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FROM CASES TO GENERAL PRINCIPLES:  A CALL FOR THEORY 1 

DEVELOPMENT THROUGH AGENT-BASED MODELING 2 

ABSTRACT 3 

Virtually all current major social and environmental challenges such as financial crises, migration, the 4 
erosion of democratic institutions, and the loss of biodiversity involve complex systems comprising 5 
decision-making, interacting, adaptive agents. To understand how such agent-based complex systems 6 
function and respond to change and disturbances, agent-based modeling (ABM) is increasingly 7 
recognized as the main way forward. Many motivating examples of agent-based models exist that are 8 
realistic enough to successfully support the management of complex systems, but these solutions are 9 
case-specific and contribute few general insights into the functioning of systems. General theory, 10 
though, is highly needed because we cannot model each system and question. Still, across disciplines, a 11 
critical mass of expertise has accumulated that could transform ABM into a more coherent and 12 
efficient approach to discover the functioning of complex social-economic-ecological systems. To this 13 
end, we need a cross-disciplinary discussion among researchers and a goal-oriented synthesis to 14 
identify the general principles and theories essential to improve our understanding and management 15 
of complex systems. 16 
 17 
MOTIVATION 18 

We live in networks (Lazer et al., 2009) where individual actions and institutional policies may have 19 
unintended consequences that are hard to oversee or even predict. Digitalization and information 20 
technology link different areas so that “systems that used to be separate are now interconnected and 21 
interdependent” (Sargut and McGrath, 2011, p. 70). Analyzing, understanding, predicting, and 22 
managing the dynamics of these agent-based complex systems (ACSs) are some of the most urgent 23 
issues these days (Sargut and McGrath, 2011). 24 

To understand how such systems function and respond to environmental changes and disturbances, 25 
agent-based modeling (ABM; also called individual-based modeling, IBM) is increasingly recognized 26 
as the main way forward (Macal, 2016, Law, 2015). The approach captures dynamics that arise from 27 
the behavior and interactions of individual agents, such as bird flocking behavior and the S-shaped 28 
diffusion process of innovations in markets resulting from individual consumer adoption decisions 29 
(Schubring et al., 2016, Garcia and Jager, 2011). ABM allows for a holistic view by linking different 30 
levels of an organization (Gräbner, 2016, p.245). For example, agent-based models describing the 31 
complex socioeconomic dynamics of land use at multiple levels are suitable to explore the particular 32 
impacts of environmental settings on the mitigation and adaptation strategies of humans or 33 
organizations to climate change (Balbi and Giupponi, 2009). By performing simulation experiments, 34 
explanations of complex developments can be found that are too complex to oversee otherwise. This 35 
may also include the consideration of rare or improbable events, to be better prepared for the 36 
future. Consequently, ABM is of increasing relevance and we find applications in virtually all 37 
research fields where adaptive agents matter, such as socio-ecology (Balbi and Giupponi, 2009, 38 
DeAngelis and Mooij, 2005a, Tesfatsion, 2002), economics (Tesfatsion, 2002), management 39 
(Kiesling et al., 2012), geography (Heppenstall et al., 2011, Crooks and Heppenstall, 2012), and 40 
ecology (Railsback and Johnson, 2011). 41 

Notwithstanding the relevance of understanding ACSs and the value of ABM for accomplishing this 42 
goal, the method seems stuck in a stage of ad hoc model development and exploration. Besides all 43 
the merits of ABM applications, scientific progress in ABM has been slower than expected, which 44 
was poignantly described by Nobel laureate Paul Krugman as follows: “I was one of the people who 45 
got all excited about the possibility of getting somewhere with very detailed agent-based models — but 46 
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that was 20 years ago. And after all this time, it’s all still manifestos and promises of great things one of 47 
these days” (Krugman, 2010). 48 

The majority of existing agent-based models focus on specific systems, which limits their generality. 49 
The scientific community recognizes this more and more, and the current situation has been 50 
described recently as the “yet another model syndrome” (O’Sullivan et al., 2016), presenting model 51 
after model without accumulating general theoretical insights into systems and their dynamics. As a 52 
consequence, there is a “call for theoretical engagement” (O’Sullivan et al., 2016, p.184), and it is the 53 
aim of this paper to open a dialog on theory development through ABM. 54 

We claim that to cope with the challenges of modern complex and highly interconnected ACSs, we 55 
have to complement the current focus on single cases with a second perspective regarding the 56 
identification of more general principles. At the system level, we need to identify and understand 57 
the general principles, such as ACSs’ self-organization, their ability to cope with change and stress 58 
(resilience), and their propensity toward catastrophic, sudden changes (regime shifts, Egli et al., 59 
2018). Similarly, there is a need to more systematically accumulate knowledge at the level of 60 
individual behaviors in the form of, say, reusable, generic submodules of agents. For this purpose, 61 
we need tested, well-understood, and modular building blocks that are ready to implement in the 62 
agent-based models of specific ACSs. This would increase credibility and allow for systematic 63 
learning beyond the respective case, which in the end improves the predictive capabilities of our 64 
models. 65 

REASONS FOR THE CURRENT SITUATION 66 

We see at least three possible reasons why this has not been achieved so far. First, it might 67 
paradoxically result from a key benefit of ABM, namely its flexibility and ability to embrace 68 
complexity. This involves many degrees of freedom in the modeling process. Keeping such agent-69 
based models at a generic level, for example by trying to model “pastoralist systems” in general, 70 
would leave room for so many possible outcomes that the model would be of little use for practical 71 
purposes. Such generic agent-based models exist, for example on opinion dynamics, cultural 72 
dissemination, and segregation, but it remains unclear how well they capture the organization of 73 
real systems. 74 

To avoid this, ABM developers that strive for inferences about the real world relate their modeling 75 
efforts to specific empirical cases, which is reflected in an increasing number of empirically 76 
validated and calibrated models (Stillman et al., 2015). This research strategy narrows the degrees 77 
of freedom in model parameters and structure, which leads to testable predictions and management 78 
recommendations for the modeled system. The price for this is a loss of generality, both because a 79 
specific system is modeled and because the focus on this system and robust predictions seem to 80 
prevent most ABM developers from thinking about general principles, or theories, that go beyond 81 
their specific case. 82 

Second, ABM is a sophisticated research tool, which comes with its methodological challenges. Due 83 
to the inherent complexity of many agent-based models, there are concerns about their internal 84 
validity (Lehtinen and Kuorikoski, 2007, p.323) and our ability to understand these models. This 85 
skepticism has been expressed by Roughgarden (2012, p.8): “With simulation it may be impossible to 86 
drill down to what assumptions are responsible for conclusions, to discern the causal connections 87 
between initial conditions and results, and simulation invites unsophisticated and sloppy research 88 
together with naive hocus-pocus about the magic of emergence.” In many disciplines, an exclusive link 89 
between the analytical tractability of models and theory is taken for granted (Evans et al., 2013). In 90 
particular, economics endorses analytical solutions as a necessary precondition for contributions to 91 
theory (Lehtinen and Kuorikoski, 2007), although it often requires an oversimplification of the 92 
described processes, hindering its suitability to tackle most problems of complex systems. ABM 93 
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provides a new avenue to model interdependencies and processes in algorithmic structures, which 94 
gives the theory-generating process a new appearance. The specifics of the method and the new 95 
methodological challenges that follow from this, however, have slowed theory development so far. 96 

Third, it might take time for a complex approach such as ABM to mature. Calculus or statistics were 97 
not developed in just a few decades. In ecology, which has the longest history of using agent-based 98 
models (Vincenot, 2018), such models are now accepted as a tool for tackling applied problems, but 99 
not for identifying general principles or developing a general theory (Evans et al., 2013). There are 100 
indeed indicators of the methodological maturation of ABM, including topics such as standardized 101 
communication, validation, and sensitivity analysis (Grimm and Berger, 2016b, Hauke et al., 2017, 102 
Schulze et al., 2017). These tentative explanations of the current situation are not exclusive and 103 
have to be explored further if we want to make ABM suitable for much-needed theory development. 104 

THEORY DEVELOPMENT THROUGH ABM 105 

There is still little awareness of the need for a more general theory in ABM, or such a theory is 106 
considered to be impossible to achieve with this approach. Theories explain reoccurring patterns 107 
(also referred to as stylized facts, signals, or regularities) and describe how the system in question is 108 
internally organized. Computational modeling is the next level of theory development that allows 109 
for the formalization of interactions and adaptation processes. Further, ABM can combine multiple 110 
approaches and go side by side with mathematical models by including probability functions or 111 
logical rules in submodels. 112 

In particular, we seek two kinds of theories: theories addressing the system and theories addressing 113 
the behavior of agents. The first perspective aims to identify patterns at the system level to 114 
understand the underlying organization of ACSs. From the second perspective, we include 115 
alternative submodels of agent behavior to analyze the macro-response at the system level. 116 
Ultimately, these two kinds of theories need to be matched to each other because the behavior of 117 
agents and system-level features are inseparably linked. Agent-based theory development is thus 118 
cross-level. This is in contrast to theory in many other fields. For example, theory in community 119 
ecology ignores behavior, whereas theory in classical behavioral ecology ignores feedback at higher 120 
organizational levels. 121 

For some systems, cross-level theory development through ABM has already worked well (e.g., 122 
models explaining the emergence of fish schools and bird flocks). The latter started by assuming 123 
that fixed distances determine behavior before realizing that real birds in fact take six to eight 124 
neighbors into account. Finally, they managed to reproduce observed patterns by also including the 125 
basic principles of flight physics (e.g., Hemelrijk and Hildenbrandt 2015). Similarly, theory 126 
development should also be the aim of ABM, linking behavior to the observed patterns of systems 127 
where the behavioral context is more comple x than in bird flocks. 128 

Another good example of theory development through ABM is the study by Martin et al. (2013). This 129 
simulation study shows how one generic theory, namely Dynamic Energy Budget theory, can be 130 
used to extrapolate the effect of toxicants measured at the individual level to effects on population 131 
dynamics. This study reproduces the population density by one food level. Beyond this, the results 132 
showed the density and size distribution of multiple food levels and toxicant exposure, which was 133 
not seen before. This study also provides a good example of how circularity can be avoided, as it 134 
produces new predictions. 135 

Empirical knowledge is an important source of patterns and candidate submodels of behavior. 136 
Experts can also be the first to formulate a hypothesis on why certain things happen. Likewise, the 137 
stakeholders’ perspective helps asking relevant questions about a system and thereby developing 138 
theory that is related to real world problems. Within the limits of the formalized system, we may, 139 
using ABM and theory development, achieve a deep understanding of interdependencies and 140 
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process trajectories that would be hard to obtain otherwise. The theory supports a coherent 141 
understanding of complex systems, thus explicating their relevant features in a systematic way. 142 
Alternative approaches, based on highly stylized representations, are less likely to lead to testable 143 
theories because they rather demonstrate certain concepts or ideas than real systems. Models based 144 
on opinion dynamics in social sciences and Lotka-Volterra models in ecology are prominent 145 
examples. 146 

ABM has some challenges that are similar to those of other modeling approaches. ACSs are not 147 
always self-defined, but we have to define their boundaries, which is not often easy. We think that 148 
the formalization of a defined system by one valid model may produce hypotheses of patterns 149 
suitable to represent a particular system. This can be done, for example, by robustness analyses 150 
(Grimm and Berger 2016a) and even extended sensitivity analyses. To achieve generality, however, 151 
we would ideally focus on generic patterns that define classes of systems, not only specific ones, for 152 
example tree/grass coexistence in savannas. It is important, though, to go beyond single patterns 153 
and try to reproduce entire sets of patterns (“pattern-oriented modeling”; Grimm and Railsback 154 
2010). 155 

Theory development with agent-based models also needs to consider the algorithmic nature of 156 
ACSs. These systems are driven by context-dependent and stochastic events such as natural 157 
selection and the life history of individuals (Dennett and Mittwoch, 1996). Although aspects of ACSs 158 
may be captured by mathematical models that are analytically tractable, algorithmic 159 
representations provided by ABM might be more adequate for many purposes. In ecology, this 160 
already leads to standard algorithms in certain ecological settings; see, for example, the zone-of-161 
influence approach for the description of local interactions among plants (Weiner et al., 2001, 162 
Berger et al., 2008). Moreover, to represent home range behavior or territorial dynamics, we do not 163 
need a new approach in every single model; rather, we can build on existing models, which are 164 
based either on maps of habitat quality (e.g., Wang and Grimm, 2007, Carter et al., 2014) or on 165 
tracking data and the assumption that animals remember good places (e.g., Nabe‐Nielsen et al., 166 
2018). 167 

Taking such an algorithmic perspective involves further challenges, which have to be handled. First, 168 
it requires a more intensive cultivation of the skill of computational thinking, such as the 169 
algorithmic problem-solving and abstraction techniques developed by computer scientists (Wing, 170 
2006). Second, as already indicated above, it might also change the role of mathematics and 171 
simulation with respect to theory development. Theories about ACSs that cannot be expressed 172 
mathematically can be represented algorithmically. To allow for generalizations, a possible 173 
contribution of mathematics could be then to formulate a theory of algorithms. In terms of culture, 174 
this could affect the different traditions in ecology, economics, and the other social sciences (e.g., 175 
how mathematics and computer simulations are applied and relate to each other). Answers to these 176 
challenges emerge, but are distributed among many disciplines and have to be incorporated. 177 

NEXT STEPS 178 

How to move forward? First, each agent-based modeler can contribute more to theory development 179 
by referring, as required in the ODD (Overview, Design concepts, Details) protocol’s design concept 180 
of “basic principles” (Grimm et al., 2010, Grimm et al., 2006), to the general theories and concepts 181 
that guide the design of the model and by explicitly discussing the model’s results in terms of these 182 
theories. Did they work? Were they useful? Did they need to be refined within the agent-based 183 
model? Why? 184 

Also the fact that systems often depict stable patterns (also referred to as stylized facts) could be a 185 
possible way forward. First, there could be some general mechanism creating them. If these 186 
patterns are similar for different systems (even among classes of systems), this might provide 187 
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further possible avenues for theory development. Second, these patterns might contain information 188 
that can provide insights into the general working of the system or the process under investigation. 189 

In addition, we need methods and approaches that support the theory development process in ABM. 190 
Some approaches already exist that may improve the specification and analysis of models in this 191 
regard. To focus on both theory and application, we need to force “cloudy areas to be addressed in 192 
clear specification” (Harrison et al., 2007, p.1233). The ODD protocol for model specification 193 
supports this process (Grimm et al., 2010, Grimm et al., 2006). Systematic designs of experiments 194 
support the analysis of simulation models to draw valid and reliable conclusions from simulation 195 
results (Lorscheid et al., 2012, Lorscheid and Meyer, 2016). All these approaches can contribute to 196 
improving the rigor of agent-based models and offer systematic ways for valid theory development 197 
by ABM. 198 

In addition, various ways of theory development have been suggested, including pattern-oriented 199 
theory development (Grimm and Railsback, 2012, Railsback and Harvey, 2013), breaking models 200 
(Thiele and Grimm, 2015), and robustness analysis (Grimm and Berger, 2016a). Management 201 
research and sociology have developed strategies on how to derive theory from single or multiple 202 
case studies. The principles of “pattern-oriented modeling” and stylized facts, for example, can be of 203 
added value to focus on and evaluate the core mechanics of a model (Grimm et al., 2005, Meyer, 204 
2019, Heine et al., 2005). Unfortunately, these methods have never been sufficiently considered or 205 
discussed across the disciplinary boundaries, nor combined in an overall, systematic research 206 
strategy. This discussion, however, is necessary. ABM researchers need to develop concrete 207 
roadmaps and practical guidelines to open ways for more coherent and rigorous research that, in 208 
the long run, also leads to a better acceptance of agent-based theory. 209 

This quest for theory also poses the question of how to organize our collective learning and gather 210 
best practices. How can we accumulate knowledge more systematically from our model-based 211 
analyses of ACSs? Systematic reviews of existing agent-based models with respect to their core 212 
mechanisms would allow us to identify similarities and differences in the investigated cases. A set of 213 
the typical patterns/stylized facts of different classes of ACSs might also be used as a coordinating 214 
device for modeling efforts (Meyer, 2011, Heine et al., 2005). As Hilbert’s problems set a challenge 215 
for mathematics, explaining the patterns observed regularly for certain ACSs may set the path for a 216 
community of modelers in a domain. Both efforts might lead to better knowledge of the underlying 217 
organization of ACSs. 218 

Given the general character of these questions, the epistemological perspective is also critical but 219 
often ignored by the community of ABM developers. It is important to keep in mind that “theory” 220 
has multiple meanings, ranging from the colloquial interpretation as speculative guess, or 221 
conjecture, to its interpretation in physics as an explanation of observed phenomena that have been 222 
well confirmed by testing the theory’s predictions. What kinds of predictions can we expect or 223 
should we aim for with agent-based models? Should we seek theory rather at the level of the agent’s 224 
behavior or is it also possible at the entire system level? 225 

CONCLUSION 226 

This paper cannot depict a fully developed solution, but wants to open the dialog concerning the 227 
posed problem and possible ways out. Without such a general quest for theory development, ABM 228 
will continue delivering patchwork results, which is insufficient to meet the grand societal and 229 
environmental challenges in our interconnected and fast-changing world. Instead of developing 230 
agent-based models for each question and system, we need to identify robust principles that allow 231 
both individuals and policymakers to make the right decisions. This is a call towards a general, 232 
cross-level, and cross-disciplinary theoretical engagement concerning ACSs. Following the “call for 233 
theoretical engagement” (O’Sullivan et al., 2016, p. 184), the modeling community needs: 234 
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1. To gain a better understanding of how to use ABM to derive the general principles of 235 
the complex systems we live in. For this, we need a cross-disciplinary discussion and a goal-236 
oriented synthesis to transform ABM into a more coherent, efficient approach to identify 237 
general principles and theories. 238 

2. A compilation and critical reflection of existing methods and best practice in ABM 239 
research fostering the development and dissemination of standards. This also requires a 240 
discussion of the existing gaps and obstacles for successful theory development through 241 
ABM including a philosophical discussion on whether ABM extends classical theory to more 242 
complex situations or represents a radically new research program (DeAngelis and Mooij, 243 
2005b). 244 

3. To formulate a roadmap to overcome current obstacles to use the potential of ABM as a 245 
powerful and much-needed approach for theory development. 246 

The main purpose of this call is to create awareness of these challenges. We invite peers in all 247 
disciplines using ABM to relate their more or less case-specific work to theory and consider theory 248 
development to be an integral part of even the most applied ABM. If we all force ourselves to include 249 
in all our ABM publications at least one paragraph in the discussion addressing the question “What 250 
have we learned in terms or general theory?”, we would already contribute to this first important 251 
step. 252 

We invite complementary or opposing views to those expressed by us, and we hope to instigate a 253 
much-needed discussion on theory development among agent-based modelers, which hopefully will 254 
result in explicit articles, special issues, and projects. We ourselves are organizing a series of three 255 
workshops entitled “From cases to general principles: Theory development through agent-based 256 
modeling”1. These symposia will provide a platform to connect modelers from different disciplines 257 
and epistemologists for critical reflections and the collection of best practices. 258 
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