This is the final draft of the contribution published as:

Muurinen, L., Oksanen, J., Vanha-Majamaa, I., **Virtanen, R.** (2019): Legacy effects of logging on boreal forest understorey vegetation communities in decadal time scales in northern Finland *For. Ecol. Manage.* **436**, 11 - 20

The publisher's version is available at:

http://dx.doi.org/10.1016/j.foreco.2018.12.048

Legacy effects of logging on boreal forest understorey vegetation communities in decadal time scales in northern Finland

3

4	Lauralotta Muurinen1*, Jari Oksanen1, Ilkka Vanha-Majamaa2, Risto Virtanen1,3,4
5	1 University of Oulu, Department of Ecology and Genetics, Pentti Kaiteran katu 1, 90014 Oulu, Finland
6	2 Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
7	3 Helmholtz Center for Environmental Research – UFZ, Department of Physiological Diversity,
8	Permoserstraße 15, Leipzig 04318, Germany
9	4 German Centre for Integrative Biodiversity Research, Deutscher Platz 5e, 04013 Leipzig, Germany
10	* Corresponding author.
11	E-mail: lauralotta.muurinen@oulu.fi
12	Address: Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014 Oulu, Finland
13	Phone: +358449864713
14	Keywords: vegetation succession, forest management, forest thinning, resampling, long-term change, coarse
15	woody debris
16	
17	Nomenclature:
18	Species nomenclature and authority according to plantlist.org in 3.5.2018. Abbreviation of species names in
19	Appendix A.

20 Abbrevations: Coarse woody debris: CWD

21 ABSTRACT

22 We followed how forest thinning, repeated twice during a period of 93 years, altered understorey plant 23 community composition, affected the succession of forest understorey vegetation and the accumulation of 24 logs in the long-term. The study was carried out in northern Finland by resampling 20 permanent experimental plots, established after wildfire in 1920. Understorey vegetation was inventoried in 1961, 1986 25 26 and 2013 with forest thinning treatments done in 1953 and 1987, using four and three different harvesting 27 intensities, respectively. We found succession to override the effects of forest logging until the latest study period (2013). We observed negligible long-term effects of logging on understorey communities during the 28 29 two mid-successional stages (1961, 1986), when the forest was 41 and 66 years old, respectively. The 30 impacts of logging on understorey vegetation were strongest in the latest successional stage (2013), the forest being at the age of 93 years. In the latest successional stage (2013) logged plots had less coarse woody debris 31 32 than unlogged plots. Forest management thus influenced the key feature for forest biodiversity and potential habitats for endangered species. These findings are of major interest since the studies of long-term impacts of 33 34 less intensive forest management practices are scarce. Our results suggest that in addition to possible immediate impacts, harvesting treatments have legacy effects (subtle or delayed inherited effects of forestry 35 in the past) that influence the forest understorey vegetation community composition and the amount of 36 coarse woody debris. This finding deserves special attention when planning species conservation, multiple 37 38 use of forests and sustainable forestry.

40 1 INTRODUCTION

Succession is described as progressive changes in species composition and community structure, caused by 41 natural processes over time (Helms, 1998). In boreal forests, disturbances trigger forest succession 42 43 (Kuuluvainen, 2002), but the increase of coniferous trees (especially spruce Picea spp.) along succession is 44 an important driver for changes in understorey vegetation communities and structural diversity, as the 45 increased shading creates unique microclimatic conditions, and affects the accumulation and quality of 46 coarse woody debris (CWD hereafter) (Caners et al., 2013; Hedwall et al., 2013; Verstraeten et al., 2013). 47 Gendreau-Berthiaume et al. (2015) show evidence of long-persistent effects of past disturbances on forest 48 understorey vegetation. The amount of light reaching the forest floor is closely related to the successional 49 stage, total canopy cover and species composition of the tree layer (Messier et al., 1998). The shift in the tree canopy structure during forest succession influences light conditions, microclimate and litter properties, thus 50 51 affecting the composition of understorey vegetation (Roberts and Gilliam, 1995). The natural successional period in northern boreal forests is even 700 years (Shorohova et al. 2009), whereas a typical rotation period 52 53 in the commercial forests is less than 100 years (Hedwall et al., 2013). Uotila and Kouki (2005) find that the main patterns of understorey vegetation succession can be similar between managed and unmanaged forests, 54 but the managed and unmanaged forests still differ in the age structure of trees and in the amount of CWD. 55

56

57 The majority of boreal forest species have adapted to utilize spatially and temporally varying habitats and 58 resources (Kuuluvainen, 2002), which has increased the stability of boreal forests at large scales and over 59 long time periods (Noss, 2001). However, since the 1950s, the forest management in Finland has become more intensive to maximize timber production (Rouvinen and Kuuluvainen, 2005). Selective cuttings were 60 61 replaced by clear-cuttings and currently, the forests are typically thinned two or three times during a rotation 62 period of 60-100 years (Siiskonen, 2007; Hedwall et al., 2013). Thinnings alter canopy formation and 63 composition (Thomaes et al., 2012), and forestry practices have homogenized stand structures, as the aim of 64 forestry has mainly been to grow even-sized and even-aged monocultures (Rouvinen and Kuuluvainen, 65 2005). Nowadays, interest in a wider set of forestry practices (e.g. continuous cover forestry) is growing

(Koivula et al., 2014, Vanha-Majamaa et al. 2017) to progress towards more sustainable forestry (Peura et al.
2018).

68

69 The managed forests lack many structurally important features for maintaining biodiversity (Kuuluvainen, 70 2002), most importantly CWD (Jonsson and Jonsell, 1999; Paillet et al., 2010), as the natural accumulation 71 of logs through self-thinning and disturbances is disturbed (Sturtevant et al., 1997). Consequently, many forest-dwelling organisms and nature types have become threatened (Rassi et al., 2010). According to 72 73 Tonteri et al. (2016) forest logging influences especially the abundance-relationships between light-74 demanding and shade-tolerant species, and in Finland and in Sweden intensive forest management is a 75 driving factor for the changes in the abundances and frequencies of understorey plant species (Reinikainen et al., 2000; Sundberg, 2014; Hedwall and Brunet, 2016). However, this development is not restricted to 76 77 Finland or Northern Europe but should be a global concern, even though the European forests have been 78 most widely utilized (Paillet et al., 2010).

79

When comparing the effects of different logging treatments on forest understorey species in a ten-year time 80 81 scale, Vanha-Majamaa et al. (2017) have found the least intensive treatments to best maintain understorey 82 vegetation similar to that of the unmanaged forests. Tonteri et al. (2016) show, in addition to immediate 83 impacts, time-lag in responses of understorey species to forest management. These subtle or hidden inherited 84 anthropogenic changes to the systems can be considered as legacy effects (James, 2015). Yet, the long-term 85 persistence of these effects has not been much studied (Tonteri et al., 2016), and the successional patterns of 86 understorey vegetation in the natural and managed forests are poorly documented (Uotila and Kouki, 2005). 87 Moreover, studies focusing on less intensive forest management practices are scarce, even though such 88 practices are widely used. Thus, there is a clear need for understanding natural long-term dynamics of boreal 89 forest understorey vegetation as well as studying how different forest management practices alter this 90 development.

92 In this study, we followed how forest thinning, repeated twice during a period of 93 years, affected the succession of forest understorey vegetation, altered understorey plant community composition, and the 93 accumulation of logs. We also studied the responses of individual plant species that either play a key role in 94 95 supporting ecosystem functions or can be used as indicator species. Twenty permanent experimental plots 96 were established and sown by Scots pine (Pinus sylvestris) in year 1920, one year after a wild fire, and their 97 understorey vegetation was inventoried three times (1961, 1986, 2013) allowing us to cover a time-span of 98 52 years. We hypothesized forest logging would (i) change the successional developmental pathway of 99 understorey vegetation, (ii) alter understorey community composition, and (iii) have negative long-term 100 effects on the amount CWD.

102 2 MATERIALS AND METHODS

103 2.1 Study area

The study was carried out in Kivalo research area, Kaihuanvaara, Northern Finland (66 ° 23'N, 26 ° 54'E). 104 (Fig 1.) The average annual temperature in the study area varies from 0 to 1 °C, annual rainfall from 550 to 105 106 600 mm (Vanha-Majamaa and Lähde, 1991), and the length of growing season from 135 to 145 days (Finnish Meteorological Institute a). The average temperature of the coldest month (January) is -11.4 °C and 107 the average temperature of the warmest month (July) is 15.4 °C (1981–2010) (Finnish Meteorological 108 Institute b). Duration of the snowy period is approximately 175-190 days (from early November till late 109 110 April–early May), and the average snow depth in March is 60-80cm (1981–2010) (Finnish Meteorological 111 Institute c). In Northern Finland particularly autumns and springs have warmed, the snow cover has become thinner and precipitation during the growing season has increased in the last decades (Kivinen et al., 2017; 112 113 Korpela et al., 2013). The Kaihuanvaara research forests have been used as study sites by Finnish forestry 114 researchers (Sirén, 1955, Vanha-Majamaa and Lähde, 1991; Salminen and Jalkanen, 2007).

115

The experimental plot setup, used in this study (Fig. 1), was established in 1920 by the former Finnish Forest 116 117 Research Institute (METLA) after a wildfire of 600 ha in 1919, in order to study the effects of different 118 forest thinning intensities on growth of artificially regenerated Scots pine (experiment B 13 I in Heikinheimo 119 1961). The previous large forest fire in the same site was in 1877. In both fires most of the study area, 120 including our study site, was burned. The study site includes 20 permanent 0.1 ha plots that are located on 121 the western slope of the hill at an altitude range of 180–250 m a.s.l. Bedrock on Kaihuanvaara is quartzite, 122 covered with glacial till deposits (Vanha-Majamaa and Lähde, 1991). The study site represents mesic forest 123 vegetation, which in absence of forest management, would be dominated by Norway spruce with varying 124 portions of Scots pine and deciduous tree species.

126 The study plots were first logged in 1953 and secondly in 1987, the forest being 33 and 66 years old, respectively. In both years 16 plots were logged and 4 plots remained unmanaged (Fig. 1). These unmanaged 127 128 plots are used as controls. The first logging (1953) was done using four harvesting intensities: strip harvesting (all trees were cut from strips corresponding to 30% of the total area of the plot), commercial 129 thinning (all commercially valuable co-dominant and intermediate trees were harvested), heavy thinning (all 130 but dominant trees were removed), light thinning (intermediate trees and understorey trees were harvested, 131 132 additional co-dominant trees were left) and a control treatment (no logging) (Heikinheimo, 1961). The second logging (1987) was done using three different harvesting intensities: light (700 remaining stems/ha), 133 medium (500 remaining stems/ha), heavy (300 remaining stems/ha) and a control treatment (no logging) 134 (Archives of Natural Resources Institute Finland, Rovaniemi, Kaihuanvaaran kasvatustiheyskokeet, 135 136 unpublished documentation). The individual histories for each study plot are shown in Table 1.

Plot	1987	1953
В	control	control
С	control	control
S	control	control
V	control	control
А	light	strip harvesting
Κ	light	commercial thinning
N	light	commercial thinning
Е	medium	strip harvesting
L	medium	light thinning
М	medium	light thinning
R	medium	commercial thinning
Т	medium	light thinning
U	medium	heavy thinning
Y	medium	commercial thinning
D	heavy	strip harvesting
F	heavy	strip harvesting
0	heavy	heavy thinning
Р	heavy	heavy thinning
Х	heavy	heavy thinning
Ζ	heavy	light thinning

137 Table 1. Treatments of the study plots in 1987 and 1953, organized based on the treatment in 1987.

Fig. 1 Location of Kaihuanvaara and aerial photographs from the study site from the years 1971, 1987 and 2011 (18 years, same year and 24 years after the previous logging, and ten years after, one year after and two years before the vegetation inventories, respectively.) Orange circles show the location of the study plots and the locations of each study plot are shown in the insert (map according to Heikinheimo 1961). Letters indicate different study plots and green color control plots. In top center of the figure are shown the schematic positions and the order of vegetation recording of the 20 regularly placed 1 m² vegetation squares.

147	Comparisons of the effects of different harvesting treatments (1953) on the number of stems and stem
148	volume between 1953 and 1986 are shown in Appendix B. The stem number has decreased from
149	approximately 6000 stems/ha (1953) to 3000 stems/ha (1961) to 1000 stems/ha (1986) on logged sites due to
150	the treatments and self-thinning. On control sites the number of stems has decreased more slowly from
151	approximately 6000 stems/ha (1953) to 5000 stems/ha (1961) to 2500 stems/ha (1986) through self-thinning

At the same time, the stem volume has increased from approximately 150 m³/ha (1953) to 200 m³/ha (1961)
to 250 m³/ha (1986) on logged sites and from 170 m³/ha (1953) to 250 m³/ha (1961) to over 325 m³/ha
(1986) on control sites.

155

156 2.2 Vegetation inventories

Vegetation was inventoried three times during the study period, in 1961, 1986 and 2013. The first vegetation 157 158 inventory was done 8 years after the first logging (1953), the forest being 41 years old, and the second inventory 33 years after the first logging, the forest being 66 years old. The third vegetation inventory was 159 done 60 years after the first (1953), and 27 years after the second logging (1987), the forest being 93 years 160 161 old. The inventories were done in middle to late growing season: during the first weeks of July in 1961 and 162 2013, and in the end of July-early August in 1986. Inside each 0.1ha study plot (20 replicates) there were 20 163 permanent 1m² vegetation quadrats, placed regularly as a grid, from which the vegetation was inventoried 164 (Fig. 1). The inventories were based on visual estimation of percentage coverage of each plant species and litter. Field and bottom layers were inventoried separately using a scale of 0.25, 0.5, 1, 2 ... % (1 % 165 166 intervals). The vegetation inventory methods were similar across years but conducted by different investigators each year (1961: unknown botanist, 1986: I. Vanha-Majamaa, 2013: L. Muurinen). The 167 168 vegetation data were then averaged.

169

Taxonomic harmonization was done to minimize differences in the identification level of species. 170 Differences in species identification and inventory methods were eliminated or minimized by grouping 171 172 species, especially bryophytes and lichens, into collective species groups (genera or morpho-groups). Specialist species clearly associated only to special substrates such as stones or decaying wood were also left 173 174 out from the analysis. The harmonized data included 57 taxa; 36 belonging to vascular plants, 14 to bryophytes and 7 to lichens (Appendix D). The variation in the number of species in total and in field and 175 176 bottom layers separately between treatments and years is shown in Appendix C. In the analysis square root 177 transformation was performed on the visually estimated cover percentage values to reduce the impact of

highest cover values. Non-harmonized data from year 2013 were used in the analysis concerning this year
only. In year 2013 altogether 70 species or taxa were found from the non-harmonized data; 37 belonging to
vascular plants, 24 to bryophytes and 9 to lichens (Appendix A).

181

182 2.3 Environmental variables

For the analysis considering the whole study period, stand age was used to describe successional stage 183 184 (early-mid: the forest 33 years old, mid: the forest 66 years old and late-mid: the forest 93 years old). Since based on the preliminary analysis, the impacts of the different harvesting intensities on the understorey 185 vegetation did not differ from each other, only logged and control comparison was used. The amount of litter 186 187 (as percentage cover) was also used as an explanatory environmental variable. For the analysis regarding 188 year 2013 only, harvesting intensity of the second logging was used as an ordered factor (control, light, 189 medium, heavy). Basal area of pine (Pinus sylvestris), spruce (Picea abies) and birch (Betula pendula and B. 190 *pubescens*) was measured in 2013 in field using relascope. The proportion of birch and spruce of total basal 191 area was calculated to describe the proportion of mixed wood. Also the numbers of snags and logs (diameter 192 being over 10 cm) inside each study plot were counted, considered as CWD (Yan et al., 2006). The decay stage of the logs was estimated according to Maser et al., (1979), using only the first three decay stages out 193 194 of five.

195

196 2.4. Statistical analysis

The data were standardized among years by equalizing the average total cover for each study year. In the ordination analysis a Wisconsin transformation was used: the cover of each species was first divided by its maximum, and then all sample plots were divided by their total (Faith et al., 1987). This transformation gives the classical "strict" Bray-Curtis measure (Yoshioka, 2008) and also avoids the spurious dissimilarities data, caused by different total abundances (Warton et al., 2012).

203 The data were ordinated with constrained distance-based redundancy analysis dbRDA (McArdle & Anderson 2001) and partial non-metric multidimensional scaling NMDS (Kruskal, 1964). These are robust 204 205 ordination methods that can well cope with non-linear unimodal species response models of various shapes (Minchin, 1987). Partial NMDS is a natural extension of the dbRDA framework (McArdle & Anderson 206 2001) where the residuals after constraints are subjected to NMDS. To focus on the successional change in 207 208 vegetation, the effect of plot was partialled out before submitting the data to NMDS. This method also 209 removes the effect of spatial distance. We used partial NMDS for the overall analysis of succession, and 210 dbRDA for the analysis of the non-harmonized data in year 2013. Similar analysis was conducted for the other two years as well, but no differences were detected. Full model for year 2013 was built by including all 211 environmental variables into it (e.g. harvesting intensity, basal area of pine, proportion of mixed wood, 212 amount of litter, number of snags and the numbers of logs in each of the three decay stages) and it was 213 214 reduced to final model that included only litter and harvesting intensity. Model significance was tested using 215 randomization test with 9999 permutations.

216

For the ordination figures confidence ellipses were counted as a visual tool to help the interpretation of the differences in class means. Confidence ellipses are based on standard error, which is based on standard deviation, which then is dependent on the size of the group. Confidence ellipses were calculated using Bonferroni correction.

221

The responses of two strongest indicator species (*Deschampsia flexuosa* as an indicator for disturbance and *Goodyera repens* for old-growth forests), and the four most dominant species (*Vaccinium myrtillus* and *V. vitis-idaea* from field layer, and *Pleurozium shreberi* and *Hylocomium splendens* from bottom layer) and litter on logging were analyzed using t-test, as there was a clear difference in variance between the groups. The impact of harvesting intensity on the number of logs, on the number of stems and stem volume, as well as the impacts of year and logging on the number of species, were analyzed using general linear models and quasi-Poisson dispersion. Model significance was tested using analysis on variance and F-test. Pairwise

- in the R statistical environment (R 3.3.3.). The vegan package (Oksanen et al., 2017) was used for the
- 231 multivariate analysis.

232 3 RESULTS

238

233 3.1 Impacts of forest harvesting on understorey vegetation succession and community composition

234 Understorey communities strongly differed among years with only negligible effects of logging on this

- development in the first two study periods (years 1961, 1986), when the forest was 41 and 66 years old,
- respectively (Fig. 2). In the last study period (2013) the logged sites differed from control sites, 26 years after
- the second logging, as the forest was 93 years old (Fig. 2).

Fig. 2 Non-metric multidimensional scaling plot of understorey communities ($R^2=0.991$, stress=0.097) with fitted Bonferroni corrected 95% confidence interval ellipses around treatment centroids. White circles and gray dashed line indicate control plots (n=4), and black circles and solid line logged plots (n=16).

242 Non-harmonized data from year 2013 was used to study the impacts of the logging intensity of the second thinning in more detail. According to this reduced model, harvesting intensity significantly influenced 243 244 community composition (df=3, F=1.619, p=0.005), and the amount of litter was significantly associated with community composition (df=1, F=3.447, p=0.005) (Fig. 3). The understorey vegetation communities of 245 control plots differed from the communities of medium-logged and heavily logged plots, and the lightly 246 247 logged ones differed from heavily logged ones (Fig. 3). The understorey communities were separated 248 linearly by increasing harvesting intensity, even though the impacts of neighboring treatments did not differ 249 from each other (Fig. 3).

250

251 Especially some herbaceous species (e.g. Linnaea borealis, Melampyrum pratense, and Solidago virgaurea), graminoids (e.g. Deschampsia flexuosa) and tree seedlings (e.g. Betula spp., Populus tremula, and Salix 252 253 spp.) were associated with logged sites, whereas some other species (e.g., Goodyera repens, Lysimachia 254 europaea, Ptilium crista-castrensis) and liverworts, such as Calypogeia integristipula, were associated with 255 control plots (Fig. 3). Especially the control plots showed high variation in the amount of litter, which was also reflected in the species assemblage of bryophytes: Brachytheciaceae – species (Sciuro-hypnum reflexum, 256 S. oedipodium and Brachythecium salebrosum) and Plagiothecium laetum being associated to higher 257 258 amounts of litter, and feather mosses (Hylocomium splendens and Pleurozium schreberi), liverworts (e.g. Barbilophozia coll.), and some other mosses (e.g. Dicranum polysetum, D. majus and Polytrichum 259 260 commune) to lower amounts of litter (Fig. 3).

Fig. 3 Distance-based RDA ordination (dbRDA) using reduced model. Different harvesting intensities (df=3,
F=1.6187, p=0.005) (control n=4, light n=3, medium n=7 and heavy n=6) are separated with fitted
Bonferroni corrected 95% confidence interval ellipses around each treatment centroid. The variation in the
amount of litter (df=1, F=3.4474, p=0.005) is visualized using smoothened trend surface and an arrow
showing the direction of linear increase in the amount of litter. If species names have been overlapping,
species are ordered with priority in abundance. Abbreviations used can be found from Appendix A.

268

269 3.2 Changes in understorey vegetation community composition during the study period

270 There was a clear between-year variation in species abundances (Fig. 4), but no difference in the total

number of species, the number of vascular plants, or the number of bryophytes and lichens between years,

harvesting treatments, or the interaction of years and harvesting treatments (Appendix C). Majority of the

species maintained their populations during the whole study period and only few species were detected only

- once (Fig. 4). Many lichen species (*Cladonia rangiferina, C. arbuscula, Nephroma arcticum, Peltigera* sp.
- and *Stereocaulon* sp,) were common in 1961 but disappeared from all sites after the first vegetation
- 276 inventory (Fig. 4). Similarly, some herbaceous species (e.g. Antennaria dioica, Dactylorhiza maculata,
- 277 Diphasiastrum complanatum, Epilobium angustifolium and Gymnocarpium dryopteris), bryophytes (e.g.

Polytrichum juniperinum, and *Sanionia uncinata*) and lichens (*Peltigera aphthosa*) that were common in
1961 declined either in frequency, in coverage or in both from year 1961 to years 1986 and 2013 (Fig. 4).
Majority of these species declined smoothly during the study period but for some species year 1986 was a
threshold (Fig. 4). They either disappeared (e.g. *Antennaria dioica* and *Pyrola* sp.) or declined either in
coverage (e.g. *Cladonia* sp., *Melampyrum sylvaticum* and *Ptilium crista-castrensis*) or in both coverage and
frequency (e.g. *Hieracium* sp.) after this year (Fig. 4).

284

285 Some herbaceous species (e.g. Lysimachia europaea, Maianthemum bifolium and Melampyrum pratense), 286 graminoids (e.g. Deschampsia flexuosa and Luzula pilosa), dwarf shrubs (Linnaea borealis) and bryophytes 287 (Pleurozium schreberi) had a peak in 1986, while other dwarf shrubs (Vaccinium myrtillus and V. vitis-288 idaea) and bryophytes (e.g. Dicranum polysetum and Hylocomium splendens) tended to increase by 2013 289 (Fig. 4). The species abundances returned mostly to the level of year 1961 by year 2013 except for few 290 species (e.g. Deschampsia flexuosa and Lysimachia europaea) that decreased from the pre-peak level to year 291 2013. Correspondingly, some herbaceous species (e.g. Goodyera repens, Lycopodium s.s., Moneses uniflora and Neottia cordata), tree seedlings and bryophytes (e.g. Barbilophozia coll., Dicranum polysetum, 292 293 Dicranum sp., Hylocomium splendens and Ptilidium ciliare) had an overall smooth increasing trend in time 294 (despite the slight decline in 1986 for some of the species), or established after year 1986 (e.g. *Phegopteris* connectilis and Sphagnum sp.) (Fig. 4). 295

296

The species composition remained relatively constant during the whole study period (Fig. 4). The two most dominant species (*Pleurozium schreberi* and *Vaccinium myrtillus*) had much higher abundance than any other species (Fig. 4) They also maintained their dominance through the study period (Fig. 4). The frequency and abundances of subdominant species (e.g. *Deschampsia flexuosa, Dicranum polysetum, Gymnocarpium dryopteris, Hylocomium splendens, Linnaea borealis, Maianthemum bifolium, Polytrichum commune* and *Vaccinium vitis-idaea*), varied between the years but they still maintained their populations through the whole study period (Fig. 4). Species that can be used as indicators for valuable forest habitats (Goodvera 304 repens, Neottia cordata and Moneses uniflora) (Skogsstyrelsen, 2014) increased in frequency by year 2013,

and in case of *Goodyera repens* also in coverage. Detailed information about the mean coverages of

306 individual species and species groups between different treatments in each year can be found from Appendix

307 D.

equalizing the average total cover for each study year, and is visualized using Braun-Blanquet scale.

314

315 3.3 Species responses and the biodiversity impacts of the second logging

316 Forest logging significantly affected the abundance of only few species (Fig. 5). Deschampsia flexuosa

317 (df=8.431, t=3.427, p=0.008), and *Hylocomium splendens* (df=5.723, t=-2.51, p=0.048) had higher coverage
318 on logged plots, whereas *Goodyera repens* (df=3.987, t= 2.598, p=0.060) had slightly higher coverage on
319 control plots. Logging did not have any statistically significant effect on the coverage of the three most
320 abundant species: *Vaccinium myrtillus, V. vitis-idaea* and *Pleurozium schreberi* (Fig. 5) or the amount of

321 litter (Fig. 6).

Fig. 5 Variation in the coverage of four most dominant species, and species used as indicators for
disturbance and late successional conditions (*Deschampsia flexuosa* and *Goodyera repens*, respectively)
between logged (n=16) and control (n=4) plots in year 2013. Means are represented with black lines and a
statistically significant difference is indicated by difference in dot color (white and black), whereas similar
dot color (gray) indicates no statically significant difference. Note the different scales in y-axis.

Fig. 6 The amount of litter (% cover) between logged (n=16) and control (n=4) plots in 2013. Means are
represented with black lines and similar dot color (gray) indicates no statically significant difference.

329

The harvesting intensity of the second logging significantly affected the total number of logs (df= 3, 330 F=51.279, p<0.001) as well as the number of the logs in all three decay stages (stage 1: df=3, F=6.761, 331 p<0.001; stage 2: df=3, F=28.182, p<0.001; stage 3: df=3, F=37.904, p<0.001) (Fig. 7). The number of logs 332 333 slightly decreased with increasing logging intensity, but the difference between pairwise comparisons was 334 statistically significant only between the different harvesting intensities and control treatment (Fig. 7). The 335 accumulation of logs has been rather fast during the first half of the study period (1953–1986) (Appendix B, reduction of approx. 3000 stems/ha during 1953–1961 and approx. 1000 stems/ha during 1961–1986 on 336 control sites). At this time, the tree volume has increased rapidly in control plots, which must have resulted 337 338 from increase in trunk size (Appendix B). During the latter half (1986–2013) the accumulation of logs has slowed down, as there is four, five times less newly fallen logs (Stage 1) than older logs (Stages 2 and 3) on 339 control sites (Fig. 7) On the logged experimental plots there were only a couple of logs, regardless to the 340 341 decay stage (Fig. 7).

Fig. 7 Variation in the number of logs in total and in each decay stage (1-3) in 2013. Means are represented as black lines. Difference in dot color (white and black) indicates statistically significant difference in the number of logs between the harvesting treatments (control n=4, light n=3, medium n=7, heavy n=6).

346 4 DISCUSSION

347 4.1 Understorey vegetation succession

348 The main driver for the changes in understorey vegetation communities was time, and the impacts of the harvesting treatments on understorey communities were negligible in the first two study periods (1961,1986). 349 350 The overall successional pattern of the understorey vegetation during the study period on both logged and control sites followed similar pattern from dominance of lichens, acrocarpous mosses and light demanding 351 352 herbs to dominance of shrubs, pleurocarpous mosses, liverworts and shade-tolerant vascular plants, which is 353 similar to many other reported results (e.g. Økland, 2000; Nilsson and Wardle, 2005; Uotila and Kouki, 354 2005). The forest canopy closes relatively rapidly after forest thinning, creating only a short-term change in 355 light conditions (Hedwall et al., 2013). Consequently, it is likely that the responses of understorey vegetation on harvesting treatments were so immediate and short-term that they were not detected in this study, due to 356 357 the relatively long sampling interval of the vegetation (8 years and 27 years) after the first logging (1953).

358

359 Successional stage and logging was not observed to affect the number of species contrary to e.g. Uotila and Kouki (2005), and the changes in species presence along the study period and between thinning treatments 360 361 were minor. Our result may be partly due to the fact that majority of species in the studied forest sites 362 common forest floor generalists that have wide physical tolerance ranges and large and well connected 363 regional species pool, affiliating them to maintain their populations in time, and increasing their resistance 364 and resilience to disturbances (Kuuluvainen, 2002; Bergeron et al. 2010). These generalist forest species can 365 tolerate both early and late successional conditions and forest management practices even though they are 366 not necessarily favored by them (e.g. Nilsson and Wardle, 2005; Økland, 2000; Tonteri et al., 2016; Uotila 367 and Kouki, 2005). The abundances of species varied between years, but did not remarkably differ between 368 the harvesting intensities. Consequently, the differences in community assemblages were caused mainly by 369 the changes in abundances of species, but not by the species presence, as has been found by Nieppola (1992).

371 Even though the overall gradient in changes in understorey communities was mainly similar as reported in literature (e.g. Økland, 2000; Nilsson and Wardle, 2005; Uotila and Kouki, 2005), a shift in understorey 372 373 vegetation community composition in year 1986 from dominance of dwarf shrubs to dominance of herbs and graminoids was detected. Also Pleurozium schreberi increased in the expense of other bryophytes, especially 374 Hylocomium splendens and Dicranum polysetum, The trend was similar on both control and logged plots. 375 376 Deschampsia flexuosa can be classified as light, Linnaea borealis, Solidago virgaurea, Vaccinium vitis-377 idaea, Dicranum polysetum and Pleurozium schreberi as semi-light, Goodyera repens and Vaccinium 378 myrtillus as semi-shade and Hylocomium splendens as shade species (see Tonteri et al. 2016). As many of 379 the species with higher cover in 1986 were light-favored based on Ellenberg light indicator values (Ellenberg et al., 1991), some disturbance or stress event may have reduced canopy closure (e.g. a storm event, insect 380 381 outbreak, massive snow load or extreme winter), leading to increase in the amount of light on forest floor. 382 However, at that time the logging residue (branches, tree tops, stumps) was left in the site in loggings, which 383 has likely increased nitrogen levels of the site (Palviainen et al. 2004). Also, it is possible that changes in reindeer grazing pressure may have favored grazing tolerant graminoids (Deschampsia flexuosa) and 384 385 bryophytes (Pleurozium schreberi) over palatable dwarf-shrubs (Vaccinium myrtillus) and lichens. (Väre et 386 al. 1995; Bråthen and Oksanen, 2001; statistics of Reindeer Herder's Association, data from LUKE). However, the different timing of the inventory, annual variation in vegetation cover and the impact of the 387 388 researcher on estimating species coverage may also affect the result.

389

390 4.2 Impacts of logging

Forest logging changes tree canopy closure, and causes a sudden disturbance on soil (Peltzer et al., 1999;

392 Uotila and Kouki, 2005) and on ground vegetation, which alters the environmental conditions for
393 understorey species (Tonteri et al., 2016). The severity of soil disturbance is known to affect the community

assemblages between managed and non-managed stands (Peltzer et al., 1999; Uotila and Kouki, 2005). In

our results, the species assemblages did not differ between logged and control sites in 1961 and 1986. Yet,

396 there may be several reasons to this. The severity of disturbance created by the thinning treatments was not

397 accurately known, as neither the exact timing nor the method of timber harvesting was known. Logging as lumberjack-work or with forest machinery, and logging season evidently affects the amount of disturbance to 398 399 understorey vegetation. It is likely that at least the later logging has been done by forest machinery, which probably partly explains the stronger responses of understorey vegetation to logging. Plot size was relatively 400 small (0.1ha), causing edge effect between the plots with different harvesting intensities, which may have 401 402 disturbed detection of the responses of understorey communities on logging. Sampling interval was 403 relatively long, and it is possible that majority of the impacts have been immediate and the communities have 404 mainly recovered after logging at the time of the vegetation inventory. Moreover, the majority of species 405 used in the harmonized data were common forest floor generalists, as specialist species growing on stones and decaying wood were not included in the analyses. However, many of the sensitive specialist species 406 407 (Kuuluvainen, 2002) as well as endangered species (Rassi et al., 2010) are dependent on special substrates like decaying wood. Thus the actual impacts of the harvesting treatments probably differ from the detected 408 409 impacts on understorey vegetation.

410

On the other hand, the community assemblages between logged and control sites differed from each other during the last study period (2013), as the forest was 93 years old. Increase in logging intensity of the second logging in 1987 resulted to larger differences in the understory vegetation communities in 2013. In addition to immediate impacts, some species have been noticed to react to forestry practices with time delay (Nieppola 1992; Bergstedt and Milberg 2001; Tonteri et al. 2016). Based on the data, we cannot firmly infer, whether the communities of control sites and logged sites are diverging in 2013, or are they recovering from the previous logging achieving increasing convergence, or are the results a combination of both.

418

Only a few understorey vegetation species (*Deschampsia flexuosa*, *Goodyera repens* and *Hylocomium splendens*) showed significant long-term responses on the second logging (1987). *Deschampsia flexuosa*,
used as an indicator for disturbances, had higher abundance on logged sites in 2013, 26 years after the
second logging. The higher abundance of *Hylocomium splendens*, was likely due to the lower amount of

423 litter at the time of the inventory, not necessarily due to being favored by disturbance, and changes in abiotic conditions created by timber harvesting. Even though some individual species (e.g. *Pleurozium schreberi*) 424 425 may benefit from increased light (Gundale et al. 2012), most forest bryophytes are able to survive in shade 426 and are favored by humid microclimate, which are abiotic conditions characteristic of older forests (Frisvoll 427 and Prestø 1997). In general these bryophytes are often negatively affected by forestry practices (Jalonen and 428 Vanha-Majamaa 2001; Paillet et al., 2010).. Also changes in nutrient levels due to the decaying logging 429 residue may have favored some bryophytes on logged sites (Palviainen et al. 2004). The coverage of three 430 most dominant understorey species (*Pleurozium schreberi*, *Vaccinium myrtillus* and *V. vitis-idaea*) was not 431 affected by the logging in the long-term and they maintained their dominance in all plots throughout the study period. The only species having lower abundance on logged sites was *Goodyera repens*, which is 432 433 known to be associated to increasing amounts of spruce and old-growth forests (Økland, 2000). Boreal forest understorey vegetation and its associations with symbiotic cyanobacteria and high diversity of fungi plays a 434 key role in maintaining and regulating ecosystem processes (DeLuca et al., 2002; Read et al., 2005; Kolari et 435 al., 2006; Kauserud et al., 2008). Therefore, the long-term impacts and legacy effects of forest thinning on 436 437 ecosystem functioning deserves to be further studied.

438

439 CWD is in system level one of the most important features for forest biodiversity and endangered species (Rassi et al., 2010). Even slight extraction of timber is known to affect the amount and the quality of dead 440 wood (Tikkanen et al., 2014) as the natural accumulation of CWD through self-thinning and disturbances is 441 442 disrupted (Sturtevant et al., 1997). This was supported by our results as the thinning treatments reduced the 443 accumulation of dead logs, regardless to the thinning intensity. Sturtevant et al. (1997) show that coniferous 444 tree logs accumulate especially when the forest is between 50 and 90 years old, but this development is 445 largely dependent on disturbances and site properties. In our data rather constant accumulation during the 446 first half of the study period (1953–1986) can be assumed. During the latter half (1986–2013) the 447 accumulation possibly has slowed down. As no timber harvesting was done after the second logging, 448 majority of the logs on the logged sites can be assumed to have accumulated after year 1987, whereas control 449 sites also preserve earlier accumulated logs. This can be seen in the high number of most highly decayed

logs. However, as the stem volume has increased and the number of stems has decreased during succession,
also the quality of CWD has changed, which probably has led to a continuum of uneven sized and uneven
aged logs.

453

454 4.3 Management implications

Our results strongly suggest that multiple forest thinnings in the past have legacy effects that influence the 455 456 forest understorey community composition and the amount of CWD, a key indicator for forest biodiversity. Because harvesting intensity affected the responses of the understorey communities (the most intensive 457 harvestings leading to the strongest legacy effects) it may to be possible to support more natural-state 458 understorey community composition using lighter thinning intensities. However, according to our results, 459 460 thinnings clearly reduced the accumulation of CWD in later-successional stage, regardless to the thinning 461 intensity. Apparently, forest thinning during earlier successional stages disturbs the successional patterns and 462 development of biodiversity values (CWD), emphasizing the importance of leaving the natural later 463 successional forests outside of forestry use to support existing forest biota, as well as allowing the forests to 464 develop unmanaged over long time periods to maintain forest biodiversity in the future. The key message of accumulating legacy effects on understorey communities and biodiversity indicators should be considered 465 466 when developing and evaluating sustainable forest management practices, multiple use of the forests and planning nature conservation. 467

468 5 CONCLUSIONS

469 Our hypothesis

470	(i)	logging changes the successional developmental pathway of the forest
471		understorey vegetation, was partly rejected, as the main driver for the
472		changes in understorey vegetation communities was time and the effects of
473		forest logging on this development were marginal.
474	(ii)	logging alters understorey vegetation community composition, was partly
475		supported, as only the harvested late-mid successional communities (2013)
476		differed from non-harvested ones.
477	(iii)	logging reduces the accumulation of dead logs, was supported, as the logged
478		stands had significantly lower amount of CWD than controls.

479 The results indicate that succession of the forest understorey vegetation may override the effects of multiple 480 forest loggings until late-mid successional stages. Successional stage and logging did not affect the total 481 number of species and the changes in community assemblages in time were mainly driven by the abundances 482 of common forest-floor species, possibly supporting rather similar ecosystem functioning on both logged and 483 control sites. However, in the latest successional stage (2013), when the forest was 93 years old, logging 484 intensity together with the possible accumulation of legacy effects led to differences between understorey 485 communities and the amount of CWD. These findings are of major interest since the studies on long-term 486 impacts of less intensive forest management practices are scarce.

- 487
- 488
- 489
- 490

26

492 ACKNOWLEDGEMENTS

493	This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-
494	profit sector. Fieldwork was supported by Societas pro Fauna et Flora Fennica and Oulun Luonnonystäväin
495	Yhdistys and finalization of the manuscript was supported by Olvi Foundation and Finnish Cultural
496	Foundation. Academy of Finland (project # 259072) funded the aerial photographs. We want to thank LUKE
497	Rovaniemi and Metsähallitus Rovaniemi for making the fieldwork possible and providing valuable
498	information and data about the history of Kaihuanvaara. The open data of reindeer densities was collected by
499	LUKE (statistics of Reindeer Herder's Association). We also appreciate the contribution of Konsta
500	Happonen, Tuija Maliniemi (nee. Pyykkönen), Joel Nyberg and Laura Vuoksenmaa who have provided their
501	expertise and help during the process.
502	
503	Appendix A–D, Supplementary material
504	Supplementary data associated with this article can be found in the online version.
505	
506	
507	
508	
509	

510 REFERENCES

- 511 Bergeron, Y., Cyr, D., Girardin, M.P., and Carcaillet, C., 2010. Will climate change drive 21st century burn
- rates in Canadian boreal forests outside of natural variability: collating global climate model
- 513 experiments with sedimentary charcoal data. Int. J. Wildland Fire, 19(8): 1127–1139.
- 514 <u>https://doi:10.1071/WF09092</u>
- 515 Bergstedt, J., Milberg, P., 2001. The impact of logging intensity on field-layer vegetation in Swedish boreal
- 516 forests, For. Ecol. Manage. 154: 105–115. https://doi.org/10.1016/S0378-1127(00)00642-3
- Bråthen, K. A., Oksanen, J., 2001. Reindeer reduce biomass of preferred plant species. J. Veg. Sci 12, 473–
 480. <u>https://doi.org/10.2307/3236999</u>
- 519 Caners, R.T., Macdonald, S.E., Belland, R.J., 2013. Bryophyte assemblage structure after partial harvesting
- 520 in boreal mixedwood forest depends on residual canopy abundance and composition. For. Ecol.
- 521 Manage. 289, 489–500. https://doi.org/10.1016/j.foreco.2012.09.044
- DeLuca, T.H., Zackrisson, O., Nilsson, M.C., Sellstedt, A., 2002. Quantifying nitrogen-fixation in feather
 moss carpets of boreal forests. Nature 419, 917–920. https://doi.org/10.1038/nature01051
- 524 Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W., Paulissen, D., 1991.
- 525 Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot. 18.
- Faith, D.P., Minchin, P.R., Belbin, L., 1987. Compositional dissimilarity as a robust measure of ecogical
 distance. Vegetatio 69, 57–68. https://doi.org/10.1007/bf00038687
- 528 Finnish Meteorological Institute a, http://ilmatieteenlaitos.fi/terminen-kasvukausi. Last visited 11.06.2018.
- 529 Finnish Meteorological Institute b, https://ilmatieteenlaitos.fi/lumitilastot. Last visited 24.09.2018.
- 530 Finnish Meteorological Institute c, https://ilmatieteenlaitos.fi/tilastoja-vuodesta-1961. Last visited
 531 24.09.2018.
- 532 Frisvoll, A. A., Prestø, T., 1997. Spruce forest bryophytes in central Norway and their relationship to

- environmental factors including modern forestry. Ecography, 20, 3-18. https://doi.org/10.1111/j.16000587.1997.tb00342.x
- Gendreau-Berthiaume, B., Macdonald, S. E., Stadt, J. J., Hnatiuk R. J., 2015. How dynamic are understory
 communities and the processes structuring them in mature conifer forests? Ecosphere 6, 27.
 http://dx.doi.org/10.1890/ ES14-00308.1
- Gundale, M. J., Nilsson, M., Bansal, S., Jäderlund, A., 2012. The interactive effects of temperature and light
 on biological nitrogen fixation in boreal forests. New Phyto. 2, 453–463.
 https://doi.org/10.1111/j.1469-8137.2012.04071.x
- 541 Hedwall, P.-O., Brunet, J., Nordin, A., Bergh, J., 2013. Changes in the abundance of keystone forest floor
- 542 species in response to changes of forest structure. J. Veg. Sci. 24, 296–306.
- 543 https://doi.org/10.1111/j.1654-1103.2012.01457.x
- Hedwall, P.O., Brunet, J., 2016. Trait variations of ground flora species disentangle the effects of global
 change and altered land-use in Swedish forests during 20 years. Glob. Chang. Biol. 22, 4038–4047.
 https://doi.org/10.1111/gcb.13329
- 547 Heikinheimo, O., 1961. Kivalon kokeilualueen retkeilykohteiden selostukset. Metsäntutkimuslaitoksen
 548 kokeilualueita 6, Kivalo. Valtioneuvoston kirjapaino. Helsinki.
- 549 Helms, J.A., 1998. The dictionary of forestry. Sciety of American Foresters. 210 pp.
- Jalonen, J., Vanha-Majamaa, I. 2001. Immediate effects of four different felling methods on mature boreal
- 551 spruce forest understorey vegetation in southern Finland. For. Ecol. Manage. 146, 25-34.
- 552 <u>https://doi.org/10.1016/S0378-1127(00)00446-1</u>
- James, L.A. 2015. Legacy effects. Oxford bibliographies.
- http://www.oxfordbibliographies.com/view/document/obo-9780199363445/obo-9780199363445-
- 555 0019.xml#firstMatch. Last visited 26.09.2018. DOI: 10.1093/OBO/9780199363445-0019.
- Jonsson, B.G., Jonsell, M., 1999. Exploring potential biodiversity indicators in boreal forests. Biodivers.

557

Conserv. 8, 1417-1433. https://doi.org/10.1023/a:1008900309571

558	Kauserud, H., Mathiesen, C., Ohlson, M., 2008. High diversity of fungi associated with living parts of boreal
559	forest bryophytes. Botany 86, 1326-1333. https://doi.org/10.1139/B08-102
560	Kivinen, S., Rasmus, S., Jylhä, K., Laapas, M., 2017. Long-Term Climate Trends and Extreme Events in
561	Northern Fennoscandia (1914–2013). Climate 5, 16. https://doi.org/10.3390/cli5010016
562	Koivula, M., Kuuluvainen, T., Hallman, E., Kouki, J., Siitonen, J., Valkonen , S., 2014. Forest management
563	inspired by natural disturbance dynamics (DISTDYN) – a long-term research and development project
564	in Finland. Scand. J. For. Res. 29, 579-592, DOI: 10.1080/02827581.2014.938110
565	Kolari, P., Pumpanen, J., Kulmala, L., Ilvesniemi, H., Nikinmaa, E., Grönholm, T., Hari, P., 2006. Forest
566	floor vegetation plays an important role in photosynthetic production of boreal forests. For. Ecol.
567	Manage. 221, 241–248. https://doi.org/10.1016/j.foreco.2005.10.021
568	Korpela, K., Delgado, M., Henttonen, H., Korpimäki, E., Koskela, E., Ovaskainen, O., Pietiäinen, H.,
569	Sundell, J., Yoccoz, N.G., Huitu, O., 2013. Nonlinear effects of climate on boreal rodent dynamics:
570	Mild winters do not negate high-amplitude cycles. Glob. Chang. Biol. 19, 697–710.
571	https://doi.org/10.1111/gcb.12099
572	Kruskal, J.B., 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.
573	Psychometrika 29, 1–27. https://doi.org/10.1007/BF02289565
574	Kuuluvainen, T., 2002. Natural variability of forests as a reference for restoring and managing biological
575	diversity in boreal Fennoscandia, in: Silva Fennica. pp. 97-125. https://doi.org/10.1579/08-A-490.1
576	Maser, C., R.G. Anderson, K. Cromack Jr., J.T. Williams and R.E. Martin., 1979. Dead and down woody
577	material. In J.W. Thomas (technical editor). Wildlife habitats in managed forests: the Blue Mountains
578	of Oregon and Washington. USDA Forest Service Agricultural Handbook No. 553. pp.78-95.
579	McArdle, B.H. & Anderson, M.J., (2001). Fitting multivariate models to community data: a comment on
580	distance-based redundancy analysis. Ecology 82, 290-297. https://doi.org/10.1890/0012-

581 9658(2001)082[0290:FMMTCD]2.0.CO;2

- 582 Messier, C., Parent, S., Bergeron, Y., 1998. Effects of Overstory and Understory Vegetation on the
- 583 Understory Light Environment in Mixed Boreal Forests. J. Veg. Sci. 9, 511.
- 584 https://doi.org/10.2307/3237266
- 585 Minchin, P.R., 1987. An evaluation of the relative robustness of rechniques for ecological ordination.
 586 Vegetatio 69, 89–107. https://doi.org/10.1007/bf00038690
- 587 Nieppola, J., 1992. Long-Term Vegetation Changes in Stands of Pinus sylvestris in Southern Finland. J. Veg.
 588 Sci. 3, 475–484. https://doi.org/10.2307/3235804
- Nilsson, M.C., Wardle, D.A., 2005. Understory vegetation as a forest ecosystem driver: Evidence from the
 northern Swedish boreal forest. Front. Ecol. Environ. https://doi.org/10.2307/3868658
- Noss, R.F., 2001. Beyond Kyoto: Forest Management in a Time of Rapid Climate Change. Conserv. Biol.

592 15, 578–590. https://doi.org/10.1046/j.1523-1739.2001.015003578.x

- Økland, R.H., 2000. Understorey Vegetation Development in North Finnish Picea Forests after Disturbance:
 Re-Analysis of Sirén's Data. J. Veg. Sci. 11, 533–546. https://doi.org/10.2307/3246583
- 595 Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara,
- 596 R.B., Simpson, G.L., Solymos, P., Henry, M., Stevens, H., Szoecs, E., Wagner, H., 2017. vegan:
- 597 Community Ecology Package. R package version 2.4-2. www.R-project.org.
- 598 Paillet, Y., Bergès, L., HjÄltén, J., Ódor, P., Avon, C., Bernhardt-Römermann, M., Bijlsma, R.J., De Bruyn,
- 599 L., Fuhr, M., Grandin, U., Kanka, R., Lundin, L., Luque, S., Magura, T., Matesanz, S., Mészáros, I.,
- 600 SebastiÀ, M.T., Schmidt, W., Standovár, T., TÓthmérész, B., Uotila, A., Valladares, F., Vellak, K.,
- 601 Virtanen, R., 2010. Biodiversity differences between managed and unmanaged forests: Meta-analysis
 602 of species richness in Europe. Conserv. Biol. https://doi.org/10.1111/j.1523-1739.2009.01399.x
- Palviainen, M., Finér, L., Kurka, A-M., Mannerkoski. H., Piirainen, S., Starr, M., 2004. Decomposition and
 nutrient release from logging residues after clear-cutting of mixed boreal forest. Plant and Soil, 263, 53-

605 67.

- Peltzer, D.A., Bast, M.L., Wilson, S.D., Gerry, A.K., 2000. Plant diversity and tree responses following
 contrasting disturbances in boreal forest. For. Ecol. Manage. 127, 191–203.
 https://doi.org/10.1016/S0378-1127(99)00130-9
- Peura, M., Burgas, D., Eyvindson, K., Repo, A., Mönkkönen, M., 2018. Continuous cover forestry is a costefficient tool to increase multifunctionality of boreal production forests in Fennoscandia. Biol Conserv
 217:104–112.
- R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical
 Computing, Vienna, Austria. URL https://www.R-project.org/.
- 614 Rassi, P., Hyvärinen, E., Juslén, A., Mannerkoski, I. (eds.) 2010., Suomen lajien uhanalaisuus -Punainen
- 615 kirja 2010. Suomen ympäristöministeriö & Suomen ympäristökeskus. Helsinki.
- 616 Read, D.J., Leake, J.R., Perez-Moreno, J., 2005. Erratum: Mycorrhizal fungi as drivers of ecosystem
- 617 processes in heathland and boreal forest biomes. Can. J. Bot. 83, 1073. https://doi.org/10.1139/b05-912
- Reinikainen, A., Mäkipää, R., Vanha-Majamaa, I., Hotanen, J-P., (eds.) 2000. Kasvit muuttuvassa
 metsäluonnossa. Tammi. Helsinki.
- Roberts, M.R., Gilliam, F.S., 1995. Patterns and Mechanisms of Plant Diversity in Forested Ecosystems:
 Implications for Forest Management. Ecol. Appl. https://doi.org/10.2307/2269348
- Rouvinen, S., Kuuluvainen, T., 2005. Tree diameter distributions in natural and managed old Pinus
 sylvestris-dominated forests. For. Ecol. Manage. 208, 45–61.
- 624 https://doi.org/10.1016/j.foreco.2004.11.021
- Salminen, H., Jalkanen, R., 2007. Intra-annual height increment of Pinus sylvestris at high latitudes in
 Finland. Tree Physiology, 27, 1347-1353.
- 627 Shorohova, E., Kuuluvainen, T., Kangur, A., Jõgiste, K., 2009. Natural stand structures, disturbance regimes
- and successional dynamics in the Eurasian boreal forests: a review with special reference to Russian

- 629 studies. Ann. For. Sci. 66, 201–201. https://doi.org/10.1051/forest/2008083
- Siiskonen, H., 2007. The conflict between traditional and scientific forest management in 20th century
 Finland. For. Ecol. Manage. 249,125-133. https://doi.org/10.1016/j.foreco.2007.03.018.
- 632 Sirén, G., 1955. The development of spruce forest on raw humus sites in northern Finland and its ecology.
 633 Acta For Fennica 62, 1-363.
- 634 Skogsstyrelsen, 2014. Handbok för inventering av nyckelbiotoper. Skogsstyrelsen, Jönköping. pp. 90-94.
- 635 Sturtevant, B.R., Bissonette, J.A., Long, J.N., Roberts, D.W., 1997. Coarse woody debris as a function of
- age, stand structure, and disturbance in boreal Newfoundland. Ecol. Appl. 7, 702–712.
- 637 https://doi.org/10.1890/1051-0761(1997)007[0702:CWDAAF]2.0.CO;2
- 638 Sundberg, S. 2014. Boreal plant decline in southern Sweden during the twentieth century
- 639 New J. Bot. 4, 76–84. https://doi.org/10.1179/2042349714Y.0000000045
- 640 Thomaes, S. A., De Keersmaeker, L., Van Calster, H., De Schrijver, A., Vandekerkhove, K., Verstraeten, G.,
- 641 Verheyen, K., 2012. Diverging effects of two contrasting tree species on soil and herb layer
- development in a chronosequence of post-agricultural forest. For. Ecol. Manage. 278, 90–100.
- 643 https://doi.org/10.1016/j.foreco.2012.04.026
- 644
- Tikkanen, O.P., Ruokolainen, A., Heikkilä, R., 2014. Recovery of boreal forest structures near abandoned
 villages in Western White Sea Karelia, Russia. Scand. J. For. Res. 29, 152–161.
- 647 https://doi.org/10.1080/02827581.2014.881543
- Tonteri, T., Salemaa, M., Rautio, P., Hallikainen, V., Korpela, L., Merilä, P., 2016. Forest management
 regulates temporal change in the cover of boreal plant species. For. Ecol. Manage. 381, 115–124.
 https://doi.org/10.1016/j.foreco.2016.09.015
- 651 Uotila, A., Kouki, J., 2005. Understorey vegetation in spruce-dominated forests in eastern Finland and
- 652 Russian Karelia: Successional patterns after anthropogenic and natural disturbances. For. Ecol.
- 653 Manage. 215, 113–137. https://doi.org/10.1016/j.foreco.2005.05.008

- Vanha-Majamaa, I., Shorohova, E., Kushnevskaya, H., Jalonen, J., 2017. Resilience of understory vegetation
 after variable retention felling in boreal Norway spruce forests A ten-year perspective. For. Ecol.

656 Manage. 393, 12–28. https://doi.org/10.1016/j.foreco.2017.02.040

- Vanha-Majamaa, I., Lähde, E., 1991. Vegetation changes in a burned area planted by pinus-sylvestris in
 Northern Finland. Ann. Bot. Fenn. 28, 161–170.
- 659 Verstraeten, G., Baeten, L., De Frenne, P., Vanhellemont, M., Thomaes, A., Boonen, W., Muys, B.,
- 660 Verheyen, K., 2013. Understorey vegetation shifts following the conversion of temperate deciduous
- forest to spruce plantation. For. Ecol. Manage. 289, 363–370.
- 662 https://doi.org/10.1016/j.foreco.2012.10.049
- Väre, H., Ohtonen, R., Oksanen, J., 1995. Effects of reindeer grazing on understorey vegetation in dry Pinus
 sylvestris forests. J. Veg. Sci. 6, 523–530. https://doi.org/10.2307/3236351
- Warton, D.I., Wright, S.T., Wang, Y., 2012. Distance-based multivariate analyses confound location and
 dispersion effects. Methods Ecol. Evol. 3, 89–101. https://doi.org/10.1111/j.2041-210X.2011.00127.x
- 667 Yan, E., Wang, X., Huang, J., 2006. Concept and Classification of Coarse Woody Debris in Forest
- 668 Ecosystems. Front. Biol. China 1, 76–84. DOI 10.1007/s11515-005-0019-y
- Yoshioka, P.M., 2008. Misidentification of the Bray-Curtis similarity index. Mar. Ecol. Prog. Ser. 368, 309–
 310. https://doi.org/10.3354/meps07728

673 Appendix A

Species abbrevations used and description of taxa classification. Marking "in 2013" means that species was included in non-harmonised data in year 2013 though it was not used in the harmonized data. 676

677	Graminoids and sedges	
678	CARE.SP	<i>Carex</i> sp.
679	DESC.FLEX	Deschampsia flexuosa
680	GRAM.SPP	Gramineae (Incl. e.g. Agrostis sp. Calamagrostis sp., Deschampsia caespitosa,
681		Melica nutans, Poa sp.)
682	LUZU.PILO	Luzula pilosa
683	MELI.NUTA	Melica nutans (in 2013)
684		
685	Herbs	
686	ANTE.DIOI	Antennaria dioica
687	DACT.MACU	Dactylorhiza maculata
688	DIPH.COMP	Diphasiastrum complanatum
689	EPIL.ANGU	Epilobium angustifolium
690	EQUI.SYLV	Equisetum sylvaticum
691	GERA.SYLV	Geranium sylvaticum
692	GOOD.REPE	Goodyera repens
693	GYMN.DRYO	Gymnocarpium dryopteris
694	HIER.SP	Hieracium sp.
695	HUPE.SELA	Huperzia selago
696	LYCO.SP	<i>Lycopodium</i> sp. (Incl. <i>L. annotinum</i> and <i>L. clavatum</i>)
697	LYCO.ANNO	<i>Lycopodium annotinum</i> (in 2013)
698	LYSI.EURO	Lysimachia europaea
699	MAIA.BIFO	Maianthemum bifolium
700	MELA.PRAT	Melampyrum pretense
701	MELA.SYLV	Melampyrum sylvaticum
702	MONE.UNIF	Moneses uniflora
703	NEOT.CORD	Neottia cordata
704	ORTH.SECU	Orthilia secunda
705	PHEG.CONN	Phegopteris connectilis
706	PYRO.SP	<i>Pyrola</i> sp. (Incl. <i>P. minor</i> and <i>P. rotundifolia</i>)
707	SAUS.ALPI	Saussurea alpina
708	SOLI.VIRG	Solidago virgaurea
709		
710	Dwarf shrubs	
711	CALL.VULG	Calluna vulgaris (in 2013)
712	EMPE.NIGR	Empetrum nigrum
713	LINN.BORE	Linnaea borealis
714	VACC.MYRT	Vaccinium myrtillus
715	VACC.VITI	Vaccinium vitis-idaea
716		
717	Shrubs and tree seedlings	
718	BETU.SP	Betula sp. (Incl. B. pendula and B. pubescens)
719	BETU.PEND	Betula pendula (in 2013)
720	BETU.PUBE	Betula pubescens (in 2013)
721	JUNI.COMM	Juniperus communis
722	PICE.ABIE	Picea abies
723	PINU.SYLV	Pinus sylvestris (in 2013)
724	POPU.TREM	Populus tremula
725	RHOD.TOME	Rhododendron tomentosum (in 2013)
726	SALI.SP	Salix sp.

727 728	SORB.AUCU	Sorbus aucuparia
729	Bryophytes	
730	AULA.PALU	Aulacomnium palustre
731	BARB.SP	Barbilophozia sp.
732	BARB.LYCO	Barbilophozia lycopodioides (in 2013)
733	BRAC.SP	Brachythecium sp. (Incl. e.g. Brachythecium salebrosum, Sciurohypnum
734		oedipodium, Sciuro-hypnum reflexum)
735	BRAC.SALE	Brachythecium salebrosum (in 2013)
736	BRYU.SP	<i>Bryum</i> sp. (in 2013)
737	CALY.INTE	Calypogeia integristipula (in 2013)
738	DICR.SP	Dicranum sp. (Incl. e.g. D. fuscescens, D. majus, D. scoparium,
739		D. spurium, D. undulatum)
740	DICR.MAJU	Dicranum majus (in 2013)
741	DICR.POLY	Dicranum polysetum
742	DICR.SCOP	Dicranum scoparium
743	HEPA.SP	Hepaticae
744	HYLO.SPLE	<i>Hylocomium splendens</i>
745	LOPH.SP	Lophozia-type (in 2013)
746	PLAG.SP	Plagiothecium sp.
747	PLEU.SCHR	Pleurozium schreberi
748	POLY.COMM	Polytrichum commune
749	POLY.JUNI	Polytrichum juniperinum
750	PTIL.CRIS	Ptilium crista-castrensis
751	PTIL.CILI	Ptilidium ciliare
752	RHYT.TRIQ	Rhytidiadelphus triquetrus
753	RHIZ.MANG	Rhizomnium magnifolium (in 2013)
754	SCIU.OEDI	Sciuro-hypnum oedipodium (in 2013)
755	SCIU.REFL	Sciuro-hypnum reflexum (in 2013)
756	SANI.UNCI	Sanionia uncinata
757	SPHA.SP	Sphagnum sp. (Incl. S. angustifolium, S. capillifolium, S. girgensohnii)
758	SPHA.ANGU	Sphagnum angustifolium (in 2013)
759	SPHA.CAPI	Sphagnum.capillifolium (in 2013)
760	SPHA.GIRG	Sphagnum girgensohnii (in 2013)
761		
762	Lichens	
763	CETR.ISLA	Cetraria islandica (in 2013)
764	CLAD.ARBU	Cladonia arbuscula
765	CLAD.RANG	Cladonia rangiferina
766	CLAD.SP	Cladonia sp. (Incl. e.g. C. chlorophaea, C. cornuta, C. crispata,
767		C. furcata, C. squamosa, C. sulphurina)
768	CLAD.CHLO	Cladonia chlorophaea
769	CLAD. CORN	Cladonia cornuta
770	CLAD. FURC	Cladonia furcata
771	CLAD.SULP	Cladonia sulphurina
772	CLAD.UNCI	Cladonia uncialis
773	ICMA.ERIC	Icmadophila ericetorum (in 2013)
774	NEPH.ARCT	Nephroma arcticum
775	PELT.APHT	Peltigera aphthosa (Incl. Peltigera neopolydactyla (except for 2013))
776	PELT.LEUC	Peltigera leucophlebia (in 2013)
777	PELT.NEOP	Peltigera neopolydactyla (in 2013)
778	PELT.SP	Peltigera sp. (Incl. e.g. P. leucophlebia and P. canina)
779	STER.SP	Stereocaulon sp.
780		······································

781 Appendix B

Variation in the number of stems and stem volume in different harvesting treatments in years 1953 (before
the first logging), 1961 and 1986 (after the first logging). Names indicate different harvesting intensities in
each year (control n=4, strip harvesting n=4, commercial thinning n=4, heavy thinning n=4, light thinning
n=4). Mean values are represented with black lines. Years are separated with dashed line to make
interpretation of the figure easier. Note the different scales in y-axis.

787

789

790 Appendix C

791 Variation of the number of taxa in total, and in field and bottom layers separately in previous treatment

Years are separated with dashed line to make interpretation of the figure easier. For years 1961 and 1986 previous treatment was done in 1953 (control n=4, strip harvesting, n=4, commercial thinning n=4, heavy

thinning n=4, light thinning n=4), and for year 2013 in 1987 (control n=4, heavy n=6, medium n=7, light

n=3). Mean values are represented with black lines. Note the different scales in y-axis.

796

797 798

799

Appendix D

Table of the mean values and standard deviations of species or species group in the previous harvesting treatments in each year. Year 1961

ments in each year.					Year 1961					
Treatment	Control (n	=4)	Strip harv	esting (n=4)	Commerci	ial thinning (n=4)	Heavy thi	nning (n=4)	Light thinning (n=4)	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Graminoids and sedges										
Luzula pilosa	0.578	0.303	1.100	0.156	0.772	0.291	0.631	0.363	0.856	0.167
Carex sp.	0.025	0.050	0.013	0.025	0.013	0.025	0.044	0.088	0.106	0.213
Gramineae			0.116	0.057	0.091	0.114	0.038	0.043	0.144	0.128
Deschampsia flexuosa	1.894	1.100	2.600	2.447	2.172	0.856	1.903	0.527	1.422	0.766
In total	2.497	1.155	3.828	2.526	3.047	1.161	2.616	0.494	2.528	0.628
Herbs										
Huperzia selago										
Lycopodium sp.	0.013	0.025	0.088	0.144	0.113	0.144			0.016	0.031
Diphasiastrum complanatum			0.013	0.025	0.038	0.075	1.263	1.555	0.438	0.875
Equisetum sylvaticum										
Phegopteris connectilis										
Gymnocarpium dryopteris	1.403	1.676	4.488	3.717	5.913	7.172	2.431	2.814	6.266	5.131
Pyrola sp.	0.420	0.427	0.066	0.131	0.019	0.030	0.006	0.013	0.063	0.070
Orthilia secunda	0.438	0.437	0.328	0.482	0.438	0.210	0.316	0.335	0.931	0.595
Moneses uniflora	0.594	0.282	0.063	0.075 0.595	0.025 0.944	0.029 0.193	0.003 0.716	0.006 0.419	0.034 0.919	0.047 0.399
ysimachia europaea pilobium angustifolium	0.394	0.282	0.850	0.395	0.944	0.193	1.456	0.419	1.138	0.399
Geranium sylvaticum	0.003	0.006	0.063	0.374	0.922	0.777	1.450	0.426	0.041	0.071
Aelampyrum sylvaticum	0.022	0.026	0.044	0.056	0.063	0.051	0.028	0.021	0.116	0.078
A. pratense	0.022	0.020	0.141	0.167	0.134	0.051	0.303	0.210	0.194	0.193
olidago virgaurea	2.441	1.098	3.803	0.760	3.306	0.390	3.369	0.945	3.991	0.626
ntennaria dioica	0.075	0.119	0.128	0.152	0.050	0.100	0.063	0.125		0.020
aussurea alpina										
lieracium sp.	0.109	0.087	0.306	0.110	0.275	0.323	0.272	0.268	0.184	0.117
Aaianthemum bifolium	3.259	1.177	5.903	1.165	3.391	1.820	4.628	1.726	3.594	0.592
leottia cordata	0.003	0.006	0.003	0.006	0.003	0.006			0.041	0.081
Goodyera repens	0.050	0.100	0.141	0.273					0.138	0.214
Dactylorhiza maculata			0.025	0.050	0.025	0.050			0.050	0.058
n total	9.334	1.463	17.556	3.325	15.656	7.918	14.853	7.214	18.150	6.046
worf chrubs										
Owarf shrubs	E 150	2 1 4 4	E 070	1 330	7 200	2 210	0.212	2 200	7.044	3 300
/accinium vitis-idaea / murtilluc	5.150	3.141	5.878	1.338	7.300	2.218	9.213	3.206	7.044	2.389
/. myrtillus Empetrum nigrum	35.225 0.016	18.106 0.024	25.516	12.954	32.753 0.056	18.423 0.065	26.525 0.025	14.178 0.050	27.366 0.075	8.822 0.150
innaea borealis	2.178	1.308	2.325	0.504	4.872	3.022	4.656	2.066	6.216	1.848
n total	42.569	16.220	33.719	11.789	44.981	18.924	40.419	13.039	40.700	7.587
Shrubs and tree seedlings										
Picea abies	0.003	0.006			0.003	0.006	0.028	0.048	0.063	0.125
luniperus communis	0.066	0.092	0.159	0.131	0.559	0.569	0.131	0.151	0.141	0.095
Betula sp.	0.003	0.006	0.075	0.096	0.075	0.079	0.009	0.012	0.025	0.050
Salix sp.	0.019	0.024	0.013	0.025	0.025	0.035	0.038	0.048	0.063	0.125
Populus tremula Sorbus aucuparia	0.578	0.133	1.097	0.025 0.279	0.013 1.106	0.025 0.372	0.981	0.483	1.322	0.406
n total	0.091	0.669	0.226	1.344	0.318	1.781	0.910	1.188	0.652	1.613
								1.100	5.00L	2.010
Bryphytes										
lepaticae	0.003	0.006	0.025	0.050	0.025	0.050	0.013	0.025		
tilidium ciliare										
Barbilophozia sp.	0.044	0.043	0.094	0.113	0.025	0.050	0.056	0.058	0.066	0.123
phagnum sp.										
Dicranum sp.	0.794	0.387	0.828	0.190	0.825	0.174	0.853	0.516	0.397	0.248
). polysetum	1.041	0.646	2.041	0.730	2.663	2.193	1.941	1.155	2.588	1.183
ulacomium palustre										
anionia uncinata	0.013	0.025	0.044	0.007	0.081	0.163	0.013	0.025	0.070	
Brachyhecium sp.	0.813	0.959	0.841	0.231	0.338	0.284	0.353	0.242	0.678	0.717
Ptilium crista-castrensis	0.100	0.091	0.756	1.209	0.113	0.131	0.244	0.407	0.238	0.221
Hylocomium splendens	1.150	0.372	2.713	3.569	3.225	2.743	2.028	1.874	5.484	4.758
Rhytidiadelphus triquetrus Plaurozium shrahari	12 375	0.114	0.038	0.048	22.625	7 202	10 699	E 060	10 535	0.000
Pleurozium shreberi Plagiotechium sp	13.375 0.138	9.114 0.275	15.369 0.025	4.309 0.050	22.625 0.025	7.282 0.029	19.688	5.069	18.525	8.886
Plagiotechium sp. Polytrichum commune	3.841	2.215	4.428	1.090	4.613	2.389	4.538	0.389	6.066	2.028
2. juniperinum	1.188	0.940	1.666	1.521	0.688	1.375	4.558	1.480	1.163	0.861
n total	22.497	11.758	28.822	1.985	35.244	5.915	30.791	5.362	35.203	7.857
ichens										
Cladonia sp.	0.013	0.025	0.025	0.050			0.025	0.050	0.066	0.072
. arbuscula	0.028	0.048	0.016	0.024	0.059	0.089	0.097	0.136	0.169	0.183
. rangiferina	0.003	0.006					0.006	0.007	0.003	0.006
tereocaulon sp.	0.038	0.075							0.050	0.100
lephroma arcticum			0.013	0.025	0.100	0.122	0.013	0.025	0.163	0.325
Peltigera sp.	0.100	0.200			0.225	0.272	0.588	0.437	0.475	0.548
P. aphthosa	0.316	0.324	0.178	0.154	0.078	0.118	0.063	0.125	0.363	0.419
n total	0.497	0.306	0.231	0.172	0.463	0.270	0.791	0.276	1.288	1.082
litter	70 212	11 002	71 662	3.046	64 700	8 156	67 125	3 267	50.013	30.922
atter	79.313	11.903	71.663	5.046	64.700	8.156	67.125	3.367	50.013	30.922

Appendix D

					Year1986					
Treatment	Control (n=	4)	Strip harv	esting (n=4)	Commerci	al thinning (n=4)	Heavy thir	nning (n=4)	Light thin	ning (n=4)
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Graminoids and sedges										
Luzula pilosa	3.806	1.679	4.063	2.800	4.650	1.599	4.241	1.651	2.881	0.732
Carex sp.										
Gramineae	0.022	0.019	0.325	0.166	0.350	0.212	0.163	0.180	0.200	0.147
Deschampsia flexuosa	18.447	6.559	14.903	4.180	23.063	1.059	15.850	4.336	25.588	11.835
In total	22.275	7.755	19.291	6.954	28.063	2.511	20.253	5.015	28.669	11.905
Herbs					0.050	0.100	0.200	0.591		
Huperzia selago	1 000	1 220	0.001	0.070	0.050	0.100	0.388	0.581	0.000	0.000
Lycopodium sp.	1.003	1.230	0.091	0.070	0.813	0.668	0.578	0.617	0.266	0.306
Diphasiastrum complanatum	0.013	0.025	0.013	0.025					0.088	0.175
Equisetum sylvaticum	0.013	0.025	0.013	0.025						
Phegopteris connectilis	2.099	4 094	5.275	4 5 2 0	9 766	0.420	2 800	4 5 45	11 100	9 407
Gymnocarpium dryopteris	3.088 0.038	4.084 0.075	5.375	4.539	8.766 0.075	9.430 0.119	3.800	4.545	11.166 0.075	8.407 0.119
Pyrola sp. Orthilia cocumda			0.402	0.574			0.421	0.204		
Orthilia secunda Manasas uniflara	0.391	0.674	0.403	0.574 0.071	0.450	0.268	0.431	0.294	0.850	0.914
Moneses uniflora	4.125	0.950			3.291	1.781	4.678	0.751	0.003	0.006
Lysimachia europaea		0.859	3.134	0.855					4.166	0.991
Epilobium angustifolium	0.359	0.261	0.316	0.380	0.778	0.489	0.966	0.306	0.550	0.297
Geranium sylvaticum	0.175	0.350	0.016	0.024	0.012	0.005	0.004	0 171	0.025	0.050
Melampyrum sylvaticum	0.122	0.166	0.406	0.336	0.813	0.965	0.094	0.171	0.213	0.246
M. pratense Solidago virggurog	3.816	2.251 1.407	3.878 4.825	1.415 0.821	6.138 4.225	3.236 1.040	4.569 4.688	1.695	4.738 5.200	2.607 2.869
Solidago virgaurea Antennaria dioica	3.550	1.407	4.825		4.220	1.040	4.000	1.285	5.200	2.009
Antennaria dioica			0.013	0.025	0.029	0.075				
Saussurea alpina Hioracium sp	0.016	0.031	0.150	0.178	0.038	0.075	0.075	0.119	0.113	0.131
Hieracium sp. Maianthemum hifolium	16.388	9.332	0.150 14.525	0.178	0.150 12.825	0.173 5.765	0.075 21.750	0.119 8.106	0.113	5.768
Maianthemum bifolium Neottia cordata					12.023	3.705	21.750	0.100	17.125	5.768
Neottia cordata Soodvera renens	0.003 0.250	0.006	0.016 0.253	0.024 0.187	0.066	0.131	0.038	0.060	0.209	0.264
Goodyera repens Dactylorhiza maculata	0.250	0.232	0.200	0.107	0.066	0.025	0.038	0.060	0.209	0.204
n total	33.334	3.096	33.475	4.525	38.488	8.319	42.066	13.978	44.784	14.639
	55.554	5.050	33.473		30.400	0.010	12.000	13.570		14.033
Owarf shrubs										
Vaccinium vitis-idaea	9.325	4.760	8.475	2.079	9.788	2.873	13.400	4.242	11.628	3.371
V. myrtillus	12.353	4.579	22.525	24.167	21.888	18.138	12.828	3.767	16.825	10.615
Empetrum nigrum					0.013	0.025	0.038	0.075		
Linnaea borealis	14.656	1.979	11.500	3.513	17.275	3.370	22.188	5.647	20.275	4.947
n total	36.334	1.729	42.500	21.186	48.963	21.455	48.453	8.727	48.728	15.84
Shrubs and tree seedlings										
Picea abies	0.984	1.846	0.225	0.384	0.425	0.718	0.638	0.950	1.544	1.831
luniperus communis	0.063	0.125	0.388	0.566	0.450	0.492	0.400	0.311	0.450	0.585
Betula sp.	0.063	0.125	0.028	0.048	0.750	1.467	0.025	0.029	0.100	0.122
Salix sp.	0.003	0.006	0.025	0.050			0.063	0.125		
Populus tremula			0.063	0.125						
Sorbus aucuparia	2.469	0.961	2.122	2.333	2.250	1.059	3.050	0.356	2.113	0.884
In total	0.582	3.581	2.731	2.850	3.200	3.875	2.876	4.175	1.397	4.206
Bryphytes										
Hepaticae										
Ptilidium ciliare	0.163	0.138	0.309	0.286	0.234	0.113	0.284	0.285	0.344	0.098
Barbilophozia sp.	0.422	0.455	0.409	0.280	0.234	0.165	0.284	0.285	0.669	0.967
Sphagnum sp.			555					0.077	5.005	0.507
Dicranum sp.	4.053	3.040	4.681	3.528	5.394	1.123	6.391	2.853	5.431	1.462
D. polysetum	2.309	1.796	2.581	2.739	1.219	0.437	1.472	0.824	0.928	0.671
Aulacomium palustre									0.013	0.025
Sanionia uncinata									0.010	0.020
Brachyhecium sp.	3.134	5.616	1.128	0.955	0.672	0.682	0.600	0.142	0.691	0.665
Ptilium crista-castrensis	0.791	0.525	1.003	1.579	1.131	1.088	2.078	1.052	2.203	1.852
Hylocomium splendens	2.022	0.915	3.409	2.210	5.516	4.305	1.613	0.977	7.638	5.694
Rhytidiadelphus triquetrus	2.022	0.010	0.088	0.175	3.310		1.010	0.011		5.054
Pleurozium shreberi	50.419	34.417	59.388	19.028	69.475	12.266	76.475	9.955	64.863	9.066
Plagiotechium sp.	50.415	34.417	0.013	0.025	0.013	0.025	10.415	5.335	0.013	0.025
Polytrichum commune	3.009	1.982	8.850	3.891	7.203	3.147	5.519	1.488	7.475	4.328
P. juniperinum	0.397	0.164	1.097	0.643	0.906	0.533	0.563	0.339	0.288	0.257
n total	66.719	34.277	82.956	16.202	91.950	6.744	95.369	10.995	90.553	9.553
	00.715	54.211	02.330	10.202	51.550	0.744	55.505	10.333	50.555	5.555
ichens										
Cladonia sp.	0.025	0.050	0.016	0.024	0.175	0.287	0.022	0.030	0.075	0.087
C. arbuscula										
C. rangiferina										
Stereocaulon sp.										
Nephroma arcticum										
Peltigera sp.										
P. aphthosa									0.013	0.025
n total	0.025	0.050	0.016	0.024	0.175	0.287	0.022	0.030	0.088	0.111
Litter	36.538	16.72	17.663	8.808	20.688	6.511	15.688	3.751	20.438	1.338

Year1986

Appendix D

					Year2013			
Treatment	Control (r		-	nning (n=6)		hinning (n=7)	Light thinr	
Graminoids and sedges	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Luzula pilosa	0.284	0.199	0.540	0.180	0.463	0.228	0.933	0.198
Carex sp.	0.201	0.200	0.010	0.100	0.105	0.220	0.000	01200
Gramineae	0.003	0.006	0.104	0.120	0.116	0.114	0.163	0.102
Deschampsia flexuosa	0.472	0.244	1.229	0.544	0.977	0.267	0.658	0.158
In total	0.759	0.387	1.873	0.581	1.555	0.500	1.754	0.304
Herbs								
Huperzia selago								
Lycopodium sp.	0.994	1.323	0.556	0.406	0.543	0.486	0.088	0.111
Diphasiastrum complanatum			0.013	0.021	0.011	0.020		
Equisetum sylvaticum	0.050	0.40						
Phegopteris connectilis	0.050	0.10	0.000	1.072	1 1 2 7	1 1 2 1	2 100	0.905
Gymnocarpium dryopteris Pyrola sp.	1.016	1.829	0.908	1.072	1.137	1.131	2.196	0.805
Orthilia secunda	0.309	0.516	0.150	0.216	0.223	0.259	0.646	0.418
Moneses uniflora	0.003	0.006	0.013	0.016	0.011	0.011	0.040	0.022
Lysimachia europaea	0.375	0.264	0.308	0.213	0.341	0.428	0.167	0.131
Epilobium angustifolium	0.038	0.048	0.027	0.043	0.011	0.018	0.017	0.029
Geranium sylvaticum			0.021	0.051				
Melampyrum sylvaticum	0.006	0.007	0.017	0.035	0.004	0.009	0.008	0.014
M. pratense	0.144	0.022	0.410	0.146	0.445	0.095	0.375	0.111
Solidago virgaurea	0.741	0.180	1.796	0.912	1.789	0.762	1.767	0.488
Antennaria dioica								
Saussurea alpina								
Hieracium sp.	0.003	0.006	0.004	0.010	0.002	0.005	0.025	0.043
Maianthemum bifolium	1.863	0.849	2.044	0.860	2.800	1.356	2.638	1.241
Neottia cordata	0.025	0.027	0.040	0.051	0.021	0.021	0.021	0.026
Goodyera repens	2.097	0.834	0.544	0.344	1.318	0.400	0.813	1.215
Dactylorhiza maculata			0.013	0.021	0.004	0.009		
In total	7.663	1.401	6.862	2.351	8.658	2.560	8.771	2.427
Dwarf shrubs								
Vaccinium vitis-idaea	10.313	5.998	10.827	2.293	13.00	2.784	11.700	2.901
V. myrtillus	43.425	9.266	43.758	5.623	42.057	3.768	43.583	6.663
Empetrum nigrum	0.056	0.113	0.050	0.100	0.382	0.665	13.305	0.000
Linnaea borealis	1.728	0.604	2.673	0.980	3.182	0.791	2.546	0.813
In total	55.522	9.814	57.308	5.848	58.621	2.225	57.829	6.589
Shrubs and tree seedlings								
Picea abies	0.725	0.725	0.742	0.661	0.275	0.328	0.321	0.295
Juniperus communis	0.556	0.130	0.225	0.312	0.234	0.259	0.817	0.718
Betula sp.	0.019	0.030	0.396	0.425	0.213	0.255	0.367	0.153
Salix sp.			0.006	0.010				
Populus tremula	0.006	0.013			0.009	0.019		
Sorbus aucuparia	1.747	0.691	1.425	0.340	1.102	0.450	2.692	0.128
In total	2.480	3.053	1.504	2.794	1.317	1.832	0.752	4.196
Bryphytes								
Hepaticae	0.222	0.341	0.573	0.338	0.393	0.264	0.225	0.142
Ptilidium ciliare	0.134	0.175	0.275	0.338	0.280	0.203	0.029	0.026
Barbilophozia sp.	0.178	0.211	2.144	1.497	1.123	0.693	0.333	0.272
Sphagnum sp.			0.175	0.405			0.033	0.058
Dicranum sp.	4.963	2.848	7.256	1.413	7.345	2.939	5.046	1.266
D. polysetum	4.728	2.918	7.079	1.507	7.189	2.798	5.000	1.277
Aulacomium palustre								
Sanionia uncinata	0.006	0.013						
Brachyhecium sp.	0.834	1.504	0.279	0.298	0.521	0.443	0.579	0.484
Ptilium crista-castrensis	0.022	0.012	0.004	0.006	0.034	0.052	0.013	0.022
Hylocomium splendens	5.013	2.911	8.681	3.425	9.536	3.496	10.204	5.832
Rhytidiadelphus triquetrus			0.017	0.041			0.500	0.866
Pleurozium shreberi	19.688	12.375	32.573	6.588	26.438	12.078	10.479	1.631
Plagiotechium sp.	0.088	0.102	0.021	0.040	0.032	0.047		
Polytrichum commune	2.278	1.976	4.067	2.207	4.027	1.052	5.825	1.401
P. juniperinum	0.053	0.106	0.092	0.099	0.038	0.063		
In total	38.206	19.157	63.235	8.306	56.955	13.902	38.267	1.536
Lichons								
Lichens Cladonia sp.	0.013	0.010	0.019	0.025	0.007	0.019		
Ciadonia sp. C. arbuscula	0.013	0.010	0.019	0.025	0.007	0.019		
C. rangiferina Stereocaulon sp.								
Nephroma arcticum								
Peltigera sp.								
P. aphthosa	0.063	0.125					0.050	0.087
In total	0.075	0.125	0.019	0.025	0.007	0.019	0.050	0.087
	_			_				
Litter	63.125	20.121	40.083	7.656	47.921	11.498	64.750	2.00

NMDS1

dbRDA1

dbRDA1

Year	1961

					Teal 1901					
Treatment	Control (n=4 Mean	l) SD	Strip harv Mean	esting (n=4) SD	Commerc i Mean	i al thinning (n=4) SD	Heavy thi Mean	nning (n=4) SD	Light thin r Mean	ning (n=4) SD
Graminoids and sedges										
Luzula pilosa	0.578	0.303	1.100	0.156	0.772	0.291	0.631	0.363	0.856	0.167
Carex sp.	0.025	0.050	0.013	0.025	0.013	0.025	0.044	0.088	0.106	0.213
Gramineae			0.116	0.057	0.091	0.114	0.038	0.043	0.144	0.128
Deschampsia flexuosa	1.894	1.100	2.600	2.447	2.172	0.856	1.903	0.527	1.422	0.766
n total	2.497	1.155	3.828	2.526	3.047	1.161	2.616	0.494	2.528	0.628
Herbs										
luperzia selago										
Lycopodium sp.	0.013	0.025	0.088	0.144	0.113	0.144			0.016	0.031
Diphasiastrum complanatum			0.013	0.025	0.038	0.075	1.263	1.555	0.438	0.875
quisetum sylvaticum										
hegopteris connectilis										
Gymnocarpium dryopteris	1.403	1.676	4.488	3.717	5.913	7.172	2.431	2.814	6.266	5.131
yrola sp.			0.066	0.131	0.019	0.030	0.006	0.013	0.063	0.070
Orthilia secunda	0.438	0.437	0.328	0.482	0.438	0.210	0.316	0.335	0.931	0.595
Ioneses uniflora			0.063	0.075	0.025	0.029	0.003	0.006	0.034	0.047
ysimachia europaea	0.594	0.282	1.106	0.595	0.944	0.193	0.716	0.419	0.919	0.399
pilobium angustifolium	0.869	0.510	0.850	0.374	0.922	0.777	1.456	0.426	1.138	0.071
eranium sylvaticum	0.003	0.006	0.063	0.125	0.050	0.054			0.041	0.081
Aelampyrum sylvaticum	0.022	0.026	0.044	0.056	0.063	0.051	0.028	0.021	0.116	0.078
1. pratense	0.056	0.052	0.141	0.167	0.134	0.052	0.303	0.210	0.194	0.193
olidago virgaurea	2.441	1.098	3.803	0.760	3.306	0.390	3.369	0.945	3.991	0.626
ntennaria dioica	0.075	0.119	0.128	0.152	0.050	0.100	0.063	0.125		
aussurea alpina	0.400	0.007	0.205	0.440	0.275	0.222	0.272	0.200	0.403	0.44-
lieracium sp.	0.109	0.087	0.306	0.110	0.275	0.323	0.272	0.268	0.184	0.117
Aaianthemum bifolium	3.259	1.177	5.903	1.165	3.391	1.820	4.628	1.726	3.594	0.592
leottia cordata	0.003	0.006	0.003	0.006	0.003	0.006			0.041	0.081
ioodyera repens	0.050	0.100	0.141	0.273	0.025	0.050			0.138	0.214
Dactylorhiza maculata	0.224	1 402	0.025	0.050	0.025	0.050	14.050	7 31 4	0.050	0.058
n total	9.334	1.463	17.556	3.325	15.656	7.918	14.853	7.214	18.150	6.046
warf shrubs										
′accinium vitis-idaea	5.150	3.141	5.878	1.338	7.300	2.218	9.213	3.206	7.044	2.389
. myrtillus	35.225	18.106	25.516	12.954	32.753	18.423	26.525	14.178	27.366	8.822
mpetrum nigrum	0.016	0.024			0.056	0.065	0.025	0.050	0.075	0.150
<i>innaea borealis</i> n total	2.178 42.569	1.308	2.325 33.719	0.504 11.789	4.872 44.981	3.022 18.924	4.656 40.419	2.066	6.216 40.700	1.848 7.587
	42.505	10.220	55.715	11.705	44.501	10.524	40.415	15.055	40.700	7.507
hrubs and tree seedlings										
Picea abies	0.003	0.006			0.003	0.006	0.028	0.048	0.063	0.125
uniperus communis	0.066	0.092	0.159	0.131	0.559	0.569	0.131	0.151	0.141	0.095
Betula sp.	0.003	0.006	0.075	0.096	0.075	0.079	0.009	0.012	0.025	0.050
alix sp.	0.019	0.024			0.025	0.035	0.038	0.048	0.063	0.125
Populus tremula	0.570	0.400	0.013	0.025	0.013	0.025			4 222	
<i>forbus aucuparia</i> n total	0.578	0.133	1.097 0.226	0.279	1.106 0.318	0.372	0.981	0.483	1.322 0.652	0.406
literal	0.051	0.005	0.220	1.544	0.510	1.701	0.510	1.100	0.052	1.015
Bryphytes	0.003	0.000	0.025	0.050	0.025	0.050	0.013	0.025		
lepaticae	0.003	0.006	0.025	0.050	0.025	0.050	0.013	0.025		
Ptilidium ciliare	0.044	0.042	0.00.	0.442	0.025	0.050	0.050	0.050	0.000	0.405
arbilophozia sp.	0.044	0.043	0.094	0.113	0.025	0.050	0.056	0.058	0.066	0.123
phagnum sp.	0.704	0.207	0.000	0.400	0.025	0.474	0.053	0 546	0.207	0.0.0
Dicranum sp.	0.794	0.387	0.828	0.190	0.825	0.174	0.853	0.516	0.397	0.248
). polysetum	1.041	0.646	2.041	0.730	2.663	2.193	1.941	1.155	2.588	1.183
ulacomium palustre	0.013	0.025			0.004	0.100	0.013	0.025		
anionia uncinata Prachybacium co	0.013	0.025	0.841	0 224	0.081	0.163	0.013	0.025	0.679	0 717
Brachyhecium sp.	0.813	0.959	0.841	0.231	0.338	0.284	0.353	0.242	0.678	0.717
tilium crista-castrensis	0.100	0.091	0.756	1.209	0.113	0.131	0.244	0.407	0.238	0.221
lylocomium splendens	1.150	0.372	2.713	3.569	3.225	2.743	2.028	1.874	5.484	4.758
Rhytidiadelphus triquetrus Pleurozium shreberi	12 275	Q 11/	0.038 15.369	0.048 4.309	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7.282	10 699	5 060	10 575	8.886
Plagiotechium sp.	13.375	9.114			22.625		19.688	5.069	18.525	0.660
Plagiotechium sp. Polytrichum commune	0.138 3.841	0.275 2.215	0.025 4.428	0.050 1.090	0.025 4.613	0.029 2.389	4.538	0.389	6.066	2.028
	3.841 1.188	2.215 0.940	4.428 1.666		4.613 0.688			0.389 1.480		2.028 0.861
. <i>juniperinum</i> n total	22.497	11.758	28.822	1.521 1.985	35.244	1.375 5.915	1.066 30.791	5.362	1.163 35.203	7.857
chone										
ichens Iadonia sp.	0.013	0.025	0.025	0.050			0.025	0.050	0.066	0.072
. arbuscula	0.013	0.023	0.025	0.030	0.059	0.089	0.023	0.030	0.169	0.072
. arbascula . rangiferina	0.028	0.048	5.010	0.024	0.035	0.005	0.097	0.130	0.109	0.185
tereocaulon sp.	0.003	0.008					0.000	0.007	0.005	0.008
lephroma arcticum	0.000	0.075	0.013	0.025	0.100	0.122	0.013	0.025	0.163	0.325
Peltigera sp.	0.100	0.200	0.015	0.023	0.100	0.122	0.588	0.025	0.163	0.325
enigera sp. P. aphthosa	0.100	0.200	0.178	0.154	0.225	0.272	0.588	0.437	0.475	0.548
n total	0.316	0.324	0.178	0.154	0.078	0.118	0.063	0.125	1.288	1.082
itter	79.313	11.903	71.663	3.046	64.700	8.156	67.125	3.367	50.013	30.922

					Year1986					
Treatment	Control (n=	4)	Strip harve	esting (n=4)	Commerci	al thinning (n=4)	Heavy thin	ning (n=4)	Light thinn	ing (n=4)
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Graminoids and sedges										
Luzula pilosa	3.806	1.679	4.063	2.800	4.650	1.599	4.241	1.651	2.881	0.732
Carex sp.										
Gramineae	0.022	0.019	0.325	0.166	0.350	0.212	0.163	0.180	0.200	0.147
Deschampsia flexuosa	18.447	6.559	14.903	4.180	23.063	1.059	15.850	4.336	25.588	11.835
In total	22.275	7.755	19.291	6.954	28.063	2.511	20.253	5.015	28.669	11.905
Uarka										
Herbs					0.050	0.100	0.200	0 5 9 1		
Huperzia selago	1 000	4 220	0.004	0.070	0.050	0.100	0.388	0.581	0.000	0.200
Lycopodium sp.	1.003	1.230	0.091	0.070	0.813	0.668	0.578	0.617	0.266	0.306
Diphasiastrum complanatum	0.012	0.025	0.013	0.025					0.088	0.175
Equisetum sylvaticum	0.013	0.025	0.013	0.025						
Phegopteris connectilis	2.000	1.001	5 075	4 5 3 0	0 700	0.420	2 000	4 5 45	44.466	0.407
Gymnocarpium dryopteris	3.088	4.084	5.375	4.539	8.766	9.430	3.800	4.545	11.166	8.407
Pyrola sp.	0.038	0.075			0.075	0.119			0.075	0.119
Orthilia secunda	0.391	0.674	0.403	0.574	0.450	0.268	0.431	0.294	0.850	0.914
Moneses uniflora		0.050	0.050	0.071					0.003	0.006
Lysimachia europaea	4.125	0.859	3.134	0.855	3.291	1.781	4.678	0.751	4.166	0.991
Epilobium angustifolium	0.359	0.261	0.316	0.380	0.778	0.489	0.966	0.306	0.550	0.297
Geranium sylvaticum	0.175	0.350	0.016	0.024					0.025	0.050
Melampyrum sylvaticum	0.122	0.166	0.406	0.336	0.813	0.965	0.094	0.171	0.213	0.246
M. pratense	3.816	2.251	3.878	1.415	6.138	3.236	4.569	1.695	4.738	2.607
Solidago virgaurea	3.550	1.407	4.825	0.821	4.225	1.040	4.688	1.285	5.200	2.869
Antennaria dioica			0.013	0.025						
Saussurea alpina					0.038	0.075				
Hieracium sp.	0.016	0.031	0.150	0.178	0.150	0.173	0.075	0.119	0.113	0.131
Maianthemum bifolium	16.388	9.332	14.525	7.637	12.825	5.765	21.750	8.106	17.125	5.768
Neottia cordata	0.003	0.006	0.016	0.024						
Goodyera repens	0.250	0.252	0.253	0.187	0.066	0.131	0.038	0.060	0.209	0.264
Dactylorhiza maculata					0.013	0.025	0.013	0.025		
n total	33.334	3.096	33.475	4.525	38.488	8.319	42.066	13.978	44.784	14.639
Dwarf shrubs										
Vaccinium vitis-idaea	9.325	4.760	8.475	2.079	9.788	2.873	13.400	4.242	11.628	3.371
/. myrtillus	12.353	4.579	22.525	24.167	21.888	18.138	12.828	3.767	16.825	10.615
Empetrum nigrum					0.013	0.025	0.038	0.075		
innaea borealis	14.656	1.979	11.500	3.513	17.275	3.370	22.188	5.647	20.275	4.947
n total	36.334	1.729	42.500	21.186	48.963	21.455	48.453	8.727	48.728	15.84
Shrubs and tree seedlings										
Picea abies	0.984	1.846	0.225	0.384	0.425	0.718	0.638	0.950	1.544	1.831
luniperus communis	0.063	0.125	0.388	0.566	0.450	0.492	0.400	0.311	0.450	0.585
Betula sp.	0.063	0.125	0.028	0.048	0.750	1.467	0.025	0.029	0.100	0.122
Salix sp.	0.003	0.006	0.025	0.050			0.063	0.125		
Populus tremula			0.063	0.125						
Sorbus aucuparia	2.469	0.961	2.122	2.333	2.250	1.059	3.050	0.356	2.113	0.884
In total	0.582	3.581	2.731	2.850	3.200	3.875	2.876	4.175	1.397	4.206
Bryphytes										
Hepaticae										
Ptilidium ciliare	0.163	0.138	0.309	0.286	0.234	0.113	0.284	0.285	0.344	0.098
Barbilophozia sp.	0.422	0.455	0.409	0.447	0.188	0.165	0.375	0.377	0.669	0.967
Sphagnum sp.										
Dicranum sp.	4.053	3.040	4.681	3.528	5.394	1.123	6.391	2.853	5.431	1.462
D. polysetum	2.309	1.796	2.581	2.739	1.219	0.437	1.472	0.824	0.928	0.671
	-		-		-				0.013	0.025
Aulacomium palustre										
Sanionia uncinata	3,134	5,616	1,128	0.955	0.672	0.682	0.600	0 142	0 691	0.665
Sanionia uncinata Brachyhecium sp.	3.134 0 791	5.616 0.525	1.128	0.955	0.672	0.682	0.600	0.142	0.691	0.665
Sanionia uncinata Brachyhecium sp. Ptilium crista-castrensis	0.791	0.525	1.003	1.579	1.131	1.088	2.078	1.052	2.203	1.852
Sanionia uncinata Brachyhecium sp. Ptilium crista-castrensis Hylocomium splendens			1.003 3.409	1.579 2.210						
Sanionia uncinata Brachyhecium sp. Ptilium crista-castrensis Hylocomium splendens Rhytidiadelphus triquetrus	0.791 2.022	0.525 0.915	1.003 3.409 0.088	1.579 2.210 0.175	1.131 5.516	1.088 4.305	2.078 1.613	1.052 0.977	2.203 7.638	1.852 5.694
Sanionia uncinata Brachyhecium sp. Ptilium crista-castrensis Hylocomium splendens Hybridiadelphus triquetrus Pleurozium shreberi	0.791	0.525	1.003 3.409 0.088 59.388	1.579 2.210 0.175 19.028	1.131 5.516 69.475	1.088 4.305 12.266	2.078	1.052	2.203 7.638 64.863	1.852 5.694 9.066
Sanionia uncinata Brachyhecium sp. Hilium crista-castrensis Hylocomium splendens Ahytidiadelphus triquetrus Pleurozium shreberi Plagiotechium sp.	0.791 2.022 50.419	0.525 0.915 34.417	1.003 3.409 0.088 59.388 0.013	1.579 2.210 0.175 19.028 0.025	1.131 5.516 69.475 0.013	1.088 4.305 12.266 0.025	2.078 1.613 76.475	1.052 0.977 9.955	2.203 7.638 64.863 0.013	1.852 5.694 9.066 0.025
anionia uncinata Brachyhecium sp. ttilium crista-castrensis Hylocomium splendens Rhytidiadelphus triquetrus Pleurozium shreberi Plagiotechium sp. Polytrichum commune	0.791 2.022 50.419 3.009	0.525 0.915 34.417 1.982	1.003 3.409 0.088 59.388 0.013 8.850	1.579 2.210 0.175 19.028 0.025 3.891	1.131 5.516 69.475 0.013 7.203	1.088 4.305 12.266 0.025 3.147	2.078 1.613 76.475 5.519	1.052 0.977 9.955 1.488	2.203 7.638 64.863 0.013 7.475	1.852 5.694 9.066 0.025 4.328
anionia uncinata Brachyhecium sp. ttilium crista-castrensis Hylocomium splendens Rhytidiadelphus triquetrus Pleurozium shreberi Vlagiotechium sp. Polytrichum commune P. juniperinum	0.791 2.022 50.419 3.009 0.397	0.525 0.915 34.417 1.982 0.164	1.003 3.409 0.088 59.388 0.013 8.850 1.097	1.579 2.210 0.175 19.028 0.025 3.891 0.643	1.131 5.516 69.475 0.013 7.203 0.906	1.088 4.305 12.266 0.025 3.147 0.533	2.078 1.613 76.475 5.519 0.563	1.052 0.977 9.955 1.488 0.339	2.203 7.638 64.863 0.013 7.475 0.288	1.852 5.694 9.066 0.025 4.328 0.257
anionia uncinata Brachyhecium sp. ttilium crista-castrensis Hylocomium splendens Rhytidiadelphus triquetrus Pleurozium shreberi Vlagiotechium sp. Polytrichum commune P. juniperinum	0.791 2.022 50.419 3.009	0.525 0.915 34.417 1.982	1.003 3.409 0.088 59.388 0.013 8.850	1.579 2.210 0.175 19.028 0.025 3.891	1.131 5.516 69.475 0.013 7.203	1.088 4.305 12.266 0.025 3.147	2.078 1.613 76.475 5.519	1.052 0.977 9.955 1.488	2.203 7.638 64.863 0.013 7.475	1.852 5.694 9.066 0.025 4.328
anionia uncinata brachyhecium sp. ttilium crista-castrensis dylocomium splendens hyhtidiadelphus triquetrus Pleurozium shreberi Plagiotechium sp. Polytrichum commune 2. juniperinum n total	0.791 2.022 50.419 3.009 0.397	0.525 0.915 34.417 1.982 0.164	1.003 3.409 0.088 59.388 0.013 8.850 1.097	1.579 2.210 0.175 19.028 0.025 3.891 0.643	1.131 5.516 69.475 0.013 7.203 0.906	1.088 4.305 12.266 0.025 3.147 0.533	2.078 1.613 76.475 5.519 0.563	1.052 0.977 9.955 1.488 0.339	2.203 7.638 64.863 0.013 7.475 0.288	1.852 5.694 9.066 0.025 4.328 0.257
Sanionia uncinata Brachyhecium sp. Ptilium crista-castrensis Hylocomium splendens Hyhytidiadelphus triquetrus Pleurozium shreberi Plagiotechium sp. Polytrichum commune 2. juniperinum n total Lichens	0.791 2.022 50.419 3.009 0.397 66.719	0.525 0.915 34.417 1.982 0.164 34.277	1.003 3.409 0.088 59.388 0.013 8.850 1.097 82.956	1.579 2.210 0.175 19.028 0.025 3.891 0.643 16.202	1.131 5.516 69.475 0.013 7.203 0.906 91.950	1.088 4.305 12.266 0.025 3.147 0.533 6.744	2.078 1.613 76.475 5.519 0.563 95.369	1.052 0.977 9.955 1.488 0.339 10.995	2.203 7.638 64.863 0.013 7.475 0.288 90.553	1.852 5.694 9.066 0.025 4.328 0.257 9.553
Sanionia uncinata Brachyhecium sp. Ptilium crista-castrensis Hylocomium splendens Rhytidiadelphus triquetrus Pleurozium shreberi Plagiotechium sp. Polytrichum commune P. juniperinum n total Lichens Cladonia sp.	0.791 2.022 50.419 3.009 0.397	0.525 0.915 34.417 1.982 0.164	1.003 3.409 0.088 59.388 0.013 8.850 1.097	1.579 2.210 0.175 19.028 0.025 3.891 0.643	1.131 5.516 69.475 0.013 7.203 0.906	1.088 4.305 12.266 0.025 3.147 0.533	2.078 1.613 76.475 5.519 0.563	1.052 0.977 9.955 1.488 0.339	2.203 7.638 64.863 0.013 7.475 0.288	1.852 5.694 9.066 0.025 4.328 0.257
Sanionia uncinata Brachyhecium sp. Ptilium crista-castrensis Hylocomium splendens Rhytidiadelphus triquetrus Pleurozium shreberi Plagiotechium sp. Polytrichum commune P. juniperinum n total Lichens Cladonia sp. C. arbuscula	0.791 2.022 50.419 3.009 0.397 66.719	0.525 0.915 34.417 1.982 0.164 34.277	1.003 3.409 0.088 59.388 0.013 8.850 1.097 82.956	1.579 2.210 0.175 19.028 0.025 3.891 0.643 16.202	1.131 5.516 69.475 0.013 7.203 0.906 91.950	1.088 4.305 12.266 0.025 3.147 0.533 6.744	2.078 1.613 76.475 5.519 0.563 95.369	1.052 0.977 9.955 1.488 0.339 10.995	2.203 7.638 64.863 0.013 7.475 0.288 90.553	1.852 5.694 9.066 0.025 4.328 0.257 9.553
Sanionia uncinata Brachyhecium sp. Ptillium crista-castrensis Hylocomium splendens Rhytidiadelphus triquetrus Pleurozium shreberi Plegiotechium sp. Polytrichum commune P. juniperinum n total Lichens Cladonia sp. C. arbuscula C. rangiferina	0.791 2.022 50.419 3.009 0.397 66.719	0.525 0.915 34.417 1.982 0.164 34.277	1.003 3.409 0.088 59.388 0.013 8.850 1.097 82.956	1.579 2.210 0.175 19.028 0.025 3.891 0.643 16.202	1.131 5.516 69.475 0.013 7.203 0.906 91.950	1.088 4.305 12.266 0.025 3.147 0.533 6.744	2.078 1.613 76.475 5.519 0.563 95.369	1.052 0.977 9.955 1.488 0.339 10.995	2.203 7.638 64.863 0.013 7.475 0.288 90.553	1.852 5.694 9.066 0.025 4.328 0.257 9.553
Sanionia uncinata Brachyhecium sp. Ptilium crista-castrensis Hylocomium splendens Hyhyldiadelphus triquetrus Pleurozium shreberi Plagiotechium sp. Polytrichum commune P. juniperinum n total Lichens Cladonia sp. C. arbuscula C. rangiferina Stereocaulon sp.	0.791 2.022 50.419 3.009 0.397 66.719	0.525 0.915 34.417 1.982 0.164 34.277	1.003 3.409 0.088 59.388 0.013 8.850 1.097 82.956	1.579 2.210 0.175 19.028 0.025 3.891 0.643 16.202	1.131 5.516 69.475 0.013 7.203 0.906 91.950	1.088 4.305 12.266 0.025 3.147 0.533 6.744	2.078 1.613 76.475 5.519 0.563 95.369	1.052 0.977 9.955 1.488 0.339 10.995	2.203 7.638 64.863 0.013 7.475 0.288 90.553	1.852 5.694 9.066 0.025 4.328 0.257 9.553
Sanionia uncinata Srachyhecium sp. Ptilium crista-castrensis Hylocomium splendens Hybidiadelphus triquetrus Pleurozium shreberi Plagiotechium sp. Polytrichum commune P. juniperinum n total Lichens Liadonia sp. C. arabuscula Stereocaulon sp. Vephroma arcticum	0.791 2.022 50.419 3.009 0.397 66.719	0.525 0.915 34.417 1.982 0.164 34.277	1.003 3.409 0.088 59.388 0.013 8.850 1.097 82.956	1.579 2.210 0.175 19.028 0.025 3.891 0.643 16.202	1.131 5.516 69.475 0.013 7.203 0.906 91.950	1.088 4.305 12.266 0.025 3.147 0.533 6.744	2.078 1.613 76.475 5.519 0.563 95.369	1.052 0.977 9.955 1.488 0.339 10.995	2.203 7.638 64.863 0.013 7.475 0.288 90.553	1.852 5.694 9.066 0.025 4.328 0.257 9.553
Sanionia uncinata Brachyhecium sp. Brachyhecium sp. Hylium crista-castrensis Hylocomium splendens Ahytidiadelphus triquetrus Peleurozium shreberi Plagiotechium sp. Polytrichum commune D. juniperinum n total Lichens Cladonia sp. C. angiferina Stereocaulon sp. Vephroma arcticum Peltigera sp.	0.791 2.022 50.419 3.009 0.397 66.719	0.525 0.915 34.417 1.982 0.164 34.277	1.003 3.409 0.088 59.388 0.013 8.850 1.097 82.956	1.579 2.210 0.175 19.028 0.025 3.891 0.643 16.202	1.131 5.516 69.475 0.013 7.203 0.906 91.950	1.088 4.305 12.266 0.025 3.147 0.533 6.744	2.078 1.613 76.475 5.519 0.563 95.369	1.052 0.977 9.955 1.488 0.339 10.995	2.203 7.638 64.863 0.013 7.475 0.288 90.553 0.075	1.852 5.694 9.066 0.025 4.328 0.257 9.553 0.087
Sanionia uncinata Brachyhecium sp. Ptillum crista-castrensis Hylocomium splendens Rhytidiadelphus triquetrus Pleurozium shreberi Plagiotechium sp. Polytrichum commune P. juniperinum In total Lichens Cladonia sp. C. arabuscula C. rangiferina Stereocaulon sp. Nephroma arcticum Peltigera sp. P. aphthosa	0.791 2.022 50.419 3.009 0.397 66.719 0.025	0.525 0.915 34.417 1.982 0.164 34.277 0.050	1.003 3.409 0.088 59.388 0.013 8.850 1.097 82.956 0.016	1.579 2.210 0.175 19.028 0.025 3.891 0.643 16.202 0.024	1.131 5.516 69.475 0.013 7.203 0.906 91.950 0.175	1.088 4.305 12.266 0.025 3.147 0.533 6.744 0.287	2.078 1.613 76.475 5.519 0.563 95.369 0.022	1.052 0.977 9.955 1.488 0.339 10.995 0.030	2.203 7.638 64.863 0.013 7.475 0.288 90.553 0.075	1.852 5.694 9.066 0.025 4.328 0.257 9.553 0.087
Aulacomium palustre Saniania uncinata Brachyhecium sp. Ptilium crista-castrensis Hylocomium splendens Rhytidiadelphus triquetrus Pleurozium shreberi Plagiotechium sp. Polytrichum commune P. juniperinum In total Lichens Cladonia sp. C. arbuscula C. rangiferina Stereocaulon sp. Nephroma arcticum Peltigera sp. P. aphthosa In total	0.791 2.022 50.419 3.009 0.397 66.719	0.525 0.915 34.417 1.982 0.164 34.277	1.003 3.409 0.088 59.388 0.013 8.850 1.097 82.956	1.579 2.210 0.175 19.028 0.025 3.891 0.643 16.202	1.131 5.516 69.475 0.013 7.203 0.906 91.950	1.088 4.305 12.266 0.025 3.147 0.533 6.744	2.078 1.613 76.475 5.519 0.563 95.369	1.052 0.977 9.955 1.488 0.339 10.995	2.203 7.638 64.863 0.013 7.475 0.288 90.553 0.075	1.852 5.694 9.066 0.025 4.328 0.257 9.553 0.087
Sanionia uncinata Brachyhecium sp. Ptilium crista-castrensis Hylocomium splendens Rhytidiadelphus triquetrus Pleurozium shreberi Plagiotechium sp. Polytrichum commune P. juniperinum n total Lichens Cladonia sp. C. arabuscula C. rangiferina Stereocaulon sp. Nephroma arcticum Peltigera sp. P. aphthosa	0.791 2.022 50.419 3.009 0.397 66.719 0.025	0.525 0.915 34.417 1.982 0.164 34.277 0.050	1.003 3.409 0.088 59.388 0.013 8.850 1.097 82.956 0.016	1.579 2.210 0.175 19.028 0.025 3.891 0.643 16.202 0.024	1.131 5.516 69.475 0.013 7.203 0.906 91.950 0.175	1.088 4.305 12.266 0.025 3.147 0.533 6.744 0.287	2.078 1.613 76.475 5.519 0.563 95.369 0.022	1.052 0.977 9.955 1.488 0.339 10.995 0.030	2.203 7.638 64.863 0.013 7.475 0.288 90.553 0.075	1.852 5.694 9.066 0.025 4.328 0.257 9.553 0.087

Year1986

					rear2013			
Treatment	Control (r	=4)	Heavy thir	nning (n=6)	Medium t	hinning (n=7)	Light thinr	ning (n=3)
	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Graminoids and sedges								
uzula pilosa	0.284	0.199	0.540	0.180	0.463	0.228	0.933	0.198
Carex sp.								
Gramineae	0.003	0.006	0.104	0.120	0.116	0.114	0.163	0.102
Deschampsia flexuosa	0.472	0.244	1.229	0.544	0.977	0.267	0.658	0.158
n total	0.759	0.387	1.873	0.581	1.555	0.500	1.754	0.304
erbs								
iperzia selago								
<i>copodium</i> sp.	0.994	1.323	0.556	0.406	0.543	0.486	0.088	0.111
iphasiastrum complanatum			0.013	0.021	0.011	0.020		
quisetum sylvaticum								
egopteris connectilis	0.050	0.10						
mnocarpium dryopteris	1.016	1.829	0.908	1.072	1.137	1.131	2.196	0.805
rola sp.								
thilia secunda	0.309	0.516	0.150	0.216	0.223	0.259	0.646	0.418
oneses uniflora	0.003	0.006	0.013	0.016	0.011	0.011	0.013	0.022
imachia europaea	0.375	0.264	0.308	0.213	0.341	0.428	0.167	0.131
lobium angustifolium	0.038	0.048	0.027	0.043	0.011	0.018	0.017	0.029
anium sylvaticum	0.000	0.040	0.027	0.043	0.011	0.010	0.017	0.023
anium sylvaticum lampyrum sylvaticum	0.006	0.007	0.021	0.051	0.004	0.009	0.008	0.014
pratense	0.144	0.022	0.410	0.146	0.445	0.095	0.375	0.111
idago virgaurea	0.741	0.180	1.796	0.912	1.789	0.762	1.767	0.488
tennaria dioica								
ussurea alpina								
eracium sp.	0.003	0.006	0.004	0.010	0.002	0.005	0.025	0.043
aianthemum bifolium	1.863	0.849	2.044	0.860	2.800	1.356	2.638	1.241
ottia cordata	0.025	0.027	0.040	0.051	0.021	0.021	0.021	0.026
odyera repens	2.097	0.834	0.544	0.344	1.318	0.400	0.813	1.215
ctylorhiza maculata			0.013	0.021	0.004	0.009		
total	7.663	1.401	6.862	2.351	8.658	2.560	8.771	2.427
					-			
arf shrubs								
ccinium vitis-idaea	10.313	5.998	10.827	2.293	13.00	2.784	11.700	2.901
myrtillus	43.425	9.266	43.758	5.623	42.057	3.768	43.583	6.663
•	43.425 0.056	9.266 0.113	43.758	0.100	42.057 0.382	0.665	43.303	0.005
petrum nigrum							2 5 4 6	0 01 7
naea borealis	1.728	0.604	2.673	0.980	3.182 58.621	0.791	2.546	0.813
otal	55.522	9.814	57.308	5.848	30.021	2.225	57.829	6.589
ubs and tree seedlings	0 70-	0.755	0 =	0.000	0.0	0.055	0.05	0.000
ea abies	0.725	0.725	0.742	0.661	0.275	0.328	0.321	0.295
iperus communis	0.556	0.130	0.225	0.312	0.234	0.259	0.817	0.718
<i>ula</i> sp.	0.019	0.030	0.396	0.425	0.213	0.255	0.367	0.153
ix sp.			0.006	0.010				
oulus tremula	0.006	0.013			0.009	0.019		
bus aucuparia	1.747	0.691	1.425	0.340	1.102	0.450	2.692	0.128
otal	2.480	3.053	1.504	2.794	1.317	1.832	0.752	4.196
phytes								
aticae	0.222	0.341	0.573	0.338	0.393	0.264	0.225	0.142
dium ciliare	0.134	0.175	0.275	0.338	0.280	0.203	0.029	0.026
bilophozia sp.	0.178	0.211	2.144	1.497	1.123	0.693	0.333	0.272
agnum sp.			0.175	0.405			0.033	0.058
anum sp.	4.963	2.848	7.256	1.413	7.345	2.939	5.046	1.266
olysetum	4.728	2.918	7.079	1.507	7.189	2.798	5.000	1.277
acomium palustre								
ionia uncinata	0.006	0.013						
chyhecium sp.	0.834	1.504	0.279	0.298	0.521	0.443	0.579	0.484
					0.034			
ium crista-castrensis	0.022	0.012	0.004	0.006		0.052	0.013	0.022
ocomium splendens	5.013	2.911	8.681	3.425	9.536	3.496	10.204	5.832
rtidiadelphus triquetrus	10 000	40.000	0.017	0.041	26.000	42.075	0.500	0.866
urozium shreberi	19.688	12.375	32.573	6.588	26.438	12.078	10.479	1.631
giotechium sp.	0.088	0.102	0.021	0.040	0.032	0.047	_	
ytrichum commune	2.278	1.976	4.067	2.207	4.027	1.052	5.825	1.401
uniperinum	0.053	0.106	0.092	0.099	0.038	0.063		
otal	38.206	19.157	63.235	8.306	56.955	13.902	38.267	1.536
iens								
donia sp.	0.013	0.010	0.019	0.025	0.007	0.019		
arbuscula								
rangiferina								
••								
reocaulon sp.								
phroma arcticum								
ltigera sp.	0.053	0.425					0.050	0.007
aphthosa	0.063	0.125	0.010	0.000	0.007	0.075	0.050	0.087
otal	0.075	0.125	0.019	0.025	0.007	0.019	0.050	0.087
er	63.125	20.121	40.083	7.656	47.921	11.498	64.750	2.00

Year2013

Appendix A

Species abbreviations used and description of taxa classification. "in 2013" means that species was included in non-harmonised data in year 2013 though it was not used in the harmonized data.

Graminoids and sedges	
CARE.SP	Carex sp.
DESC.FLEX	Deschampsia flexuosa
GRAM.SPP	Gramineae (Incl. e.g. Agrostis sp. Calamagrostis sp., Deschampsia caespitosa,
	Melica nutans, Poa sp.)
LUZU.PILO	Luzula pilosa
MELI.NUTA	Melica nutans (in 2013)
Herbs	
ANTE.DIOI	Antennaria dioica
DACT.MACU	Dactylorhiza maculata
DIPH.COMP	Diphasiastrum complanatum
EPIL.ANGU	Epilobium angustifolium
EQUI.SYLV	Equisetum sylvaticum
GERA.SYLV	Geranium sylvaticum
GOOD.REPE	<i>Goodyera repens</i>
GYMN.DRYO	Gymnocarpium dryopteris
HIER.SP	Hieracium sp.
HUPE.SELA	Huperzia selago
LYCO.SP	Lycopodium sp. (Incl. Lycopodium annotinum and Lycopodium clavatum)
LYCO.ANNO	Lycopodium annotinum (in 2013)
LYSI.EURO	Lysimachia europaea
MAIA.BIFO	Maianthemum bifolium
MELA.PRAT	Melampyrum pretense
MELA.SYLV	Melampyrum sylvaticum
MONE.UNIF	Moneses uniflora
NEOT.CORD	Neottia cordata
ORTH.SECU	Orthilia secunda
PHEG.CONN	Phegopteris connectilis
PYRO.SP	<i>Pyrola</i> sp. (Incl. <i>Pyrola minor</i> and <i>Pyrola rotundifolia</i>)
SAUS.ALPI	Saussurea alpina
SOLI.VIRG	Solidago virgaurea
	Sonaago viigaarea
Dwarf shrubs CALL.VULG	Calluna vulgaris (in 2013)
EMPE.NIGR	
	Empetrum nigrum
LINN.BORE VACC.MYRT	Linnaea borealis Vaccinium muntillus
	Vaccinium myrtillus Vaccinium vitis-idaea
VACC.VITI	vaccinium viiis-iaaea
Shrubs and tree seedlings	
BETU.SP	Betula sp. (Incl. B. pendula and B. pubescens)
BETU.PEND	Betula pendula (in 2013)
BETU.PUBE	Betula pubescens (in 2013)
JUNI.COMM	Juniperus communis
PICE.ABIE	Picea abies
PINU.SYLV	Pinus sylvestris (in 2013)
POPU.TREM	Populus tremula
RHOD.TOME	Rhododendron tomentosum (in 2013)
SALI.SP	Salix sp.
SORB.AUCU	Sorbus aucuparia

Bryophytes

AULA.PALU	Aulacomnium palustre
BARB.SP	Barbilophozia sp.
BARB.LYCO	Barbilophozia lycopodioides (in 2013)
BRAC.SP	Brachythecium sp. (Incl. e.g. Brachythecium salebrosum, Sciuro-
	hypnum oedipodium, Sciuro-hypnum reflexum)
BRAC.SALE	Brachythecium salebrosum (in 2013)
BRYU.SP	Bryum sp. (in 2013)
CALY.INTE	Calypogeia integristipula (in 2013)
DICR.SP	Dicranum sp. (Incl. e.g. Dicranum fuscescens, D. majus, D. scoparium,
Diensi	D. spurium, D. undulatum)
DICR.MAJU	Dicranum majus (in 2013)
DICR.POLY	Dicranum polysetum
DICR.SCOP	Dicranum scoparium
HEPA.SP	Hepaticae
HYLO.SPLE	Hylocomium splendens
LOPH.SP	Lophozia-type (in 2013)
PLAG.SP	Plagiothecium sp.
PLEU.SCHR	Pleurozium schreberi
POLY.COMM	Polytrichum commune
POLY.JUNI	Polytrichum juniperinum
PTIL.CRIS	Ptilium crista-castrensis
PTIL.CILI	Ptilidium ciliare
RHYT.TRIQ	Rhytidiadelphus triquetrus
RHIZ.MANG	Rhizomnium magnifolium (in 2013)
SCIU.OEDI	Sciuro-hypnum oedipodium (in 2013)
SCIU.REFL	Sciuro-hypnum reflexum (in 2013)
SANI.UNCI	Sanionia uncinata
SPHA.SP	Sphagnum sp. (Incl. Sphagnum angustifolium, S.capillifolium, S. girgensohnii)
SPHA.ANGU	Sphagnum angustifolium (in 2013)
SPHA.CAPI	Sphagnum.capillifolium (in 2013)
SPHA.GIRG	Sphagnum girgensohnii (in 2013)
5111101110	
Lichens	
CETR.ISLA	Cetraria islandica (in 2013)
CLAD.ARBU	Cladonia arbuscula
CLAD.RANG	Cladonia rangiferina
CLAD.SP	Cladonia sp. (Incl. e.g. Cladonia chlorophaea, C. cornuta, C. crispata,
	C. furcata, C. squamosa, C. sulphurina)
CLAD.CHLO	Cladonia chlorophaea
CLAD. CORN	Cladonia cornuta
CLAD. FURC	Cladonia furcata
CLAD.SULP	Cladonia sulphurina
CLAD.UNCI	Cladonia uncialis
ICMA.ERIC	Icmadophila ericetorum (in 2013)
NEPH.ARCT	Nephroma arcticum
PELT.APHT	Peltigera aphthosa (Incl. Peltigera neopolydactyla (except for 2013))
PELT.LEUC	Peltigera leucophlebia (in 2013)
PELT.NEOP	Peltigera neopolydactyla (in 2013)
PELT.SP	Peltigera sp. (Incl. e.g. Peltigera leucophlebia and P. canina)
STER.SP	Stereocaulon sp.

Appendix B

Variation in the number of stems and stem volume in different harvesting treatments in years 1953 (before the first logging), 1961 and 1986 (after the first logging). Names indicate different harvesting intensities in each year (control n=4, strip harvesting n=4, commercial thinning n=4, heavy thinning n=4, light thinning n=4). Mean values are represented with black lines. Years are separated with dashed line to make interpretation of the figure easier. Note the different scales in y-axis.

Appendix C

Variation of the number of taxa in total, and in field and bottom layers separately in previous treatment Years are separated with dashed line to make interpretation of the figure easier. For years 1961 and 1986 previous treatment was done in 1953 (control n=4, strip harvesting, n=4, commercial thinning n=4, heavy thinning n=4, light thinning n=4), and for year 2013 in 1987 (control n=4, heavy n=6, medium n=7, light n=3). Mean values are represented with black lines. Note the different scales in y-axis.

