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Abstract9

Scientists and decision-makers need tools that can assess which specific pressures lead to ecosystem10

deterioration, and which measures could reduce these pressures and/or limit their effects. In this11

context, species distribution models are tools that can be used to help asses these pressures. Evo-12

lutionary algorithms represent a collection of promising techniques, inspired by concepts observed13

in natural evolution, to support the development of species distribution models. They are suited14

to solve non-trivial tasks, such as the calibration of parameter-rich models, the reduction of model15

complexity by feature selection and/or the optimization of hyperparameters of other machine learn-16

ing algorithms. Although widely used in other scientific domains, the full potential of evolutionary17

algorithms has yet to be explored for applied ecological research. In this synthesis, we study the role18

of evolutionary algorithms as a machine learning technique to develop the next generation of species19

distribution models. To do so, we review available methods for species distribution modelling and20

synthesize literature using evolutionary algorithms. In addition, we discuss specific advantages and21

weaknesses of evolutionary algorithms and present a guideline for their application. We find that22

evolutionary algorithms are increasingly used to solve specific and challenging problems. Their23

flexibility, adaptability and transferability in addition to their capacity to find adequate solutions24

to complex, non-linear problems are considered as main strengths, especially for species distribution25

models with a large degree of complexity. The need for programming and modelling skills can be26

considered as a drawback for novice modellers. In addition, setting values for hyperparameters27
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is a challenge. Future ecological research should focus on exploring the potential of evolutionary28

algorithms that combine multiple tasks in one learning cycle. In addition, studies should focus on29

the use of novel machine learning schemes (e.g. automated hyperparameter optimization) to apply30

evolutionary algorithms, preferably in the context of open science. This way, ecologists and model31

developers can achieve an adaptable and flexible framework for developing tools useful for decision32

management.33
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1. Introduction37

Innovations in remote sensing and micro-control units used for (near-)real-time monitoring of ecosystems38

are challenging ecologists to deal with a great number of data coming from different sources (Hampton39

et al., 2013). Machine learning plays an increasingly important role to deal with this challenge, not only40

in the field of ecology (Meyers et al., 2017). However, ecologists often struggle with the interpretation of41

models developed with novel machine learning algorithms (Araújo and Guisan, 2006). As a consequence,42

scientists are required to search for new approaches to increase reliability, transparency and flexibility of43

the models they are developing (Elith and Leathwick, 2009).44

45

The models developed for ecological research and management with machine learning are mainly classified46

under species distribution models (SDMs). These models aim to define the species-environment relation and47

from this, estimate the species’ geographical distribution. SDMs rely on the concept of an ‘ecological niche’,48

described by Hutchinson (1957). This theory conceptualizes the relation between a species’ environment49

and its occurrence (Hirzel and Le Lay, 2008). Niche theory (Hutchinson, 1957) states that a species can only50

exist if the local combination of environmental gradients, the niche, allows a positive population growth51

rate, in the absence of immigration. In addition, the theory states that a difference in species’ traits allows52

them to occupy a different niche and coexist in a given spatial unit. To inspect these species’ traits, machine53

learning algorithms are used to classify a species as present, or absent, given the environmental conditions.54
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Often a probabilistic framework is used to express the chance for a species to occur. The environmental55

conditions are quantified in a number of environmental features, for instance, temperature, precipitation,56

soil moisture (He et al., 2015). The number of input features, after preprocessing, reach up to 20, while57

studies using over 30 features are found in literature (Bennetsen et al., 2016). Machine learning is used58

to train a model estimating a response variable, species occurrence, based on these environmental predictors.59

60

Species distribution model development with machine learning embeds little ecological hypotheses in the61

training process as the machine learning algorithms primarily aim to uncover patterns in data (Saeys et al.,62

2007; Mount et al., 2016). At first instance, this development could be considered as “black box” modelling,63

which is the case in a number of techniques, e.g. artificial neural networks. Yet, there are techniques, such64

as decision trees, that present interpretable models. In these models, the user can interpret why estima-65

tions were done in that way. For example, in decision trees, a set of hierarchical rules can be analysed66

that lead to an estimated species presence. In specific applications, for instance in freshwater management,67

embedding hypotheses and assumptions is of major importance to preserve ecological interpretability of the68

developed models (Adriaenssens et al., 2004). Also, incorporating species dispersal and interactions in the69

next generation of species distribution models (SDMs) requires a hypothesis-driven approach. Evolutionary70

algorithms (EAs), a collective of machine learning techniques inspired on the concept of evolution, allow71

embedding these hypotheses by separating model performance evaluation from solution searching (Rauch72

and Harremoës, 1999). In these EAs, models with parameters and input variables are encoded in so-called73

‘chromosomes’. Specific algorithm functions, called genetic operators, are applied to these chromosomes to74

search for well-performing models.75

76

Because EAs algorithms offer this transparency and flexibility, we evaluate in this synthesis the role of77

EAs as a machine learning method for species distribution modelling. We aim to answer the following78

questions: What is the current role of EAs in species distribution modelling (section 2)?; How do EAs work79

and what are their specific strengths (section 3)?; What opportunities do these EAs have in the field of80

species distribution modelling (section 4)?; What guidelines can be given to applying an EA or another81

metaheuristic as a machine learning method to identify transparent and accurate models (section 5)? It is82

important to note that this paper focuses on EAs, having in mind that other metaheuristics such as particle83

swarm optimization, ant colony optimization and simulated annealing also exist. For an overview of these84
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other methods, we refer to supportive information 1. Differences between EAs and other metaheuristics85

are discussed throughout this manuscript. For an extensive description of EAs and other metaheuristics,86

we refer readers to Gendreau and Potvin (2010) and Kacprzyk and Pedrycz (2015).87

2. Machine learning in species distribution modelling88

Many ecological researchers rely on machine learning for the development of SDMs. The use of machine89

learning has introduced new concepts important for ecologists to understand. In contrast to previous re-90

views discussing the development of SDMs (e.g. Guisan and Thuiller (2005); Araújo and Guisan (2006);91

Austin (2007)), this review focusses on SDM learning and its technical challenges, rather than development92

through ecological reasoning. That is why we focus on the discussion of EAs in the context of machine93

learning.94

95

Machine learning can be defined as the field of research using computer programs or algorithms that have96

the ability to adapt or change from an experience (data) given a(n) performance or objective measure.97

Algorithms to facilitate machine learning are widely applied in many scientific fields such as artificial98

intelligence, telecommunication and engineering of electronics (web of science, accessed on 13/09/2018).99

Machine learning algorithms can be used to train models with data so these models can make as good100

as possible predictions on new, ‘unseen’, data. Machine learning algorithms can be categorized based on101

whether output labels are (not) used for training, i.e. (un-)supervised learning (Box 1). To guide the102

readers, Box 1 shows a number of definitions used in the field of machine learning, also used in this review103

paper.104

In species distribution modelling, supervised learning is typically applied to classify species occurrence in105

geographical, and possibly the temporal, dimensions. To train SDMs, binary labelled data (species presence106

or absence) together with environmental input data are used by the machine learning algorithm. In Table 1,107

an overview of methods used in species distribution modelling are shown, together with a short explanation,108

the cumulative number of papers mentioning the method (web of science, accessed 08/11/2017), and key109

references. In addition, in Figure 1, the first report of the method in scientific literature is shown. The110

remainder of this section aims to shortly introduce these methods to guide readers to the most used ones.111

Acronyms of these methods can also be found in Table 1.112

113
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Generalized linear and adaptive models (respectively GLMs, and GAMs) and decision trees are the first114

machine learning techniques used in species distribution modelling (Figure 1). GLMs (and GAMs) are a115

collection of (semi-)parametric techniques based on three elements: a random component that assumes a116

probability distribution of a response variable (1), a systematic component specifying linear combination of117

the explanatory variables with their respective slopes (2) and a link function describing the relation between118

the random and systematic component (3) (Nelder and Wedderburn, 1972). Decision trees are classifiers119

expressed as recursive partitions or trees of the feature space (Rokach and Maimon, 2015). These are120

tree-like representations of a rule-induction, i.e. a set of ‘if-then’ rules that are followed leading to a (prob-121

ability of) species presence or absence. Different algorithms are available to develop decision trees, such122

as CART (Breiman et al., 1984) and C4.5 (Quinlan Ross, 1993), using a Gini index and entropy measure,123

respectively. A robust approach based on decision trees is a random forest (RF) (Breiman, 2001). RF uses124

bootstrap aggregation to generate on a number of decision or regression trees. In bootstrap aggregation,125

several bootstrap samples from a training data set (objects in the instance space) are taken to develop a126

number of models. RF is used often in species distribution modelling, and has shown to be an interesting127

technique to model complex systems, including species interactions (Vezza et al., 2015).128

129

The genetic algorithm for rule set production (GARP) is an EA-inspired method used to produce a rule-130

bank SDM (Stockwell and Noble, 1992). A rule-bank SDM is a model based on a set of hierarchical rules131

estimating species presence or absence. In this sense, the model structures obtained with GARP are similar132

to those obtained with decision trees. GARP is the first SDM software package using EAs, knowing a133

number of successful applications, for instance, to estimate the effect of global change on species distribu-134

tions (Peterson et al., 2002). Another technique often used in combination with EAs are artificial neural135

networks (Ding et al., 2013). Artificial neural networks which are non-linear mapping structures inspired136

by the biological system of the brain have been successfully used for freshwater applications (Goethals137

et al., 2007; Muñoz-Mas et al., 2017). From these two examples, it is clear that EAs are often used to138

support the development of the model structure, i.e. search for the most optimal model structure. Despite139

their success, the popularity of artificial neural networks and also GARP is recently declining compared to140

that of maximum entropy modelling (Maxent) (Table 1). Introduced in 2006, Maxent uses the principle of141

maximum entropy to make predictions from incomplete knowledge (Phillips et al., 2006). The maximum142

entropy method (Maxent) approach uses the principle of maximum entropy to make predictions from in-143
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complete knowledge. The principle of maximum entropy states that the best approximation to an unknown144

distribution, given a number of constraints, is the distribution which only satisfies these constraints and no145

others. In other words: Maxent aims to model everything that is known (constraints) but assumes nothing146

about what is unknown. Maxent is currently the most used package to train SDMs (200+ papers in 2016,147

based on abstract search, web of science, 08/11/2017). Its theoretical basis, the default use of regularisa-148

tion (i.e. penalize model complexity), flexibility and performance are the main factors explaining Maxent’s149

popularity (Elith et al., 2011). Model complexity can also be penalized in many other algorithms, however,150

Maxent was the first approach to include it by default. This default inclusion stressed the importance of151

regularization among users. Peterson et al. (2007) compared the transferability (test on unseen data) of152

Maxent and GARP and showed that both have their specific advantages. This is not surprising as the153

’No Free Lunch Theorem’ (Wolpert and Macready, 1997) depicts that no algorithm will work well on all154

problems. A good approach to deal with the ’No Free Lunch Theorem’ is to combine and/or compare155

several approaches in one modelling effort. Thuiller (2003) developed a platform for implementing differ-156

ent techniques. His initial aim was to present a framework able to simultaneously fit different models to157

data. It was only six years later that Thuiller et al. (2009) presented a new version of BIOMOD, including158

the concepts of uncertainty estimation, and ensemble forecasting (Araújo and New, 2007). A weakness159

of the BIOMOD is that the platform is bound by specific implementations of techniques. Golding et al.160

(2017) deals with this issue by implementing a modular framework for species distribution modelling. He161

argues that algorithm success is partly depicted by method transparency empowered by clear encoding and162

guidelines of use, i.e. which method and specific settings are suitable to solve the problem at hand? It is163

important to note that besides algorithm guidelines, also appropriate data cleansing techniques can consid-164

erably improve results. An excellent guide for data cleansing of ecological data is given by Zuur et al. (2010).165

166

Other techniques are available but are not categorized under machine learning as their origins are rooted167

in niche theory of Hutchinson (1957). These methods, specifically GROWEST (Nix et al., 1977), CLIMEX168

(Sutherst and Maywald, 1985) and BIOCLIM (Booth, 1985; Nix, 1986) were used in the early days of169

mapping a species’ niche (Figure 1). They are currently less used because of their simplicity, lack of ac-170

curacy and inability to account for variable interaction (Booth et al., 2014) (Table 1). Another less-used171

approach is the development of models with fuzzy logic. Fuzzy logic models allow integrating expert knowl-172

edge in their model structure. Specifically, fuzzy models allow reflecting uncertainty present in linguistic173
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information (Adriaenssens et al., 2004). Although fuzzy logic model development might not be classified174

under machine learning, it is often used in conjunction with a machine learning algorithm (Chen et al., 2003).175

176

The methods discussed above generally only consider the species-environment relationship to estimate177

species occurrence. The spatial structure of the relations is implicitly included in the scale. Spatially178

explicit models, which incorporate the spatial space in their structure, allow describing processes such as179

migration and dispersal in a spatial context (DeAngelis and Yurek, 2017; Dunning et al., 1995). Up until180

today, these explicit methods are less popular, mainly because of their complexity, and need for detailed181

information to parametrize them (DeAngelis and Yurek, 2017). Given these disadvantages, spatially ex-182

plicit models do hold a lot of potential to help uncover species behaviour and distribution as a function of183

environmental pressures.184

185

Although the role of GARP is recently declining, a number of specific applications of EAs are observed in the186

literature since 2000 (see Table 2). These novel techniques are mainly applied in the context of freshwater187

management and used to estimate a link between river modification and freshwater species occurrence.188

They facilitate feature selection (feature selection, for definition, see Box 1) for artificial neural network189

and decision tree models (D’heygere et al., 2006) or to estimate model parameters of fuzzy logic SDMs190

(Fukuda et al., 2011). The results of our literature review (for methodology, see supportive information 2)191

show that these algorithms are often ‘tailor-made’, and characterized by a specific algorithm formulation.192

In the next section, we discuss this ‘EA-literature’ with the aim to identify which specific applications and193

workflows are mainly adopted. Before we do so, we introduce the basic principles of evolutionary algorithms.194

3. Evolutionary algorithms195

3.1. Introduction to evolutionary algorithms196

EAs aim to solve complex problems by incorporating elements of structured randomness in their search197

behaviour motivated by principles in evolution such as selection, mutation and crossover (Maier et al.,198

2014). EAs distinguish from single-point based methods by iterating a population of candidate solutions199

to an optimum. These solutions are quantified in a fitness mimicking the evolutionary concept.200

201
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EAs have been successfully applied to solve specific problems in water resources management (Maier et al.,202

2014), astrophysics, bio-informatics (Pal et al., 2006; Sirbu et al., 2010) and software engineering (Eiben203

and Smith, 2015). Even more, the use of EAs in artificial intelligence is pushing advances in evolving204

digital objects (software) towards physical embodied artificial evolution (i.e. hardware, robots, 3D-printers).205

Numerous examples exist and the number of applications is expected to increase in the coming years (Eiben206

and Smith, 2015). EAs have mainly been used as a machine learning method, also to train other methods207

such as artificial neural networks and decision trees. Their success can be explained by a number of reasons208

(Eiben and Smith, 2015; Maier et al., 2014):209

1. EAs are assumption-free which make them generally applicable and easily transferable to other prob-210

lems.211

2. They are flexible and can easily be used in combination with other methods, for instance, other search212

methods or fuzzy logic.213

3. They are capable to solve complex problems without the need for model simplification often re-214

quired by traditional optimization methods. Moreover, they are able to uncover less obvious or even215

unexpected patterns.216

4. The found solutions with EAs allow for an in-depth analysis since a number of near-optimal solutions217

are generated.218

EAs iterate a population of chromosomes over a number of generations with genetic operators, i.e. selection,219

crossover and mutation (Box 2 and Figure 2, panel A). This process is inspired by the concept of evolution220

where genetic information and characteristics in a population are passed on generation by generation. The221

chromosome is the algorithms’ building block storing the formulation and performance of a candidate so-222

lution to a problem, i.e. the genome and fitness. The fitness can be defined as a quantification measure of223

how good a solution to a problem is. The formulation of the candidate solution is stored in a specific data224

type, also called genome. For genetic algorithms (GAs), binary or real-valued strings are coded as data type225

whereas tree-like structures are used for genetic programming (GP) (Figure 2, panel B). Both GAs and GP226

are classified under evolutionary algorithms. Other types of EAs, such as evolutionary programming and227

evolution strategies exist (Weise, 2009). GAs differ from other evolutionary algorithms in the way they are228

designed as problem-independent solvers, whereas other EAs are designed and implemented to solve specific229

problems. We consider GP to be developed for specific problems. The conceptual difference between GAs230

and evolutionary programming is that the basic object is considered to be a species rather than a chro-231
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mosome. In evolutionary programming, recombination (crossover) is often not considered. Evolutionary232

strategies show resemblance to real-valued GAs, but with a focus on the selection and mutation operator.233

These problem-specific techniques are used in species distribution modelling, but not often. In the next234

section, we explore the use of this problem-(in)dependent EAs.235

236

The initialisation of a population with a number of chromosomes (population size, PS) and their genomes237

is the first step. For binary string GAs, this consists of creating a random string of bits (example lower left238

panel, Figure 2) with every bit either having the value zero or one. For real-valued strings, a uniform value239

within a defined interval is chosen for every bit. After initialisation, the fitness is evaluated by mapping240

the genome to a model with a mapper function. As an example, for feature selection in SDMs, a ‘011’241

string is translated to the exclusion of the first feature and inclusion of the last two in the model (D’heygere242

et al., 2006). For parameter estimation, a binary string is translated to an integer or decimal (respectively243

‘011’ → (0*1+1*2+1*4) → 6 or 1/6) for the value of the model parameters (Van Broekhoven et al., 2007).244

The models are then evaluated with a user-defined objective function and training data leading to a fitness245

value. Usually, a measure of agreement between the model output and training data is calculated. After246

fitness evaluation, selection, crossover and mutation operators are applied to the population. The selec-247

tion operator selects a number of chromosomes from the population as parents to generate offspring based248

on their fitness value and a selection procedure (e.g. tournament selection, roulette wheel selection). In249

tournament selection, tournaments are organised in which two candidate parents are (randomly) selected250

and the candidate with the highest fitness is selected as a parent. For roulette wheel selection, parents are251

selected with a chance proportional to their relative fitness. The crossover operator generates offspring by252

inheriting a part of the parents’ genomes. For instance, in a GA one-point crossover operator, a position253

in the genome is randomly chosen as a breakpoint. The parents’ substrings are then combined to form254

a new string for the offspring (Figure 2, lower panel). A crossover rate determines the probability that255

crossover between parents occurs. The mutation operator changes the values in random positions in the256

genomes (or alleles) of the offspring with a rate equal to the mutation rate. After the application of the257

three operators, the fitness of the new chromosomes is evaluated. Next, a new generation is produced by258

applying the before-introduced operators. This procedure is repeated until a certain stopping criterion is259

met. Typically, this criterion is a maximum number of generations or a fitness convergence criterion.260

261
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Besides the context of use of GAs and GP, the way of problem encoding and consequently the implementa-262

tion of the crossover and mutation operator is different (Mcdermott and O’Reilly, 2015; Rowe, 2015). For263

GAs, an example of a crossover of two binary strings with a one-point uniform operator is shown in Figure 2264

(lower left panel). Here, a random number between two (one) and the length (length minus one) of the two265

parents’ genome is chosen and before (after) this position a breakpoint is appointed. The genome for the first266

offspring is formed by merging the part before and after the breakpoint of parent one and two, respectively.267

Similarly, for the second offspring the parts before and after the breakpoint are used but now the genomes268

of parent two and one are used. For GP (Figure 2, lower right panel), breakpoints are chosen between nodes269

of the tree and these are switched between the parents’ genomes. For mutation in a binary string, a random270

position is chosen and the value for the allele at that position is flipped to the other value (0→1 or 1→0).271

In case of real-valued strings, a new random value bounded by a predefined interval is chosen at a random272

position. For tree-like structures, a random terminal or non-terminal node is chosen and replaced with a273

terminal node or random initiated subtree (see Figure 2, lower right panel) (Mcdermott and O’Reilly, 2015).274

275

3.2. Application to species distribution modelling276

In order to obtain an insight into the use of EAs in species distribution modelling, literature abstracts277

were scanned in the web of science catalogue. The followed methodology to conduct this literature review278

can be found in supportive information 2. Here, implementations that differ from GARP are discussed,279

as these implementations vary as a function of the context of the problem. The results of this literature280

review are shown in Table 2. In this table, we make a clear distinction between ‘parameter estimation’281

and ‘hyperparameter optimization’. Parameter estimation refers to the estimation of a unique set of model282

parameter values (Box 1). With respect to species distribution and ecological modelling, this implies that283

model parameters that describe the limits of a species’ environmental range are estimated, e.g. what are284

the threshold river temperatures in which a fish can survive? Or what are temperature tipping points at285

which species reproduction declines? As such, parameters are an element of the SDM. Hyperparameter op-286

timization refers to the search for values of algorithm settings which influence an algorithm’s performance.287

In other words, a hyperparameter can be considered as an algorithms’ free option available for the user.288

The number of neurons and hidden layers are examples of two hyperparameters that need to be set in order289

to develop an artificial neural network. Or for a RF, on has to set the maximum depth of a tree and the290

number of trees. As such, values for hyperparameters can be considered as choice elements of the algorithm,291
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and can thus not be directly estimated with data. In the context of Table 2, ‘hyperparameter optimization’292

in the column ‘subject of training’ refers to the action of using an EA to perform hyperparameter optimiza-293

tion of another machine learning approach. It is important to differentiate between the column ‘subject of294

training’ from the columns ‘hyperparameters’ and ‘hyperparameter optimization’, as the latter two refer to295

(the setting of) hyperparameters of the EA itself.296

297

Table 2 shows the general characteristics of studies in which EAs are applied: generally they are applied298

in freshwater management to estimate model parameters, perform feature selection or hyperparameter op-299

timization of other machine learning techniques. For 14 of the 27, an EA is used for only feature selection300

whereas in seven studies for only parameter estimation. In five studies, an EA is used for parameter estima-301

tion and feature selection and in the remaining study, an EA is used for feature selection and optimization302

of hyperparameters of a decision tree. In case of feature selection, the EAs are used as wrapper methods for303

other methods; artificial neural networks, e.g. D’heygere et al. (2006), and decision trees, e.g. Boets et al.304

(2013). In this approach, the genomes are translated to features for another machine learning technique305

fitting the response patterns to environmental conditions. In the case of parameter estimation, the EAs are306

used to estimate the model parameter values of fuzzy logic models, e.g. Fukuda (2009); Van Broekhoven307

et al. (2007). In other words, the model parameters describing suitability range of environmental conditions308

for a species are estimated.309

310

A noteworthy observation is that 22 papers presented in Table 2 situate within the domain of freshwater311

science. The data used in these case studies are often characterized by a high degree of uncertainty and312

noise, and observation bias, i.e. more (less) presence instances are available than absence (see column prev.313

in Table 2). The latter, causing a bias in model training (Mouton et al., 2010), is the reason why a number314

of classification measures are typically used in these studies. Often-used measures are listed in Table 3,315

together with their acronyms. In these measures, species occurrence estimated by the classifier is tested316

to observations. According to the study objectives, and available data, a set of measures is selected and317

analysed, each weighting a degree of correct estimation of species presence, on the one hand, and absence,318

on the other (Mouton et al., 2010). Non-binary measures, such as the (root) mean of squared error, cor-319

relation and sum of squared errors, are used for regression. In these cases, the probability of occurrence320

is not estimated, but species numbers (D’Angelo et al., 1995) or density (Fukuda, 2009). In addition, the321
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(root) mean square error and linear correlation is used. In one case, the mean squared error between the322

non-classified preference (between 0 and 1) and observed presence/absence is computed (Fukuda et al.,323

2012). In another case, models are penalized for their complexity (Muñoz-Mas et al., 2016a). The trade-off324

between omission and commission errors are never explicitly considered in model training, although they325

are considered implicitly by weighting objectives. Assumed prevalence-independent measures like Cohen’s326

Kappa or the true skill statistic are used to cope with this trade-off, however, there is no agreement whether327

these are truly prevalence independent (Mouton et al., 2011). In three of the studies reported in Table 2,328

the training data are stratified by sampling an equal number of presence and absence instances in order to329

deal with this prevalence dependency (Mouton et al., 2009).330

331

A number of different implementations of EAs have been used in species distribution modelling. Simple332

genetic algorithms are generally used and are considered problem-independent. These algorithms apply a333

GA with uniform crossover and mutation operators, in conjunction with a tournament selection operator334

(e.g. Boets et al. (2013)). Derivative methods have been used in combination with GAs allowing to improve335

the local search performance of the GAs (Muñoz-Mas et al., 2016b, 2017). In addition, GPs are used, but336

only limited (Jeong et al., 2011; McKay, 2001; Whigham, 2000). Another interesting application is the337

use of Bayesian theory in GAs (McClean et al., 2005; Termansen et al., 2006). Feature selection is always338

implemented in binary strings whereas binary and continuous strings are used for parameter estimation.339

Crossover rates vary from 0.6 to 0.95 whereas mutation rate are generally lower, between 0.1 and 0.3, with340

the exception of 0.6 (Muñoz-Mas et al., 2017) and 0.75 (Muñoz-Mas et al., 2016b). A number of 20 to 200341

chromosomes are reported to iterate over generally 20 to 100 generations. However, a larger number of342

generations (≥ 1000) are observed in four studies. Selection rates are never reported, as these are typically343

equal to 50 %.344

345

Model robustness is tested by applying cross-validation and repeated learning with the same or different346

samples of the data. Cross-validation is generally used (14 of 27 cases) to test robustness. In this approach,347

the data are partitioned in a number of samples, i.e. folds. Next, the model is identified with n-1 folds and348

validated with the remaining fold. In a number of publications, the EA analysis is repeated a number of349

times with the same data starting from different initial populations in order to test the robustness of the350

EA (see D’Angelo et al. (1995); Fukuda (2009)). This is because the obtained near-optimal solution might351
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not be equal in every EA run since the search behaviour is characteristic by random choices. An interesting352

application of this repeated EA analysis is the multilayer perceptron ensembles (a type of artificial neural353

network) for the modelling of the redfin barbel (Muñoz-Mas et al., 2017). Here, a derivative GA analysis354

is repeated a number of times to increase ensemble size. By checking convergence of the solutions deter-355

mined with the GA for an increased ensemble size, one can determine an optimal set of solutions. With356

this, the authors showed the potential of using multilayer perceptron ensembles and EAs for the identifica-357

tion of multiple models reflecting simulation uncertainty (i.e. ensemble forecasting (Araújo and New, 2007)).358

359

An interesting observation is that EA hyperparameters are reported more consistently in recent years. In360

addition, testing the training robustness as a practice has increased. The latter is probably due to the361

availability of growing computational resources. In addition, species prevalence is increasingly reported,362

suggesting that practioners are more aware of the effect of prevalence bias on model training. As such, it is363

observed that more detailed and robust approaches are presented. Finally, most studies rely on an extension364

of simple genetic algorithms, whereas genetic programming has not been employed in recent years.365

4. Strengths, weaknesses, opportunities and threats analysis366

To explore the potential of EAs in species distribution modelling, we performed a strength, weaknesses,367

opportunities and threats (SWOT) analysis. In this review, strengths and weaknesses refer to current368

characteristic of EAs that offer respectively advantages or disadvantages compared to other techniques.369

Opportunities and threats refer to future (dis-)advantages. To perform this analysis, the literature of EAs370

in species distribution modelling was scanned and the specific strengths and weaknesses of the use of EAs371

were compiled. In addition, opportunities and threats were assessed by testing compliance with known372

challenges in species distribution modelling (based on Araújo and Guisan (2006); Austin (2007); Araújo373

and New (2007); Guisan and Zimmermann (2000); Guisan and Rahbek (2011)). In the past, specific ad-374

vantages of EAs and metaheuristics were mainly derived from experiments as the true functioning of the375

algorithms was poorly understood (Boussäıd et al., 2013; Maier et al., 2014). That is why the analysis in376

this section is based on specific examples rather than theoretical studies.377

378

EAs are particularly useful in situations where solutions to complex problems have to be found for which379

little information is available to characterize the optimal solutions. In these situations, it is not possible380
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to do a grid-search, i.e. check all candidate solutions one by one, as it would take an exponential amount381

of computational time. Cases characterised by a high degree of non-linearity to which little information382

is available to bound the search, such as incorporating interactions in SDMs (Kissling et al., 2012), can383

be classified as complex problems. The ability to deal with this complexity is an advantage over other384

methods. EAs also have notable weaknesses and pitfalls which are discussed in this section. It is important385

to note that other potentially suitable metaheuristic algorithms exist such as particle swarm optimization386

and ant colony optimization. They are also shortly discussed as they share a number of characteristics with387

EAs making them interesting for machine learning in species distribution modelling.388

389

4.1. Problem encoding and flexibility390

A clear strength is the flexibility of EAs offering the chance to implement any type of machine learning391

problem by using the encoding-model interface. Specifically, the ability of (1) encoding the model in a392

computation element, the chromosome, and (2) using mappers to translate chromosomes to models allows393

separating the process of training (with operators) from fitness calculation (model performance evalua-394

tion). This flexibility has already been illustrated in GARP, where different relations, e.g. logistic, linear395

or boolean, can be used in the software (Olden et al., 2008).396

397

The mentioned flexibility allows to define various ways of model training, i.e. estimating model parameters398

and/or reducing model complexity. Reducing model complexity in conjunction with learning can present an399

opportunity for the use of individual- and agent-based to support species distribution modelling. Indeed,400

the structure of these individual- and agent-based models can be complex (Grimm et al., 2010) and model401

simplification with flexible machine learning algorithms could allow for a further automation of model de-402

velopment. To reduce model complexity, the most relevant features of a model are selected by encoding403

embedded or wrapper feature selection (Saeys et al., 2007). Wrapper feature selection is concerned with404

selecting features for other data-driven or an already parameterized model. As opposed to this, embed-405

ded feature selection estimates model parameters and selects features simultaneously. For wrapper feature406

selection, a binary string encoding the inclusion (1) or exclusion (0) can be used (D’heygere et al., 2006)407

whereas, for embedded feature selection, a ‘list of list’ approach can be used (Gobeyn, 2018). For encoding408

a binary or continuous string, the reader is referred to Haupt and Haupt (2004). The list of list, a first order409

list is implemented in the genotype to represent a feature in- or exclusion. If an inclusion for a feature is410
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considered then a second-order list is defined, holding the value for the model parameters coupled to the in-411

put feature, i.e. coefficients of the response curve. The list of list approach seems to be promising, however,412

additional research is required to verify its performance. For parameter estimation, a string of continuous413

values (for example, values of model parameters describing the species’ niche, see (Fukuda et al., 2011))414

can be implemented in the genotype of the chromosomes. These are then translated to model parameters415

and -after model execution- a fitness value.416

417

A disadvantage of the chromosome encoding and the use of a mapper function is that a certain amount418

of programming skills is required. This might hinder novel users to use EAs or other metaheuristics for419

their machine learning application. However, since machine learning with EAs is specifically applicable420

to increase transparency of complex models, it is expected that the initial investment in programming421

will be the better option - especially in the long run. Even more, open science is challenging ecological422

informaticians to increase code flexibility, modularity and transparency (Golding et al., 2017) leading to423

a more user-friendly experience in programming languages such as R and Python. In addition, a number424

of initiatives are taken in the field of computer science to help non-expert and expert users to deal with425

feature selection and hyperparameter optimization. For example, Auto-WEKA (Feurer et al., 2015) and426

Auto-skLearn (Kotthoff et al., 2016) are initiatives that consider the problem of simultaneously selecting427

a learning algorithm and values for the hyperparameters through Bayesian learning. As such, these tools428

offer the opportunity to investigate the position of EAs in comparison to other machine learning methods429

for specific problems tackled in species distribution modelling and ecology in general.430

4.2. Population-based approach431

The population-based approach of EAs is considered the second advantage for species distribution mod-432

elling since ecological phenomena characterised by a large amount of noise are too complex to describe by433

one model (Fukuda et al., 2013; Merow et al., 2014; Muñoz-Mas et al., 2017; Vezza et al., 2015). Using434

multiple models in the context of ensemble learning is useful to reflect model uncertainties (Araújo and435

New, 2007). Practically, the EA would be run a couple of times preferably with other samples of the436

training data (i.e. cross-validation or bootstrapping) and track the best models found in each run. En-437

semble learning has shown to be valuable to avoid SDM overfitting, especially for modelling rare species438

(Breiner et al., 2015). The population-based approach of EAs allows providing an informative ensemble of439

near-optimal solutions rather than just one optimal solution. In this perspective, EAs can be used to gener-440
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ate ensembles comparable (Muñoz-Mas et al., 2017) and possibly serve as an alternative for the RF method.441

442

The combination of iterating a number of solutions and the crossover and mutation operators offers the443

opportunity to explore multiple areas of the search space (Holland, 2000). Applied to feature selection,444

it allows tracking interesting combinations of features over several generations. This is considered a great445

strength and a competitive alternative to stepwise selection procedures usually used in species distribution446

modelling. In stepwise selection procedures, an alternative model is tested to data by iteratively excluding447

(including) a feature (Zuur et al., 2009). These approaches are considered greedy because they make locally448

optimal decisions with the assumption that a (near-)optimal solution will be found in the vicinity of this449

local solution. Although the forward selection approach is computationally efficient, this procedure may450

ignore informative combinations of features which are individually only marginally relevant. The search451

behaviour of EAs is totally different: They combine and test solutions that are located in various regions452

of the search space.453

454

EAs and ant colony optimization are population-based approaches able to deal with combinatorial opti-455

mization problems (Boussäıd et al., 2013) whereas particle swarm optimization was initially designed to456

solve continuous problems (Kennedy and Eberhart, 1997). Combinatorial optimization problems are a457

class of discrete optimization problems in which the input arguments encode permutations, combinations458

or variations (Scheerlinck et al., 2009). The way the candidate solutions are generated is the main difference459

between EAs and ant colony optimization. In EAs, candidate solutions are encoded as strings of bits or real460

numbers of the chromosomes whereas for ant colony optimization the potential solutions are encoded in the461

environment of ants. That is, the ants or agents propagate through the search space and new candidate462

solutions are constructed from the information in this environment. This way, the memory of the system is463

embedded in the environment rather than the objects. This property makes ant colony optimization more464

appealing for modelling dynamically changing systems (Maier et al., 2003; Szemis et al., 2012; Zecchin465

et al., 2006).466

467

For now, the application of ant colony optimization in species distribution modelling might seem less in-468

teresting since data are often not available over multiple time instances. As depicted in the introduction,469

near-real-time data are expected to arrive as technologies in species-tracking and remote sensing are con-470
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tinuously improved (Cord et al., 2014; Pauwels et al., 2014; Bastille-Rousseau et al., 2017). As ant colony471

optimization is able to deal with dynamic constraints without reinitialisation, it is expected to be appro-472

priate to deal with these type of dynamic data. In these cases, the use of ant colony optimization for model473

identification could be assessed as superior to EAs.474

475

A fairly novel class of population-based methods are ‘Estimation of distribution algorithms’ (EDAs). These476

algorithms guide the search for an optimal solution by sampling probabilistic models of candidate solutions,477

and by using selection operators also applied in EAs. The aim of EDAs is not only to optimize models,478

but also to provide a series of probabilistic models revealing characteristics of the problem being solved479

(Pelikan et al., 2015). Other examples of newly developed population-based methods to obtain this type of480

information are ‘irace’ (López-Ibáñez et al., 2016) and sequential model-based optimization (Hutter et al.,481

2011). They all share the aim of automatic algorithm configuration, defined as finding good algorithm482

settings (values for hyperparameters, operators) for solving unseen problem instances by learning on a set483

of training problem instances (López-Ibáñez et al., 2016). Applying this type of algorithms to train SDMs484

could be interesting to further learn about the characteristics of the training problem at hand. Sample485

prevalence is a typical example of a characteristic of a training data set (see also Table 2). The mentioned486

techniques could thus be used to train models on data sets with varying sample prevalence so to provide487

interesting insights on the effect of sample prevalence on - not only the objective measure - but also algo-488

rithms’ functioning.489

490

4.3. Hyperparameters491

The standard application of an EA requires five hyperparameters to be optimized or tuned (population492

size, a stopping criterion, selection rate and crossover and mutation rate). This can be considered as a493

disadvantage since the performance of the EA depends on the choice of these hyperparameters (Grefenstette,494

1986; Feurer et al., 2015). Guidelines for (automated) tuning these hyperparameters are found in the495

literature (Gibbs et al., 2008, 2010; López-Ibáñez et al., 2016). Yet, it is important to note that the ‘No496

Free Lunch Theorem’ states that there is no global set of hyperparameters effective for every problem497

(Wolpert and Macready, 1997). Consequently, every class of problems will require hyperparameter testing.498

The results our literature review show that a limited number of studies (eight out of 25) used an iterative499

approach to obtain hyperparameter values. In addition, no significant relation between hyperparameters500
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could be identified (see supportive information 3). This is in line with the findings of Gibbs et al. (2008)501

who empirically determined the degree of interaction between hyperparameters for a list of optimization502

problems. Only the population size shows a strong inverse relationship with the mutation rate whereas503

the interaction between other hyperparameters was found not to be as relevant for the GA performance.504

Within our analysis, we could not determine a relation between the number of chromosomes and the505

mutation rate. The reason for this observation is that hyperparameters are rarely optimized in the field of506

species distribution modelling. Algorithms are used, and settings seem to be copied from other publications507

without explicit reasoning (see Table 2: Boets et al. (2013); D’heygere et al. (2003, 2006) and Zarkami et al.508

(2012)). As such, we suspect that hyperparameters values in the studies in Table 2 are sub-optimal. Here,509

we advocate the practice of testing and reporting the values for hyperparameters and their effect on the510

objective function, so readers can assess which hyperparameters might be useful for a specific application in511

species distribution modelling. We promote the use of guidelines to have a good estimate of optimal values512

for the hyperparameters as those in Gibbs et al. (2008) and Gibbs et al. (2010). Although the number of513

hyperparameters to be determined may be a weakness of EAs, many metaheuristic algorithms (i.e. ant514

colony optimization, particle swarm optimization, simulated annealing) and machine learning algorithms515

share this shortcoming. As noted at the end of section 4.1, a number of tools developed in computer science516

are being developed to automate the hyperparameter optimization problem (Feurer et al., 2015).517

4.4. Multiobjective machine learning518

An opportunity of EAs in species distribution modelling is their potential use as multiobjective machine519

learning methods which aim to train a model based on multiple -potentially conflicting - objectives. Typi-520

cally, the purpose of species distribution modelling is to train models which estimate species presence and521

absence well. In many cases, it is desired - for instance in decision management - to give a higher weight to522

one or the other (Mouton et al., 2009). A number of evaluation criteria based on the classification of the523

occurrence probability (e.g. Cohen’s Kappa or True Skill Statistics) are being used to pool the degree of524

correct estimation of species presence and absence (Mouton et al., 2010). Unfortunately, these evaluation525

measures depend on sample prevalence. Consequently, training models with these data having varying526

sample prevalence are biased. A pragmatic approach to solve this issue is to keep sample prevalence equal527

over all data samples and/or to define a trade-off between commission and omission errors in the objective528

function (Allouche et al., 2006; Manel et al., 2001; Mouton et al., 2010).529

530
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The trade-off between omission and commission errors can be viewed as a multiobjective problem. EAs have531

proven to be adequate techniques to identify trade-offs between objectives (Penn et al., 2013; Sweetapple532

et al., 2014). In general, EAs can be used to determine the entire set of Pareto optimal solutions or533

at least a representative subset. A Pareto optimal set is a set of solutions that are nondominated when534

compared with other solutions of the solution space (Deb et al., 2000). For example, for species distribution535

modelling, a Pareto optimal set could be a set of equally valid solutions to a problem presenting the trade-off536

between commission and omission errors. This way, decision makers obtain a set of solutions that can be537

very valuable for different aspects of ecosystem decision management (Guisan et al., 2013). A well-known538

example of a multiobjective optimizer using an EA is the non-dominated sorting GA II of Deb et al. (2000).539

In this algorithm, a simple GA with uniform crossover and mutation but with specific selection operators is540

used. For the selection operator, different nondominant fronts are identified. These nondominant fronts are541

estimates of the Pareto front defined by two or more objectives. The chromosomes in each non-dominant542

front have the same assigned dummy fitness value, ranked according to the ‘strength’ of the front. These543

dummy fitness values are used to select chromosomes (Deb et al., 2000). This process is repeated until544

a nondominant front equal or close to the Pareto optimal front is found. An example of the use of the545

non-dominated sorting GA II in ecology is presented by Côté et al. (2007).546

5. Recommendations for application547

EAs and other metaheuristic algorithms are particularly useful to solve problems such as feature selection,548

parametrisation of complex models, and optimization of other learning algorithms. These algorithms are549

likely not suited to solve every problem as the development of a specific EA will require high investment550

costs - in terms of programming and algorithm understanding - returning little improvement in model551

insight and predictive performance. In these cases, the use of machine learning methods, such as decision552

trees, GLMs or Maxent would be more appropriate. However, we recommend to consider EAs when the553

problem at hand has one of the following characteristics:554

• The problem and search for a solution is expected to be complex (e.g. includes species interactions555

or many features) and little information is available to a priori reduce complexity (see, for example,556

Kissling et al. (2012)).557

• Many (complex) boundaries can be formulated for the problem. These could, for instance, be obtained558

from experts or ecological databases (Verberk et al., 2012).559
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• Solutions to the problem are required to be transparent and flexible for model (re-)analysis, for560

instance for decision management (Adriaenssens et al., 2004).561

• The input data set has a high number of features, and manual feature reduction is no longer possible562

(e.g. pesticide database of river sediment in Flanders counts more than 200 identified pesticides563

(VMM, 2018)).564

• The model knows many parameters which have to be calibrated (Van Broekhoven et al., 2007).565

• A trade-off between objective functions is required for decision management applications. This can,566

for instance, be the trade-off between model complexity and performance, or between the correct567

estimation of species presence and absence.568

For a specific problem, one can select from a number of EA implementations. In Table 4, a suggestion569

for the type of EA are provided for a number of problems. Two ‘trivial’ problems are listed, parameter570

estimation and feature selection (see row one and two), whereas other applications are less obvious, and571

often problem-specific implementations. For the calibration of parameter-rich models (> 10 parameters), a572

binary or real GA encoded can be used, since both are expected to perform equally well (Van Broekhoven573

et al., 2007). The second case involves the reduction of the number of input features with the help of574

EAs. Typically, this applies to data sets for which a large number of potential input variables can explain575

species occurrence. This type of learning could be particularly interesting when remote sensing products576

are used, in order to reduce the amount of input data required to estimate species distributions from spa-577

tial input data (Hampton et al., 2013). Automated variable selection with EAs can be helpful to steer578

model development, but as noted by Araújo and Guisan (2006), this should not replace a selection based579

on expert knowledge. In the case of feature selection, a binary encoded GA is implemented, encoding the580

in- or exclusion of input features (D’heygere et al., 2006). This feature selection can be helpful for the581

optimization of stacked SDMs or population-based SDMs. In these SDMs, models for different species are582

coupled with each other (Guisan and Rahbek, 2011), and are allowed to interact. With the number of583

species considered in these stacked SDMs, the number of model elements increases exponentially (due to584

one-on-one interaction). Binary GAs can be used to simplify these models, preventing an overly complex585

model to be fitted to a limited number of species occurrence observations. In addition, binary GAs can be586

used to optimize artificial neural networks. In this case, different layers or neurons can be implemented in587

the binary string, and the structure of the ANN can be optimized (see Muñoz-Mas et al. (2017)).588

589
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For simple binary and real-coded GAs, a selection rate of 0.5, a crossover rate above 0.8, mutation rate590

lower than 0.2 and 100 generations will in general work well, when the number of chromosomes is between591

30 and 200, independent of the chromosome length (Gibbs et al. (2008) and Table 2). For the choice of592

the selection operator, we advise using tournament or roulette wheel selection. Both are simple to under-593

stand, and generally give satisfying results when compared to other selection operators (Goldberg and Deb,594

1991). The use of elitism is advised, however, it is important to note that the use of elitism can decrease595

the population diversity, and facilitate faster convergence. The need for fast convergence, motivated by596

limited available computation resources can be an important boundary condition in choosing the number597

of model evaluations. This number is determined by the number of chromosomes multiplied by a number of598

generations. A limited number of model evaluations, 400 and 2500, have been used, and have presumably599

led to satisfying results. Increasing the number of evaluations can be usefull, however, it is possible that600

gains in accuracy or precision are marginal. As discussed by Gibbs et al. (2008), the number of evaluations601

should vary as a function of the available computational resources. As a rule of thumb, we advise to focus602

on a cross-validation resampling strategy and on repeated execution of the EA/cross-validation strategy to603

increase robustness, rather than employing a larger number of model evaluations.604

605

Users are advised to consider stratification according to sample prevalence to a design cross validation606

strategy. As discussed above, accuracy measures can vary as a function of this prevalence. To make results607

comparable, it is of importance that data are stratified according to this prevalence. The choice for a608

number of folds, and repetitions will depend on the available computation resources, and the size of the609

data set. Precision will increase with a higher number of repetitions and folds, leading to a longer runtime.610

When data sets are small, and models are learned fast, a higher number is thus preferred. In contrast, when611

learning is slow, one can opt to choose fewer folds and repetitions (Kohavi, 1995). As discussed above, one612

can also consider lowering the number of function evaluations.613

614

When further fine-tuning of the hyperparameters is desired, we recommend using the guidelines of Gibbs615

et al. (2008), as every specific problem can have a unique set of optimal hyperparameters. The choice of616

the objective function, which the GA has to optimize, depends on the study objectives: does one aim to617

estimate species presence well, or rather absence? If the former is true than a higher weight should be given618

to sensitivity, in the case of the latter, specificity (see Table 3). In case a trade-off between both should619
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be identified, one can consider a multi-objective EA. In these algorithms, a specific selection operator is620

implemented in the GA to weight different objectives (see for example the non-dominated sort in NSGA-II621

(Deb et al., 2002)).622

623

Three main points need to be taken into account when machine learning or other algorithms are consid-624

ered to solve a hypothesis. First, specifying the model and its structural component, the subject of model625

training and the objective of the model and the study (see Box 3) is important (Guisan and Zimmermann,626

2000). For example, is the aim of the model to understand a specific theoretical assumption about species627

interaction? Or is the aim to develop a predictive model for estimating species occurrence in an ecosystem628

with many interactions? In a second step, an algorithm to train the model(s) needs to be selected (Box 3,629

second part). Specifically, algorithm operators, problem encoding and operators need to be defined. Here,630

it is important to make a distinction between algorithms which make use of explicit encoding (EAs, ant631

colony optimization) and those which do not (decision trees, GLMs). It is empirically found that algorithms632

making use of encoding work well to train models with hypotheses embedded in the model structure (Maier633

et al., 2014). The initial choice for a type of algorithm and use of encoding will hence determine the choice634

for hyperparameters and operators.635

636

Finally, a platform to implement the approach for the machine learning application is required. GUI637

packages can be used, however, adopting these packages can considerably limit the options which make638

EAs interesting in the first place. For that reason, we advise to use a high-level scripting language such as639

Python or R and search for existing codes implemented in these languages. An additional advantage of using640

high-level scripting languages for machine learning applications is their transferability to high performance641

and cloud computing infrastructure. Preferably, the scripting is done in an open science context allowing642

for continuous code improvement and validation through modular scripting. For a good introduction on643

modular scripting applied to ecology, we refer to Golding et al. (2017). Typically, open science is performed644

on code sharing platforms such as GitHub (https://github.com/).645

6. Future perspectives and conclusions646

Recent advances in theoretical ecology (Leibold et al., 2004) and conceptual modelling (Guisan and Rahbek,647

2011) are challenging scientists to continuously develop new ways to deal with this increasing complexity.648
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The field of machine learning has proven to be useful to tackle these questions, despite that researchers are649

struggling to identify the appropriate approach to address increasing complexity (Kissling et al., 2012).650

Maxent is currently the most used technique to model species distributions when considering terrestrial651

cases. For freshwater system case studies, innovative methods such as artificial neural networks and EAs652

are increasingly being used to solve less straightforward problems. Model developers will be required to653

deal with this increased complexity, preferably in an open science context. This depicts full transparency654

in the methodology, but also the practical encoding (Golding et al., 2017; Phillips et al., 2017). In addition,655

it requires the developed algorithms to be easily transferable and adaptable to new problems. Considering656

these aspects, EAs and other metaheuristic algorithms are found to be of particular use since they split657

the training process from the objective function evaluation (model run). In addition, EAs allow dealing658

with complex cases (Eiben and Smith, 2015) making them appropriate candidates to train the next gen-659

eration of species distribution models. Dealing with hyperparameters optimization and the requirement660

of programming and modelling skills are considered disadvantageous, hindering the use of EAs and other661

metaheuristic algorithms. For the first, hyperparameter optimization methods are already available giving662

satisfying results for multiple problems (Gibbs et al., 2008; Gobeyn et al., 2017). The second, the need for663

modelling know-how will require standardization, documentation and refinement of the algorithm devel-664

opment and application process (Jakeman et al., 2006; Grimm et al., 2010) going hand in hand with the665

philosophy of open science. In this review paper, a number of suggestions with respect to the definition666

of the model, algorithm and implementation are given. With this, we aim to stimulate ecologists to use667

and further refine the development of EAs applied to species distribution modelling, hypothesis testing and668

preferably ecology in general.669

670

As technological advances in machine learning are reshaping the way scientist develop models and analyse671

data, researches are increasingly aware that one specific algorithm won’t offer a tailor-made solution to672

every problem (Chatfield, 1993). With this synthesis, an insight is presented on how to use EAs as a673

technique to solve specific problems in ecology rather than using it as a ready-to-use technology to map674

species distributions.675
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Box 1: Terminology machine learning

Machine learning: Field of research using computer programs or algorithms that have the ability to adapt or

change (i.e. train) from an experience (data) given a performance measure.

Supervised learning: Learning from an experience by providing the machine learning algorithm with a set of

inputs together with the corresponding outputs (labels).

Unsupervised learning: Learning from an experience by providing the machine learning algorithm with only

inputs (and no labels) or in other words, making the algorithm search for patterns in data without having any labels

to test it.

Training data: Observations of an experience used by the machine learning algorithm to train a model.

Testing data: Observations of an experience used to test the trained model. It is important to note test data are

not used during the training phase.

Feature space: Set of all possible combinations of features of the input dataset. Both training and testing data

are samples from the input dataset.

Feature selection or (input) variable selection: Process of selecting a subset of relevant features. The

objectives of feature selection are to avoid the risk of overfitting by reducing model complexity (1), improve cluster

detection (2) and reduce computational cost (3).

Ensemble learning: Training with multiple machine learning methods to obtain better predictive performance

than by only using one machine learning method.

Model parameters: Model elements that are internal to a model, whose value can be estimated with data and are

context-dependent. The action of estimating parameters is referred to as ‘parameter estimation’, in which a unique

set of model parameter values are estimated with data.

Hyperparameters: Machine learning algorithm free options that need to be set beforehand, determining the

training strategy and related efficiency of the algorithm. The settings of these hyperparameters can influence an

algorithm’s and a model’s performance. In this review, hyperparameters refer specifically to parameters related

to the algorithm free options, whereas ‘parameters’ refer to model elements. To clarify the difference between

parameters and hyperparameters, a number of examples are given in section 3.2. For a good mathematical

introduction to hyperparameters and their role in machine learning, we refer to Bergstra and Bengio (2012).

Evolutionary algorithms (EAs) (or evolutionary computing): Metaheuristic search algorithms (strategy)

inspired by processes observed in evolution, i.e. selection, crossover and mutation.
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Table 1: Machine learning approaches developed and used in species distribution modelling. In the table, WOS = web of science, and C.n. = cumulative number of publications. A
hyphen in the first column indicates that no acronyms/full names are found in the literature.

Approach / technique (acronym) Short description C.n. in WOS
(08/11/2017)

Notable references

Artificial neural networks (ANNs) Non-linear mapping structures inspired on the biological system
of the brain.

2000: 6;
2010: 77;
2017: 166

Fukuda et al. (2013);
D’heygere et al. (2006)

BIOCLIM (-) Delineates a rectangular environmental (bioclimate) hyperspace
(or envelope) to estimate the response of species to a number of
bioclimatic input variable.

1990/2000: 2;
2010: 1;
2017: 33

Carpenter et al. (1993);
Elith et al. (2006)

Biodiversity modelling (BIOMOD) Ensemble modelling platform/software combining several tech-
niques.

2010: 11;
2017: 53

Thuiller (2003);
Thuiller et al. (2009)

CLIMEX (-) Model based on GROWEST, using a growth and stress index sporadicaly
used before
1990

Sutherst and Maywald (1985)

Decision trees (DT) Classifiers expressed as a recursive partition or tree of the feature
space.

2000: 5;
2010: 126;
2017: 421

Iverson and Prasad (1998)

Fuzzy logic (FL) Method that deals with linguistic uncertainty by generalizing clas-
sical logic.

2000: 2;
2010: 20;
2017: 61

Adriaenssens (2004);
Van Broekhoven et al. (2006)

Genetic algorithm for rule set produc-
tion (GARP)

EA-inspired method used to produce a rule-bank SDM. 2010: 12;
2017: 224

Peterson et al. (2002);
Stockwell and Noble (1992)

Generalized linear models (GLMs) Collection of parametric techniques based on a random compo-
nent, a systematic component, and a link function describing a
relation between the former the random and systematic compo-
nent.

2000: 23;
2010: 230;
2017: 600

Nelder and Wedderburn
(1972);
Zuur et al. (2010)

Generalized additive models (GAMs) Extension of GLMs which relate the response variable to a linear
combination of smoother functions.

2000: 43;
2010: 313;
2017: 738

Zuur et al. (2010)

GROWEST (-) Model using a growth index based temperature, light, moisture sporadicaly
used before
1980

Nix et al. (1977)

Maximum entropy method (Maxent) Technique using the principle of maximum entropy to make pre-
dictions from incomplete knowledge.

2010: 145;
2017: 1391

Phillips et al. (2006);
Elith et al. (2011)

Random forest (RF) Technique using bootstrap aggregation to create a set of decision
trees.

2010: 27;
2017: 283

Prasad et al. (2006);
Cutler et al. (2007)
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0

Figure 1: Chronological overview of first use or report of SDM modelling technique. Methods classified before 2000
under machine learning are indicated in a light grey boxes. Other methods that are often categorized under machine
learning are shown in a dark grey boxes. This graph is a result of a web of science search on 08/11/2017 based on
an intersection of literature on the shown methods and the field of ‘species distribution modelling’ (see supportive
information 2). The acronyms found in this figure are listed in Table 1.
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Box 2: Terminology EAs

Phenotype: Candidate solution to a problem, here represented by a model.

Genotype: Representation of a phenotype in a data type. Typically used genotypes are binary, real-valued strings

or tree structures.

Genome: A specific formulation of the genotype (e.g. 1111011010).

Allele: A single element of the genotype (e.g. one bit).

Fitness: A measure of how good a solution to a problem is.

Chromosome: Object containing a genome and fitness.

Mapper: User-defined function which translates the genotype to phenotype.

Selection: Process of selecting chromosomes as parents for crossover, typically based on their fitness values.

Crossover: Process of combining the parents’ genome to form genomes for the offspring.

Mutation: Process of randomly altering the parts of the genome.

Genetic algorithm: Evolutionary algorithms that use selection, crossover and mutation operators to solve

an optimization problem. An explicit difference between GAs and other EAs is that GAs are designed as

problem-independent solvers, whereas other EAs are designed to solve specific problems.
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Figure 2: General process of iterating a number of chromosomes in an EA with a number of operators (panel A),
and the difference between GAs and GP (panel B). The scheme in the upper panel is applicable for both GAs and
GP, for which the encoding and way the operators are implemented differ (lower left and right panel respectively).
+ = plus operator, - = minus operator, * = multiplication operator, / = division operator.
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Table 2: Overview of literature review. The ‘subject of training’ is either parameter estimation, feature selection and/or hyperparameter optimization. Parameter estimation refers to the estimation
of a unique set of model parameter values (see also Box 1). Hyperparameter optimization refers to the search for values of algorithm settings which influence an algorithm’s performance. ‘Training
robustness’ indicates the robustness of the algorithm towards different samples of the data (by cross-validation, or bootstrapping) whereas ‘algorithm robustness’ is the robustness of the algorithm
tested on the same data sample. The acronyms found in the column ‘objective function’ are found in Table 3. * = or no improvement 50 generations. ‘?’ = information was unclear or uncertain.
Prev. = prevalence, i.e. number of species occurence over number of samples. x = number of input features.

author;
ecosystem

prev. subject of
training

objective
functions

type of EA
& operators

problem
size

hyperparameters hyperparameter
optimization

training
robustness

algorithm
robustness

resampling
scheme

D’Angelo et al. (1995);
freshwater

? parameter
estimation;
feature selection

ρ ;
SSE

genetic algorithms
genetic programming;
mixed string genotype

±1010 # chromosomes: 200;
crossover rate: 0.8;
mutation rate: 0.1;
# generations: 20000

iterative no 10 runs no

Whigham (2000);
terrestrial

? feature selection;
parameter
estimation

? genetic programming;
tree-genotype

? ? ? ? 100 runs ?

McKay (2001);
terrestrial

? feature selection;
parameter
estimation

? genetic programming;
tournament selection;
half ramped
initialization;
tree-genotype

±1010 # chromosomes: 50;
crossover rate: 0.9;
mutation rate: 0.1;
# generations: 50

no ? ? ?

D’heygere et al. (2003);
freshwater

? feature selection CCI simple genetic
algorithm;
roulette wheel selection;
binary string

215 # generations: 20;
crossover rate: 0.6;
mutation rate: 0.033;
# generations: 20

? 10-fold
cross-validation

? ?

McClean et al. (2005);
terrestrial

? parameter
estimation

AUC Bayesian genetic
algorithm;
continuous string

±102∗9 ? ? ? ? ?

D’heygere et al. (2006);
freshwater

? feature selection CCI simple genetic
algorithm;
roulette wheel selection;
binary string

217 # chromosomes: 20;
crossover rate: 0.6;
mutation rate: 0.03;
# generations: 40

iterative 10-fold
cross-validation

x runs stratified

Termansen et al. (2006);
terrestrial

? parameter
estimation

AUC Bayesian genetic
algorithm;
continuous string
genotype

102∗9 # chromosomes: 100;
crossover rate: ?;
mutation rate: <0.01;
# generations: 90

iterative ? x runs ?

Van Broekhoven et al.
(2007);
freshwater

parameter
estimation

% CFCI simple genetic
algorithm;
tournament selection;
elitism;
binary string
and continuous

? # chromosomes: 100;
crossover rate: 0.95;
mutation rate:
∼ 1/(length chromosome)
(<0.01);
# generations: 1000*

iterative ? 100 runs ?

Fukuda and Hiramatsu
(2008);
freshwater

? parameter
estimation

MSE simple genetic
algorithm;
binary string

? ? ? 10 runs ?

Fukuda (2009);
freshwater

? parameter
estimation

MSE simple genetic
algorithm;
elitism

? ? ? 50 runs ?

Tirelli and Pessani
(2009);
freshwater

0.7 feature selection Kappa (?) ? ? ? ? ?

Hoang et al. (2010);
freshwater

0.12
to
0.72

feature selection CCI;
Kappa

binary string 221 ? ? 3-fold
cross-validation

5 runs no

Favaro et al. (2011);
freshwater

0.56 feature selection Sn; Sp;
CCI;
Kappa;
AUC

? ? ? ? 10-fold
cross-validation

? ?

continued . . .
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. . . Table 2 continued

author;
ecosystem

prev. subject of
training

objective
functions

type of EA
operators

problem
size

hyperparameters hyperparameter
tuning

training
robustness

algorithm
robustness

resampling
scheme

Fukuda et al. (2011);
freshwater

0.27 parameter
estimation

MSE simple genetic
algorithm;
roulette wheel selection;
elitisme;
binary string

24∗35 # chromosomes: 100;
crossover rate: ?;
mutation rate: 0.05;
# generations: 5000

? 3-fold
cross-validation

20 runs stratified based
on prevalence

Jeong et al. (2011);
terrestrial
(marine)

? feature selection;
parameter
estimation

RMSE genetic algorithm
genetic programming;
tree-genotype

±1010 # chromosomes: 200;
crossover rate: 0.6-0.9;
mutation rate: 0-0.3;
# generations: 100

? bootstrapping ? 80 % training
data
20 % test data

Fukuda et al. (2012);
freshwater

0.5 parameter
estimation

MSE binary string 24∗17 # chromosomes: 100;
crossover rate: ?;
mutation rate: ?;
# generations: 2000

? 5-fold
cross-validation

20 runs ?

Zarkami et al. (2012);
freshwater

? feature selection CCI;
Kappa

simple genetic
algorithm;
binary string

? # chromosomes: 20;
crossover rate: 0.6;
mutation rate: 0.033;
# generations: 20

? 3-fold
cross-validation

? ?

Boets et al. (2013);
freshwater

0.38 feature selection Kappa;
AUC;
CCI

simple genetic
algorithm;
tournament selection;
binary string

211 # chromosomes: 20
crossover rate: 0.6;
mutation rate: 0.033;
# generations: 20

iterative 3-fold
cross-validation

? random

Boets et al. (2013);
freshwater

0.29 feature selection Kappa;
AUC;
CCI

simple genetic
algorithm;
tournament selection;
binary string

211 # chromosomes: 20;
crossover rate: 0.6;
mutation rate: 0.033;
# generations: 20

iterative 3-fold
cross-validation

? random

Sadeghia et al. (2013);
freshwater

? feature selection ? simple genetic
algorithm;
binary string

±1033 # generations: 20;
crossover rate: 0.6;
crossover rate: 0.033;
# generations: 20

iterative 3-fold
cross-validation

x runs ?

Sadeghi et al. (2014);
freshwater

? feature selection ? binary string ±1033 ? ? 4-fold
cross-validation

5 runs ?

Zarkami et al. (2014);
freshwater

0.5 feature selection CCI;
Kappa

simple genetic
algorithm;
binary string

210 # chromosomes: 20;
crossover rate: ?;
mutation rate: ?;
generations: 20

? 3-fold
cross-validation

? random

Muñoz-Mas et al.
(2016a);
freshwater

0.37 feature selection;
hyperparameter
optimization
(decision tree)

TSS GA with a derivative
quasi-Newton method;
mixed string genotype

±102x # chromosomes: 500;
crossover rate: 0.75;
mutation rate: 0.75;
# generations: 500

? 3 times 3-fold
cross-validation

? stratified based
on prevalence

Muñoz-Mas et al.
(2016b);
freshwater

0.62
0.66

feature selection TSS penalty
complexity

GA with a derivative
quasi-Newton method;
mixed string genotype

? # chromosomes: 1000;
crossover rate: 0.75;
mutation rate: 0.75;
# generations: 1000

? 3 times 3-fold
cross-validation

? ?

Vayghan et al. (2016);
freshwater

0.57 feature selection ? binary string 29 # generations: 20;
crossover rate: 0.6;
mutation rate: 0.033;
# generations: 20

? ? ? ?

Gobeyn and Goethals
(2017);
freshwater

? feature selection
parameter
estimation

AUC
Kappa

simple genetic algorithm
tournament selection
variable length binary
string

> 2112 # chromosomes: 100;
crossover rate: 1.;
mutation rate: 0.05;
# generations: 50 to 2000

iterative
and guidelines of
Gibbs et al. (2008)

bootstrapping ? ?

Muñoz-Mas et al.
(2017);
freshwater

0.21
0.42

feature selection TSS stimulated
overprediction

GA with a derivative
quasi-Newton method;
binary string

? # chromosomes: function
of ensemble size;
crossover rate: 0.6;
mutation rate: 0.6;
# generations: function
of ensemble size

iterative? ? ? stratified based
on prevalence

44



Table 3: Overview of often-used measures to define an objective function. For a in-depth review and formulation of
regression coefficients, we refer to Mouton et al. (2010).

Measure Classification (C)
or regression (R)

Acronym
Symbol

Reference

Correctly classified
instances

C CCI Mouton et al. (2010)

Cohen’s Kappa C Kappa Mouton et al. (2010)

Sensitivity C Sn Mouton et al. (2010)

Sensitivity C Sp Mouton et al. (2010)

True skill statistic C TSS Mouton et al. (2010)

Area under the receiver
operator characteristic
curve

C AUC Mouton et al. (2010)

Correctly fuzzy classified
instances

C % CFCI Van Broekhoven et al. (2006)

(Root) mean squared
errors

R (R)MSE Based on species density, see
Fukuda (2009)
Based on suitability, see Fukuda
et al. (2012)

Sum of squared errors R SSE Based on population size:
D’Angelo et al. (1995)

Linear correlation R ρ Based on population size:
D’Angelo et al. (1995)
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Table 4: Suggested EA or metaheuristic algorithm useful in species distribution modelling. Algorithms followed by
a ’*’ are suggested in this review, but have yet to be tested, or have only tested in a number of experiments within
ecology.

Learning problem suggested algorithm example reference

Feature selection binary SGA D’heygere et al. (2006)

ant colony optimization* -

Parameter estimation real-coded SGA Van Broekhoven et al. (2007)

particle swarm optimization* -

simulated annealing* -

Parameter estimation and feature
selection

GP and GAs Jeong et al. (2011)

variable length GAs* Gobeyn and Goethals (2017)

Hyperparameter optimization
of other machine learning
algorithms

evolutionary optimization
(problem-specific)

Muñoz-Mas et al. (2016b)

Multi-objective optimization NSGA-II* -

Problem characteristics
identification

EDA* -
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Box 3: General guidelines for applying a metaheuristic machine learning algorithm

Model:

1. Model formulation: First the model scale, resolution, model inputs, states, parameters and boundary

conditions relevant to the species and case study need to be considered. At this stage, it is inspected if

the model can be simplified by making specific assumptions (e.g. only consider specific species interactions)

and/or identifying correlating features. For the latter, this can be done a prior model fitting with filtering

methods based on input data (using, for instance, the Spearman rank correlation, see Saeys et al. (2007) and

Dormann et al. (2012)) or during model fitting (by computing, for instance, a mutual information criterion,

see May et al. (2008)). It is important to note that the use of automated procedures to select features should

not serve as a replacement for an expert-based selection (Araújo and Guisan, 2006).

2. Objective: Define specific objectives and criteria to which the model should comply. For instance, is the

aim of to obtain models which estimate primarily species presence well or rather species absence? Other

aspects involved can be related to model complexity (for example see (Phillips et al., 2006)). Many options

are available to define a measure. It is important to note that these are sensitive to the sample prevalence

(Mouton et al., 2009, 2010). In other words: the measure used for model training can be varied as a function

of the sample prevalence. This can cause a bias in the obtained model.

3. Subject of training: Defining which specific elements of the models are perturbed to maximize or minimize

an objective function. It can be aimed to estimate model parameters or/and reduce the number of input

variables (and thus model elements) (Fukuda et al., 2011). When the goal is to decrease the number of model

structural elements, both wrapper and embedded feature selection methods can be used. feature selection

selects input features which are most relevant - given an objective - to explain patterns in the data. In

embedded feature selection, parameters are estimated while performing feature selection. On the contrary, in

wrapper feature selection, parameters are estimated for each feature subset (or prior feature selection) (Saeys

et al., 2007). For the latter, another machine learning algorithm is typically run within the feature selection

procedure.
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Box 3 (continued): General guidelines for applying a metaheuristic machine learning algorithm

Algorithm:

1. Type of algorithm: Users are advised to consider EAs and other metaheuristics in order to train models to

test complex ecological hypotheses. A very good example using a simulated annealing metaheuristic algorithm

to inspect the effect of species interactions and stress tolerance on biodiversity is presented by Baert et al.

(2016). For relatively simple questions mainly aiming to get a first insight into the problem, we advise using

Maxent, GLMs and/or decision trees.

2. Encoding: A binary (string of zeros and ones) encoding can be considered for wrapper feature selection.

Applied to EAs, real-valued encoding (string of continuous values) can be considered for parameter estimation

and a list of list encoding for embedded feature selection. Haupt and Haupt (2004) provide background

hints and tips for the implementation of a binary and real-values encoding in evolutionary algorithms. To

implement embedded feature selection in EAs, a list of list approach can be used (Srikanth et al., 1995; Gobeyn

and Goethals, 2017). In addition, boundary conditions need to be addressed in the encoding and functioning

of the operators (e.g. implementing repair operators for genome in EAs).

3. Operators: Metaheuristic algorithms use a number of operators depicting efficiency of the algorithm. Many

implementations are available and depend on the encoding of the solutions. For EAs, typically tournament

selection, uniform crossover and uniform mutation operators are implemented (Haupt and Haupt, 2004). The

implementation of multiobjective machine learning with EAs requires specific selection operators (Deb et al.,

2002).

4. Hyperparameters: All machine learning methods have a number of hyperparameters which need to be

set. For standard EAs, selection, crossover and mutation rate needs to be set together with the number

of iterations. Guidelines are available for many algorithms (e.g. EA, Gibbs et al. (2008) or decision trees,

Everaert et al. (2016)). It is important to note that setting hyperparameters is for many machine learning

algorithms required to acquire satisfying results with the lowest computational effort (Gibbs et al., 2015).
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Box 3 (continued): General guidelines for applying a metaheuristic machine learning algorithm

Implementation:

1. Programming language: A number of programming languages exist to implement algorithms. For data

science and machine learning, high-level programming languages such as Python and R are the most popular

ones. These languages offer an interface for intuitive high-level programming. In addition, support can easily

be found at online platforms such as Stack Overflow (www.stackoverflow.com) to solve specific programming

problems. An alternative is to use algorithms available under a GUI environment,e.g. WEKA which also

facilitates a command-line interface and Java API. These are helpful for machine learning, however, the use

of these techniques to train hypothetical-driven SDMs can be tedious. In addition, these GUI applications

are often difficult to use for repeated analysis (i.e. for uncertainty analysis) on high-performance computing

infrastructure.

2. Open science: Developing a tailor-made package for a specific application can be a time-consuming practice.

Therefore we recommend the development of an application based on existing Python or R packages. General

or specific packages can be downloaded from the language developers websites and Github (https://github.

com/). The latter is an open source code hosting platform for version control and (scientific) collaboration.

Programmers in environmental and ecological science are increasingly aware of the importance of open source

(science), code collaboration, reproducibility (not only in results but also in code) and modular scripting.

A good example of this philosophy applied to species distribution modelling is published by Golding et al.

(2017). In this approach, the authors provide a modular framework operating on snippets of R code that

are interchangeable among each other. Finally, benchmarking algorithms and codes can be done by using

datasets from GBIF, a free and open access to biodiversity data. In this case, an ecological data set is

used, and different algorithms are applied to entangle the specific strengths and weaknesses of the used

algorithms. As an alternative, an open, organized, online ecosystem for machine learning such as OpenML

(https://www.openml.org/home) and Kaggle (https://www.kaggle.com) can be used.
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