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Abstract 13 

Surface water concentrations of 54 pharmaceuticals were predicted for seven major Swedish rivers and the 14 

Stockholm City area basins using the STREAM-EU model. These surface water concentrations were used to 15 

predict the ecotoxicological impact resulting from the exposure of aquatic organisms to this mixture of 54 16 

pharmaceuticals. STREAM-EU model results indicated that <10 substances were present at median annual 17 

water concentrations greater than 10 ng/L with highest concentrations occurring mostly in the more densely 18 

populated area of the capital city, Stockholm. There was considerable spatial and temporal variability in the 19 

model predictions (1-3 orders of magnitude) due to natural variability (e.g. hydrology, temperature), variations 20 

in emissions and uncertainty sources. Local mixture ecotoxicological pressures based on acute EC50 data as 21 
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well as on chronic NOEC data, expressed as multi-substance potentially affected fraction of species (msPAF), 22 

were quantified in 114 separate locations in the waterbodies. It was estimated that 5% of the exposed aquatic 23 

species would experience exposure at or above their acute EC50 concentrations (so-called acute hazardous 24 

concentration for 5% of species, or aHC5) at only 7% of the locations analyzed (8 out of 114 locations). For the 25 

evaluation based on chronic NOEC concentrations, the chronic HC5 (cHC5) is exceeded at 27% of the locations. 26 

The acute mixture toxic pressure was estimated to be predominantly caused by only three substances in all 27 

waterbodies: Furosemide, Tramadol and Ibuprofen. A similar evaluation of chronic toxic pressure evaluation 28 

logically demonstrates that more substances play a significant role in causing a higher chronic toxic pressure at 29 

more sites as compared to the acute toxic pressure evaluation. In addition to the three substances contributing 30 

most to acute effects, the chronic effects are predominantly caused by another five substances: paracetamol, 31 

diclofenac, ethinylestradiol, erythromycin and ciprofloxacin. This study provides regulatory authorities and 32 

companies responsible for water quality valuable information for targeting remediation measures and 33 

monitoring on a substance and location basis. 34 

 35 

Keywords: Pharmaceuticals, Mixture toxicity, Exposure modelling, STREAM-EU model, Pharmaceuticals 36 

 37 

1. Introduction 38 

Currently, more than 5000 pharmaceutically active substances are reported to be available on the European 39 

market (Hughes et al., 2013). Hundreds of those substances have been detected in European surface waters, in 40 

concentrations ranging typically from ng/L to µg/L (IWW, 2014). Since pharmaceuticals are designed to have 41 

biological activity in order to achieve specific therapeutic effects, their presence in surface waters may have 42 

adverse effects in aquatic organisms. This has become apparent in reported effects, such as, endocrine 43 

disruption (Kidd et al., 2007); reproductive impairment (Nash et al., 2004); alterations in spawning (Lister et al., 44 
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2009) and enhancement of resistance of microorganisms (Zhang et al., 2009). Moreover, hydrolysis, photolysis 45 

and biodegradation may yield transformation products with a separate toxicological profile (Hirte et al., 2016). 46 

Environmental impacts of pharmaceuticals on aquatic organisms are therefore an increasing concern (Boxall et 47 

al., 2012) leading to the European Medicines Agency (EMA) developing guidance documents for environmental 48 

risk assessment (EMA, 2006) and to the establishment of an ever-growing body of ecotoxicological data for 49 

pharmaceuticals (Fent et al., 2006; DeGarcia et al., 2014; Santos et al., 2010; Stuer-Lauridsen et al., 2000). The 50 

European Union (EU) has also acknowledged the potential harmful effects of these substances by including 51 

diclofenac, 17β-estradiol and 17α-ethinylestradiol in the Water Framework Directive (WFD) Watch List (EC, 52 

2013) making them candidates for future regular monitoring. Nevertheless, apart from these three substances, 53 

other pharmaceuticals are not currently subject to environmental regulations by the EU, leading to very limited 54 

information on their occurrence. When environmental concentration measurements are not available they can 55 

be predicted with modelling tools. Models are particularly useful if there is a need to predict occurrence over 56 

time and for multiple locations (Schowanek et al., 2002), as existing data on pharmaceuticals in water rarely 57 

has a good spatial and temporal coverage (Petrie et al., 2015). In the present work the spatially and temporally 58 

resolved model STREAM-EU (Lindim et al, 2016a) was used to predict concentrations of multiple 59 

pharmaceuticals in several major Swedish waterbodies. These predicted environmental concentrations (PECs) 60 

were then used as a basis for evaluating the ecotoxicological risks of the pharmaceuticals. Previous studies 61 

have demonstrated that STREAM-EU can accurately quantify concentrations of organic contaminants in 62 

European surface waters, by predicting concentrations in close agreement with measurements for a range of 63 

substances in multiple catchments (Lindim et al., 2016a; Lindim et al., 2016c).  64 

When environmental risk assessments for a large number of pharmaceuticals need to be performed, 65 

prioritization methods are generally applied to keep the work load within realistic limits and focus on a lower 66 

number of drugs (Boxall et al., 2012). However, many prioritization strategies for pharmaceuticals in the 67 

aquatic environment are based on the assumption that higher consumptions or higher emissions to the 68 
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environment imply higher concentrations in rivers which in turn imply higher risks for aquatic organisms 69 

(Helwig et al., 2013; Daginnus et al., 2011). Such assumptions neglect cases of fast decaying and metabolizing 70 

pharmaceuticals for which neither high emissions nor high consumptions necessarily imply high concentrations 71 

in water; it also fails for substances that are biologically active at very low concentrations by underestimating 72 

their risks. Risks can therefore not be inferred as having linear relations with consumption, emissions or 73 

environmental concentrations. In principle, the read-across in silico models (Schüürmann et al., 2011; Kühne et 74 

al., 2013) or QSAR (EPISUITE 2016) prediction of toxicity could aid in the risk assessment for aquatic organisms 75 

(Schäfer et al., 2011; von der Ohe et al., 2011), but their applicability to pharmaceuticals is still limited, also 76 

because the calculus is based on baseline toxicity and Mode of Action-specific QSARs have not been generated 77 

for pharmaceuticals. Furthermore, because aquatic organisms are exposed to multiple pharmaceuticals 78 

simultaneously, environmental risk assessments should evaluate the toxicity of the local mixture. Mixture 79 

toxicity has important implications in terms of environmental toxicity and risk assessment outcomes. In many 80 

cases, significant effects for mixtures were observed when toxic individual concentrations were negligible (Silva 81 

et al., 2002; Cleuvers, 2003; Dietrich et al., 2010; Gonzalez-Pleiter et al., 2013). Several approaches have been 82 

used for the prediction of mixture toxicity based on the toxicity of individual components, namely 83 

concentration addition and response addition without (Backhaus, 2014; Altenburger et al., 2004) and with 84 

(Altenburger et al. 2003) QSAR approaches. 85 

Here, instead of prioritizing single substances, we take a more realistic and broader approach by evaluating 86 

risks to aquatic organisms arising from the mixture of as many as possible known consumed pharmaceuticals in 87 

Sweden. We assess the mixture and prioritize substances within the mixture. 88 

With the current work we hope to give a valuable contribution to three areas of environmental concern 89 

currently understudied: exposure, spatial and temporal variability and mixture toxicity of pharmaceuticals in 90 

river water. The objectives of the current work were: 91 
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- To predict exposure to multiple top consumed pharmaceuticals in the seven major rivers in Sweden and in 92 

river basins in the area of Stockholm City. 93 

- To predict how sources of variability, such as river discharge and water temperature, and uncertainty, such as 94 

retention in water treatment plants, impact exposure to the pharmaceuticals at different times and different 95 

river catchment locations. 96 

- To evaluate the ecotoxicological impacts of the mixture of pharmaceuticals using bioavailable concentrations 97 

predicted by the STREAM-EU model. 98 

 99 

2. Material and Methods  100 

2.1. Study Description  101 

Concentrations in water and ecotoxicological effects of mixtures of human pharmaceuticals in aquatic 102 

organisms were predicted for the Stockholm City area (population 1.5 million) and for the seven major rivers in 103 

Sweden: Torne River (basin population 45293, average discharge: 370 m3/s, river length: 522 km), Kalix River 104 

(basin population 30314, average discharge: 290 m3/s, river length: 461 km), Lule River (basin population 105 

18589, average discharge: 515 m3/s, river length: 461 km), Ume River (basin population 73488, average 106 

discharge: 450 m3/s, river length: 470 km), Ångerman River (basin population 52102, average discharge: 485 107 

m3/s, river length: 460 km), Indal River (basin population 119811, average discharge: 460 m3/s, river length: 108 

430 km) and Dal River (basin population 266447, average discharge: 379 m3/s, river length: 520 km).  109 

54 top consumed human pharmaceuticals in Sweden in 2011 according to Socialstyrelsen (2015) were 110 

investigated. Table S1 (Supplementary Material) lists the 54 substances for which predicted environmental 111 
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concentrations (PECs) were calculated, their correspondent anatomical therapeutic chemical (ATC) category 112 

and medians for the predicted concentrations in each catchment studied.  113 

 114 

2.2. Exposure modelling  115 

PECs of the pharmaceuticals were calculated with the temporally and spatially explicit STREAM-EU model 116 

(Lindim et al., 2016a) using a dedicated module for ionizing substances described in Lindim et al. (2017). 117 

STREAM-EU is a fugacity-based model that predicts transient state concentrations in river basins. STREAM-EU 118 

used as spatial grid the subbasins of the Swedish rivers’ and subbasins in adjacent territories in Finland and 119 

Norway belonging to the basins studied (the average subbasin area in the grid was 28 km2). The simulations 120 

were performed with a daily time step. 121 

The input data for the simulations consisted of: environmental data (hydrology, pH, air and water 122 

temperatures) as well as emissions and physico-chemical properties of the substances studied. Daily 123 

hydrological data from the pan-European hydrology model E-Hype (Donnelly et al., 2013) and temperature 124 

data for the period studied were provided by the Swedish Meteorological and Hydrological Institute (SMHI). 125 

Spatially distributed emissions were calculated using Swedish statistical data for consumption of 126 

pharmaceuticals (Socialstyrelsen, 2015), as well as wastewater treatment retentions and human excretion 127 

rates employing the rational detailed in the Supplementary Material and data presented in Lindim et al. 128 

(2016b). Substances were assumed to be discharged in the water in the same subbasin where they were 129 

consumed. Physico-chemical properties for the drugs were obtained with ACD/Percepta (ACD/Labs, 2015) (pKa, 130 

pKb); ChemProp (UFZ, 2016; Schüürmann et al., 2007), KOWWIN v.1.68 model (EPI Suite, 2016) (Log Kow) and 131 

CATALOGIC (Dimitrov et al., 2011a; Dimitrov et al., 2011b) was used for the degradation rates of the 132 

substances.  Values for two main fate behavior determinants, Kow and half-life, are presented in Figure S3). 133 

The use of information on pH, temperature, ionization, degradation and partition in the model enables the 134 
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prediction of the bioavailable concentration (dissolved fraction) of the drugs to be further used in the risk 135 

assessment.  136 

Annual medians of the predicted concentrations for the 54 drugs studied were calculated using model daily 137 

results for twenty equidistant locations along each river. For the Stockholm City area, annual medians were 138 

calculated using daily concentration results for the catchments in the area (Figure S1). Up to 16 spatial points 139 

per catchment were used depending on the catchment size.  140 

 141 

2.3. Ecotoxicological effects prediction  142 

Ecotoxicological impact prediction was based on laboratory ecotoxicity data derived for a number of different 143 

test species. The collected ecotoxicity data originate from a wide variety of publicly available data sources. 144 

However, the data were scrutinized for plausibility according to a process described by De Zwart (2002). The 145 

procedure followed is detailed in section 2 of the Supplementary Material.  146 

The dataset for the 54 Swedish pharmaceuticals comprised the results for 2151 conducted ecotoxicity tests of 147 

which 1166 acute and 985 (sub)chronic on a total of 157 different taxa. Ecotoxicological pressure was predicted 148 

separately based on acute EC50 and chronic NOEC exceedances where data on acute EC50 values or chronic 149 

NOEC values is used for Species Sensitivity Distribution (SSD) construction. If insufficient acute EC50 or chronic 150 

NOEC values are available but other toxicity endpoints are, these data were extrapolated to acute EC50 and 151 

chronic NOEC values using empirical derived extrapolation values as presented in Table 1 (De Zwart, 2002; 152 

Duboudin et al. 2004, Brock et al. 2008). Those extrapolations are not to be considered similar to the 153 

application of an acute/chronic ratio (ACR), as the current extrapolation operates on the SSD-models, based on 154 

read-across data patterns. The correct interpretation of this extrapolation is a parallel shift in an SSD, which is 155 

far more robust than an ACR. 156 

 157 

Table 1 - Ecotoxicity endpoint extrapolation scheme by a factorial step “From/To”. 158 
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 159 

                      To 

 

 

From 

Order of extrapolation 

attempts to Acute EC50 

Acute EC50 

extrapolation factor 

Order of extrapolation 

attempts to Chronic NOEC 

Chronic NOEC 

extrapolation factor 

Acute EC50 0 Multiply by 1 3 Multiply by 1/10 

Acute NOEC 1 Multiply by 3 2 Multiply by 1/3 

Chronic EC50 2 Multiply by 3 1 Multiply by 1/3 

Chronic NOEC 3 Multiply by 10 0 Multiply by 1 

 160 

A hybrid model was then applied for evaluating the mixture toxic pressure. This so called “mixed model” (De 161 

Zwart & Posthuma, 2005) uses a two-stage process based on log-normal SSD modelling (Posthuma et al., 2002). 162 

In the first stage, concentration additivity (CA) is assumed for substances with the same mode of action (MoA) 163 

and the Potentially Affected Fraction of species (msPAF) is calculated using the cumulative density function of 164 

the log-normal distribution by Taylor series approximation, as for instance represented by the MSExcel 165 

function   166 

msPAFCA = NORM.DIST(log(∑(ci/HC50i)), mean = 0, σI, cumulative = TRUE) was used. Where ci is the 167 

environmental  concentration of substance i of specific MOA, HC50i is the mid point concentration of the SSD 168 

and σI is the slopeof the SSD. 169 

In the second stage, the effect contributions for groups of chemicals with different modes of action are 170 

accounted for by response additivity (RA) as 171 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑅𝑅 = 1 −∏ (1 −𝑛𝑛
1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝑅𝑅), where n is the number of groups of different MOA.  172 

The mixture toxic pressure evaluation derived from acute EC50 values, is primarily selected because it 173 

repeatedly demonstrated to yield results that most closely resemble impacts that can be observed in the field 174 

in terms of biodiversity loss (e.g. De Zwart et al., 2006; De Zwart et al., 2009; Posthuma and De Zwart, 2012). 175 
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Additionally, the mixture toxic pressure estimations based on chronic NOEC exceedances is performed in order 176 

to more closely adhere to currently advised procedures as laid down in the WFD and REACH Technical 177 

Guidance documents (e.g. EC, 2011). The predicted impact is presented as the mixture toxic pressure, 178 

expressed as the percentual multi-substance Potentially Affected Fraction of species (msPAF), which for the 179 

acute approach can be considered equal to the predicted percentual loss of biodiversity. From a European 180 

Union WFD policy point of view for individual chemicals, concentrations potentially affecting less than 5% of 181 

exposed taxa (HC5 – hazardous concentration for 5% of Taxa) are underlying the derivation of maximum 182 

acceptable concentrations (Lepper, 2005). For the combined action of chemicals in a local mixture, we also 183 

adopted the 5% level as acceptable. 184 

 185 

3. Results and discussion 186 

3.1 Predicted concentrations in Swedish waters  187 

Depending on the river, 7 to 15 substances had predicted median annual concentrations higher than 0.1 ng/l 188 

(Figure 1, Table S1). Substances with concentrations above 0.1 ng/l in at least one of the rivers belong to the 189 

group: Metformin, Paracetamol, Ibuprofen, Furosemide, Naproxen, Ketoprofen, Omeprazole, 190 

Hydrochlorothiazide, Diclofenac, Gabapentin, Penicillin G, Hydroxycarbamide, Cetirizine, Piperacillin, 191 

Oxazepam, Ciprofloxacin, Carbamazepine and Tramadol. Of these only Metformin, Paracetamol, Furosemide 192 

and Ibuprofen surpassed 0.1 ng/l in all the seven rivers. Metformin, Paracetamol and Ibuprofen were the drugs 193 

with the highest predicted medians in all waterbodies (Figure 1 top, Table S1). Further drugs with high 194 

predicted values (4th-10th highest) differed from waterbody to waterbody likely reflecting the local patterns of 195 

consumption.  196 

On average the lowest median concentrations for the 54 pharmaceuticals investigated were found for the Lule 197 

River. For a given substance, the highest median concentration in rivers was found in the majority of cases in 198 
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the Dal River, and for a few cases in the Torne River or in the Indal River (Figure 1, Table S1). Although the 199 

Torne River basin is one of the least populous of the seven river basins, the highest predicted median 200 

concentration for Paracetamol was for the Torne River. The Torne River, the northernmost river studied, has 201 

marked freeze and thaw periods that cause dramatic flow changes (Helama et al., 2013) and may impact 202 

dilution strongly. 203 

Metformin, Paracetamol and Ibuprofen, in decreasing order, are the drugs with the highest predicted median 204 

concentrations in all the seven rivers. The Metformin annual median concentration reached its maximum in the 205 

Indal River with 91 ng/l and had its lowest value in the Lule River with 0.69 ng/l. These three substances also 206 

top the consumption lists in the majority of the country, with amounts consumed in the range of tens to 207 

hundreds of ton/y and typically with consumptions that are at least one order of magnitude higher than any of 208 

the other studied chemicals (Socialstyrelsen, 2015; Lindim et al., 2016b).  209 

17 drugs were found to have predicted median concentrations < 1 pg/l in all the seven rivers: 17-alpha-210 

ethinylestradiol, Alprazolam, Beta-estradiol, Chloramphenicol, Clonazepam, Clotrimazole, Dexamethasone, 211 

Finasteride, Ifosfamide, Ketoconazole, Lorazepam, Paroxetine, Pindolol, Progesterone, Propanolol, 212 

Roxithromycin and Terbutaline (Table S1). 213 

The most represented anatomical therapeutic chemical (ATC) categories in substances with predicted 214 

concentrations >= 0.1 ng/L were anti-inflammatory medicines followed by drugs for acid disorders. For some 215 

rivers, analgesics (Indal River, Torne River) and antibacterials (Indal River, Torne River, Dal River, Kalix River) 216 

also had more than one drug with concentration >= 0.1 ng/L. 217 

For the Stockholm City area, 8 substances had median concentrations >10 ng/L (Metformin (477 ng/L), 218 

Acetaminophen (159 ng/L), Ibuprofen (50 ng/L), Furosemide (43 ng/L), Ketoconazole (13 ng/L), Naproxen 219 

(12 ng/L), Pindolol (11 ng/L)), and 16 were below the ng/L range (Figure 1, Table S1). Median concentrations in 220 

the Stockholm City area were 5-50 times higher than in the rivers studied. For Stockholm, median predicted 221 
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concentrations at the catchments’ exit point were previously reported in Lindim et al. (2017). Concentrations at 222 

the catchments’ exit points were 3-15 times higher than the median concentrations in the whole catchment 223 

presented here. 224 

 225 

 226 
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 227 

Figure 1: STREAM-EU predicted median annual concentrations for 2011 in Swedish rivers and Stockholm. 228 

Concentrations in decreasing order from bottom to top of columns. Top: Substances with the 1st-3rd highest 229 

predicted concentration. Bottom: Substances with the 4th-10th highest predicted concentration.  230 

 231 
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3.2 Uncertainty, variability and accuracy in the predicted exposure  232 

Boxplots for the predicted concentrations of the drugs for which mixture toxicity was evaluated (Figure 2 for 233 

Stockholm and one of the rivers and Figure S2 with remaining rivers) help understand how sources of 234 

variability, such as river flow and water temperature, and sources of uncertainty, such as retention in WWTPs, 235 

affected the concentrations during 2011. Log10 scale plots were used to improve readability but some trends 236 

are not visible on the logarithmic scale, namely skewness. The Angerman River (Figure S2) and Ume River plots 237 

(Figure 2) show, for multiple substances, a positive skew (median closer to Q1 (25th percentile) than Q3 (75th 238 

percentile)) and upper heavy tails (outliers predominantly above the box), meaning the majority of the 239 

concentration values are in the lower range. The Angerman River had the highest number of positively skewed 240 

results of all rivers.  241 

The spread of the data (from minimum to maximum) for each drug shows the annual variability. If extreme 242 

values are excluded, annual variability is given by the interquartile range (span of the box). The larger 243 

interquartile span was found for the Torne River (2-3 orders of magnitude for most substances). The majority 244 

of this variability is most likely attributable to river discharge variations. Flow rates in the Torne River in 2011 245 

ranged from 150 to 1950 m3/s, a much wider flow rate interval than in the other rivers studied. The Kalix River 246 

and Stockholm City area show small and very similar spans for all the substances (about 1 order of magnitude, 247 

less in the case of Stockholm), while the Ångerman River has interquartile ranges smaller than that for about 248 

half of the drugs and near 1.5 orders of magnitude for the other half. The remaining rivers show a box span of 249 

1-1.5 orders of magnitude for all substances. Compared to the other rivers, the Indal River had the lowest 250 

annual variability for Acetaminophen, Metformin, Testosterone and Propanolol.  251 

For all rivers only up to 5 drugs (Metformin, Furosemide, Acetaminophen, Ibuprofen and Naproxen) had their 252 

whole interquartile range lying in the ng/L range, the remaining drugs were in the pg/L range. In the Lule River, 253 

only Metformin and Acetaminophen had their interquartile range in the ng/L range. In the Ume, Ångerman and 254 
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Kalix rivers, Metformin, Furosemide, Acetaminophen and Ibuprofen had their interquartile range in the ng/L 255 

range. In the Indal, Dal, and Torne rivers all 5 drugs had their interquartile range in the ng/L range. For 256 

Stockholm surface waters, the interquartile range laid above 10 ng/L only for Metformin, Furosemide, 257 

Acetaminophen and Ibuprofen.  258 

Periodic monitoring of pharmaceuticals in these waterbodies is not undertaken and measurements in the 259 

surface waters are not available. However, screening of urban effluents discharging to the Lule, Ume and Dal 260 

rivers was undertaken by the Swedish Environmental Protection Agency (Fick et al., 2011; Andersson et al., 261 

2007) and those measurements were used to compare with our predictions. A river dilution factor of 500 for 262 

the discharged effluents was considered. The study of Keller et al. (2014) suggests that dilution factors for 263 

down-the-drain chemicals in Swedish rivers are in fact > 500. The measured values are represented by black 264 

dots in Figures. 2 and S2. Good model agreement with monitored values, understood as the monitored values 265 

lying within the minima-maxima interval of predictions, was found for the pharmaceuticals measured in the 266 

Lule River. In the Dal River, Carbamazepine is underpredicted while the predicted Metformin concentrations 267 

agrees with measurements. For the Torne River, the Oxazepam concentration is underpredicted and the 268 

estimated concentration of Tramadol agrees with measurements; while in the Angerman River both these 269 

substances are underpredicted. For the Ume River, model results agree with measurements for one quarter of 270 

the substances measured. For the others, the model underpredicts the concentrations. In general, the model 271 

tends to underpredict the concentrations in the rivers. However, for the Stockholm City area, more than 60% of 272 

the model results agree with the measurements and no trend of under-prediction is visible. Other authors 273 

surveying emerging contaminants in European rivers, found surface water concentrations for the same drugs 274 

to be within the pg/L-ng/L range, similar to our predictions (Kasprzyk-Hordern et al., 2008; Loos et al., 2010); da 275 

Silva et al., 2011; Vulliet et al., 2011; Carmona et al., 2014). The existence of variations in concentration of 276 

several orders of magnitude within a catchment over time have been observed by multiple authors surveying 277 
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European waterbodies (Lindholm-Lehto et al., 2016; Padhye et al., 2014; Mastroianni et al., 2016) and 278 

attributed mostly to dilution and emissions changes.  279 

 280 

 281 
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Figure 2: Boxplots: STREAM-EU predicted concentrations for 2011 in one of the Swedish rivers and Stockholm 282 

on a log10 scale. Boxes- median, Q1 and Q3. Open squares- mean. Xs- 1%, 99%. Dashes - minimum and 283 

maximum. Whiskers- outliers. Daily results for all river subbasins were used. Black dots: measurements from 284 

monitoring.  285 

 286 

3.3. Predicted impacts of the local mixture of pharmaceuticals 287 

As can be concluded from the evaluation of acute toxic pressure in Table 2, there are only 3 out of 8 288 

waterbodies (Stockholm, Lule River, Torne River) that locally exceed at one or more of the multiple stations 289 

evaluated the aHC5 level of the pharmaceutical mixture toxicity. The highest overall toxic pressures exceeding 290 

1% are restricted to 45 of 114 stations in total. For the evaluation of chronic toxic pressure, in 7 out of 8 291 

waterbodies the cHC5 is exceeded, while the 1% level is exceeded at 73 out of 114 stations. As demonstrated in 292 

Table 3, the acute exceedances are mainly attributable to the predicted concentrations of Furosemide in 293 

Stockholm, Lule River and Torne River. Restricted to the Stockholm watersheds, Tramadol and Ibuprofen are 294 

predicted to cause an additional minimal impact on biodiversity. For the chronic toxic pressure, Table 3 shows 295 

that an additional 5 other pharmaceuticals (paracetamol, diclofenac, ethinylestradiol, erythromycin and 296 

ciprofloxacin) together in numbers multiplied by average intensity take an approximate 11% share in shaping 297 

the overall chronic mixture toxic pressure. 298 

 299 

Table 2 -Acute and chronic toxic pressure summarized for the pharmaceutical mixtures predicted for the 300 

different waterbodies. 301 

Waterbody Number of Stations 

Minimum 

acute toxic 

pressure 

Average 

acute 

toxic 

Maximum 

acute toxic 

pressure 

Minimum 

chronic 

toxic 

Average 

chronic 

toxic 

Maximum 

chronic toxic 

pressure 
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pressure pressure pressure 

Stockholm 27 0.0% 3.7% 15.6% 1.5% 11.0% 38.9% 

Lule River 13 0.0% 0.8% 7.4% 0.0% 2.2% 19.1% 

Torne River 11 0.0% 1.0% 6.5% 0.1% 3.3% 17.6% 

Ångerman River 14 0.1% 0.9% 3.9% 0.4% 2.8% 10.2% 

Indal River 16 0.0% 0.6% 2.0% 0.1% 1.8% 5.6% 

Ume River 14 0.0% 0.4% 2.0% 0.1% 1.4% 6.3% 

Dal River 11 0.0% 0.8% 1.9% 0.2% 2.9% 6.7% 

Kalix River 8 0.0% 0.4% 1.4% 0.0% 1.7% 4.8% 

Overall 114 0.0% 1.4% 15.6% 0.0% 4.3% 38.9% 

 302 

Table 3 - The contribution of the top 5 of the 54 pharmaceuticals to the predicted toxic pressure of all local 303 

mixtures modelled. The remaining pharmaceuticals do not significantly contribute to overall toxic pressure. 304 

 Acute EC50 exceedances Chronic NOEC exceedances 

Chemical Count of Top 5 

chemicals with 

minimum toxic 

pressure 

contribution ≥ 0.1% 

Minimum 

toxic 

pressure 

Average 

toxic 

pressure 

Maximum 

toxic 

pressure 

Count of Top 5 

chemicals with 

minimum toxic 

pressure 

contribution ≥ 0.1% 

Minimum 

toxic 

pressure 

Average 

toxic 

pressure 

Maximum 

toxic 

pressure 

Furosemide 92 0.1% 1.6% 12.4% 101 0.1% 4.2% 26.1% 

Paracetamol - - - - 41 0.1% 1.1% 10.7% 

Tramadol 21 0.1% 0.5% 3.4% 15 0.1% 0.7% 3.4% 

Ibuprofen 4 0.1% 0.1% 0.2% 9 0.1% 0.9% 2.8% 

Diclofenac - - - - 8 0.1% 0.6% 1.5% 

Ethinylestradiol - - - - 3 0.3% 0.3% 0.3% 

Erythromycin - - - - 1 1.5% 1.5% 1.5% 

Ciprofloxacin - - - - 1 0.2% 0.2% 0.2% 
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Overall 117 of 570  

(5 x 114) 
0.1% 0.7% 12.4% 

179 of 570  

(5 x 114) 
0.1% 1.2% 26.1% 

 305 

Conclusions 306 

Despite the diversity and in some cases high quantities of pharmaceuticals prescribed and consumed in 307 

Sweden, high concentrations (>10 ng/L) of pharmaceuticals in Swedish surface waters are only predicted for a 308 

few substances. Our results indicate that, in 2011, less than 10 substances out of the 54 top consumed drugs 309 

studied here were present in inland surface waters at concentrations > 10 ng/L with those peaks occurring 310 

mostly in the more densely populated area of the capital city, Stockholm. Within a given river catchment and 311 

during a one-year span, spatial and temporal variability and uncertainty sources were found to be responsible 312 

for considerable water concentration variations: 1-2 orders of magnitude, reaching a maximum of 3 orders of 313 

magnitude in one river with marked seasonal variations in hydrology.  314 

According to our predictions, the acute risk of the mixture of the 54 drugs investigated is predominantly caused 315 

by only three substances: Furosemide, Tramadol and Ibuprofen. A further 5 pharmaceuticals (Paracetamol, 316 

Diclofenac, Ethinylestradiol, Erythromycin and Ciprofloxacin) were found to be associated with chronic risks 317 

accounting for a 11% share in shaping the overall chronic mixture toxic pressure. The same trend, that a few 318 

key substances within a mixture of organic contaminants are the main risk drivers, has been observed by other 319 

authors in mixture risk studies (Backhaus and Karlsson, 2014, Munz et al., 2017; Watanabe et al., 2016). 320 

Overall, acute toxic pressures in the Swedish catchments studied exceeded 1% in 45 of the locations analyzed 321 

(out of 114 locations). For chronic toxic pressure, in 7 out of 8 waterbodies the cHC5 exceeded the 1% level at 322 

73 out of 114 stations. 323 

In view of our findings, it is suggested that a reinforcement of monitoring and control efforts for Tramadol, 324 

Ibuprofen, Furosemide, Paracetamol, Diclofenac, Ethinylestradiol, Erythromycin and Ciprofloxacin would be a 325 
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beneficial measure. From our assessment, predicted current levels of pharmaceuticals in surface waters in 326 

Sweden pose potential risks to aquatic species in a low percentage of locations (7% of the locations analyzed 327 

for acute and 27% for chronic toxicity). However, there is sufficient evidence of risks in some areas that control 328 

measured may be necessary. For example, in areas with a high human population density, the concentration 329 

levels of only a single selected pharmaceutical (Furosemide) are such that biodiversity will significantly be 330 

reduced beyond the acceptability criterion of 5%. Our modelled impact predictions were verified against field 331 

ecological survey data where available. However, for several substances and locations, measurements do not 332 

exist. More monitoring efforts are desirable to diagnose the current situation in watersheds and validate 333 

modelled impact predictions. 334 

 Even if the one of the pharmaceuticals predicted to occur with the highest concentrations in most locations 335 

(Metformin) did not significantly contribute to overall toxicity, the occurrence of local high concentrations 336 

(Larsson, 2014) and the existence of drugs with reported effects at very low concentrations (Fong et al., 2014) 337 

are factors that may lead to significant aquatic impacts. 338 
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