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Abstract 8 

Metaproteomics was established to analyse both the structure and the function of microbial 9 

communities and, particularly in soils, their contribution to ecosystem services. In this review, we 10 

provide an overview on how the study of the soil metaproteome can provide fundamental information 11 

on the role of microbial communities in soil ecosystem services. We further discuss the strengths and 12 

weaknesses of soil metaproteomics in comparison to other culture-independent OMIC techniques. We 13 

critically review its bottlenecks but also provide strategies to mitigate and possible directions for future 14 

research as the direct link of structure and function is advantageous and complementary to 15 

metagenomics, metatranscriptomics and metametabolomics. 16 

Soil ecosystem services provided by microbes 17 

Soil, a key component of the terrestrial ecosystem, operates at the interface of the atmosphere, 18 

biosphere, hydrosphere and lithosphere [1], and provides many ecosystem services - acting as a habitat 19 

for soil organisms, regulator of water quality, modifier of the atmospheric composition, medium for 20 

plant growth and recycling system for nutrients and organic wastes, etc. [2]. Even though soil is one of 21 

the most important carbon (C) reservoirs within the Earth’s ecosystems [3,4], most of its microbes have 22 

not yet been described [5,6]. But, one gram of soil can contain billions of organisms belonging to 23 

thousands of different species [7]. In particular, the mean prokaryotic density of 10,000,000 organisms 24 

per gram of soil [8] is at least one magnitude of order higher than that found per millilitre of water in the 25 

ocean [9]. This implies the importance of understanding microbially-driven soil processes such as C-26 

cycling and soil fertility that ultimately lead to human wellbeing. Surprisingly, microbial biomass typically 27 

accounts for only 1% of soil organic carbon (SOC) [10,11] but its contribution to C cycling is extensive, 28 

through its implication in the mineralisation and stabilisation of the soil organic matter (SOM) derived 29 

from plants [12–14]. In addition, soil microbial community has been shown to be responsive against 30 

climate change factors [15–21]. Hence, understanding the structure and the function of the soil microbial 31 
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community is crucial to the determination of its contribution to soil ecosystem services and how global 32 

change and land use intensification will affect this.  33 

The standard metric of quantification in soil microbial ecology studies is the reading of nucleic acid 34 

counts. The data derived from genomic studies permit: i) the identification and quantification of the 35 

relative abundance of microbial populations through amplicon-based approaches (i.e., 16S rRNA genes; 36 

ITS fragments, etc.); ii) the quantification and the estimation of the diversity of functional genes (e.g., 37 

genes related to N cycling, such as amoA, nirS and nirK; and, more recently, genes involved in P cycling, 38 

such as PhoD and PhoC [22]); iii) the inference of their functional role through statistical methods which 39 

relate nucleic acids to functional parameters (i.e., extracellular enzyme activities, basal respiration, etc.); 40 

and iv) metagenomic approaches, which aim to decipher the whole repertoire of genes in a soil 41 

microbial community which attempts to potentially connect phylogeny and functionality.  42 

Through sequencing approaches, several studies have revealed the core composition of soil microbial 43 

communities at the global scale. For instance, Delgado-Baquerizo and colleagues found that only 2% of 44 

bacterial phylotypes, which amounted to 511 individual phylotypes, consistently account for almost half 45 

of the soil bacterial communities worldwide [23]. This “most wanted” list included Proteobacteria, 46 

Actinobacteria, Acidobacteria, Planctomycetes, Chloroflexi, Verrucomicrobia, Bacteroidetes, 47 

Gemmatimonadetes, Firmicutes and Armatimonadetes in decreasing order. Complementary, Tedersoo 48 

and colleagues used DNA metabarcoding to describe that fungal richness is decoupled from plant 49 

diversity but fungi show similar latitudinal diversity gradients to other organisms [24]. Similar to 50 

bacteria, the abundant phylotypes globally, comprising of Agaricomycetes (50.1%), Sordariomycetes 51 

(8.0%), Eurotiomycetes (7.7%), Leotiomycetes (7.1%) and Mortierellomycotina (6.3%), describe more 52 

than half of the fungal communities worldwide. When comparing metaproteomics and 16S rRNA gene 53 

sequencing in samples from North-America and South-Europe, the patterns of bacterial composition at 54 

phylum level resembled similar patterns, but the relative abundance of Proteobacteria and 55 

Planctomycetes was greater in metaproteomics than metagenomics [25]. Nevertheless, although the 56 

composition of microbial communities at the phylum level can be partially predicted (either with 57 

metagenomics and metaproteomics), the composition of microbial communities at finer taxonomic 58 

levels could probably arise in greater variations across soil types and climates. 59 

However, sequencing harbors limitations such as the quantitative accuracy [26,27] which is why the 60 

actual functionality of microbes should be deciphered by analysis of the catalysts of soil ecosystem 61 

services – the proteins, which provide both functional and phylogenetic information [28–30]. This is 62 

fundamental since it has been discovered recently that a large part (up to 40%) of the soil DNA can 63 
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belong to dead cells (relic DNA) which are not active anymore [31], whereas extracellular proteins in soil 64 

(e.g., extracellular enzymes) can persist and remain active through stabilisation by humic substances and 65 

clays [32].  66 

The significance of soil metaproteomics 67 

In 2009, Bastida and colleagues published a review that  focusedevaluated the initial potentials of soil 68 

metaproteomics. This review was focused  on the methodology of soil metaproteomics with the 69 

emphasis on the different protein extraction techniques and peptide identification by mass 70 

spectrometric analysis as the identification of soil proteins may provide information about the 71 

biogeochemical potential of soils and pollutant degradation and act as an indicator of soil quality, 72 

identifying which proteins and microorganisms are affected by a degradation process [33]. In their 73 

review from 2016, Keiblinger and colleagues discussed the opportunities and limitations of selected 74 

protein extraction techniques in soil and leaf litter metaproteomics, including a step-by-step guideline 75 

on application, sampling, sample preparation, extraction and data evaluation strategies, and used recent 76 

application to discuss how linking phylogeny and taxonomy can help to gain deeper insights in terrestrial 77 

microbial ecology [34]. In this review, we focus on recent applications of metaproteomics but also 78 

highlight the bottlenecks and offer a case-study where major limitations are explored (e.g. biomass and 79 

soil organic C content). Further, we establish a set of research questions that can be potentially 80 

investigated in the coming years with the use of metaproteomics. 81 

Among the culture-independent OMIC techniques deployed to gain deeper insights into the structure 82 

and function of microbial communities [35], metaproteomics has gained more and more interest from 83 

the scientific community as a central element in microbial ecology studies [30], since it deciphers the 84 

functional relationships between community members [36], particularly in soils [15,36–53]. Thus far, 49 85 

articles on soil metaproteomics have been published, in comparison to 54 on soil metatranscriptomics 86 

and 749 on soil metagenomics (PubMed as of July 16th, 2018). Genomics is still the method of choice 87 

used by many soil scientists to evaluate the diversity and composition of the soil microbial community, 88 

due to easier handling, lower costs and commercially-available sequencing provided by companies (for 89 

instance, Agilent Technologies Inc. and Illumina Inc.) or institutes (for instance, the Joint Genome 90 

Institute or Argonne National Laboratory). In comparison, proteomics involves complex sample-91 

extraction protocols (which still need to be improved) and cost-intense and sensitive equipment to 92 

which only a few laboratories in the world have access. However, the ability of metaproteomics to link 93 

the phylogenetic structure to the function is a clear advantage over nucleic acid and metabolomic 94 

approaches in soil microbial ecology. 95 

Kommentar [FB1]: Split this sentence 
within 2 sentences 
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The applications of soil metaproteomics 96 

Soil metaproteomics has been used to describe the soil microbial community in relation to ecosystem 97 

services, such as agriculture [38,41,45,54], bioremediation [36,43,52] and C cycling [40,42,47–49,51], 98 

and climate change factors (i.e., temperature) [15,37,39,53]. The results obtained from nucleic acids and 99 

proteomics, at least at the phylogenetic level, have shown good correlation [15,48,53]. Hence, the use of 100 

proteins to describe ecosystem functioning in soils is of interest because it captures both phylogenetic 101 

and functional information [15,41,42,48].  102 

Carbon (C) and nitrogen (N) cycles  103 

Carbon cycling is fundamental to the Earth’s ecosystem since C is the main component of all biological 104 

compounds. The greenhouse gases carbon dioxide (CO2) and methane, two forms of C, absorb and 105 

retain heat in the Earth’s atmosphere and are thus partially responsible for the greenhouse effect [3], 106 

which is why an understanding of C cycling is crucial to the comprehension of climate change. Indeed, 107 

the concentration of atmospheric CO2 recorded in summer 2018 was the highest since records began, 108 

which underlines the need for a better understanding of the biotic factors (e.g., microbes) controlling 109 

the mineralisation of SOM, which is driven by heterotrophic soil microbes [55]. Within the C-cycle, the 110 

restoration of C-limited soils, such as those frequently found under arid and semi-arid climates, by the 111 

application of organic amendments (i.e., sludges, composts, etc.) is a major task that is necessary to 112 

maintain soil fertility. Through a metaproteomic approach, it has been found that organic amendments 113 

strongly impact soil ecosystem processes, at both the cellular and extracellular level, depending on the 114 

type of organic amendment [47]. Further, metaproteomics revealed that not only the nutrient 115 

concentrations but also the C:N:P stoichiometry influenced both the structure and the activity of the 116 

microbial community during beech litter decomposition [40], whereas deforestation induced a long-117 

term loss of bacterial biomass and enzyme activity but increased bacterial diversity [49]. Moreover, the 118 

active diversity (measured by metaproteomics), but not the total microbial diversity (through amplicon-119 

based genomics), was shown to be related to the availability of organic C [48] in a semi-arid ecosystem. 120 

Lastly, metaproteomic approaches have been utilised to track the N-cycle. The degradation of plant-121 

derived polymeric organic C (i.e., lignin, cellulose, etc.) is dominated by fungi [56,57],but bacteria were 122 

recently shown to dominate the short-term assimilation of plant-derived N, presumably in easily-123 

available sources, by tracing 15N incorporation into proteins of the microbial community [41]. 124 
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Pollution, bioremediation and restoration 125 

The growth of the human population is increasing the pollution of the environment and hence a detailed 126 

understanding of the microbial populations associated with the biodegradation of pollutants is required, 127 

as well as of the main biochemical pathways of biodegradation, which have biotechnological 128 

applications. In fact, metaproteomics revealed that petroleum pollution induced an increase in the 129 

relative abundance of Proteobacteria but a decrease in Rhizobiales - which ultimately led to promotion 130 

of the removal of polycyclic aromatic hydrocarbons and alkanes [36]; this work also provided parallel 131 

information on the biochemical pathways of the biodegradation. Further, the rhizosphere community of 132 

constructed wetlands, generally used to treat contaminated water, was shown to have diurnal 133 

polyhydroxyalkanoate metabolism, which is aligned with the diurnal cycle in plants [58]. Similarly, 134 

naphthalene, an aromatic contaminant, resulted in the separation of a bio-stimulated community - able 135 

to utilise naphthalene - from a non-stimulated community exhibiting a greater metabolic window than 136 

previously predicted [52], suggesting a core community for specific functionality. Such an active 137 

community was found in permafrost-affected cryosols, for atmospheric-methane-oxidising bacteria [37].  138 

Climate change 139 

Climate change is expected to induce a loss of SOC by increasing soil respiration rates [55,59], which will 140 

ultimately exacerbate the greenhouse effect [60]. Recent evidence indicates that warming is 141 

accelerating the activity of soil microorganisms at the global scale, with the subsequent increase in CO2 142 

release from soil to atmosphere [61]. As soil respiration is mainly performed by heterotrophic soil 143 

microorganisms [55], understanding the structure and function of the microbial community is vital to 144 

comprehend responses to climate change. Changes in the phylogenetic composition of the microbial 145 

community and in its functional potential and activity were shown to represent different states of thaw 146 

in soils [53]. In contrast, warming resulted only in subtle differences at the phylum and class levels of the 147 

community whereas functionality increased, particularly energy production and conversion [39]. 148 

Similarly, the structure and diversity of the total bacterial community were unaffected by drought even 149 

though microbial biomass and ecosystem multifunctionality decreased, in a semi-arid ecosystem [15]. In 150 

fact, climate was reported to be a fundamental driver of the protein abundance of various phyla in a 151 

wide range of soils from different continents [25]. 152 
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Soil fertility and agriculture 153 

Agricultural productivity does not depend only on the physical and chemical quality of soil (e.g., texture, 154 

density, nutrients and water availability, etc.) or the absence of plant pathogens. The soil microbial 155 

community plays a critical role in agricultural productivity through its cycling of nutrients, making them 156 

available for plant growth. Indeed, the soil microbial diversity is fundamental to the maintenance of soil 157 

productivity and the resulting economic benefits [62]. Soil metaproteomics could help to dig deeper into 158 

the functions and role of microbial populations in plant-soil interactions in an agricultural context. In this 159 

sense, crop yields and the optimal growth conditions have been evaluated through metaproteomic 160 

approaches. For instance, the mere presence of plants influences the metaproteome and soil bacterial 161 

functions [63]. Further, a yield decline of crops (i.e., sugarcane) was shown to be related to the soil 162 

metaproteome, as well as to enzyme activities and the catabolic diversity of the microbial community 163 

[38]. Moreover, changes in microbial abundance in the rhizosphere have been related to the protection 164 

of tomato plants from wilt disease, presumably by beneficial microbial proteins in healthy soil [64], and 165 

to ecological and functional adaptations to varying water management in semi-arid ecosystems [41].  166 

The bottlenecks of soil metaproteomics 167 

Protein extraction, sample processing and measurement 168 

Protein extraction from soil is time-consuming as it comprises protein extraction (2 days) followed by gel 169 

electrophoresis (1 day), tryptic digestion for at least 16 hours or overnight and desalting (2 days) (Figure 170 

1). The commonly-used extractants are sodium dodecyl sulphate and trichloroacetic acid (SDS-TCA) [50] 171 

and SDS-phenol [65]. The extracted proteins are then analysed by 2D-SDS-PAGE gel electrophoresis for 172 

imaging and MALDI-TOF analysis [66] or, more commonly, by 1D-SDS-PAGE for LC-MS/MS analysis. The 173 

1D approach comprises tryptic digestion of the proteins in-solution or in-gel, desalting via ZipTip 174 

columns or SCX spin columns, measurement with a coupled system of liquid chromatography and 175 

tandem mass spectrometry (LC-MS/MS), database searches with Proteome Discoverer (using Mascot or 176 

Sequest as the algorithm) against every known protein-coding sequence or a metagenome, the use of 177 

Percolator to calculate false discovery rates (FDR) [67], phylogenetic and functional assignment of 178 

protein groups with the “Proteomics results Pruning & Homology group Annotation engine” 179 

(PROPHANE) [68], calculation of protein abundances - as either the normalised spectral abundance 180 

factor (NSAF) [69] or the area under the curve (AUC) - and, finally, data upload to ProteomeXchange via 181 

PRIDE [70] (Please refer to the reviews by Muth and colleagues [71], and Heyer and colleagues [72] for 182 

further details on the bioinformatic data analysis of metaproteomes). However, slight differences in the 183 
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extraction method, sample preparation, instrumentation and data analysis were found among soil 184 

metaproteomic studies. Each of these steps has been optimised but requires further validation to obtain 185 

high-quality proteomics data. However, among these steps, protein extraction and data analysis (see 186 

next section) can influence the outcome the most.  187 

The extraction of extracellular proteins remains a challenge due to their physicochemical interactions 188 

with SOM and soil mineral particles [33], which were reported to lower the extraction efficiencies and 189 

final peptide yields [46,73]. For example, an increasing content of montmorillonite, an expansible 2:1 190 

clay, in soil was found to decrease the amount of extracted proteins and to hinder protein identification, 191 

likely due to conformational changes or degradation [74]. In addition to the interaction with clay, it was 192 

demonstrated that the contact between proteins and soil-borne humic substances, potentially due to 193 

hydrophobic interactions, led to protein modifications that affected the identification by MS; this was 194 

especially prominent in proteins of lower molecular weight and of less-complex structure [75]. 195 

Previously hypothesised were hydrophobic interactions caused by dehydration, which could destabilise 196 

and partially disassemble humic substances in contact with the proteins [76] or supramolecular 197 

aggregation of low molecular weight organic molecules held together by weak molecular surface forces 198 

[77]. However, it remains unknown which modifications specifically lead to lower identification rates. 199 

The relationship between the concentration of SOC or microbial biomass (both as S) and the number of 200 

identified peptides (v) using equation 1 as previously described [78] are illustrated in Figure 2, with Vmax 201 

as the maximum number of identified peptides and Km the concentration of SOC or microbial biomass at 202 

which half of the maximum number of peptides are identified. 203 

Eq. 1: 𝑣 = 𝑉𝑚𝑚𝑚[𝑆]
𝐾𝑚+[𝑆] 204 

These results were obtained from a gradient of semi-arid soils that covered a range of SOC 205 

concentrations. The SOC concentration has a negative impact on the number of spectra and, 206 

consequently, on the number of identified peptides (Figure 2a). The relationship between the SOC 207 

concentration and the number of identified peptides reveals a plateau of extracted proteins at a 208 

breaking point of 1.5% SOC, despite the greater microbial biomass in soils richer in SOC that should 209 

logically lead to higher protein content. In fact, the efficiency of protein extraction is lowered not only 210 

by increasing SOC but also by increasing microbial biomass content (Figure 2b). The number of peptide 211 

identifications stagnated when the microbial biomass reached a breaking point of 16.8 nmol fatty acids 212 

per gram of soil, which follows previously-reported shielding from disruption treatments at high cell 213 

densities, due to aggregation [79]. Hence, (i) more-efficient cell lysis techniques and (ii) more-efficient 214 

protein extraction techniques must be investigated to assure the quality and quantity of proteomics 215 
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data. Further, the extraction techniques and buffers commonly used for the measurement of 216 

extracellular enzyme activities were shown to have low extraction efficiencies, which points to strong 217 

adsorption of proteins on humic substances and clays [80]. In addition, a definitive quantification of the 218 

extracted proteins was still lacking in many studies [46,80] as the scientific community has commonly 219 

relied on colorimetric methods - for instance, the Bradford assay - that are biased by the interference of 220 

humic compounds [81,82]. However, correct quantification is crucial, to evaluate both the efficiency of 221 

protein extraction and the full contribution of the protein repertoire to soil ecosystem services. In this 222 

regard, the quantification of the amino acids from the extracted proteins [46] or the amido black assay 223 

[83] could provide the most-straightforward approaches to estimating the amount of extracted proteins. 224 

Otherwise, total ion chromatogram counts from liquid chromatography could be used but accurate 225 

quantification requires internal standards and calibration for each protein of interest. However, the 226 

intensity cannot be directly related to abundance due to differences in ionisation efficiencies between 227 

peptides and discrepancies between ionisation and detection since only one out of every 100 to 10,000 228 

analyte ions generated is detected [84–86]. 229 

Data analysis and functional assignments 230 

The backbone of proteomic analysis is the database, as the measured peptides from the sample are 231 

matched, using data analysis programs such as MASCOT [87,88] or SEQUEST [89], with the database 232 

sequences. Hence, knowledge of what is in the sample is as important as the quantity and quality of the 233 

proteins within the database. Unsurprisingly, since most organisms in soil are unknown [5,6], the 234 

database searches usually involve the utilisation of all known protein sequences - which comprise 235 

79,565,724 TrEMBL and 335,933 Swiss-Prot entries for bacteria, 8,114,426 TrEMBL and 33,876 Swiss-236 

Prot entries for fungi, 3,591,467 TrEMBL and 20,986 Swiss-Prot entries for archaea and 629,133 TrEMBL 237 

and 4,636 Swiss-Prot entries for nematodes. These are weighted in favor of intensively-investigated 238 

organisms such as the bacterial E. coli K12 (4,497), the fungal S. cerevisiae (6,729) or the nematode C. 239 

elegans (26,846) (Uniprot as of July 7th, 2018 [90]). Instead of using all known sequences, one could 240 

provide a database by using shotgun sequencing of DNA [91,92], which is both costly and time-241 

consuming and requires additional programs and knowledge. A possible solution could be to make 242 

sequences publicly available as a community effort like the Human Genome Project [93], which has 243 

already been started for proteomic datasets with PRIDE [70,94–98] but, hereafter, soil studies focusing 244 

on all clades of the ecosystem should be emphasised.  245 

Recent studies have focused on the community composition to assess ecosystem functioning but lack 246 

direct functional classification even though the peptides identified with MS were assigned to proteins 247 
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with both taxonomic and functional information. Further, in complex communities containing thousands 248 

of different species per gram of soil [7], not many proteins will be assigned to individual species of the 249 

community as one measurement generally yields a few thousand proteins. Moreover, these microbial 250 

communities are not homogenous, generally having a few highly-abundant species and many species of 251 

low abundance. Worse still, proteins with ubiquitous functions such as ATP synthases or chaperones - 252 

which every cell contains, regardless of its type - are more abundant than specialised enzymes such as 253 

benzoyl-CoA reductases and the many proteins whose functions are still unknown. These functional 254 

proteins are generally less abundant than “housekeeping” proteins (e.g., proteins involved in the Krebs 255 

cycle, cellular respiration, lipid metabolism, DNA replication, etc.), which makes them hard to detect 256 

among the most-abundant proteins. Hence, while the taxonomic affiliation generates profound data on 257 

what is there, the functional information is biased by ubiquitous enzymes and, depending on the degree 258 

of heterogeneity, by specialised enzymes of the most-abundant organisms. Furthermore, the 259 

identification of extracellular soil enzymes (i.e., glucosidases, phosphatases, cellulases, etc.), which are 260 

deeply involved in nutrient cycles [32], is hampered by the inefficient extraction of the extracellular 261 

metaproteome of soil because proteins are frequently linked to humic substances or clays [80]; hence, 262 

the genomic database is still poor in this respect. To circumvent these issues and directly assess 263 

functionality, targeted approaches, instead of the commonly-used untargeted approaches [99,100], 264 

have to be considered; this implies the selection of specific proteins for the measurements, by targeting 265 

the masses of peptides from proteins. Briefly, to achieve consistent quantification of sets of proteins 266 

across a variety of different samples and replicates, targeted MS - such as selected reaction monitoring 267 

[101,102] - could provide specific assays for the detection and quantification of proteins over the whole 268 

range of cellular concentrations [103]. 269 

Stable isotope probing (SIP) of proteins 270 

Metaproteomics can provide information on both phylogeny and functionality [36] in microbial ecology 271 

studies [30], but only the use of SIP can directly link microbial populations within the whole community 272 

to a specific function [104]. Possible labelling targets in proteins are C, hydrogen, N, oxygen and sulphur 273 

[105]. All of which can be now analysed by the tool MetaProSIP [106] that uses the identification of the 274 

peptide on MS2-level together with detecting and describing the incorporation pattern on MS1-level by 275 

relative isotope abundance (RIA) and labelling ratio (LR). Of these, C is the one used most frequently in 276 

environmental SIP studies [107,108] due to its high abundance in amino acids and since it is a main 277 

component of the bacterial biomass [109]. Otherwise, hydrogen has the second-highest abundance in 278 

proteins, but its use is limited by the rapid HD-exchange [110] which will occur in living cells and during 279 
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sample preparation. In addition, the toxicity of highly-deuterated water has been described for 280 

eukaryotes; in particular, cell division is hampered during the formation of the mitotic spindle [111]. By 281 

contrast, prokaryotes were reported to grow in artificial conditions with a high deuterium content [112], 282 

up to 98% D2O [113]. However, the chromatographic properties of deuterated compounds - originating 283 

from the higher hydrophilicity of CD bonds, compared to CH bonds [114] - result in significantly-different 284 

retention times [115]. Nitrogen, on the other hand, has a lower abundance in amino acids, resulting in 285 

smaller mass shifts and reduced sensitivity [116]. Oxygen has not been used in protein-SIP experiments, 286 

perhaps because of the hampering of direct incorporation from the substrate into biomass due to the 287 

exchange of 18-oxygen for 16-oxygen water through enzymatic reactions [117]. Lastly, sulphur is only 288 

present in cysteine and methionine, which is beneficial for the tracking of general metabolic activity 289 

[118] but, due to the low amount of sulphur in proteins, according to the average model, the utilisation 290 

of labelled sulphur in protein-SIP appears inauspicious. As of now, the only reported isotopic labelling of 291 

soils has been done with 15-nitrogen, using labelled plant material (tobacco) to investigate its 292 

assimilation by the soil microbial community, through protein-SIP [42]. In this study, between 11 and 26 293 

labelled peptides were identified per time point over the course of 14 days; this showed that bacteria 294 

dominated the short-term assimilation of plant N. However, if one relates this number of labelled 295 

peptides to the existence of 10,000,000 organisms per gram of soil [8], then the validity of the data and 296 

their value regarding the determination of ecosystem functioning are challenged. Metabolic labelling of 297 

energy or nutrient sources leads to dynamic and unpredictable mass shifts [109] and, hence, small 298 

amounts of label indicate a low number of active key players within the microbial community with 299 

respect to specific substrates such as N. This is further complicated by the fact that microbial biomass, 300 

even though its derived products significantly contribute to SOM [12–14], typically accounts for only 1% 301 

of SOC [10,11] and many of its species are thought to be dormant [16,31,119,120]. To achieve higher 302 

labelling efficiency, the utilisation of heavy water, labelled with either deuterium or 18-oxygen, is 303 

promising as it assesses the global activity regardless of the specific substrate. It was successfully 304 

demonstrated in acid-mine-drainage biofilms using D2O [121] and in soil communities using H2
18O in 305 

DNA [122–124] and RNA [125,126]. In fact, SIP of fully-18-oxygen-labelled water in RNA was used 306 

recently to elucidate that 94% of soil taxa produced new rRNA and therefore were metabolically active 307 

[127] - which is the opposite of the common-acceptedly state of high dormancy of soil microbes. 308 

However, this approach has yet to be demonstrated for proteins and in soils. In particular, 18-oxygen 309 

seems more promising than deuterium as (i) the abiotic HD-exchange of acidic hydrogens once the 310 

proteins are in contact with unlabelled water [110] could cause depletion of the label and (ii) the cell 311 
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division of eukaryotes is hampered due to the negative effect of deuterium on the mitotic spindle 312 

formation [111], even though it has been reported that bacteria survive in 98% D2O [113]. Hence, 313 

deuterated water could negatively impact the activity of eukaryotes such as fungi and nematodes, which 314 

would falsely indicate high bacterial activity. 315 

Research questions to be answered by soil metaproteomics 316 

To date, the knowledge derived from soil metaproteomics has been rather descriptive, mainly providing 317 

information on the community composition and cellular functional attributes. However, the advent of 318 

new ecological concepts in the field of soil metaproteomics [128] will provide a functional basis for the 319 

development of microbial-ecological theories in soil science. In this respect, we propose several 320 

fundamental research questions that could be investigated with the use of metaproteomics (of course, 321 

in combination with classical and other OMIC approaches in soil science). For instance, how do land use 322 

and associated changes in soil nutrients determine the protein repertoire and its functional repercussion 323 

within soil ecosystem services? Further, environments with higher phylogenetic diversity are supposed 324 

to be more resilient/resistant against harmful stressors such as drought [15–21,129]. Hence, does the 325 

diversity of proteins reflect the resilience/resistance of a soil microbial community? This would be critical 326 

with respect to gaining a mechanistic understanding how microbial communities can resist climate 327 

change factors such as global warming or aridity. If so, can we predict “functional markers” of climate-328 

change resistance in the soil microbial community? Finally, it has been shown recently how microbes 329 

interact with each other at the global scale [130] and how climate can affect not only soil microbial 330 

communities but also the co-occurrence networks [131]. Consequently, is metaproteomics able to 331 

provide functional insights into these interactions? While proteomics has proven to be powerful, with 332 

advantages over other culture-independent OMIC tools and culture-dependent techniques, the 333 

bottlenecks must be reviewed and actively targeted to sustain high-quality research using proteins from 334 

environmental samples. In fact, better integration of techniques and research groups can guide the 335 

scientific community to a more-comprehensive understanding of soil ecosystem services since the data 336 

are complementary and not exclusive. Besides, more effort must be made to improve methods of 337 

protein extraction from soil as well as the identification of low-abundance proteins with functional 338 

importance. In conclusion, despite the current limitations, soil metaproteomics has rapidly developed 339 

since 2007 [132] and there is room for terrific improvements in the near future. Soil metaproteomics is 340 

contributing to our understanding of fundamental and global aspects of soil microbial ecology (and will 341 

continue to do so), which will ultimately help us to understand the role of microbes in ecosystem 342 
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services in the light of the land-use intensification and global changes forecasted for the coming 343 

decades.  344 
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Figures 759 

760 
Figure 1: The workflow of metaproteomics (blue) and protein stable isotope probing (orange) of soil samples. 761 

Proteins are commonly extracted with sodium dodecyl sulphate (SDS) [65] or SDS-phenol [50], before in-solution 762 

[133] or in-gel [134] tryptic digestion; sulphur bonds of proteins (S-S) are reduced with dithiothreitol (DTT) and 763 

alkylated (shown as -AA) with iodoacetamide (IAA) [135].  Tryptic peptides are desalted using strong cation 764 

exchange (SCX) columns [136,137] or ZipTip® pipette tips prior to mass spectrometric measurement (LC-MS2). MS2 765 

is used to identify the sequence of the peptide for database matching, with MASCOT [87,88] or SEQUEST [89] as 766 

the search algorithm. MS1 is used for quantification as the normalised spectral abundance factor (NSAF) [69] and 767 

stable isotope probing yields the relative isotope abundance (RIA) and labelling ratio (LR), estimated by 768 

MetaProSIP [106]. Taxonomy and function are assigned via PROPHANE [68]. The raw data are finally uploaded to 769 

ProteomeXchange via PRIDE [70]. 770 
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771 
Figure 2: The relationship between soil organic carbon and the number of peptides. Vmax was 6791.558±404.841 772 

(P<2e-16) and Km was 0.496±0.201 (P=0.016) (a). The breaking point was at a Km of 1.48695, with 95% confidence 773 

intervals of 0.647 and 3.044. The relationship between microbial biomass and the number of peptides showed a 774 

Vmax of 8620.149±1122.251 (P=2.1e-10) and a Km of 5.609±2.372 (P=0.0214) (b). The breaking point was at a Km of 775 

16.827, with 95% confidence intervals of 7.087 and 37.799. The data were obtained from a gradient of semi-arid 776 

soils that covered a range of soil organic carbon concentration and microbial biomass estimated through the 777 

phospholipid fatty acids (PLFAs) content [48]. 778 
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