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Abstract 19 

Identification of hazardous compounds, as the first step of water protection and regulation, is 20 

still challenged by the difficulty to establish a linkage between toxic effects and suspected 21 

contaminants. Genotoxic compounds are one type of highly relevant toxicants in surface 22 

water, which may attack the DNA and lead to cancer in individual organism, or even damaged 23 

germ cells to be passed on to future generations. Thus, the establishment of a linkage between 24 

genotoxic effects and genotoxicant is important for environmental toxicologists and chemists. 25 

For this purpose, in the present study in silico methods were integrated with bioassays, 26 

chemical analysis and literature information to identify genotoxicants in surface water. Large 27 

volume water samples from 22 sampling sites of the Danube were collected and subjected to 28 

biological and chemical analysis. Samples from the most toxic sites (JDS32, JDS44 and 29 

JDS63) induced significant genotoxic effects in the micronucleus assay, and two of them 30 

caused mutagenicity in the Ames fluctuation assay. Chemical analysis showed that 68 31 

chemicals were detected in these most toxic samples. Literature findings and in silico 32 

techniques using the OECD QSAR Toolbox and the ChemProp software package revealed 33 

genotoxic potentials for 29 compounds out of 68 targeted chemicals. To confirm the 34 

integrative technical data, the micronucleus assay and the Ames fluctuation assay were 35 

applied with artificial mixtures of those compounds and the raw water sample extracts. The 36 

results showed that 18 chemicals explained 48.5% of the genotoxicity in the micronucleus 37 

assay. This study highlights the capability of in silico techniques in linking adverse biological 38 

effect to suspicious hazardous compounds for the identification of toxicity drivers, and 39 

demonstrates the genotoxic potential of pollutants in the Danube. 40 

Key words: genotoxicity; in silico techniques; Ames fluctuation assay; micronucleus assay; 41 

genotoxicants identification 42 

  43 
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Highlights: 44 

• Bioassays of Ames fluctuation and micronucleus cover essential genotoxic endpoints 45 

• In silico techniques reduced complexity of aquatic mixture with low workload 46 

• An artificial mixture explained 48.5% of genotoxicity in the micronucleus assay 47 

  48 
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1. Introduction 49 

As required in the European Water Framework Directive (WFD), all water bodies (rivers, 50 

lakes, transitional waters, and coastal waters) must achieve ‘good water status’(EC 2000). To 51 

identify the hazardous compounds which are increasing the threat of pollution, environmental 52 

toxicologists and chemists developed panels of techniques for priority chemical analysis and 53 

monitoring (Rubirola et al. 2017, Zheng et al. 2015). However, due to the complexity of 54 

aquatic systems, identification chemicals that are causative of adverse effects is still a great 55 

challenge in ecological status evaluation programs. (Brack et al. 2016, Neale et al. 2015). 56 

Thus, the linkages between toxic effects and suspected hazardous compounds are still a major 57 

challenge for capturing main threats to aquatic environments (Neale et al. 2015).  58 

Genotoxic compounds, as one type of highly relevant toxicants in environments, can directly 59 

or indirectly affect the DNA by inducing gene mutations and/or mutagenic potential, and by 60 

changing chromosome structures and numbers (Fenech 1993). Moreover, numerous 61 

anthropogenic chemicals in aquatic systems had already been proven to cause genetic 62 

damages in aquatic organisms (Brinkmann et al. 2014b, Kosmehl et al. 2007, Kosmehl et al. 63 

2004), which have similar effects on humans (Fenech 1993, Poser et al. 2004). Therefore, 64 

linking genotoxic effects and key genotoxic drivers is important for water quality monitoring 65 

programs. The reiterative fractionation combined with effect assessment and target/non-target 66 

analyses in effect-directed analysis (EDA) could aid characterization and identification of  the 67 

potential key genotoxic drivers in surface water (Muz et al. 2017). EDA has to rely on 68 

advanced analytic instruments, complex analysis process, high sample consumption and  69 

high-resolution chemical analysis methods (Brack et al. 2016), which lead to a costly and 70 

laborious effort for identification of chemicals of concern. Consequently, the aim of the 71 

current study was to link genotoxic effects and genotoxicants by integrating bioassays, 72 

chemical analysis and in silico techniques with low workload. 73 
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 In this study, a large volume solid phase extraction (LVSPE) was conducted to collect and 74 

extract the Danube surface water samples from 22 sites (Schulze et al. 2017). To evaluate the 75 

comprehensive and realistic toxicity of water pollution, zebrafish that have been used as 76 

sentinels for the quality of waters (Hill et al. 2005, ISO 2013, Rocha et al. 2011) were 77 

employed to screen the toxic hotspots of the Danube. Next, the Ames fluctuation assay using 78 

the strain TA98 and the micronucleus assay were carried out to investigate the genotoxic 79 

effects of the identified hotspot samples (Bekaert et al. 1999, Le Curieux et al. 1995, Li et al. 80 

2012, Reifferscheid et al. 2012). These two measurements characterize the chromosomal 81 

damage in mitogen-stimulated cells, and gene mutations that lead to a frameshift, respectively 82 

(Kirkland et al. 2011, Reifferscheid et al. 2008). Chemical analysis in our previous study 83 

reported the occurrence and concertation of 264 chemicals in the Danube (Neale et al. 2015). 84 

In consideration of the high workflow required to comprehensively analyze genotoxicity of all 85 

detected substances, in silico toxicology prediction approaches and previous literature data 86 

were used to link genotoxic effects with the identified chemicals. The OECD quantitative 87 

structure activity relationships (QSAR) Toolbox is commissioned to identify relevant 88 

structural characteristics and potential mechanisms or modes of actions (Weichenthal et al. 89 

2010) of the target chemical (OECD, 2015), which is mainly developed from mechanistic 90 

knowledge to model the genotoxicity of frameshift in Salmonella typhimurium. However, this 91 

software can only be developed from chemicals known to be excess-toxic or from 92 

theoretically known mechanisms. The ChemProp software package is developed based on 93 

environmentally relevant physical-chemical compound properties/partitioning properties, pure 94 

compound descriptors and properties, and even degradation (UFZ Department of Ecological 95 

Chemistry, 2016). It offers fully automated read-across based on atom-centered fragments 96 

(ACF), and it is suggested recently for the predictive identification of excess-toxic compounds 97 

and the absence of excess toxicity (Kühne et al. 2013, Schramm et al. 2011). These two 98 

software tools are widely used to predict the toxicity of environmental chemicals (Brinkmann 99 
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et al. 2014c, Svetnik et al. 2003), and also as toxicological screening considering mechanistic 100 

targets which are active at cellular pathways (Xiao et al. 2016). Thus, the QSAR toolbox and 101 

ChemProp were employed to establish linkages between genotoxic effects and relevant 102 

chemicals in the Danube. Finally, to confirm the contribution of suspected genotoxic 103 

compounds, artificial mixtures of those compounds were tested in the micronucleus assay and 104 

the Ames fluctuation assay. By comparing the effects of the artificial mixtures and the 105 

corresponding raw extracts, it was possible to determine contribution of the genotoxicants to 106 

the genotoxic effects in surface water samples.  107 

The in silico techniques used in the current study provided the possibility to establish a target 108 

analysis for aquatic samples, which reduced the complexity of aquatic mixture with low 109 

workload. The combined approach presented here can serve as part of an integrated strategy 110 

to identify legacy and emerging pollutants, and thus can be useful for water quality 111 

monitoring and assessment within implementation of the EU Water Framework Directive 112 

(WFD) (Di Paolo et al. 2016). 113 

2. Materials and method 114 

2.1 Sampling 115 

Sampling was performed across the Danube and selected tributaries in 2013 (Liška et al. 116 

2015). Twenty-two surface water samples were collected using LVSPE (Neale et al. 2015, 117 

Schulze et al. 2017). Briefly, up to 1000 L of water were passed through a stainless steel 118 

chamber containing neutral sorbent Chromabond® HR-X, anionic exchanger Chromabond® 119 

HR-XAW and cationic exchanger Chromabond® HR-XCW (Macherey-Nagel, Düren, 120 

Germany) after removing suspended particulate matter with a GF+ Sartopure deep filter (pore 121 

size: 0.63 µm; Sartorius). Afterwards, freeze-dried sorbents were extracted using mixtures of 122 

ethyl acetate, methanol (neutral sorbent), methanol with 2% of 7N ammonia in methanol 123 

(Supelco; weak anionic exchanger) and methanol with 1% formic acid (Merck; weak cationic 124 
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exchanger). The extracts were combined, filtered and concentrated to dryness via rotary and 125 

nitrogen evaporation prior to shipping, then re-suspended in DMSO or methanol (Neale et al. 126 

2015). 127 

2.2 Mixture preparation 128 

Mixtures of predicted genotoxic compounds were prepared for confirmation of the effects in 129 

the micronucleus assay and Ames fluctuation assay. The genotoxic candidates 1H-130 

benzotriazole (≥ 99.0 %)，2-(methylthio)benzothiazole (97%), 2,4-dinitrophenol (≥ 98.0%), 131 

4- and 5-methyl-1h-benzotriazol (98%), acesulfame (≥ 99.0%), atrazine (≥ 99.0%), 132 

carbamazepine (≥ 99.0%), chloridazon, cyclamate, daidzein (≥ 98.0%), N,N-Diethyl-m-133 

toluamide (DEET, 97%), isoproturon, metolachlor, n-acetyl-4-aminoantipyrine (≥ 98.5%), N-134 

formyl-4-aminoantipyrine, sulfamethoxazole, terbuthylazine (≥ 98.0%), 4-formyl-antipyrine 135 

(97%), trimethoprim (≥ 98.0%), diazinon and diclofenac (≥ 98.5%) were purchased from 136 

Sigma-Aldrich (Germany). All agents were used as supplied, and dissolved in HPLC-grade 137 

dimethylsulfoxide (DMSO) as 20 g/L stock solutions.  The final three mixtures for spiking 138 

contained the 400- and 1000-fold enrichment level based on the analytically determined 139 

values and ratios of the single compounds (Neale et al. 2015).  140 

2.3 Fish embryo toxicity test with the zebrafish (Danio rerio) (zFET) 141 

In the present study, zFET was carried out according to the OECD Test Guideline 236: Fish 142 

Embryo Acute Toxicity Test (OECD, 2013), with slight modifications. To decrease sample 143 

consumption, 96-well plates (Greiner Bio-One, Frickenhausen, Germany) were used with 144 

respective test solutions in volume of 200 μl per well. Fertilization of freshly collected eggs 145 

was evaluated using a stereomicroscope, and tests were only conducted if the fertilization rate 146 

for a batch of eggs was at least 90%. In order to achieve the earliest possible exposure, 147 

fertilized eggs were immediately transferred to dishes containing Danube water extracts at the 148 
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range of a relative enrichment factor (REF, as detailed in (Escher and Leusch 2011)) from 149 

62.5 to 1000 (1:2). Zebrafish eggs were placed in the test solutions within 2 h postfertilization 150 

(hpf, corresponding to 16–64 cell stage). For each concentration, 10 zebrafish embryos were 151 

transferred individually from dishes to the 96-well plate. Test plates were covered with 152 

transparent self-adhesive sealing film (Greiner Bio-One, USA) and were incubated at 26 ± 153 

1 °C for 48 h. Thereafter, mortality according to the criteria defined in the OECD guideline 154 

was recorded using an inverse microscope. 3,4-dichloroaniline at 3.7 mg/L was used as the 155 

reference. The data was expressed in units of REF causing 50% mortality (LC50). 156 

2.4 Genotoxicity assays  157 

Micronucleus assay and Ames fluctuation tests were used as mechanism-specific assays to 158 

analyze the genotoxic response to JDS3 samples. 159 

Micronucleus assay: The micronucleus assay protocols for cell culture and the micronucleus 160 

assay with rainbow-trout liver (RTL-W1) cells were based on the method described by Rocha 161 

et al. (2009). Cells were cultured at 20 °C in Leibovitz’s L15 medium with L-glutamine 162 

(Sigma–Aldrich) containing 9% fetal bovine serum (FBS, Biochrom, Berlin, Germany) and 1% 163 

(v/v) penicillin/streptomycin solution (Biochrom) (Klee et al. 2004).   A volume of 2 mL of 164 

the cell suspension at a density of 5–6×104 cells/ml was cultured for 24 h before treatment. 165 

After 24 h, the cells were exposed to Danube water sample (at the REF of 400, 200, 100, 50, 166 

25) for 20 h and followed by replacement with fresh media (incubation: 72 h). Finally, cells 167 

were stained using acridine orange to detect the presence of micronuclei. A total number of 168 

2000 RTL-W1 cells of each concentration were randomly selected and analyzed for 169 

micronucleus formation, as an indicator of aneugenic and clastogenic genotoxicity. The 170 

frequency of micronuclei in RTL-W1 cells was assessed for the identified hotspots. The 171 

micronucleus frequency is given as induction factors (IF) relative to the negative controls 172 

(Brinkmann et al. 2014a). 173 
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Ames fluctuation assay: The Ames fluctuation assay was based on the method described by 174 

Maron and Ames, and Reifferscheid et al. (Maron and Ames 1983, Reifferscheid et al. 2005). 175 

The mutagenic activity was determined using the His-deficient strain TA 98 of the 176 

bacterium Salmonella typhimurium. To evaluate toxicity under metabolic activity, a liver 177 

homogenate S9-fraction from phenobarbital/β-naphthoflavon treated rats (protein 178 

concentration 30.5 mg/ml S9 mix) was added to a buffered co-factor mixture to a parallel 179 

setup of each experiment. Bacteria were exposed to the extracted samples at REF 62.5 to 1000 180 

and 1000 fold environmental concentration mixture (1:2) in 24-well microtiter plates. After 181 

shaking (150 rpm) for 100 min at 37 °C, the content of the 24-well plates were transferred 182 

into 384-well plates with 48 wells per replicate (controls and sample dilutions), and an 183 

indicator medium for bacterial growth was added. Plates were then incubated for 48 h at 37°C.  184 

Since only reverted bacteria can survive in a histidine deficiency solution, the acidification is 185 

an indicator of the reverse mutation of bacteria. Such an acidification is indicated by a change 186 

in color of the pH indicator bromocresol purple. The mutagenicity of the tested sample was 187 

determined by manual counting of the number of wells that shifted from purple to yellow. 188 

2.5 Prediction of genotoxic compounds  189 

To link the biological genotoxic responses to the relevant genotoxic compounds, software 190 

modeling was carried out for the chemicals detected at the hotspots. The detected chemicals 191 

were inquired from previous studies (Neale et al. 2015, Schulze et al. 2017). To probe the 192 

highest priority compounds with genotoxic potential in the Danube, the in vitro mutagenicity 193 

(Ames test) alerts with the of OECD QSAR Toolbox software package (OECD, 2015) were 194 

deployed. This QSAR Toolbox (In vitro mutagenicity (Ames test) by ISS) is based on the 195 

mutagenicity/carcinogenicity module of the Toxtree software. It works as a decision tree for 196 

estimating in vitro (Ames test) mutagenicity, based on a list of 30 structural alerts. The 197 

structural alerts for mutagenicity are molecular functional groups or substructures known to 198 
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be linked to the mutagenic activity of chemicals. As one or more structural alerts embedded in 199 

a molecular structure are recognized, the system flags the potential mutagenicity of the 200 

chemical. The ACF-based read-across in ChemProp estimated the mutagenicity with regard to 201 

the Ames test and the chemical domain in ChemProp were employed to predict toxic 202 

compounds due to chemical similarity in the context of structure-activity relationships (Kühne 203 

et al. 2007, Schwöbel et al. 2009). The ChemProp is based on 2D structures including an 204 

automated substructure search, and is accomplished by tools to characterize the applicability 205 

domain in terms of property and chemical space, and to provide uncertainty estimations. 206 

Structural input of each chemical was achieved by SMILES strings. There are modules to edit 207 

and visualize molecule compilation, for automated classification according to compound 208 

classes, and for structure related database searching. The results of prediction were presented 209 

as genotoxic chemical groups in QSAR toolbox and numbers in ChemProp. The ChemProp 210 

read-across indicated if a compound is active (1) or inactive (0), and the ChemProp chemical 211 

domain gave advice if the result of read-across is reliable (3 or 2), to be used with causion (1) 212 

or simply the QSAR does not predict correctly (0 = out of domain) (Kühne et al. 2009). 213 

2.6 Statistical analysis 214 

All spreadsheet calculations were performed using Microsoft Excel™ 2007, Sigma Plot 12.0 215 

(Systat Software Inc., San Jose, CA), Origin Pro 8.5.1(Origin Lab Corporation) and the 216 

software Prism 6.0 (GraphPad Software Inc., San Diego, USA). All datasets of different 217 

treatments were tested for statistically significant differences using one-way analysis of 218 

variance (Prášková et al. 2011). Dunnett’s test was used to identify significant differences 219 

between treatments and controls (p ˂ 0.05).  220 

3. Results and Discussion 221 

3.1 Screening toxic hotspots with zFET  222 
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To screen the toxic hotspots in the sampling area, zebrafish embryos were exposed to 22 223 

Danube surface water extracts for 48 h to evaluate the comprehensive and realistic toxic 224 

effects. Results (Fig. 1) showed that all 22 extracts were capable of causing mortality with 225 

LC50 values from REF 110.5 ± 23.4 to 460.8 ± 83.4. Two extracts (JDS32 and JDS63) 226 

showed strong embryo-toxic effects, with LC50 values at REF 110.5 ± 23.4 and 173.4 ± 44.8, 227 

respectively. The major lethal effects were lacking heartbeat and tail not detached. Moreover, 228 

embryo coagulation was found to be the most frequent effect being recorded for higher 229 

concentrations of the Danube samples in the wider range-finding tests in the current study. A 230 

previous zebrafish embryo study also speculated that coagulation was a sensitive parameter in 231 

the zFET test (Hagenaars et al. 2011). Normally, the whole yolk of coagulated embryos is 232 

completely denatured (dark under the microscope). However, for JDS44, coagulation only 233 

appeared at the end of rapidly dividing cells of the yolk (Fig. 2), indicating that embryos 234 

coagulated at the blastula stage, which occurred as soon as exposure to JDS44 was initiated. 235 

These phenomena was also noticed in a water quality assessment study where zebrafish 236 

embryo coagulated within only 12h of exposure (Hallare et al. 2005). Based on these findings 237 

and the evaluation of the results, JDS32, JDS44 and JDS63 were considered as most toxic 238 

sites in the current study. 239 

3.2 Genotoxicity of Danube surface water samples 240 

Samples from three identified toxic hotspots were subjected to the micronucleus assay with 4-241 

nitroquinoline-N-oxide (NQO) as a reference for genotoxicity in three independent replicates 242 

(Fig. 3). The induction of micronuclei in RTL-W1 cells increased with increasing of NQO 243 

concentrations, finally reaching a maximum induction factor (IF) of 8.0. All three toxic 244 

hotspots (JDS32, JDS44 and JDS63) caused significant induction of micronuclei, and showed 245 

a strong increase of the IF with increasing concentrations, nearly reaching that of the 246 

reference. The order of IFs was JDS32 (IF = 7.67) > JDS44 (IF = 7.55) > JDS63 (IF = 7.11).  247 
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Boettcher et al. reported the micronuclei frequency in RTL-W1 cells for Danube upstream 248 

extracts, where the IF was 5.17 for Rottenacker, 4.5 for Ehingen and 4.0 for Riedlingen, 249 

respectively (Boettcher et al. 2010). This indicates that the genotoxic effects appeared not 250 

only at several single points, but also occurred at both upstream and downstream sites. When 251 

comparing to a previous study of in situ Danube samples, the highest IF for fish blood 252 

samples was around 5.0 at downstream of JDS60 (Deutschmann et al. 2016), which is slightly 253 

lower than that in the current study. In a study of the Serbian part of the Danube, a high 254 

percentage of comet tails was found for haemocytes of freshwater fish mussels (Kolarević et 255 

al. 2013). These phenomena demonstrate that genotoxic compounds really affect fish, and the 256 

predictive ability of the current in vitro assay is necessary. In addition, the LVSPE used in the 257 

current study was capable of sampling genotoxic compounds.  258 

The results from the Ames fluctuation assay on mutagenicity of the three most toxic sites are 259 

shown in Table 2. Two samples (JDS32 and JDS63) presented mutagenic activity with the 260 

strain TA98 with supplementation using the S9 mix, i.e. potential metabolic activation of 261 

genotoxic compounds. An increase in the number of revertants was observed for JDS 32 at 262 

REF 125, 250, 500 and 1000 by means of the S9 mix necessary for expressing the potential 263 

DNA damage, which indicates the presence of pro-mutagens (Fig. 4). With JDS63, the 264 

mutagenicity occurred even without the S9 mix, which shows that JDS63 contains readily 265 

genotoxic compounds. A steady increase in revertant numbers appeared from 7.9 to 27.7 at 266 

REFs from 31.25 to 1000 for JDS63 in the Ames fluctuation assay with TA98 and S9 267 

supplementation (Fig. 4). These results are in agreement with a survey along the causeway of 268 

the Danube Canal in Vienna, where mutagenicity in Salmonella typhimurium TA98 and 269 

YG1024 with metabolic activation were observed (Kataoka et al. 2000). A maximum number 270 

of revertants in the assay with S9 was found at REF 1000 (23.3 for JDS63), which is even 271 

higher than that for upper Danube sediment and suspended particulate matter (SPM) extracts 272 
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(Keiter et al. 2006). However, no mutagenic activity was detected for the sample JDS44 273 

(Table 2).  274 

In summary, the genotoxic results indicate that samples from all three most toxic sites can 275 

cause genotoxicity by chromosomal damage in mitogen-stimulated cells. Additionally, 276 

samples from JDS63 and JDS32 induced frameshift mutations. The latter was only after 277 

metabolic activation through S9 supplementation, indicating the presence of pro-mutagens in 278 

JDS32. 279 

3.3 Linking genotoxic effects and suspected genotoxic compounds 280 

According to our previous reports, 68 out of 270 chemicals were detected at the most toxic 281 

sites JDS32, JDS44 and JDS63 (Neale et al. 2015, Schulze et al. 2017). To analyze the 282 

genotoxic potential of all these 68 detected substances, readouts from the OECD QSAR 283 

Toolbox and the ChemProp software package were integrated with literature data in the 284 

current study. As shown in Table S1, 21 chemicals were predicted to be active in the Ames 285 

test with alerts based on the Bursi dataset from Kazius et al. (2005). However, four of these 286 

(atrazine, desethylatrazine, phenazone, p-nitrophenol) were predicted inactive by ChemProp 287 

with high reliablity (at 3 in the chemical domain). Further,  two (p-nitrophenol, sucralose) of 288 

them gave negative results in previous research (Eichenbaum et al. 2009, Shastry et al. 2012). 289 

Five chemicals (2,4-dinitrophenol (2,4-DNP), carbendazim, diuron, metolachlor, 290 

trimethoprim) were predicted active according to ChemProp, and only three (2,4-DNP, 291 

metolachlor and trimethoprim) were predicted active by both models. Altogether, 19 292 

chemicals (17 by OECD QSAR Toolbox and 5 by ChemProp, three of which predicted active 293 

by both, Fig.5) were predicted as mutagens in the Danube. The two in silico tools predicted 294 

suspected genotoxic compounds differently, since these two software packages have different 295 

focuses. In consideration of the rationality and the logicality of these two methods (Johann et 296 

al. 2016), all these 19 predicted chemicals were included into artificial mixtures the 297 
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subsequent occurrence analysis and bioassay. While not only point mutations as revealed by 298 

the Ames fluctuation assay  and thus predicted by the respective in silico models, genotoxicity 299 

can be also in the form of single- and double-strand breaks, loss of excision repair, cross-300 

linking, alkali-labile sites, and structural and numerical chromosomal aberrations. In previous 301 

studies, different mutagenic and genotoxic effects were reported for these chemicals (Table 3). 302 

e.g., metolachlor was found to induce DNA strand breakage and micronuclei in fish (Polard et 303 

al. 2011), acesulfame induced DNA damage in bone marrow cells of mice (Bandyopadhyay et 304 

al. 2008), and a significant increase in DNA strand breakage was measured in oyster 305 

spermatozoa after exposure to diuron (Akcha et al. 2012). However, ten chemicals 306 

(carbamazepine, chlorotoluron, cyclamate, daidzein, DEET, diazinon, diclofenac, genistein, 307 

metformin, isoproturon) were shown to exhibit different genotoxic effects in previous 308 

literature, but were predicted inactive in the Ames fluctuation assay by the OECD QSAR 309 

toolbox or ChemProp. This demonstrated the limitations of the integration of such in silico 310 

techniques, as long as they cover only specific genotoxic effects, which should be improved 311 

in future.  312 

Therefore, all 29 chemicals (1H-benzotriazole, 2-(methylthio)benzothiazole, 2,4-DNP, 4-and 313 

5-methyl-1H-benzotriazol, 4-formyl-antipyrine, acesulfame, acetyl-Sulfamethoxazole, 314 

atrazine, carbamazepine, carbendazim, chloridazon,  chlorotoluron, cyclamate, daidzein, 315 

DEET, desethylatrazine,  diazinon, diclofenac, diuron, genistein,  gestoden,  isoproturon, 316 

metformin, metolachlor, N-acetyl-4-aminoantipyrine, N-formyl-4-aminoantipyrine, 317 

sulfamethoxazole, terbuthylazine and trimethoprim; 19 by software and 10 by previous 318 

studies, Fig. 5) were selected  to design artificial genotoxic mixtures to elucidate above 319 

predictions.  320 

3.4 Occurrence-related  analysis 321 
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As shown in Table 3, the predicted 29 suspected genotoxic chemicals were detected at sites 322 

JDS32, JDS44 and JDS63 with concentrations ranging from 4.08 to 2046 pM. The most 323 

frequently detected chemicals which were presented at relative high concentrations are 324 

pharmaceuticals and their transformation products (TPs), artificial sweeteners (acesulfame, 325 

cyclamate), and industrial chemicals (1H-benzotriazole), which consequently, are suspected 326 

to be the main cause for the genotoxicity in the Danube. Previous genotoxicity investigations 327 

have already proven that pharmaceuticals, artificial sweeteners and industrial chemicals can 328 

induce various genotoxic effects (Bandyopadhyay et al. 2008, Bolt 2003, Snyder and Green 329 

2001). Eighteen genotoxic candidates were detected at all three hotspots (JDS32, JDS44 and 330 

JDS63) that induced micronuclei in RTL-W1 cells (Fig. 3). This leads to the presumption that 331 

among these chemicals could be main drivers for micronuclei formation in the Danube. 332 

Literature data show that carbamazepine, chloridazon and daidzein can increase micronuclei 333 

formation (Table S1). Moreover, concentration-response studies reported that some of the 334 

detected chemicals can induce genotoxic effects at very low concentrations, such as 335 

metolachlor at 0.01 µg/L (Mai et al. 2012), and 2,4-DNP at 0.05 µg/L (Lee et al. 2003), which 336 

consistently matched the current presumption. In addition, 4-formyl-antipyrine and 337 

trimethoprim may have a capacity to induce mutagenicity with the supplementation of S9, as 338 

they only emerged in JDS32 and JDS63, but not in JDS44. A Salmonella/microsomal 339 

screening study has proven that Trimethoprim produced significant mutagenicity in the TA98 340 

strain with supplementation using an S9 mix  (Rasool et al. 1987). Diazinon and diclofenac 341 

may be culprits for the effects in the TA98-S9 setup, because they merely appeared in JDS63 342 

which showed positive results in the Ames fluctuation assay even without S9 mix. A Daphnia 343 

magna study reported that DNA damage was observed after 48 and 96 h exposure of 344 

diclofenac at concentration of 9.8 µM (Gómez-Oliván et al. 2014). However, the 345 

concentration of diclofenac was only 3.6 pM in the current study, which may not be that 346 

relevant to the mutagenic effects of JDS 63. 347 
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3.5  Mixture genotoxicity of the predicted and analyzed suspect contaminants  348 

In order to verify these hypotheses, three corresponding mixtures (Table 4) for different 349 

experimental setups were subjected to the micronucleus assay and Ames fluctuation assay to 350 

evaluate their genotoxicity. As shown in Fig. 6, a significant increase in micronuclei 351 

frequency was observed for the micronuclei-mix, demonstrating the genotoxicty of those 352 

chemicals. A comparison of the micronuclei frequency for the micronuclei-mix with that for 353 

the raw JDS32 extract (which induced the highest micronuclei frequency, Fig. 3) revealed that 354 

the micronuclei frequency of the artificial mixture can explain 48.5% of the effect of raw 355 

JDS32 extract. This explanation percentage is much higher than that in an EDA study, where 356 

the identified compounds only explained less than 1% of the effect of the raw sample (Muz et 357 

al. 2017). Hence, the combination of bioassays, literature data, and chemical analysis in the 358 

current study seems to have been effective to reveal micronuclei inducers in realistic 359 

environments. However, chemicals outside of the current selection could still have genotoxic 360 

potential, since the frequency of micronuclei in RTL-W1 detected for the micronulei-mix was 361 

lower than that for JDS32, JDS44 and JDS63 at REF 400. Chemical analysis may not be able 362 

to present concentration of all relevant pollutions. Surprisingly, no mutagenic activity was 363 

detected in the +S9-mix and –S9-Mix, while the in silico methods identified 19 potential 364 

mutagens by predicting their activity in the Ames assay, they seem to be less relevant for the 365 

mutagenicity of the raw extracts.  This can be understood as the synergism of mutagenic 366 

effects of typical water contaminants even without components at a significant individual 367 

effect.  368 

4 Conclusions 369 

In the current study, in silico approaches were integrated with bioassays, literature data and 370 

chemical analysis to link genotoxic effects and suspected hazards compounds in surface water. 371 
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Eighteen chemicals (1h-benzotriazole, 2-(methylthio)benzothiazole, 2,4-dinitrophenol, 4- and 372 

5-methyl-1h-benzotriazol, acesulfame,  atrazine, carbamazepine, chloridazon, cyclamate, 373 

daidzein, DEET, isoproturon, metolachlor, n-acetyl-4-aminoantipyrine, n-formyl-4-374 

aminoantipyrine, sulfamethoxazole and terbuthylazine) were identified from three most toxic 375 

sites as potential be genotoxicants in the Danube. These findings can help to establish an 376 

overview of the pressures, measures and expectations for pollution by hazardous substances in 377 

the Danube.  378 

In particular, the bioassay results for the artificial mixture representing micronuclei-inducing 379 

potential according literature data showed that predicted chemicals can explain 48.5% of the 380 

effect caused by the raw JDS extract. This demonstrates that the presented integration of 381 

results could effectively link toxic effects and toxicants, and might aid in the identification of 382 

drivers of toxicity. The approach reduced the complexity of environmental samples with non-383 

experimental techniques. In silico techniques in this study decreased workload and provided 384 

toxic targets for environmental adverse effect investigation. The integrative approach 385 

presented here can serve as part of a standard strategy to identify legacy and emerging 386 

pollutants for water quality assessment. 387 

However, other chemicals may also have contributed to the genotoxic effect of the surface 388 

water samples, and should be subject to further analysis. The work with modelling and 389 

literature data demonstrated that in silico approaches cannot cover all suspected hazardous 390 

compounds. Our study indicates that especially a more complete set of predictive models is 391 

needed for in silico methods to be useful for the assessment of genotoxicity. While other 392 

effects, such as ER/AR or AhR agonism, rely on a single mode of action, genotoxicity can 393 

have a multitude of mechanisms. Consequently, each requires a valid prediction model of its 394 

own. The reliability and versatility of these non-experimental techniques needs to be 395 

improved through future research. 396 
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