This is the final draft of the contribution published as:

Deicke, M., Mohr, J.F., Roy, S., **Herzsprung, P.**, Bellenger, P., Wichard, T. (2019): Metallophore profiling of nitrogen-fixing *Frankia* spp. to understand metal management in the rhizosphere of actinorhizal plants *Metallomics* **11**, 810 - 821

The publisher's version is available at:

http://dx.doi.org/10.1039/C8MT00344K

1		
2 3	1	Metallophore profiling of nitrogen-fixing <i>Frankia</i> spp. to understand metal management in
4 5	2	the rhizosphere of actinorhizal plants
6 7 8	3	
9 10	4	Michael Deickea [‡] , Jan Frieder Mohra [‡] , Sébastien Roy ^b , Peter Herzsprung ^c , Jean-Philippe
11 12	5	Bellenger ^d , Thomas Wichard ^{a*}
13 14 15	6	
16 17	7	^a Friedrich Schiller University Jena, Institute for Inorganic and Analytical Chemistry, Lessingstr.
18 19	8	8, 07743 Jena, Germany
20 21	9	^b Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, QC,
22 23	10	J1K 2R1, Canada
24 25	11	^c UFZ - Helmholtz Centre for Environmental Research, department Lake Research, Brückstraße
26	12	3a, 39114 Magdeburg, Germany
27 28 29	13	^d Centre SÈVE, Département de Chimie, Faculté des Sciences, Université de Sherbrooke, QC,
30 31	14	J1K 2R1, Canada
32 33	15	
34 35	16	These authors contributed equally to the manuscript
36 37	17	*corresponding author: Thomas.Wichard@uni-jena.de; Fax: +493641 948172; Tel: +493641
38 39	18	948184
40 41 42	19	
43	20	Key words: Alder, chelators, mass spectrometry, ligandosphere, metallophore, metal
44 45 46	21	management, siderophore, rhizosphere
47 48 49 50 51 52 53 54 55 56 57 58	22	1
50 59 60		-

23 Abstract

Frankia spp. are widespread nitrogen-fixing soil bacteria, which often live in symbiosis with a broad spectrum of hosts. Metal homeostasis plays a crucial role in the success of the symbiosis regarding the acquisition of essential trace metals and detoxification of potentially toxic elements. We have hypothesised that Frankia releases many organic ligands with a broad spectrum of affinity for essential and toxic metals. We coined the term 'ligandosphere' to describe the entirety of excreted metal complexing agents. Using metal isotope-coded profiling (MICP); metallophores of physiological important and toxic trace metals were identified by the addition of stable metal isotope pairs such as ⁵⁴Fe/⁵⁸Fe, ⁶³Cu/⁶⁵Cu, ⁶⁴Zn/⁶⁶Zn or ⁹⁵Mo/⁹⁸Mo. Liquid chromatography coupled to a mass spectrometer revealed strong variations of the metallophore profile in between the 14 test-strains. In total, about 82 organic ligands were identified binding to one of the tested metals. The predicted sum formula of the major Fe binding ligands and MS/MS experiments suggested that several metallophore candidates have a similar molecular backbone. Growth experiments with a hyper-producer of metallophores revealed a positive relationship between metallophore production and the concentration of Cu in the growth medium. The present study provides the first comprehensive overview of the complexity of *Frankia*'s ligandosphere. It opens a path to deeper understanding of mechanisms that regulate metal homeostasis in frankiae. Deciphering these mechanisms is important since the fitness of actinorhizal plants and their potential in ecological restoration relies heavily on their symbiosis with frankiae.

Metallomics

43 Significance to Metallomics

Metal homeostasis plays a significant role in bacteria-plant interactions in the rhizosphere. Bacteria can acquire trace metals through metallophores for metal-dependent processes like nitrogen fixation and can contribute to alleviating metal stress. To understand how bacterial metallophores contribute to metal management in a rhizosphere, it is necessary to determine the entirety of metal complexing ligands. In this study, we have explored the metallophore production by Frankia (Actinobacteria), a nitrogen-fixing soil bacterium, using metal isotope-coded profiling. Our study has strong implications for the understanding of the role of bacteria for the plant in trace metal acquisition and detoxification.

53 Introduction

Metal ions are essential for many enzymes, but an excess of metals can be toxic and reduce growth and development of a broad range of organisms. In bacteria, metal limitation activates pathways that are involved in the import and mobilisation of metals via metallophores, whereas an excess of metals induces efflux and storage¹. Microorganisms in the rhizosphere, a micro-ecological zone in direct proximity of plant roots, provide many benefices to plants, such as defence against pathogens², increased macronutrient availability (e.g., N, P) as well as micronutrients (e.g., Fe, Cu, Zn, Mo) uptake³. For example, bacteria recruit directly iron for the metal-dependent enzymes, but they also assist in plant iron uptake⁴. Considering the bacteria mediated iron uptake in corn⁴, the hypothesis iron-for-carbon⁵ could be a widespread bacteria-plant interaction. Such interactions would likely strongly rely on bacterial metallophore production, which might influence trace metal bioavailability in the rhizosphere. Nitrogen-fixers like the ubiquitous soil bacteria, Frankia spp. (Actinobacteria), are of particular interest, as they form complex symbiotic interactions with a broad range of higher plants such as alder or sallow thorn, often along with ectomycorrhizal or arbuscular mycorrhizal fungi^{6, 7}. After root infection, Frankia has access to a carbon source from the host and supplies nitrogen to the symbionts in return. Therefore, *Frankia* needs to acquire Mo and Fe for the nitrogenase reducing atmospheric N₂ to NH₃^{8-10,11}. Nitrogen-fixing soil bacteria such as *Azotobacter vinelandii* utilise metallophores to increase the bioavailability of nitrogenase metal cofactors (i.e., Fe, Mo, V)¹², which are often bound by dissolved organic matter in the rhizosphere¹³⁻¹⁵ and reduce the toxicity of unwanted metals (i.e., W)¹⁶. As many bacterial organic ligands, for example, the catecholate-type organic ligand protochelin can complex various metal cations (e.g., Fe³⁺, Cu²⁺, Zn²⁺) or oxo-anions (e.g., molybdate, vanadate, tungstate), the use of metallophores for metal management could be a common strategy in bacteria¹⁷. Indeed, metallophores acquire many essential biometals by shaping the speciation of metals in the rhizosphere habitat to the benefice of their co-habiting bacteria and other organisms^{18, 19}. Here, we use the term 'ligandosphere' to highlight the environment- and species-dependent bouquet of metallophores released by organisms of a specific habitat.

Although hundreds of siderophores were identified in the last decades²⁰, little is known about metallophore-based recruitment strategies for other metals. In *Frankia*, as in many other model bacteria, studies of metal-binding ligands were often limited to siderophore detection under Fe limited growth conditions using colourimetric approaches or investigations on heavy metal

Page 7 of 42

Metallomics

tolerance, directly linked to their effect on bacterial physiology^{21, 22}. More specific colourimetric procedures have shown evidence for catecholate, and hydroxamate siderophores in various Frankia isolates²³⁻²⁵. Boyer et al. (1999) found two potential siderophores, Frankobactin (782 m/z) and Frankobactin A (800 m/z)^{26, 27} isolated from Frankia sp. strain 52065. NMR could identify only substructures, the phenyl-oxazoline ring, some amino acids and the hydroxamate units of the siderophores²⁸. Genome mining of three isolates, ACN14a, CcI3 and EAN1pec, revealed non-ribosomal peptide synthases (NRPS) that govern complex reactions in Frankia including the assembly of phenols/catechol, oxazoline/thiazolines and hydroxamates²⁹. The NRPS domain suggested the sequence of 2,3-dihydroxybenzoate or salicylate followed by serine or cysteine and a varying number of other amino acids, such as ornithine and threonine. Also, all three Frankia genomes contain homologous NRPS-independent biosynthetic loci typical for an aerobactin-like metallophore²⁹. These results highlighted the potential diversity of metallophores produced by Frankia spp.

We, therefore, raise the hypothesis that *Frankia* can release a strain-specific bouquet of organic ligands, which facilitates the complexations of cations and oxo-anions for both recruitment and detoxification of metals. Multiple metallophores might harbour similar structures, but their affinities to, e.g. iron can vary. Such a 'ligandosphere' could evolve an advantage to recruit iron, for example, in a changing environment from different resources. In this context, Hider and Kong (2010) have already suggested distinguishing those ligands for solely iron complexation and recruitment (primary siderophores) from those who are dedicated to non-classic function (secondary siderophores) such as detoxification or just keeping metals in solution as a complex²⁰. Metallophore-mediated tolerance mechanisms for potentially toxic heavy metals are essential for bioremediation of contaminated sites³⁰⁻³². The toxicity of metals mainly depends on their concentration, speciation and bioavailability^{33, 34}. Zinc and copper, for example, are necessary for the function of various enzymes such as polymerase or cytochrome oxidase^{35, 36}, but also have a strong toxic effect on microorganisms. Cu²⁺ ions can replace other metal ions in complexes and can generate reactive oxygen species (ROS) by autoxidation or Fenton-like reactions that cause oxidative stress and subsequent cell damage³⁷. To avoid cell damage thought critical metal concentrations, Frankia might feature different resistance mechanisms; immobilisation on the cell surface, efficient metal-specific efflux systems and complexation by metallophores^{22, 38}. In this context, several Frankia strains are resistant against high Zn concentrations³⁹, but zinc

ligands (zincophores) and the Zn management are unknown in the genus *Frankia*. Anyway, it is well known, that Frankia utilise all of the essential trace elements (Ni, Co, Cu, Se, Mo, B, Zn, Fe, and Mn) and have a comparatively high percentage of metalloproteins, particularly in the more metal resistant strains. Frankia has achieved similar levels of metal and metalloid resistance as bacteria from highly metal-contaminated sites. More importantly, from a bioremediation perspective, Furnholm and Tisa (2014) have outlined the importance to understand mechanisms allowing the endosymbiont to survive and infect actinorhizal plants in metal contaminated soils²⁰. For that reason the present study aims to determine the 'ligandosphere' in pure cultures of 14 Frankia strains for the complexation of selected metals such as Fe, Zn, Mo and Cu by using metal isotope-coded profiling (MICP) supported by DeltaMS to identify the respective isotopologues^{40, 41} of unknown organic ligands in different growth media. *Frankia* serves thereby as an ecologically important species for the rhizosphere microbiome and potential new model system for interactions across the prokaryote-eukaryote boundary in soil similar to the well investigated aquatic systems⁴². Overall, our elaborative screening sheds light on the dynamics of the metallophore profile in the genus Frankia under standardised conditions and provides information on how plants and associated fungi might involve microorganisms in their metal homeostasis.

Experimental

Reagents and materials

All used ingredients of the bacterial growth media were purchased by Sigma Aldrich (Taufkirchen, Germany) and VWR (Darmstadt, Germany). A Micro-Pure water purification system (Thermo Scientific, Schwerte, Germany) provided the ultra-pure water (0.055 μ S) for the preparation of aqueous solutions. UHPLC-grade methanol, acetonitrile, water, ammonium acetate and formic acid were purchased from VWR (Darmstadt, Germany). Cell tissue flasks and plastic tubes were from Sarstedt (Nümbrecht, Germany).

Bacteria strains, culture media, growth conditions and protein quantification

All Frankia strains were provided by the Centre d'Étude de la Forêt culture collection (CEF), Université Laval (Ouébec, Canada) except isolate DSM 44251 which was obtained from the DSMZ (German Collection of Microorganisms and Cell Cultures, Göttingen, Germany). Two

Metallomics

growth media, BAP medium and the newly designed MI medium (metallophore inducing medium), were used. The BAP medium was prepared as described in Bélanger et al. (2011)⁴³. The MI medium was inspired by Murry et al. (1984)⁴⁴ and composed of (in g L⁻¹) KH₂PO₄, 0.953; K₂HPO₄, 0.592; NH₄Cl, 0.268; sodium propionate, 0.480; MgSO₄·7H₂O, 0.030; CaCl₂·2H₂O, 0.010; trace metals (in g L⁻¹): H₃BO₃, 0.00286; MnCl₂·2H₂O, 0.00181; $ZnSO_4 \cdot 7H_2O_1$, 0.00022; CuSO₄ \cdot 5H₂O_1, 0.00008; Biotin, 400 µg L⁻¹. Both media were supplemented with FeCl₃ 5.0 \times 10⁻⁷ mol L⁻¹, EDTA 5.0 \times 10⁻⁶ mol L⁻¹ and Na₂MoO₄·2H₂O 10⁻⁷ mol L⁻¹. The final pH was adjusted to 6.8. Each culture was inoculated with a final protein concentration of 10 µg mL⁻¹ and cultivated in 650 mL uncoated polycarbonate cell culture flask containing 200 mL culture medium. Flasks were incubated in static conditions at 30°C. After 25 days, 100 mL medium of each culture has been taken for analysis. The protein content of all cultures was determined by homogenization, cell disruption and subsequent Roti[®]-Quant Protein Assay (based on the Coomassie Bradford assay)⁴³.

5 159 Analytical process

Cultures were centrifuged at 3440 ×g for 10 min at 4°C. The supernatants (100 mL, 1.5 mL min⁻ ¹) were loaded on standard HLB-cartridges (200 mg sorbents, Oasis[™] Waters, Milford, UK) preconditioned with 6 mL MeOH and afterwards equilibrated with 8 mL water¹⁶. Upon loading, the cartridges were eluted with 6 mL of 100% MeOH. An aliquot of each extract was used for the universal Chrome Azurol S assay (CAS) to identify present Fe binding agents⁴⁵. The remaining extract was evaporated entirely under a nitrogen stream, and the sample residue was re-suspended in 100 µL MeOH. For the subsequent Metallophore Isotope Coded Profiling (MICP) all extracts were split into four equal aliquots. Each aliquot was spiked with 4 μ L of a 10⁻² mol L⁻¹ stable isotopes solution (ratio 1:1 of each pair: ⁵⁴Fe/⁵⁸Fe, ⁶³Cu/⁶⁵Cu, ⁶⁴Zn/⁶⁶Zn or ⁹⁵Mo/⁹⁸Mo) (Euriso-top, Saint-Aubin Cedex, France) and measured by UHPLC-HRMS. The subsequent identification of metal-binding complexes followed the workflow of MICP⁴⁰ coupled to a DeltaMS⁴¹ automatic peak detection tool. All listed total formulas were calculated using the inbuilt Thermo Xcalibur Qual Browser software tool with a mass tolerance of less than 2 ppm considering the following elements ¹H, ¹²C, ¹⁶O, ¹⁴N, ³²S, ¹³C, ²³Na, ⁵⁴Fe, ⁵⁶Fe, ⁵⁸Fe, ⁶³Cu, ⁶⁵Cu, ⁶⁴Zn, ⁶⁶Zn, ⁹⁵Mo, ⁹⁸Mo. Confirmation and exclusion of formulas are exemplarily shown in Table S1 (using the example m/z = 782.3679). Formulas with non-integer double binding equivalents (DBE) could be easily excluded. Only components with $-10 \le DBE - O \le +10$ were considered reliable⁴⁶. Formulas can

be excluded if the O/N ratio was rather low, the number of DBE was low (cannot be a peptide), or the number of S was high about N and O. Naturally formulas with minimum mass error were most plausible. As a limitation, some formulas could not be completely excluded (for example $C_{41}H_{56}O_{10}N_3S_1$). However, fragmentation experiments helped to confirm or to reject calculated formulas.

12 182

UHPLC-ESI-HRMS measurements

Ultra-high-performance liquid chromatography (UHPLC) coupled with high-resolution mass spectrometry (HRMS) was carried out using a Thermo (Bremen, Germany) UltiMate HPG-3400 RS binary pump, WPS-3000 autosampler which was set to 10°C and which was equipped with a μ L injection syringe and a 100 μ L sample loop. The Kinetex[®] C-18 RP (50 × 2.1 mm; 1.7 μ m) column from Phenomenex (Aschaffenburg, Germany) was kept at 25°C using a TCC-3200 column compartment. Eluent A consisted of water, with 2% (v/v) acetonitrile and Eluent B was 90% acetonitrile (v/v). Both eluents were containing 1 mmol L^{-1} ammonium acetate⁴⁷. The chromatography was performed with a linear gradient (Table S2) and a constant flow rate of 0.4 mL min⁻¹.

Mass spectra were recorded with a Thermo QExactive plus Orbitrap mass spectrometer with electrospray ionisation (ESI) source. Ionisation mode alternated between positive and negative within 1 s and the mass window was set to 130-2000 m/z. The appending full scan settings were as follows: resolution: 70,000; AGC target: 5.0×10^6 ; maximum IT: 200 ms. Following general settings were used: sheath gas flow rate: 40; aux gas flow rate: 15; sweep gas flow rate: 0; discharge current: 8.0 A; capillary temperature: 350°C; S-lens RF level: 33; vaporizer temperature: 360°C; acquisition time frame: 0.2-9.5 min. All MS/MS measurements were performed in a simultaneously mass detection arrangement with the following instrument parameters: mass window 50-900 m/z, resolution: 280,000; AGC target: 3.0×10^6 ; maximum IT: 200 ms; collision energy: 25 eV. The general settings were adjusted like in full scan mode and the scan period for each target mass was set two minutes around their belonging peak.

50 203

204 Copper tolerance and time-lapse experiments with *Frankia* sp. CH37

The Cu tolerance of *Frankia* strain CH37 was investigated in the presence of three different Cu concentrations: 3.2×10^{-7} , 1.0×10^{-6} and 1.0×10^{-5} mol L⁻¹ (CuCl₂). All treatments were inoculated in cell flasks containing 200 mL MI medium with a final protein concentration of 10 µg mL⁻¹.

Page 11 of 42

Metallomics

The cultures were monitored over a period of 53 days. Aliquots of 10 mL were taken at each sampling point, centrifuged and the protein amounts were quantified. The remaining supernatant (9.5 mL) was extracted with small HLB-cartridges (30 mg sorbents, OasisTM Waters, Milford, UK). All cartridges were preconditioned with 1 mL of MeOH and equilibrated with 1 mL water. After loading the cartridge, the solid phase was washed with 1 mL of water. Compounds were then eluted with 1 mL MeOH. Afterwards, the extracts were dried under a nitrogen stream, resolved in 100 µL MeOH and measured with the UHPLC-HRMS-Orbitrap system.

Results and discussion

The metallophore profiles of 14 Frankia strains isolated from various host plants were very variable (Table 1). Interestingly, culturing Frankia on propionate as a single carbon source (MI medium) and a reduced vitamin-mix triggered the metallophore production compared to the traditional applied growth medium (BAP medium). Elevated amounts of siderophores were determined in the growth medium of the strain CH37, whereas the extracts of the known siderophore producer strains, predicted based on genome analysis, ACN14a, Ea1-12, and CcI3²⁹ reacted only moderately with the CAS assay. Surprisingly, the CAS assay indicated that only half of the tested strains were able to release Fe binding organic ligands. As micronutrients such as Fe, Zn and Mo are essential for the nitrogen fixer, we applied the metal isotope-coded profiling (MCIP) to trace lower amounts of metallophores (Table 1) assuming false negative results by the CAS assay due to a leak of sensitivity.

⁴⁰ 228 Metal isotope-coded profiling (MICP)

Metallophore candidates were determined upon addition of the isotope pairs ⁵⁴Fe/⁵⁸Fe, ⁶³Cu/⁶⁵Cu, ⁶⁴Zn/⁶⁶Zn or ⁹⁵Mo/⁹⁸Mo (Fig. 1). In case of iron (⁵⁴Fe/⁵⁸Fe), regular features were considered as potential metallophores, if two isotopologues of the mass spectrum showed the correct distance of 3.9937 with an intensity ratio of 1:1 (deviation tolerance of 20%). Also, only those features were selected with a signal to noise ratio of 10:1. The survey revealed that all strains were releasing siderophores except two isolates (ACN10a and ACN12a). Non-detection of ligands in both strains might also be related to low complex stability or short residence time during growth or other recruitment strategies for Fe. These strains might also recruit iron by acquiring of not own metallophores as recently demonstrated for the genus Pseudomonas⁴⁸. Importantly, the

bouquet of the siderophores was strain specific and changed with the growth medium slightly, but
the ligands might be structurally related as many iron complexes eluted in a narrow window
between 2.2 - 3.0 min, which indicated a similar polarity of the separated molecules (Fig. 2A).
Overall, 35 potential siderophores were identified (Table S3), but 17 out of them have been
produced by a single strain initially isolated from *Hippophae rhamnoides* (sea buckthorn). Due to
its tolerance against strongly eroded, nutrient poor and sometimes salty soils, the plant is growing
on in coastal sand dunes⁴⁹ but also used for land reclamation.

Several criteria were defined for the reliable identification of new metallophores: first, Na- and K-adducts of the metallophore, which shows the same isotopic signature as the initially identified complex, point out the correct determination (Fig. 1B). Secondly, upon additional spiking of the pair of isotopes, the ratio between the metal complex and the free ligands should have changed significantly to the favour of the metal complex (Fig. S1). Finally, the HRMS measurements reveal the sum formula with plausible DBEs (Table S1).

Following the defined criteria, the masses of the free ligand of the respective complex were calculated and identified in the extracted ion chromatograms of an untreated sample. For example, the signal of the ligands disappeared after adding the respected metal such as Fe and conversely signals of the complexes increased (Fig. S1). In addition to the 35 Fe-complexes, almost all strains released ligands complexing Cu (in total 28) with a molecular mass ranging from 359 to 949 amu (Table S4). All determined Cu-ligands seem to bind cupric ions preferentially compared to Fe. Moreover, a small number of stable zinc complexes were detected in 5 out of 16 Frankia strains. However, the signal intensity was mostly weak except 694.1636 m/z and 841.3671 m/z for the ⁶⁶Zn isotopologues (Fig. 2B, Table S5). Surprisingly, no Mo-complex were found under the chosen laboratory conditions indicating that Frankia recruits added molybdate through a low-affinity transport system or it facilitates other sources of molybdophores. The latter case is more likely as it was shown that Mo is mainly bound to organic matter¹⁴. Interestingly, all detected metallophores seem to be metal-specific as just the ligand 13 (796.3834 m/z) bound two metals (Fe and Cu) under the applied conditions.

5253 266 Determination of the sum formula

The high-resolution mass spectra were used to estimate the sum formula. Hereby, the main metallophores were selected by their signal intensity (intensity $\geq 1.24 \times 10^6$). The calculated mass

Page 13 of 42

Metallomics

of the molecule ion deviated less than 2 ppm from the measured mass (Tables 2, 3). In a further
step, the given sum formulas were verified by calculating the number of carbon atoms from the
signal intensity of the ¹³C peak and by the composition of the DBE (double bond equivalent)⁴⁶.
No sulphur was identified in the identified metallophores.

The proposed sum formulas of siderophore candidates 1-8 showed a very similar composition (Table 2). All candidates have the same number of nitrogen atoms, and all other elements occur in a very narrow range. Hereby, the molecular masses and sum formula of 2 and 3 fit very well with the already published masses of Frankobactin and Frankobactin A, respectively. 2 and 3 vary precisely in the mass of water as previously described by Bover et al. ²⁶. Overall 1 (817.2701 m/z), 2 (835.2785 m/z), and 3 (853.2891 m/z) differ just by 18.0105 amu in a consecutive series (Table 2). The same loss of water was observed between 4 (831.2848 m/z) and **5** (849.2961 m/z). Only **8** (915.3424 m/z) and **9** (958.3239 m/z) have a distinctively higher molecular mass and accordingly more carbon, oxygen and nitrogen atoms (Table 2).

1 and 4, as well as 5 and 6, differ just by a potential CH₂-group whereas 2 and 4 differ by a potential CO group. In summary, we argue that those siderophores are derived from the same biosynthetic pathway, and most likely, they are derivatives from Frankobactin. It seems phonemically similar to the recently identified family of derivatives of protochelin - the key metallophore in A. vinelandii⁵⁰. Interestingly, the most abundantly formed Cu-complexes, 10 -15, have different masses over a broader range of polarity suggesting unique structural features (Table 3, Fig. 2B).

37 289

39 290 Ligand classification

We have identified two different isotopic signatures of iron isotopologues (Fig. 3). The most common iron isotopic signature has three significant isotopologues due to the complexation of ⁵⁴Fe, ⁵⁸Fe (both after spiking) and ⁵⁶Fe, which was recruited from Fe-EDTA in the growth medium. The differences were thus 1.9998 m/z between each isotopologue. The second observed isotopic signature did not contain the isotopologue of ⁵⁶Fe. Therefore, we argue that *Frankia* released at least two different types of organic ligands. Type I ligands possess a higher Fe affinity or were produced in higher amounts than the type II siderophores. Therefore, type I ligands are able to recruit ⁵⁶Fe form Fe-EDTA as expected from primary siderophores (Hider and Kong 2010). In addition, they have rapidly bound ⁵⁴Fe and ⁵⁸Fe upon their administration (Fig. 3A, $(C)^{20}$. The isotopic signature of the molecule ion shows thus three isotopologues. However, no

ferric complexes of type II ligands were found in untreated extracts until ⁵⁴Fe and ⁵⁸Fe were added (Fig. 3B,D). It is conceivable that type II ligands belong to the class of secondary siderophores which might chelate other trace metals, or be used by the microorganisms for other functions^{20, 51, 52}.

10 305 **D**

Determination of Frankobactin

Frankobactin is the only named siderophore released in *Frankia* so far²⁶. The proposed sum formulas of the siderophore candidates 1-8 show a very similar elementary composition. Interestingly, the molecular masses of compound 2 and 3 (782 and 800 m/z, Tables 2, S1) fit very well with the published masses of Frankobactin, and Frankobactin A produced by the Frankia strains 52065 and CeSI5, respectively. Compounds, 2 and 3, also differ by a loss of water as previously observed for Frankobactin due to the ring opening of oxazoline²⁶. In our study, a Frankobactin-like siderophore was found in strain CH37 which is phylogenetically related to the isolate CeSI5⁵³. The data also support the previous genome mining-based approach²⁹, which suggested three NRPS-based biosyntheses of siderophores ranging from 610 to 900 amu including unknown substructures. Our study paves the way for selecting the ideal strain for purification of Frankobactin and related ligands for structure elucidation and eco-physiological testing.

33 318

319 MS/MS experiments for further structure elucidation

To gain insights into the molecular structure of the metallophores, MS/MS experiments of the main candidates of Fe and Cu metallophores were performed. The spectra of 1-5 show a similar fragmentation pattern, which is different to those of 6-9. Starting from the C-terminal end, the MS/MS data for 1-5 revealed a neutral loss of formyl-hydroxyl-ornithine (176.0785 m/z) followed by a neutral loss of ornithine (114.0793 m/z) and a acetyl-hydroxyl-ornithine (172.0846 m/z), as also found in many other metallophores (Table 4, Fig. 4A)^{20, 29, 54}. The resulting fragments for 1 were 177.0867 m/z, 291.1657 m/z and 435.2561 m/z (including a potential loss of CO). Also, a neutral loss of threonine (101.0475) directly linked to the acetyl-hydroxyl-ornithine was identified (Fig. 4A). In 6, the formyl-acetyl-ornithine seems to be replaced for hydroxyl-acetyl-ornithine (190.0950 m/z).

The phenyl-oxazoline ring and its opening were confirmed by the characteristic salicylate fragments and identified for 1-5 (Fig. 4B)⁵⁵⁻⁵⁷. It is noteworthy that fragments of the phenyl-

Page 15 of 42

Metallomics

 oxazoline group were not occurring if default settings for MS/MS experiments were used. The direct molecular link between the amino acid chain and the phenyl-oxazoline ring are still unclear and might be the reason for the differences observed between 1, 2 and 4, aside from the mass difference of water in 3 and 5. In general, the MS/MS spectra have often shown neutral losses of water, CO and NH₃, which are characteristic for peptide fragmentation. Overall, the fragmentation pattern supports the assumption that 1-5 share the same molecular backbone (Table 4).

Cu- and Fe-complexes formed during bacterial growth in the presence of high levels of Cu

MICP allowed us identifying complexes for a targeted analysis during a time-lapse experiment of bacterial growth estimated by protein content. Frankia sp. strain CH37 was thus selected for its relatively high metallophore production of 56 Fe-siderophores. At 1.0 \times 10⁻⁶ mol L⁻¹ Cu, the growth curve phenocopied growth under the standard Cu concentration $(3.2 \times 10^{-7} \text{ mol } \text{L}^{-1})$. After a short lag phase, the bacterial population grew exponentially with an abruptly ceases around day 15, followed by a typical decline phase. Some studies observed a more extended lag period, but the growth curve, in general, was similar to previously reported ones²⁶ (Fig. 5A). In the presence of elevated amounts of Cu $(1.0 \times 10^{-5} \text{ mol } \text{L}^{-1})$, bacteria did not grow in all biological replicates suggesting that the detoxification not work under this conditions. However, moderately high Cu concentrations of 1 x 10⁻⁶ mol L⁻¹ allowed bacterial growth. The amount of siderophore 4 increased along the exponential bacterial growth until day 15 (Fig. 5B). The siderophore seemed to be taken up or catabolised by the bacteria since its concentration decreased from day 15 and was no longer produced (or at a lower rate than the uptake) during the decline phase. A similar metallophore profile was observed in time-lapse experiments with A. vinelandii under nitrogen-depleted conditions. Here, few cells produced a significant amount of protochelin during the lag phase to increase the iron-bioavailability before exponential growth⁴⁷.

In contrast to the ferric complex, the measured amount of the Cu-complex 13 did not follow the time lapse of bacterial growth. For both tested Cu concentrations in the medium, the level of the Cu-complex increased steadily until day 32 to an equilibrium concentration (Fig. 5C). Also, the overall amount of Cu-complexes accelerated with the higher concentration of Cu in the growth medium as also observed for Fe. The results correspond very well with earlier studies on A. vinelandii, which releases a higher amount of organic ligands in the presence of elevated concentrations of toxic metals like tungstate¹⁶. Due to this fact, the increase of copper binding

ligands in *Frankia* might be the reason why growth is not influenced in the presence of elevated
amounts of Cu. In this context, studies have recently identified several siderophore-producing
microbial taxa in response to heavy metal contamination⁵⁸.

We thus suggest that Cu-complexation can contribute to the heavy metal resistance in Frankia besides other detoxification mechanisms. The number of metals present might regulate metallophore production as part of the homoeostasis, and directly influence the metallophore bouquet in the ligandosphere of these bacteria. Indeed, biosynthesis pathways of metallophores are often induced in the presence of potentially toxic metals such as in *Pseudomonas*⁵⁹. Large amounts of metallophores provide bacteria with extracellular protection by complexing metals^{34,} ⁶⁰ which ultimately reduces metal uptake by preventing metal diffusion into bacteria via porins⁶¹. Future short-term uptake experiments have to verify if the identified metallophores can control the uptake of Fe, Cu and other metals such as Zn.

377 Conclusion

Frankia requires a constant supply of essential metals like iron to assemble the iron- and molybdenum-dependent nitrogenase. The survey of a biodiverse panel of *Frankia* strains showed plastic, strain-specific, and dynamic metallophore profiles determined by MICP and DeltaMS. Overall, Frankiae is capable of producing a wide variety of chelators that could potentially contribute to the natural ligand pool in the rhizosphere. Depending on the strain and growth media, as many as to 17 metallophores were detected in the culture supernatant. While strain CH37 was found to be a metallophore hyper-producer, other strains released only a few metallophores or even no metallophore to the growth medium. The profiles we observed also differed sharply in their composition depending on the growth medium (carbon source), indicating that very dynamic changes occur in the Frankia 'ligandosphere'. Frankiae seems to provide specific pools of metallophores that preferentially complex Fe, Zn, or Cu. Surprisingly, no Mo-binding ligand was identified, although, like Fe, it is an essential element for the Mo-dependent nitrogenase.

391 It is thus tempting to hypothesise that the mutualistic interactions between frankiae,
 392 ectomycorrhizal fungi and alder within its rhizosphere are based on both a nitrogen-for 393 molybdenum and iron-for-carbon dependencies under diazotrophic conditions. Frankiae will

Metallomics

deliver ammonium and recruits iron if the other organisms recruit Mo and deliver carbon. In any case, further experiments would need to be conducted under strict diazotrophic conditions and more challenging molybdenum sources (Mo complexed to organic matter and Mo-oxides complexes) to elucidate whether or not, and under which circumstances, frankiae or associated fungi produce molybdophores

Recorded MS/MS data suggest the existence of a similar molecular scaffolding of the main siderophore candidates, one that contains substructures such as ornithine and the already-known open and closed forms of the phenyl-oxazoline ring. Our study also revealed that the production of ligands for Fe and potentially toxic metals such as Cu are regulated quite differently. Based on these results, we suggest a ligand-mediated Cu resistance mechanism (as previously shown for other organism and metals) coexists with other resistance mechanisms such as efflux systems and detoxification processes that occur at the cell surface.

Our results highlight that Frankia possesses a variety of metallophores that are produced dynamically, and adaptively to manage metal stress, ultimately leading to the acquisition, and/or detoxification. In the rhizosphere, where Frankia and its host plants are exposed to multiple metal stresses, metallophore-based management of metals would likely contribute to the fitness of both symbionts, as well as provide essential elements to maintain the performance of their nitrogen-fixing symbiosis. Our survey paves the way for targeted investigations into metallophore-mediated elemental acquisition and detoxification in Frankia and its host plants in both natural, and anthropised environments.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
44 45
46
47
48
49
50
51
52
53
55 54
55
56
57
58
59

415 **Conflicts of interest**

416 There is nothing to declare.

418 Acknowledgements

419 Deutsche Forschungsgemeinschaft funded this project through the Collaborative Research Centre
420 CRC1127 (ChemBioSys) to MD, JFM and TW and by the Hans-Böckler-Stiftung to MD. Early

421 stages of the project were supported by the Fonds der Chemischen Industrie (FCI) and the

422 German Academic Exchange Service (DAAD) to TW and MD. We thank Georg Pohnert

423 (University Jena) for his great support throughout this project.

424

1

1 2											
3	426	Tables									
4 5	427	Table 1: CAS a	ssay and MICP based d	letermination	of metallop	hore produc	tion in 14	Frankia			
6 7	428	strains during st	tationary growth. The J	preliminary so	creening rev	vealed the e	effect of the	e tested			
8 9	429	growth media (u	using BAP or MIM) on	the sideroph	ore producti	ion. Using t	he CAS as	say, the			
10	430	relative amount of siderophores is indicated by (+++) strong, (++) moderate and (+) weak and									
11 12	431	compared with Fe-isotope coded profiling (Fe-icp) as well as Cu-icp and Zn-icp. No									
13 14	432	molybdophore w	vas identified.								
15 16 17	433										
18 19 20		Strain	Host	CAS assay (BAP)	CAS assay (MIM)	Fe- icp (MIM)	Cu- icp (MIM)	Zn- icp (MIM			
21 22 23		ACN10a ACN12a	Alnus crispa Alnus crispa				1 1	2			

Strain	Host	CAS assay (BAP)	CAS assay (MIM)	Fe- icp (MIM)	Cu- icp (MIM)	Zn- icp (MIM)
ACN10a	Alnus crispa				1	
ACN12a	Alnus crispa				1	2
ACN14a	Alnus crispa		+	5	6	1
CcI3	Casuarina			1	4	
(Univ. Laval)	cunninghamiana					
CcI3	Casuarina	+	+	5	3	1
(Lab. Boyer)	cunninghamiana					
CH37	Hippophae	+	+++	19	28	1
	rhamnoides					
CPI1	Comptonia peregrina				1	
Cg70.4	Casuarina glauca			1	2	
Cg70.9	Casuarina glauca			1	1	
Cj1-82	Casuarina junghuniana			4	1	
Ea1-12	Elaeagnus angustifolia	+	++	5	1	
DC12	Datisca cannabina			2		
BCU 110501	Discaria trinevis		+++	8	1	1
DSMZ 44251	Alnus rubra			3	1	

Table 2: Calculated total formulas of the ⁵⁶Fe-complexes and their ligands extracted from the
supernatant of *Frankia* strain CH37. High-resolution masses were determined after adding ⁵⁶Fe to
the solid phase extracts.

Compound number	⁵⁶ Fe ^{III} - Complex [<i>m/z</i>]*	Ligand [<i>m</i> /z]	Proposed total formula [M-2H + ⁵⁶ Fe ^{III}] ⁺	Proposed total formula [M+H] ⁺
1	817.2701	764.3572	$[C_{33}H_{47}O_{12}N_9{}^{56}Fe^{III}]^+$	$[C_{33}H_{50}O_{12}N_9]^+$
2	835.2785	782.3679	$[C_{33}H_{49}O_{13}N_9{}^{56}Fe^{III}]^+$	$[C_{33}H_{52}O_{13}N_9]^+$
3	853.2891	800.3783	$[C_{33}H_{51}O_{14}N_9{}^{56}Fe^{III}]^+$	$[C_{33}H_{54}O_{13}N_9]^+$
4	831.2848	778.3729	$[C_{34}H_{49}O_{12}N_9{}^{56}Fe^{III}]^+$	$[C_{34}H_{52}O_{12}N_9]^+$
5	849.2961	796.3835	$[C_{34}H_{51}O_{13}N_9{}^{56}Fe^{III}]^+$	$[C_{34}H_{54}O_{13}N_9]^+$
6	863.3119	810.3997	$[C_{35}H_{53}O_{13}N_9{}^{56}Fe^{III}]^+$	$[C_{35}H_{56}O_{13}N_9]^+$
7	803.2897	750.3784	$[C_{33}H_{49}O_{11}N_9{}^{56}Fe^{III}]^+$	$[C_{33}H_{52}O_{11}N_9]^+$
8	915.3424	862.4301	$[C_{39}H_{57}O_{13}N_9{}^{56}Fe^{III}]^+$	$[C_{39}H_{60}O_{13}N_9]^+$
9	958.3239	905.4109	$[C_{38}H_{54}O_{14}N_{12}{}^{56}Fe^{III}]^+$	$[C_{38}H_{57}O_{14}N_{12}]^+$

Compound number	⁶³ Cu ^{II} - Complex	Ligand [<i>m/z</i>]	Proposed total formula	Proposed total formula
	[m/z]		[M-H+ ⁶³ Cu ^{II}] ⁺	[M +H] ⁺
10	619.1816	558.2680	$[C_{26}H_{34}O_7N_7{}^{63}Cu^{II}]^+$	Not found
11	681.2169	620.3033	$[C_{28}H_{40}O_9N_7^{63}Cu^{II}]^+$	$[C_{28}H_{42}O_9N_7]^+$
12	605.1619	544.2483	$[C_{24}H_{36}O_{11}N_3^{63}Cu^{II}]^+$	$[C_{24}H_{38}O_{11}N_3]^+$
13 14	857.2962	796.3834*	$[C_{34}H_{52}O_{13}N_9^{63}Cu^{II}]^+$	$[C_{34}H_{54}O_{13}N_9]^+$
14	551.1046 560.1687	489.1832 499.2552	$\frac{[C_{19}H_{28}O_{11}N_4{}^{63}Cu^{II}]^+}{[C_{26}H_{33}O_6N_4{}^{63}Cu^{II}]^+}$	$[C_{19}H_{29}O_{11}N_4]^+$ $[C_{26}H_{35}O_6N_4]^+$
			s with both Fe and Cu in	
the selected	conditions.			
a –				
45				

. 1 620 . . 1: 1 0

	Fragmentation		S	iderophore can	didates	
	series	1	2	3	4	5
	Molecular ion	764.3566	782.3664	800.3543	778.3712	796.3808
	1	588.2780	606.2879	624.2745	602.2935	620.3019
	2	474.1986	492.2086	510.1960	488.2144	506.2231
	3	302.1137	320.1237	338.1147	316.1288	334.1388
	4		219.0765			
447						
448						

Table 4: Fragmentation series for five siderophore candidates 446

2 3	449	Legends
4 5	450	Fig. 1: (A) Workflow and analytical process of the screening for metallophores in the genus
6 7	451	Frankia. (B) Representatives mass spectrum of a siderophore obtained by ESI-Orbitrap-HRMS.
8 9	452	Besides the molecular ions (m/z 861 and m/z 865), the doubly charged and sodium adduct of the
10 11	453	Fe-complex are shown.
12 13	454	Fig. 2: Plot of m/z values of all detected metallophores over retention time. (A) Fe-complexes
14 15	455	determined in Frankia spp. grown in BAP or MI medium. (B) Cu- and Zn complexes determined
16 17 18	456	in Frankia spp. grown in MI medium.
19	457	Fig. 3: Characteristic isotopic signature of the ferric complexes for organic ligands of (A, C) type
20 21	458	I and (B,D) type II. (A) Type I ligands recruit iron from Fe-EDTA. (B) Type II ligands do not
22 23	459	complex iron under standard growth conditions in the presence of Fe-EDTA. Upon addition of
24	460	⁵⁴ Fe and ⁵⁸ Fe to the extracts, both (C) type I and (D) type II ligands form iron complexes showing
25 26 27	461	the isotopologues in the ratio 1:1.
28 29	462	Fig. 4: The electrospray MS/MS mass spectrum (positive mode) for ligand 2 (782 m/z). (A) A
30	463	typical fragmentation series of the backbone is shown at the collision energy 25 eV. (B) The
31 32	464	experiment at the collision energy 20 eV of m/z 782 reveals the characteristic fragmentation of
33 34 35	465	the phenyl-oxazoline-ring.
36	466	Fig. 5: Time lapse of the growth of Frankia sp. strain CH37 in MI medium. (A) Growth curves
37 38	467	are based on total protein content and observed under standard conditions at low, high and toxic
39 40	468	Cu concentrations. (B) The relative amounts of the Fe-complex 4 (831 m/z) and (C) Cu-complex
40 41 42	469	13 (681 <i>m/z</i>) are shown.
43 44	470	
45 46 47	471	
48	472	
49 50		
51		
52 53		
54 55		
56		
57 58		21

1 2			
2 3 4	473	Refe	rences
5	474	1.	P. Chandrangsu, C. Rensing and J. D. Helmann, Metal homeostasis and resistance in bacteria,
6	475		<i>Nat. Rev. Microbiol.</i> , 2017, 15 , 338.
7	476	2.	E. T. Kiers and R. F. Denison, Sanctions, cooperation, and the stability of plant-rhizosphere
8	477		mutualisms, Annu. Rev. Ecol., Evol. Syst., 2008, 39, 215-236.
9	478	3.	P. S. Kidd, V. Álvarez-López, C. Becerra-Castro, M. Cabello-Conejo and Á. Prieto-Fernández, in
10	479		Adv. Bot. Res., eds. A. Cuypers and J. Vangronsveld, Academic Press, 2017, vol. 83, pp. 87-126.
11 12	480	4.	R. Hermenau, K. Ishida, S. Gama, B. Hoffmann, M. Pfeifer-Leeg, W. Plass, J. F. Mohr, T.
12	481		Wichard, HP. Saluz and C. Hertweck, Gramibactin is a bacterial siderophore with a
14	482		diazeniumdiolate ligand system, Nat. Chem. Biol., 2018, DOI: 10.1038/s41589-018-0101-9.
15	483	5.	S. A. Amin, D. H. Green, M. C. Hart, F. C. Küpper, W. G. Sunda and C. J. Carrano, Photolysis of
16	484		iron-siderophore chelates promotes bacterial-algal mutualism, Proc. Natl. Acad. Sci. U. S. A.,
17	485		2009, 106 , 17071-17076.
18	486	6.	R. Molina, D. Myrold and C. Y. Li, Root symbiosis of red alder : technological opportunities for
19	487		enhanced regeneration and soil improvement, The biology and management of red alder, 1994,
20	488		23-46.
21	489	7.	P. L. Mallet and S. Roy, The symbiosis between Frankia alni and alder shrubs results in a
22	490		tolerance of the environmental stress associated with tailings from the Canadian oil sands
23	491		industry, J. Pet. Environ. Biotechnol., 2014, 5.
24	492	8.	M. M. Georgiadis, H. Komiya, P. Chakrabarti, D. Woo, J. J. Kornuc and D. C. Rees,
25	493		Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii, Science,
26	494		1992, 257 , 1653.
27	495	9.	A. Sen, S. Sur, L. S. Tisa, A. K. Bothra, S. Thakur and U. K. Mondal, Homology modelling of the
28	496		Frankia nitrogenase iron protein, Symbiosis, 2010, 50, 37-44.
29	497	10.	L. C. Seefeldt, B. M. Hoffman and D. R. Dean, Mechanism of Mo-dependent nitrogenase, Annual
30	498		review of biochemistry, 2009, 78 , 701-722.
31	499	11.	D. R. Benson and W. B. Silvester, Biology of Frankia strains, actinomycete symbionts of
32	500		actinorhizal plants, Microbiol. Rev., 1993, 57, 293-319.
33 34	501	12.	J. P. Bellenger, T. Wichard, A. B. Kustka and A. M. L. Kraepiel, Uptake of molybdenum and
34 35	502		vanadium by a nitrogen-fixing soil bacterium using siderophores, <i>Nat. Geosci.</i> , 2008, 1, 243-246.
36	503	13.	J. P. Bellenger, T. Wichard, Y. Xu and A. M. L. Kraepiel, Essential metals for nitrogen fixation in
37	504		a free-living N2-fixing bacterium: chelation, homeostasis and high use efficiency, <i>Environ</i> .
38	505		<i>Microbiol.</i> , 2011, 13 , 1395-1411.
39	506	14.	T. Wichard, B. Mishra, S. C. B. Myneni, JP. Bellenger and A. M. L. Kraepiel, Storage and
40	507		bioavailability of molybdenum in soils increased by organic matter complexation, <i>Nat. Geosci.</i> ,
41	508		2009, 2 , 625.
42	509	15.	C. Jouogo Noumsi, N. Pourhassan, R. Darnajoux, M. Deicke, T. Wichard, V. Burrus and JP.
43	510		Bellenger, Effect of organic matter on nitrogenase metal cofactors homeostasis in Azotobacter
44	511		vinelandii under diazotrophic conditions, <i>Environ. Microbiol. Rep.</i> , 2015, 8 , 76-84.
45	512	16.	T. Wichard, JP. Bellenger, A. Loison and A. M. L. Kraepiel, Catechol siderophores control
46	513	10.	tungsten uptake and toxicity in the nitrogen-fixing bacterium Azotobacter vinelandii, Environ. Sci.
47	514		<i>Technol.</i> , 2008, 42 , 2408-2413.
48	515	17.	A. M. L. Kraepiel, J. P. Bellenger, T. Wichard and F. M. M. Morel, Multiple roles of siderophores
49	516	17.	in free-living nitrogen-fixing bacteria, <i>BioMetals</i> , 2009, 22 , 573.
50	517	18.	S. M. Kraemer, O. W. Duckworth, J. M. Harrington and W. D. C. Schenkeveld, Metallophores
51	518	10.	and trace metal biogeochemistry, <i>Aquatic Geochemistry</i> , 2015, 21 , 159-195.
F つ	510		R. M. Boiteau, S. J. Fansler, Y. Farris, J. B. Shaw, D. W. Koppenaal, L. Pasa-Tolic and J. K.
52	519	19	
53	519 520	19.	
53 54	520	19.	Jansson, Siderophore profiling of co-habitating soil bacteria by ultra-high resolution mass
53 54 55	520 521		Jansson, Siderophore profiling of co-habitating soil bacteria by ultra-high resolution mass spectrometry, <i>Metallomics</i> , 2018, DOI: 10.1039/C8MT00252E.
53 54 55 56	520 521 522	19. 20.	Jansson, Siderophore profiling of co-habitating soil bacteria by ultra-high resolution mass spectrometry, <i>Metallomics</i> , 2018, DOI: 10.1039/C8MT00252E. R. C. Hider and X. Kong, Chemistry and biology of siderophores, <i>Nat. Prod. Rep.</i> , 2010, 27 , 637-
53 54 55	520 521		Jansson, Siderophore profiling of co-habitating soil bacteria by ultra-high resolution mass spectrometry, <i>Metallomics</i> , 2018, DOI: 10.1039/C8MT00252E.

60

Metallomics

2 3	524	21.	T. R. Furnholm and L. S. Tisa, The ins and outs of metal homeostasis by the root nodule
4	525	22	actinobacterium <i>Frankia</i> , <i>BMC Genomics</i> , 2014, 15 , 1092.
5	526	22.	M. Rehan, T. Furnholm, R. H. Finethy, F. Chu, G. El-Fadly and L. S. Tisa, Copper tolerance in
6	527		<i>Frankia</i> sp. strain Eu11c involves surface binding and copper transport, <i>Appl. Microbiol.</i>
7	528	•••	<i>Biotechnol.</i> , 2014, 98 , 8005-8015.
8	529	23.	M. Arahou, H. G. Diem and A. Sasson, Influence of iron depletion on growth and production of
9	530		catechol siderophores by different Frankia strains, World J. Microbiol. Biotechnol., 1997, 14, 31-
10	531		36.
11	532	24.	A. Singh, A. K. Mishra, S. S. Singh, H. K. Sarma and E. Shukla, Influence of iron and chelator on
12	533		siderophore production in Frankia strains nodulating Hippophae salicifolia D. Don, J. Basic
13	534		<i>Microbiol.</i> , 2008, 48 , 104-111.
14	535	25.	D. B. Aronson and G. L. Boyer, Frankia produces a hydroxamate siderophore under iron
15	536		limitation, J. Plant Nutr., 1992, 15, 2193-2201.
16	537	26.	G. L. Boyer, S. A. Kane, J. A. Alexander and D. B. Aronson, Siderophore formation in iron-
17	538		limited cultures of Frankia sp strain 52065 and Frankia sp strain CeSI5, Can. J. BotRev. Can.
18	539		Bot., 1999, 77, 1316-1320.
19 20	540	27.	R. J. Speirs and G. L. Boyer, Analysis of Fe-55 labeled hydroxamate siderophores by high-
20	541		performance liquid-chromatography, J. Chromatogr., 1992, 537, 259-267.
21	542	28.	G. L. Boyer and D. B. Aronson, in <i>The biochemistry of metal micronutrients in the rhizosphere</i> ,
22 23	543		eds. J. Manthey, A. Manthey and D. E. Crowley, Lewis Publishers, Albany, 1994, ch. 4, pp. 41-
23 24	544		54.
24 25	545	29.	D. W. Udwary, E. A. Gontang, A. C. Jones, C. S. Jones, A. W. Schultz, J. M. Winter, J. Y. Yang,
25 26	546	_>.	N. Beauchemin, T. L. Capson, B. R. Clark, E. Esquenazi, A. S. Eustaquio, K. Freel, L. Gerwick,
20 27	547		W. H. Gerwick, D. Gonzalez, W. T. Liu, K. L. Malloy, K. N. Maloney, M. Nett, J. K. Nunnery, K.
27	548		Penn, A. Prieto-Davo, T. L. Simmons, S. Weitz, M. C. Wilson, L. S. Tisa, P. C. Dorrestein and B.
28 29	549		S. Moore, Significant Natural Product Biosynthetic Potential of Actinorhizal Symbionts of the
30	550		Genus <i>Frankia</i> , as Revealed by Comparative Genomic and Proteomic Analyses, <i>Appl. Environ</i> .
31	551		Microbiol., 2011, 77, 3617-3625.
32	552	30.	S. Roy, D. P. Khasa and C. W. Greer, Combining alders, frankiae, and mycorrhizae for the
33		30.	
34	553	21	revegetation and remediation of contaminated ecosystems, <i>Can. J. Bot.</i> , 2007, 85 , 237-251.
35	554	31.	N. Diagne, K. Arumugam, M. Ngom, M. Nambiar-Veetil, C. Franche, K. K. Narayanan and L.
36	555		Laplaze, Use of <i>Frankia</i> and actinorhizal plants for degraded lands reclamation, <i>Biomed Res. Int.</i> ,
37	556	22	2013, DOI: 10.1155/2013/948258, 9.
38	557	32.	M. Ngom, R. Oshone, N. Diagne, M. Cissoko, S. Svistoonoff, L. S. Tisa, L. Laplaze, M. O. Sy
39	558		and A. Champion, Tolerance to environmental stress by the nitrogen-fixing actinobacterium
40	559		Frankia and its role in actinorhizal plants adaptation, Symbiosis, 2016, 70, 17-29.
41	560	33.	J. L. Hobman and L. C. Crossman, Bacterial antimicrobial metal ion resistance, J. Med.
42	561		<i>Microbiol.</i> , 2015, 64 , 471-497.
43	562	34.	A. Singh, S. S. Singh, P. C. Pandey and A. K. Mishra, Attenuation of metal toxicity by frankial
44	563		siderophores, Toxicol. Environ. Chem., 2010, 92, 1339-1346.
45	564	35.	K. J. Waldron and N. J. Robinson, How do bacterial cells ensure that metalloproteins get the
46	565		correct metal?, <i>Nature Review: Microbiology</i> , 2009, 7, 25-35.
47	566	36.	I. N. Zelko, T. J. Mariani and R. J. Folz, Superoxide dismutase multigene family: a comparison of
48	567		the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and
49	568		expression, Free Radical Biol. Med., 2002, 33, 337-349.
50	569	37.	A. Schützendübel and A. Polle, Plant responses to abiotic stresses: Heavy metal-induced
51	570		oxidative stress and protection by mycorrhization, 2002.
52	571	38.	M. Solioz and J. V. Stoyanov, Copper homeostasis in Enterococcus hirae, FEMS Microbiol. Rev.,
53	572		2003, 27, 183-195.
54	573	39.	K. S. E. Abdel-Lateif, S. R. Mansour, M. F. El-Badawy and M. M. Shohayeb, Isolation and
55	574	-	molecular characterization of <i>Frankia</i> strains resistant to some heavy metals, <i>J. Basic Microbiol.</i> ,
56	575		2018, 58 , 720-729.
57			
58			23
59			

2			
3	576	40.	M. Deicke, J. F. Mohr, J. P. Bellenger and T. Wichard, Metallophore mapping in complex
4	577		matrices by metal isotope coded profiling of organic ligands, <i>Analyst</i> , 2014, 139 , 6096-6099.
	578	41.	T. U. H. Baumeister, N. Ueberschaar, W. Schmidt-Heck, J. F. Mohr, M. Deicke, T. Wichard and
5	579		G. Pohnert, DeltaMS: A tool to track isotopologues in GC- and LC-MS data, <i>Metabolomics</i> , 2018,
6			14:41 .
7	580	10	
8	581	42.	T. Wichard and C. Beemelmanns, Role of chemical mediators in aquatic interactions across the
9	582		prokaryote-eukaryote boundary, J. Chem. Ecol., 2018, 44, 1008-1021.
10	583	43.	P. A. Belanger, J. Beaudin and S. Roy, High-throughput screening of microbial adaptation to
11	584		environmental stress, J. Microbiol. Methods, 2011, 85, 92-97.
12	585	44.	M. A. Murry, M. S. Fontaine and J. G. Torrey, Growth kinetics and nitrogenase induction in
13	586		<i>Frankia</i> sp. HFPArI 3 grown in batch culture, <i>Plant Soil</i> , 1984, 78 , 61-78.
14		15	
15	587	45.	B. Schwyn and J. B. Neilands, Universal chemical assay for the detection and determination of
	588		siderophores, Anal. Biochem., 1987, 160, 47-56.
16	589	46.	P. Herzsprung, N. Hertkorn, W. von Tümpling, M. Harir, K. Friese and P. Schmitt-Kopplin,
17	590		Molecular formula assignment for dissolved organic matter (DOM) using high-field FT-ICR-MS:
18	591		chemical perspective and validation of sulphur-rich organic components (CHOS) in pit lake
19	592		samples, Anal. Bioanal. Chem., 2016, 408, 2461-2469.
20	593	47.	M. Deicke, J. P. Bellenger and T. Wichard, Direct quantification of bacterial molybdenum and
21		Ψ/.	
22	594		iron metallophores with ultra-high-performance liquid chromatography coupled to time-of-flight
23	595	4.0	mass spectrometry, J. Chromatogr. A, 2013, 1298 , 50-60.
24	596	48.	E. Butaitė, M. Baumgartner, S. Wyder and R. Kümmerli, Siderophore cheating and cheating
25	597		resistance shape competition for iron in soil and freshwater <i>Pseudomonas</i> communities, <i>Nat</i> .
26	598		<i>Comm.</i> , 2017, 8 , 414.
27	599	49.	F. Zoon, PhD Thesis, Wageningen University, 1995.
28	600	50.	O. Baars, X. Zhang, F. M. M. Morel and M. R. Seyedsayamdost, The siderophore metabolome of
29	601		Azotobacter vinelandii, Appl. Environ. Microbiol., 2016, 82, 27-39.
30	602	51.	H. Fones and G. M. Preston, The impact of transition metals on bacterial plant disease, <i>FEMS</i>
31	603	51.	Microbiol. Rev., 2013, 37 , 495-519.
32		50	
33	604	52.	T. C. Johnstone and E. M. Nolan, Beyond iron: Non-classical biological functions of bacterial
	605		siderophores, Dalton transactions (Cambridge, England: 2003), 2015, 44, 6320-6339.
34 25	606	53.	A. C. Pozzi, H. H. Bautista-Guerrero, S. S. Abby, A. Herrera-Belaroussi, D. Abrouk, P. Normand,
35	607		F. Menu and M. P. Fernandez, Robust Frankia phylogeny, species delineation and intraspecies
36	608		diversity based on Multi-Locus Sequence Analysis (MLSA) and Single-Locus Strain Typing
37	609		(SLST) adapted to a large sample size, Syst. Appl. Microbiol., 2018, 41, 311-323.
38	610	54.	S. Kodani, M. Ohnishi-Kameyama, M. Yoshida and K. Ochi, A new siderophore isolated from
39	611		Streptomyces sp TM-34 with potent inhibitory activity against angiotensin converting enzyme,
40	612		<i>Eur. J. Org. Chem.</i> , 2011, DOI: 10.1002/ejoc.201100189, 3191-3196.
41		55	C. A. Madigan, TY. Cheng, E. Layre, D. C. Young, M. J. McConnell, C. A. Debono, J. P.
42	613	55.	
43	614		Murry, JR. Wei, C. E. Barry, G. M. Rodriguez, I. Matsunaga, E. J. Rubin and D. B. Moody,
44	615		Lipidomic discovery of <u>deoxysiderophores</u> reveals a revised <u>mycobactin</u> biosynthesis pathway in
45	616		Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. USA, 2012, 109, 1257.
46	617	56.	D. C. Young, A. Kasmar, G. Moraski, TY. Cheng, A. J. Walz, J. Hu, Y. Xu, G. W. Endres, A.
47	618		Uzieblo, D. Zajonc, C. E. Costello, M. J. Miller and D. B. Moody, Synthesis of
48	619		dideoxymycobactin antigens presented by CD1a reveals T cell fine specificity for natural
49	620		lipopeptide structures, J. Biol. Chem., 2009, 284, 25087-25096.
50	621	57.	J. J. De Voss, K. Rutter, B. G. Schroeder and C. E. Barry, Iron acquisition and metabolism by
51		57.	
52	622	50	mycobacteria, J. Bacteriol., 1999, 181 , 4443-4451.
	623	58.	E. Hesse, S. O'Brien, N. Tromas, F. Bayer, A. M. Luján, E. M. van Veen, D. J. Hodgson and A.
53	624		Buckling, Ecological selection of siderophore-producing microbial taxa in response to heavy
54	625		metal contamination, <i>Ecol. Lett.</i> , 2018, 21 , 117-127.
55			
56			
57			

1			
2	626	59.	G. M. Teitzel, A. Geddie, S. K. De Long, M. J. Kirisits, M. Whiteley and M. R. Parsek, Survival
3	627	57.	and growth in the presence of elevated copper: transcriptional profiling of copper-stressed
4 5	628		Pseudomonas aeruginosa, J Bacteriol, 2006, 188 , 7242-7256.
5 6	629	60.	A. Braud, V. Geoffroy, F. Hoegy, L. A. Mislin Gaëtan and J. Schalk Isabelle, Presence of the
7	630		siderophores pyoverdine and pyochelin in the extracellular medium reduces toxic metal
8	631		accumulation in <i>Pseudomonas aeruginosa</i> and increases bacterial metal tolerance, <i>Environ</i> .
9	632		<i>Microbiol. Rep.</i> , 2010, 2 , 419-425.
10	633	61.	I. J. Schalk, M. Hannauer and A. Braud, New roles for bacterial siderophores in metal transport
11	634		and tolerance, <i>Environ. Microbiol.</i> , 2011, 13 , 2844-2854.
12			
13	635		
14			
15			
16 17			
17			
19			
20			
21			
22			
23			
24			
25 26			
26 27			
27			
29			
30			
31			
32			
33			
34			
35 36			
30 37			
38			
39			
40			
41			
42			
43			
44 45			
46			
47			
48			
49			
50			
51			
52			
53 54			
54 55			
56			
57			
58			2
59			

FRIEDRICH-SCHILLER-UNIVERSITÄT

JENA Institut für Anorganische und Analytische Chemie

Universität Jena · Institute für Anorganische und Analytische Chemie · 07743 Jena, Germany

To the Editor of *Metallomics*

Significance to Metallomics

Research Group leader

Dr. Thomas Wichard

Lessingstr. 8 07743 Jena

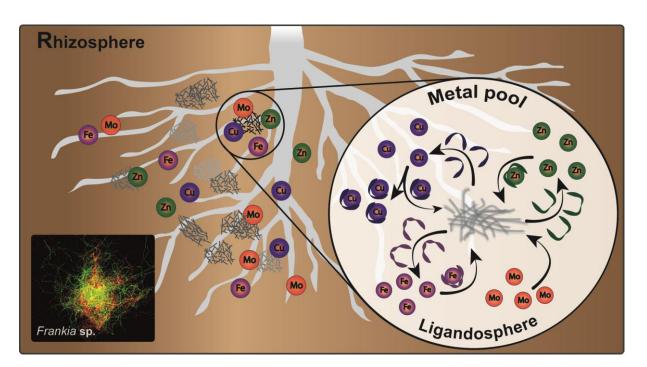
 Telefon:
 0 36 41 9-481 84

 Telefax:
 0 36 41 9-481 72

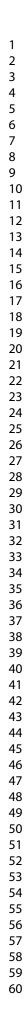
 E-Mail:
 Thomas.Wichard@uni-jena.de

Jena, 29. November 2018

Dear Editor,


We trust that our manuscript fits very well to the scope of *Metallomics* and will meet the interest of the readership.

Metal homeostasis plays a significant role in bacteria-plant interactions in the rhizosphere. Bacteria can acquire trace metals through metallophores for metal-dependent processes like nitrogen fixation and can contribute to alleviating metal stress. To understand how bacterial metallophores contribute to metal management in a rhizosphere, it is necessary to determine the entirety of metal complexing ligands. In this study, we have explored the metallophore production by Frankia (Actinobacteria), a nitrogen-fixing soil bacterium, using metal isotopecoded profiling. Our study has strong implications for the understanding in the role of bacteria for the plant in trace metal acquisition and detoxification.


With best regards

4 hid

Table of Contents Entry

Metal isotope-coded profiling of organic ligands in *Frankia* revealed a high variability of metallophores for trace element acquisition and detoxification.

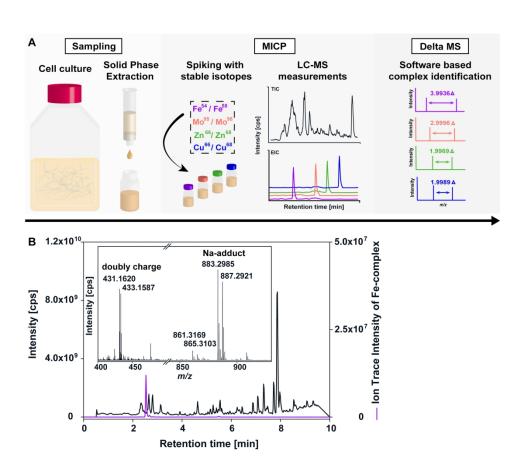


Fig. 1: (A) Workflow and analytical process of the screening for metallophores in the genus Frankia. (B) Representatives mass spectrum of a siderophore obtained by ESI-Orbitrap-HRMS. Besides the molecular ions (m/z 861 and m/z 865), the doubly charged and sodium adduct of the Fe-complex are shown.

207x173mm (300 x 300 DPI)

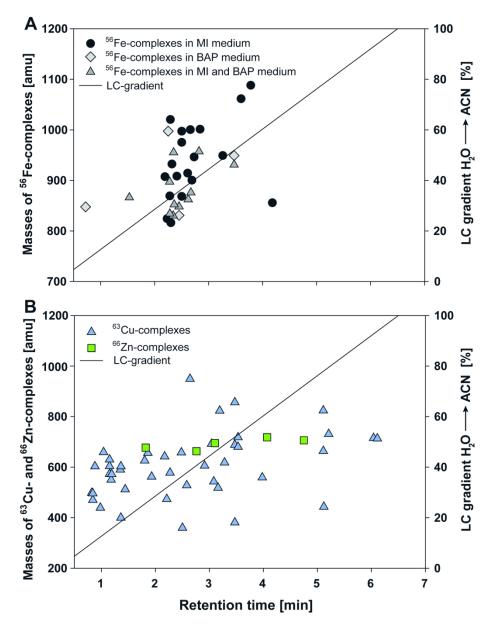


Fig. 2: Plot of m/z values of all detected metallophores over retention time. (A) Fe-complexes determined in Frankia spp. grown in BAP or MI medium. (B) Cu- and Zn complexes determined in Frankia spp. grown in MI medium.

163x213mm (300 x 300 DPI)

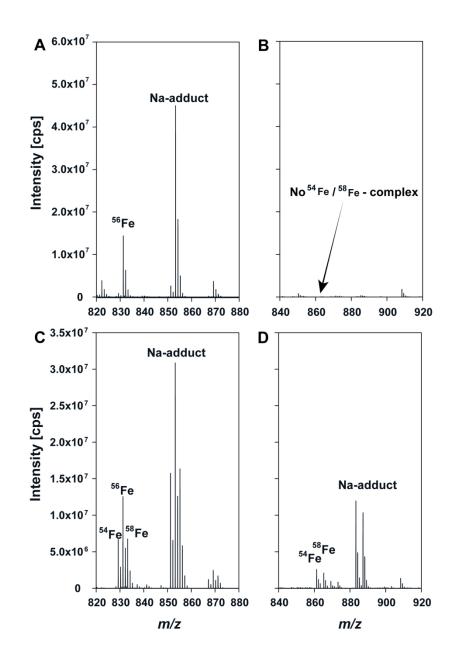
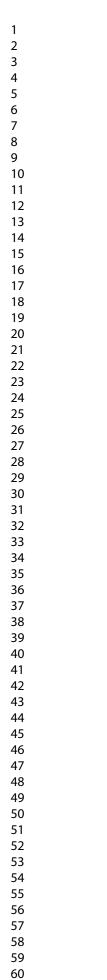
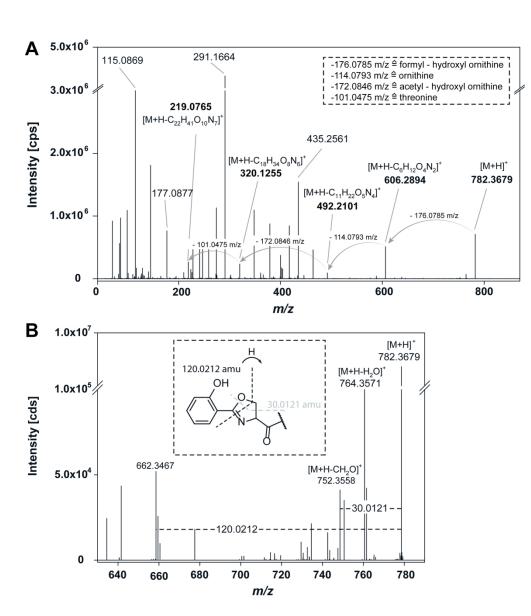
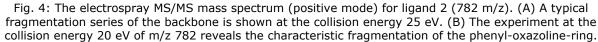





Fig. 3: Characteristic isotopic signature of the ferric complexes for organic ligands of (A, C) type I and (B,D) type II. (A) Type I ligands recruit iron from Fe-EDTA. (B) Type II ligands do not complex iron under standard growth conditions in the presence of Fe-EDTA. Upon addition of 54Fe and 58Fe to the extracts, both (C) type I and (D) type II ligands form iron complexes showing the isotopologues in the ratio 1:1.

144x211mm (300 x 300 DPI)

193x217mm (300 x 300 DPI)

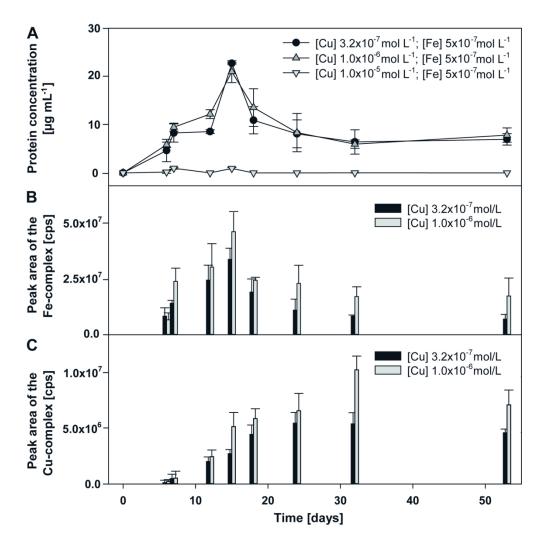


Fig. 5: Time lapse of the growth of Frankia sp. strain CH37 in MI medium. (A) Growth curves are based on total protein content and observed under standard conditions at low, high and toxic Cu concentrations. (B) The relative amounts of the Fe-complex 4 (831 m/z) and (C) Cu-complex 13 (681 m/z) are shown.

153x155mm (300 x 300 DPI)

Supplementary Information for

Metallophore profiling of the nitrogen-fixing genus *Frankia* spp. (Actinobacteria) towards the understanding of metal acquisition and detoxification in the rhizosphere

Michael Deicke^{a‡}, Jan Frieder Mohr^{a‡}, Sébastien Roy^b, Peter Herzsprung^c, Jean-Philippe Bellenger^d, Thomas Wichard^{a*}

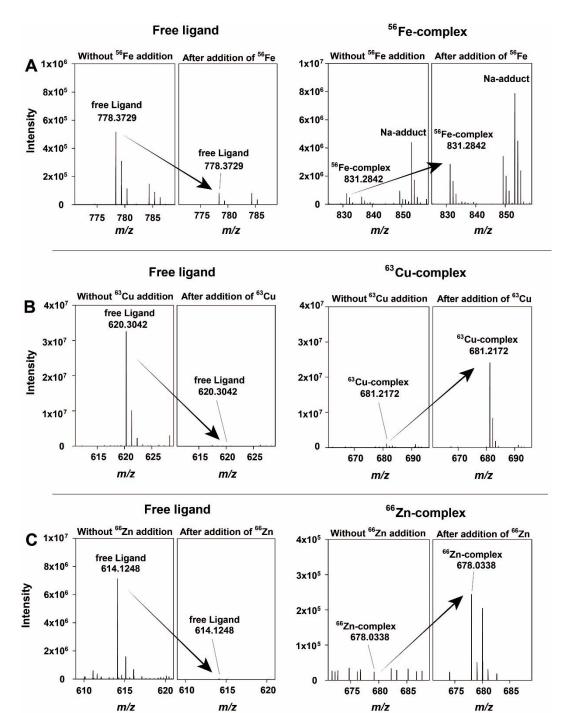
^a Friedrich Schiller University Jena, Institute for Inorganic and Analytical Chemistry, Lessingstr. 8, 07743 Jena, Germany.

^bCentre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, QC, J1K 2R1, Canada

^c UFZ - Helmholtz Centre for Environmental Research, department Lake Research,

Brückstraße 3a, 39114 Magdeburg, Germany

^dCentre SÈVE, Département de Chimie, Faculté des Sciences, Université de Sherbrooke, QC, J1K 2R1, Canada


These authors contributed equally to the manuscript

*corresponding author: Thomas.Wichard@uni-jena.de; Fax: +493641 948172; Tel: +493641

Content

Figure S1: Change of the isotopic signature of metallophores upon addition of Fe, Cu or Zn. Table S1: Exclusion criteria used for formula assignment. Table S2: Gradient for the metallophore separation using the UHPLC-HRMS system. Table S3: Fe-complexes determined in the growth medium of *Frankia* strains. Table S4: Cu-complexes determined in the growth medium of Frankia strains. Table S5: Zn-complexes determined in the growth medium of *Frankia* strains.

Figures S1: Change of the isotopic signature of the metallophores upon addition of (A) 56 Fe, (**B**) 63 Cu or (**C**) 66 Zn. The comparison of the mass spectra shows the decrease in the intensity of free ligand and an increase in the intensity of the respective complex upon addition of the metal. Arrows indicate the change in intensity of the molecular ion peak of the free ligand (down) and a metal complex (up) upon addition of the metal.

H	C	0	Ν	S	DBE	l; <i>m/z</i> : 782.3 DBE - O	O/N	Calc. Mass	Am (nnm)	Comment
n 52	33	13	9	0	13	0 0	1.44	782.367912	Δm (ppm) 0.0153	
52	33	15	9	0	15	0	1.44	/82.30/912	0.0155	confirmed by fragmentation
()	40	1	0	4	10.5	175		792 2679	0.1279	U
62 56	48	1 10	0	4	18.5 16	17.5 6	2.22	782.3678	-0.1278	non-integer DBE
	41		3 11		3	-7	3.33	782.368094	0.248	possible low DBE number
60	26	10		3			0.91	782.368128	0.2914	
62	25	4	14		2.5	-1.5	0.29	782.367652	-0.317	non-integer DBE
58	40	4	6	3	15.5	11.5	0.67	782.367618	-0.3604	non-integer DBE
58	33	2	12	4	11.5	9.5	0.17	782.368303	0.5151	non-integer DBE
64	34	7	5	4	6	-1	1.4	782.36831	0.524	too much S
60	33	12	5	2	7	-5	2.4	782.367443	-0.5841	possible
54	32	7	12	2	12.5	5.5	0.58	782.367436	-0.5931	non-integer DBE
56	25	15	11	1	4	-11	1.36	782.367261	-0.8168	DBE - O < -10
52	26	11	15	1	9	-2	0.73	782.368597	0.8909	possible
66	40	3	2	5	9.5	6.5	1.5	782.367149	-0.9599	non-integer DBE
56	34	8	9	2	12	4	0.89	782.368779	1.1235	possible
62	35	13	2	2	6.5	-6.5	6.5	782.368786	1.1325	non-integer DBE
68	33	11	1	4	1	-10	11	782.366974	-1.1836	low DBE number
62	32	6	8	4	6.5	0.5	0.75	782.366967	-1.1925	non-integer DBE
56	31	1	15	4	12	11	0.07	782.36696	-1.2015	DBE - O > +10
58	47	6	0	2	19.5	13.5		782.366933	-1.236	non-integer DBE
58	24	9	14	3	3.5	-5.5	0.64	782.366785	-1.4252	non-integer DBE
54	39	9	6	1	16.5	7.5	1.5	782.366751	-1.4686	non-integer DBE
50	31	12	12	0	13.5	1.5	1	782.366569	-1.7012	non-integer DBE
48	34	9	13	0	18	9	0.69	782.369248	1.723	possible
54	35	14	6	0	12.5	-1.5	2.33	782.369255	1.7319	non-integer DBE
60	46	0	3	4	19	19	0*	782.366457	-1.8444	DBE - O > +10
62	39	8	2	3	10.5	2.5	4	782.366282	-2.0681#	non-integer DBE
56	38	3	9	3	16	13	0.33	782.366275	-2.077#	DBE - O > +10
58	31	11	8	2	7.5	-3.5	1.38	782.3661	-2.3007#	non-integer DBE
52	30	6	15	2	13	7	0.4*	782.366093	-2.3097#	too low O/N
54	46	11	0	0	20.5	9.5		782.366066	-2.3442#	non-integer DBE
54	23	14	14	1	4.5	-9.5	1	782.365918	-2.5333#	non-integer DBE
64	38	2	5	5	10	8	0.4*	782.365806	-2.6765#	too low O/N

*O/N ratio was too low

 Δm , mass error (ppm) = [(m/z (experimental mass) – calc mass)/calc mass] × 1,000,000

 $^{\#} \left| \Delta m \right| > 2 \text{ ppm}$

Table S2: Gradient for the metallophore separation using the UHPLC-HRMS system. Eluent A: 1 mmol L^{-1} ammonium acetate in water and 2% (v/v) acetonitrile, eluent B: 1 mmol L^{-1} ammonium acetate in acetonitrile and 10% (v/v) water.

Time [min]	Eluent A	Eluent B	
	[%]	[%]	
0	100	0	
0.20	100	0	
8.00	0	100	
9.00	0	100	
9.10	100	0	
10.0	100	0	

Metallomics

Table S3: Fe-complexes were determined in the growth medium (MIM or BAP) of various *Frankia* strains using metal isotope-coded profiling. The masses of the uncharged ⁵⁶Fe-complex are listed. The positive (+) or negative (-) ionisation mode for determination of the metallophores is stated (¹: MS-adducts in positive mode; ²: MS - adducts in the negative mode were also found).

Mass of ⁵⁶ Fe complex [amu]	Strains	Retention time [min]	MS - polarity mode	Medium
816.2621 ¹	CH37	2.3	+/-	MIM
802.2817 ¹	CH37, Ea1-12	2.23	+	MIM
830.2758 ^{1,2}	CH37, Cj1-82, BCU 110501, Arl3	2.34	+/-	MIM/BAP
830.8643 ¹	Ea1-12	2.45	+	BAP
834.2706 ¹	CH37	2.28	+/-	MIM
847.6644	CH37	0.72	-	BAP
848.2881 ^{1,2}	CH37, Ea1-12	2.49	+/-	MIM/BAP
852.2811 ¹	CH37	2.36	+/-	MIM/BAP
855.7049	Cj1-82	4.18	-	MIM
862.3039 ¹	CH37, Cj1-82, Ea1-12, DC12, BCU 110501	2.62	+/-	MIM/BAP
866.3005	CH37	1.53	-	MIM/BAP
868.2896 ¹	BCU 110501	2.5	+	MIM
869.2844	CH37	2.28	+	MIM
876.0527	CcI3 (Lab. Boyer)	2.67	+	MIM/BAP
889.3217	BCU 110510	2.17	+	MIM
897.3525 ¹	ACN14a, Cg70.4, Cg70.9, Cj1-82, CcI3 (Lab. Boyer), BCU 110501, Arl3	2.276	+/-	MIM/BAP
900.3190 ¹	CH37	2.69	+	MIM
907.3339	BCU 110501	2.19	-	MIM
908.3227	CH37	2.41	+	MIM
914.3357 ^{1,2}	CH37	2.61	+/-	MIM
931.1315 ¹	BCU 110501	3.47	+	MIM/ BAP
932.3462 ¹	CH37	2.32	+/-	MIM
946.3645 ¹	CH37	2.73	+	MIM
949.1409 ¹	BCU 110501	3.47	+	BAP
949.1431 ¹	CcI3 (Lab. Boyer)	3.26	+	MIM
955.3100	CcI3 (Lab. Boyer)	2.35	+	MIM/BAP
957.3159 ^{1,2}	CH37, ACN14a, Ea1-12, CcI3 (Lab. Boyer), CcI3 (Univ. Laval)	2.82	+/-	MIM/BAP
975.3268	ACN14a	2.5	-	MIM
997.3093	ACN14a	2.5	-	MIM
997.3495 ¹	Arl3	2.25	+	BAP
1000.3334	CH37	2.66	-	MIM
1001.2795	ACN14a	2.84	+	MIM
1020.3536	CH37	2.29	-	MIM
1061.4418	CH37	3.6	+	MIM
1088.2085	BCU 110501	3.78	+	MIM

Table S4: Cu-complexes were determined in the growth medium (MIM) of various *Frankia* strains using metal isotope-coded profiling. The positive (+) or negative (-) ionisation mode for determination of the metallophores is stated.

Mass of ⁶³ Cu ^{II} - complex [amu]	Strains	Retention time [min]	MS - polarity mode
359.9941	CH37	2.5	+
381.0737	CH37	3.47	+
400.0545	CH37, ACN14a	1.36	+
439.0904	CH37	0.98	+
443.0677	CH37	5.12	+
470.1214	CH37	0.84	+
474.0236	ACN14a	2.21	+/-
496.1117	CH37	0.84	+
498.1278	CcI3 (Univ. Laval)	0.82	+
512.1459	CcI3 (Lab. Boyer)	1.44	+
518.0977	CH37	3.16	+
528.1746	CH37	2.58	+
543.0931	CH37	3.08	+
550.0962	ACN10a, ACN12a, ACN14a,	1.18	+
	CcI3 (Lab. Boyer), CH37,		·
	Cg70.4		
559.1607	CH37	3.98	+/-
562.1913	CcI3 (Univ. Laval), CcI3 (Lab. Boyer)	1.93	+/-
572.0781	DSMZ 44251	1.19	+
573.1224	CH37	1.15	+
578.0930	ACN14a	2.27	+/-
590.0657	CJ1-82, CcI3 (Lab. Boyer)	1.35	+
603.1154	CH37	1.36	+
603.1710	CcI3 (Lab. Boyer)	0.88	+
604.1539	CH37	1.15	+/-
606.1226	CH37	2.91	+
618.1736	CH37, DC12	3.28	+/-
626.1258	Cg70.9, CcI3 (Univ. Laval)	1.8	+
630.1442	CH37	1.15	+
642.0742	CH37 CH37	2.17	+/-
656.1363	Eal-12	1.86	+
658.0673	CH37	2.48	+
659.0783	CcI3 (Univ. Laval)	1.04	+
663.9572	CH37	5.11	+/-
680.20891	CH37 CH37	3.53	+
688.1754	CH37 CH37	3.47	+/-
692.1723	ACN14a	3.04	+/-
713.1699	Cg70.4	5.04 6.11	+/-
715.1819	CcI3 (Univ. Laval), CH37,	6.04	+
	BCU 110501		
718.1645	CH37	3.53	+
731.1791	CPI1	5.21	+/-
823.2669	CH37	3.19	+
824.2145	CH37	5.11	+/-
856.2882	CH37	3.47	+
949.3090	ACN14a	2.64	+/-

Table S5: Zn-complexes were determined in the growth medium (MIM) of various *Frankia* strains using metal isotope-coded profiling. The positive (+) or negative (-) ionisation mode for determination of the metallophores is stated.

Mass of ⁶⁶ Zn ²⁺ - complex [amu]	Strains	Retention time [min]	MS - Polarity
663.146	CcI3 (Lab. Boyer)	2.76	+
677.0263	BCU 110501	1.82	+
695.1709	ACN14a	3.1	+/-
706.3383	ACN12a	4.75	+
718.1749	ACN12a, CcI3 (Lab. Boyer), CH37	4.07	+/-