² higher than 0.6 which is consistent with the internal validation, while for PLSR Copper and Chl had 399 

the highest goodness-of-fit with R² > 0.39. However, the baseline multi-trait model (CNNmultiIncomplete) showed 400 

a bias in high trait values with N and LAI for example. 401 
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 402 

Fig. 7. External validation: Correlation between observed and predicted values of 20 traits from the multi-403 

trait model CNNmultiIncomplete. The shown vegetation types only refer to the available types in the original 404 

associated data sets. Scatter plots for PLSRsingle are given in supplement E. 405 
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3.2.2. Details on trait database integration 406 

Due to data availability, the gap filling of the CNNmultiIncompleteTRY procedure was limited to 13 out of 20 traits 407 

(Tab. 3). The model performance significantly improved for all the gap-filled traits (p = 0.004, w = 82, 408 

Wilcoxon signed-rank test). Surprisingly, the CNNmultiIncompleteTRY approach resulted even in significantly 409 

improved performance for traits where no gap-filling could be performed, i.e. EWT, Car, Fiber, NSC and S 410 

(p = 0.0313, w = 15).  While the filling rate was not an important factor for model improvement, the 411 

introduced variation from the species-based trait values had the largest effect on traits that already had 412 

less sparse trait observations samples in the data set. For instance, Chl had the highest improvement in 413 

performance and even surpasses the results of the baseline model CNNmultiIncomplete (Table 3). 414 

 415 

Table 3. Comparative nRMSE values (%) of the CNNmultiIncompleteTRY with CNNmultiIncomplete and CNNsingle 416 

models. CNNmultiIncompleteTRY. Filling rates = (n obs. after - n obs. before) * 100 / old metric. Refer to Table. 1 417 

for an explanation of the traits and to Table. SC.3 for more detailed metrics. 418 

Traits Filling rate 
(%) 

nRMSE (%) 
(CNNsingle) 

nRMSE (%) 
(CNNmultiIncomplete) 

nRMSE (%) 
(CNNmultiIncompleteTRY) 

Potassium 118.14 16.42 15.04 14.84 

Phosphorus 99.07 14.89 13.23 13.51 

Ca 97.42 19.87 17.82 17.85 

Magnesium 93.64 18.65 16.26 16.00 

C 92.33 10.45 10.76 10.48 

Manganese 64.54 18.49 16.69 16.26 

N 50.69 12.40 11.39 11.29 

Copper 50.27 15.29 14.02 13.83 

Chl 34.13 17.25 16.58 15.50 

LMA 23.20 9.18 9.18 8.92 

Lignin 12.43 14.91 12.86 12.48 

Cellulose 7.77 14.71 12.78 12.58 

Boron 0.55 17.39 15.11 14.86 

 419 
3.2.3. Feature importance 420 
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The feature importance for CNNmultiIncomplete and PLSRSingle showed a clear correspondence in the overall 421 

patterns (Fig. 8). For LMA, the relevant wavelengths in the CNN multi-trait model were spread across the 422 

entire spectrum, with higher values in the longer wavelengths of the NIR SWIR regions (1200 - 2450 nm). 423 

As expected, very similar patterns were found for traits that directly contribute to LMA, namely C, Cellulose, 424 

Fiber and Lignin. The CNN multi-trait estimation of Chl and Car mostly relied on spectral bands in the VIS 425 

and red-edge region (approx. 500 - 800 nm). For LAI, high SHAP values were found in the NIR. 426 
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 427 

Fig. 8. Relative importance of spectral bands for the prediction of 20 traits using the CNNmultiIncomplete and 428 

PLSRsingle models. The importance metric of CNNmultiIncomplete (Black) is based on the SHAP scores with the 429 

gradient explainer, as for PLSRsingle the regression coefficients are shown (Blue). The gray shaded polygon 430 

represents a sample vegetation spectrum for orientation. 431 
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4. Discussion 432 

4.1. Considerations on the merged data set 433 

The transferability of statistical models to predict plant traits from new reflectance spectra is a major 434 

challenge (Ainsworth et al., 2014; Heckmann et al., 2017; Silva-Perez et al., 2018). Few previous studies 435 

have demonstrated that the transferability of models can be enhanced when the model training includes 436 

plots from different species and sites (Asner et al. 2015, Serbin et al., 2019; Wang et al., 2020, Kothari et 437 

al., 2022). Here, we merged 42 canopy reflectance data sets (from 28 studies) to assess the robustness of 438 

retrieval models when calibrated on heterogeneous data not only from different ecosystem types but also 439 

experimental settings (e.g. hyperspectral data acquisition and in-situ measurement protocols). This 440 

procedure provides an opportunity to address common shortages of reference data while also increasing 441 

the representativeness in terms of geographical coverage and diversity in vegetation type in the training 442 

data. Yet, it should be noted that the temporal coverage of the data is biased towards the peak of the 443 

vegetation period, while the senescence is underrepresented. This may affect for example the inter-444 

correlations between traits as displayed in Fig. 3.  445 

 446 

Merging the data sets required expert knowledge and a considerable effort for checking, cleaning, and 447 

converting trait observations. Although a large share of the data used here was acquired from the EcoSIS 448 

database, the available data often include errors and inconsistencies, e.g. assignment of wrong dimensions 449 

or units. In consideration of future initiatives for data integration, these experiences emphasize the need 450 

for a harmonization of plant trait observations, including units and dimensions, e.g. area or mass based, as 451 

well as quality assessments, terminology and sampling protocols.  452 

 453 

As this merged data set incorporates various ecosystems and land cover types, its trait variability exceeds 454 

those of previous studies (Table 1, Fig. 3, Asner et al., 2015; Schiefer et al., 2021; Serbin et al., 2019; 455 

Wang et al., 2020, 2019). We assume that merging the different data sets is a compelling requirement for 456 

developing models that are transferable and robust across different traits, ecosystems, and vegetation 457 

types in the context of global mapping. Here, the baseline multi-trait model (CNNmultiIncomplete) appeared to 458 

generalize well over the individual data sets (Fig. 7). It should be noted, however, that the data only 459 

represent a small portion of the Earth's flora and its spatio-temporal variation. Hence, despite the 460 



 
 
 
Cherif et al. RSE-D-22-02290 

26 
 

unprecedented trait variability realized here, the presented study should be regarded as a pioneering study 461 

in terms of model transferability and performance.  462 

 463 

In the merged data set, not only the trait values but also the reflectance data showed considerable 464 

variability, which could be attributed not only to the spectral properties of the vegetation itself but also to 465 

differences in pre-processing modes with related uncertainties (e.g. during atmospheric correction 466 

procedures), remote sensing data acquisition settings (e.g. sun-observer-relationship) and instruments 467 

(e.g. airborne vs. field spectrometer data). We could not investigate in depth to what extent such factors 468 

limited the transferability of the models as information on such factors was not available for all individual 469 

data sets. Yet, we did not observe a significant difference in performance of our baseline multi-trait model 470 

(CNNmultiIncomplete) across the different remote sensing platforms (p = 0.17, u = 72, Mann–Whitney-U test) 471 

(Fig. SE.3, 4).  472 

 473 

Merging data from multiple sources may improve model performances and transferability, but the sparsity 474 

and imbalance of trait observations challenged the model evaluations. For example, the number of data 475 

sets per trait ranges from 2 to 32 (Table 1), as most studies are application-specific and, hence, trait-476 

specific. Likewise, the number of observations per data set ranged from 22 to 549. Thus, the relative 477 

performance of the model for the different traits is not necessarily directly comparable. Similarly, for some 478 

ecosystems or vegetation types only a few samples were available, which limited a conclusive performance 479 

evaluation in this regard. These challenges are expected to be resolved as more data may become openly 480 

available in the future. 481 

 482 

4.2. Comparison of modeling approaches 483 

Overall, the model performances of CNN-based models outperformed the widely used PLSR based 484 

models. This is consistent with previous studies that used hyperspectral data to retrieve vegetation and soil 485 

properties (Cui and Fearn, 2018; Ng et al., 2019; Pullanagari et al., 2021). The increased performance of 486 

CNN over PLSR may be explained by its ability to represent nonlinear relationships with an overall 487 

increased number of parameters, enabling the algorithm to learn more complex relationships. For example, 488 

the large trait-ranges of the merged data set presented in this study may inherit several non-linearities 489 
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between spectra-trait-relationships. Such nonlinearities may result from saturation effects, where a change 490 

in high trait values results in little change of spectral reflectance, as observed in the present study for 491 

chlorophyll, LMA or LAI. The linearity of PLSR models appeared to be less suitable to resolve such effects, 492 

as indicated by a clear saturation of PLSR-based predictions for high values for these traits (Fig. SD.1, 493 

SE.1). In such cases PLSR models tended to include more predictors (latent vectors) but this did not 494 

necessarily improve the model performance. Similar issues with PLSR-based models and saturation effects 495 

were also reported with leaf-scale reflectance data in Kothari et al. (2022). In contrast to the PLSR-based 496 

predictions, the predictions of the CNN models did not show saturation effects and no obvious systematic 497 

biases could be observed across the trait range (Fig. SD.2 – 4). 498 

 499 

In addition to the model performance, CNNs are known to be less reliant on feature engineering and are 500 

effective to identify automatically relevant features from the input data (Goodfellow et al. 2016). Previous 501 

studies in the context of variable retrieval from hyperspectral data showed that shallower machine learning 502 

methods were more dependent on pre-processing of input data (Cui and Fearn, 2018; Ng et al., 2019). 503 

Another advantage of CNNs and other batch-compatible deep learning methods over previous machine 504 

learning methods (e.g. PLSR, Random Forest) is that the data are exposed iteratively to the model, which 505 

potentially enables training models with an infinite amount of data without exceeding the memory. The latter 506 

aspect may become very relevant in the near future that promises an increase in data availability, e.g. via 507 

more data acquisitions from spaceborne spectrometers and a growing culture of open data through 508 

initiatives such as ecosis.org. 509 

 510 

The multi-trait CNN models clearly outperformed the single-trait models. This is consistent with other studies 511 

in different areas which employed multi-task CNN models (Ng et al., 2019; Padarian et al., 2019; Ramsundar 512 

et al., 2015; Tsakiridis et al., 2020). In comparison of the CNNsingle model the retrieval of pigments, N, LAI, 513 

EWT, Phosphorus, Lignin, Cellulose, Fiber, Magnesium, Ca, Potassium, Boron, Copper, Sulfur was 514 

improved with our baseline multi-trait model (CNNmultiIncomplete). Even for traits that were only represented in 515 

a few data sets, the multi-trait models performed better than the single-trait models (e.g. Anth, Sulfur, 516 

Copper, Boron, Magnesium). We assume that multi-trait models not only allow for simultaneous and thus 517 

efficient trait retrieval, but also allow the model to indirectly learn trait-trait relationships. 518 
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Such trait-trait relationships may also explain the observed feature importances (Fig. 8). For instance, the 519 

spectral features for N were consistent with known protein features in the SWIR region (Féret et al., 2021) 520 

and others near the red-edge region related to pigments (Ustin et al., 2009). As expected, we also observed 521 

very similar spectral features across all wavelengths among traits related to leaf resource investments (LMA, 522 

Lignin, Fiber, Cellulose, and C; compare Kokaly et al., 2009), which may also explain higher model 523 

performance for several of these traits when predicted in a multi-trait setting. For Anth, we observed 524 

relatively accurate predictions and rather broad absorption features, although previous studies revealed that 525 

Anth pigments have rather subtle and narrow spectral absorption properties (Féret et al., 2017). We assume 526 

that the broad features obtained here result from the high correlation with Chl and Car (Fig. 3), which in turn 527 

have more broad spectral absorption features and may indirectly facilitate Anth estimation (Jacquemoud 528 

and Ustin, 2019, Ollinger, 2011; Ustin et al., 2009). Similarly, nutrients such as Copper, Sulfur, Potassium 529 

and Boron do not have distinct spectral absorption features in canopy spectra, but their surprisingly high 530 

retrieval performance may be explained by their correlation with other leaf traits that are related to leaf 531 

resource investments (Fig. 3, 6) and that have a more explicit spectral response, such as LMA or C 532 

(Domínguez et al., 2012, Kothari and Schweiger, 2022). 533 

 534 

Largest improvements from single- to multi-trait estimates were found for Lignin, Cellulose and Fiber (Fig. 535 

5), which can be attributed to the high correlation with LMA and C (Fig. 3). Conversely, for LMA, C and NSC 536 

the multi-trait approaches did not result in notable improvements. This may be explained by the fact that 537 

these three traits are already very tightly related (chemically and spectrally) and a covariance among these 538 

traits does not add further benefit. Moreover, compared to other traits, LMA, C and NSC can be predicted 539 

most accurately (Fig. 6), so the covariance with other traits that cannot be predicted as accurately is less 540 

likely to facilitate the predictive performance. Similar findings for LMA estimation were found by Furbank et 541 

al. (2021) when including the inter-correlation with photosynthetic traits. 542 

 543 

We tested three weakly supervised strategies for training the multi-trait models in the context of the data 544 

sparsity, i.e. CNNmultiIncompleteTRY, CNNmultiIncomplete and CNNmultiInexact. The three strategies resulted in similar 545 

model performance across the traits (e.g. for each strategy, LMA, C and NSC were most accurate and 546 

macronutrients least accurate). Yet, CNNmultiInexact resulted in the lowest model performance. This is 547 
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explained by the uncertainty introduced during the spectrally-based gap-filling procedure. However, even 548 

with the propagated uncertainty from the gap-filling process, CNNmultiInexact outperformed the single-trait 549 

models. This demonstrates that such gap-filling strategies are promising to enrich existing sparse data sets, 550 

especially as no external knowledge on species or ecosystem type is required. Future attempts may apply 551 

a more conservative gap-filling, where data gaps are only filled if the estimated traits are assumed to have 552 

a low uncertainty. The uncertainty assessment presented in this study (see Fig SG.1 for details) may be a 553 

promising avenue. 554 

 555 

The gap filling strategy based on trait databases (CNNmultiIncompleteTRY) significantly improved the 556 

performance (compared to CNNmultiIncomplete) for those traits that were gap-filled (p = 0.004, w = 82 Wilcoxon 557 

signed-rank test, Table 3, SC.3), even when using median trait values by species which do not account for 558 

the within-species trait variations. Nonetheless, for the scope of this analysis this does not affect the 559 

interpretation of the results as most of the collected samples were taken in the growing season and the 560 

results were only evaluated with the original trait obsevations (i.e. no gap filling). Interestingly, 561 

CNNmultiIncompleteTRY even improved the model performance for those traits where no gap-filling was 562 

performed (due to missing observations in the TRY database, p = 0.0313, w = 15, Wilcoxon signed-rank 563 

test, Fig. 5, Table SC.3). This not only underlines the potential of incorporating ancillary trait information, 564 

but also highlights the overall value of the multi-trait and corresponding trait-trait relationship. For instance, 565 

this has surprisingly influenced the retrieval of Chl and Car, with an improvement of 12 – 16 % in R² and 7 566 

– 7.88 % in nRMSE; as well as EWT, Fiber, NSC and Sulfur by 2.00 – 4.10% in R² and 1.68 – 4.95% in 567 

nRMSE. We assume that the growth of trait databases as TRY will even increase the potential of this gap-568 

filling approach. 569 

 570 

4.3. Model performance across plant traits  571 

Across all traits, highest model performance was observed for LMA (Fig. 5). This is in line with a series of 572 

previous studies highlighting the transferability of models for estimating LMA across data sets at leaf and 573 

canopy scale (Serbin et al., 2019; Silva-Perez et al., 2018; Wang et al., 2019, 2020, Helsen et al., 2021, 574 

Schiefer et al. 2021, Kothari et al., 2022). In contrast to these previous studies, the CNN models used here 575 

resulted in comparable or even higher model performances although we tested our models using a more 576 
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diverse data set and exclusively on canopy spectra. The high performance of the LMA estimation is partly 577 

a surprise given its broad and overlapping absorption features with water content and scattering 578 

components at the canopy scale (Homolová et al., 2013). The high performance of LMA may be partially 579 

supported by the ample samples across most of the used data sets (32 data sets out of 42 had LMA 580 

observations). Moreover, the robustness of the LMA estimation may also be explained by the overall high 581 

correlation of LMA with individual bands across the entire spectrum (Fig. SB. 4). 582 

 583 

Particularly for LMA but also for most of the other traits, our results suggest that the performances of the 584 

multi-trait models are often on par to those of previous studies. For instance, for LAI, Chl, Car and EWT, 585 

our models obtained higher performances than Schiefer et al. (2021), who used PLSR models on a data 586 

set of canopy spectra across grassland species, which was also integrated in our study. Overall, model 587 

performances were comparable to Wang et al. (2020), who used airborne canopy spectra across biomes  588 

and to Wang et al. (2019), who used canopy spectra in grasslands. EWT performances were lower than in 589 

Wang et al. 2020, where water content was one of the most accurately retrieved traits. The fact that the 590 

estimation of EWT was comparably low in the present study may result from the different protocols used 591 

across the merged data sets. 592 

 593 

In this study we focused on area-based leaf traits due to multiple reasons: Firstly, as highlighted across 594 

different studies in the context of the radiative transfer theory (Dawson et al., 1998; Ganapol et al., 1998; 595 

Jacquemoud and Baret, 1990; Vilfan et al., 2016), the retrieval of leaf constituents from spectral signals 596 

depends on how much of a leaf constituent (mass) in a given leaf area interacts with light (area-based). In 597 

contrast, relative ratios of leaf constituents to LMA (mass-based traits) are not directly related to spectral 598 

absorption features (also discussed in Kattenborn et al. 2019b, Zhao et al. 2021). Secondly, normalizing 599 

traits on a mass-basis may overshadow the original variation of leaf traits and introduce unrealistic trait-600 

trait-relationships. For instance, photosynthetic traits (e.g. pigments) are generally assumed to be largely 601 

independent of leaf resource investments (LMA) (Lloyd et al., 2013; Osnas et al., 2013). This was confirmed 602 

for the present data set (Spearman rho < 0.4) - but only if the data was scaled on an area-basis (Fig. SB.2). 603 

As soon as pigments were scaled on a mass-basis, ill-founded correlations were introduced (Spearman 604 

rho < -0.73, see Lloyd et al. 2013 for a statistical rationale). Likewise, traits that directly contribute to the 605 
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total leaf mass were obviously highly correlated to LMA when compared on an area-basis (spearmans´s 606 

rho > 0.84 for Carbon, NSC, Lignin, Fiber, Cellulose), while a comparably weak relationship was found on 607 

a mass-basis (Spearman´s rho < 0.51). Moreover, we found unrealistically high variation of these LMA-608 

related traits (Carbon, NSC, Lignin, Fiber, Cellulose) when assessed on a mass-basis, which may have 609 

mis-lead model calibration (Fig. SB.3). Thus, to comply with the physical principles of radiative transfer 610 

theory but also reasonable trait-trait relationships, the modeling in the present study was performed 611 

exclusively on an area basis. 612 

 613 

Note, however, that our proposed models can also be used to derive mass-based traits through 614 

normalizing the respective trait prediction by LMA predictions (traitmass = traitarea / LMA). We applied this 615 

procedure to compare our model performances to previous studies that performed trait retrieval on a mass-616 

basis (Supplement F). The performances of our baseline multi-trait model (CNNmultiIncomplete) with mass-617 

based N and Phosphorus were comparable to studies reviewed in Homolová et al. (2013), while exceeding 618 

those of Wang et al. (2020), Asner et al. (2015), Chadwick and Asner (2016), Ewald et al. (2018a) and 619 

Wang et al. (2019). The predictive performance for the converted pigments, Fiber, Lignin and Cellulose 620 

was lower or comparable to Wang et al. (2020) and Singh et al. (2015) and exceeded those of Asner et al. 621 

(2015) and Martin et al. (2018) for tropical forest. 622 

 623 

Nevertheless, it should be highlighted that it is often not possible to directly and quantitatively compare 624 

model performances across studies, since they frequently differ in vegetation type, modeling approach, 625 

model performance metrics and validation strategy, remote sensing platform and sensor, temporal and 626 

spatial resolution and extent, simulated and real data, plant traits or a combination of these. Also, the aim 627 

and thus the setting of the individual modeling attempts largely differs: some studies aimed to predict traits 628 

in a very specific domain and from a very specific platform, while here we aimed to predict traits across 629 

different platforms, sensors and vegetation types. 630 

 631 

4.4 Model performance across data sets (transferability) 632 

While the 5-fold CV evaluated the model performance with observations that are similar to those 633 

observations used in training (internal validation), the model transferability specifically estimated the model 634 
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performance towards entirely unseen data sets (external validation). The model performances for the 635 

transferability evaluation were lower than the internal 5-fold CV (decline of 32% R² and 18% nRMSE (mean 636 

across traits), Fig. 7, Table SE.1). This decline in performance is expected given the large heterogeneity 637 

among the data sets (Tab. 1, Fig.4) which might largely differ from the training data, e.g. in terms of sensor, 638 

platform, illumination conditions, calibration procedure, trait sampling protocol or vegetation type. Overall, 639 

in terms of transferability the CNNmultiIncomplete model clearly outperformed the PLSRsingle model (Fig. 7, SE.1). 640 

This may be explained by the larger number of parameters in the CNN-based models, which may facilitate 641 

learning more abstract spectral features and to resolve spectral features across different sensor or 642 

calibration settings. Both CNN- and PLSR-based traits, whose predictions had higher performances with 643 

the random internal CV, corresponded to those that had on average the most accurate prediction with the 644 

site transferability evaluation. Similar findings have been obtained in Kothari et al. (2022) at the leaf-scale. 645 

 646 

Overall, the CNN-based transferability across data sets in this study can be considered as relatively high 647 

when compared with previous studies. Even at the leaf-level where spectrally-based trait retrieval is 648 

generally less challenging than at the canopy-scale, several studies reported similar or larger drops in 649 

performance across traits (Serbin et al. 2019, Helsen et al. 2021, Kothari et al. 2022). For instance, the 650 

LMA PLSR multi-biome model of Serbin et al. (2019) resulted in R² of 0.89 for the internal calibration and 651 

dropped to 0.66 when validated externally with LOPEX (Hosgood et al., 1995) and ANGERS data sets 652 

(Feret et al., 2008) and to 0.68 with the CABO data set (https://data. caboscience.org/leaf, Kothari et al., 653 

2022, Kothari et al. 2022a). Wang et al. (2020) showed a very high model transferability with PLSR models 654 

across different vegetation types particularly for LMA and EWT. Likewise, the CNN-based model in 655 

Pullanagari et al. (2021) resulted in a robust transferability performance for N retrieval from grasslands 656 

where the authors claimed that this can be attributed to the richness of samples from multi-year and multi-657 

site in the training set. However, these studies were based on a consistent sensor and data calibration and 658 

processing procedure. This underscores the challenge to train models that are transferable across remote 659 

sensing data acquisition settings. However, despite these challenges stemming from the diversity of 660 

integrated data sets, the transferability in this study is surprisingly high and we anticipate that with ever 661 

increasing data availability more generalized models can be trained in the future. 662 

 663 
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Eventually, the transferability of models will depend on the feature space distance between the new, unseen 664 

data to the training data (Ludwig et al. 2023). This is confirmed by the model uncertainty estimation 665 

procedure developed in this study (Fig. SG1), which is based on this principle and estimates the model 666 

uncertainty from the internal CNN embedding, i.e. the feature space viewed from the perspective of the 667 

model itself. Such an approach is assumed to be very promising to reveal the area of applicability of a 668 

model to new observations and domains (Meyer and Pebesma, 2021). 669 

 670 

4.5. Outlook 671 

As demonstrated in the present study, multi-trait models may not only facilitate high model performances 672 

due to the incorporated trait interrelationships, but also provide a tool to simultaneously and, hence, 673 

efficiently track multiple traits from remotely sensed hyperspectral data. The multi-trait approach presented 674 

here is expandable to more traits and can continuously be improved as new data become available. 675 

Instead of retraining the model from scratch, the model weights can be easily updated by retraining the 676 

model on new data. In the near future, a large increase in the availability of hyperspectral and trait data can 677 

be expected through the availability of operationally scheduled large-scale hyperspectral observations from 678 

spaceborne platforms. This goes along with a generally increased incentive for data sharing by the 679 

community and institutions and will include future in-situ and airborne campaigns that contribute to the 680 

success of global missions such as PRISMA, EnMAP, CHIME and SBG (Guanter et al., 2015; Labate et 681 

al., 2009). Upcoming approaches may also test the integration of simulated data from soil-leaf-canopy 682 

RTMs, in the context of hybrid retrieval models (e.g. Wocher et al., 2022; Verrelst et al., 2021). Such an 683 

approach might be particularly promising for traits, vegetation types or states for which only few data are 684 

available. In addition, such a physically based approach also takes information about the soil background 685 

as well as viewing and observation geometries into account, which may be neglected by empirical 686 

approaches. 687 

 688 

5. Conclusion 689 

From terrestrial platforms up to satellites, hyperspectral remote sensing is advancing as an important tool 690 

for future global monitoring applications. Currently, a significant bottleneck to unleash this potential is the 691 

lack of scalable and transferable models. Here, we compiled a large and sparse data set with a wide 692 
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variability in vegetation types and traits. Our results showed that multi-trait CNN models trained on these 693 

data can be more performant than CNN models trained for single traits individually. All tested CNN model 694 

approaches outperformed widely-used PLSR models. For multiple traits, the model performances obtained 695 

using the CNN multi-trait models were on par to those obtained in previous studies – although the model 696 

performances here were estimated from a more diverse data set. This highlights that building robust models 697 

requires substantial data variability and only a collaborative effort by the remote sensing community can 698 

significantly advance our ability to create models that are transferable across sensors, scales, domains, 699 

and ecosystems. 700 
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