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Abstract 21 

The quantification of relative and absolute taxa-specific abundances in complex microbial 22 

communities is crucial for understanding and modeling natural and engineered ecosystems. 23 

Many errors inherent to this quantification are, though well-known, still insufficiently 24 

addressed and can potentially lead to a completely different interpretation of experimental 25 

results. This review provides a critical assessment of next generation sequencing (NGS) of 26 

amplicons and quantitative real-time PCR for the quantification of relative and absolute taxa-27 

specific genome abundances. Starting from DNA extraction, the following error sources were 28 

considered: DNA extraction efficiency, PCR-associated bias, variance of strain-specific 16S 29 

rRNA operon copy number per genome, and analysis of quantitative real-time PCR and NGS 30 

data. Tools and methods for estimating and minimizing these errors are presented and 31 

demonstrated on published data. In conclusion, amplicon sequencing and qPCR of 16S rRNA 32 

genes are valuable tools to determine relative and absolute taxa-specific genome abundances, 33 

but results can deviate by several orders of magnitudes from the true values if the reviewed 34 

error sources are ignored. Many of these errors can be minimized in a cost-efficient manner 35 

and large errors can be easily identified by plausibility checks as shown in this review. 36 

Finally, the accurate conversion of genome abundances to cell numbers and microbial 37 

biomasses was pointed out as an important future research topic for the integration of PCR-38 

based abundances into mathematical models. 39 

Keywords: absolute abundance quantification; biomass quantification; 16S rRNA gene 40 

amplicon sequencing; quantitative real-time PCR (qPCR); 16S rRNA gene copy number 41 

variation; ploidy 42 

 43 

1. Introduction 44 
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Microbial communities are the hidden champions in many natural and engineered ecosystems, 45 

driving global elemental cycles,  waste removal in waste water treatment plants, and methane 46 

production in biogas plants to name a few examples. To understand and model these systems, 47 

the accurate quantification of taxa-specific abundances is of crucial importance. Abundances 48 

can hereby refer to gene abundances, genome abundances, cell numbers and biomasses. In 49 

microbial ecology studies, abundances are often based on 16S rRNA gene copy numbers 50 

while mechanistic mathematical models rather consider microbial abundances as biomass 51 

measured as dry weight.  52 

Various culture-independent molecular biology based techniques have been used to study 53 

microbial communities such as metagenomics (Eloe-Fadrosh et al., 2016; Shakya et al., 54 

2013), metaproteomics (Kleiner et al., 2017), flow cytometry (Lambrecht et al., 2017), 55 

fluorescence in-situ hybridization (FISH) (Nettmann et al., 2010), and amplicon sequencing 56 

(Klassen et al., 2017). For amplicon sequencing, 16S rRNA genes are commonly used to 57 

identify community composition, but also other genes have been targeted, for example the 58 

mcrA gene to focus on methanogenic archaea (Steinberg and Regan, 2008). 16S rRNA gene 59 

amplicon sequencing informs on relative taxa-specific gene abundances, which can be 60 

converted to relative taxa-specific genome abundances using strain-specific 16S rRNA operon 61 

copy number information. Relative gene and genome abundances are commonly used to 62 

analyze the relationship between microbial community composition and environmental 63 

parameters.  64 

However, relative abundances are of limited use if total abundances are unknown (Props et 65 

al., 2017) (see Additional file 1, chapter A.1). Absolute taxa-specific genome abundances can 66 

be determined by quantitative real-time PCR (qPCR) for individual taxa (Yu et al., 2005) and 67 

for all taxa of a community at once by combining 16S rRNA gene amplicon sequencing with 68 

qPCR (Dannemiller et al., 2014). Both amplicon sequencing and qPCR can lead to substantial 69 
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errors of which many have been widely discussed in the literature. However, their impact is 70 

still often neglected and not systematically corrected for when reporting on relative and 71 

absolute genome abundances.  72 

To guide practitioners, we critically evaluate potential errors of 16S rRNA gene amplicon 73 

sequencing and qPCR in quantitative terms in this review. Moreover, tools and guidelines to 74 

estimate and minimize these errors are provided. Errors discussed in this review are 75 

associated with DNA extraction, PCR, and analysis of NGS and qPCR data. Furthermore, 76 

methods are presented to estimate absolute abundances to check the plausibility of 77 

experimental results. Finally, we addressed the errors associated with the conversion of 78 

absolute taxa-specific genome abundances to taxa-specific cell numbers and biomasses to be 79 

used in mathematical modelling. To illustrate the errors above, we mainly refer to examples 80 

from anaerobic digestion which is driven by a complex microbial community. However, the  81 

problems and solutions discussed in this study directly extend to any complex prokaryotic 82 

community.  83 

 84 

2. Errors associated with both amplicon sequencing and qPCR 85 

2.1. Avoidance, quantification, and correction of DNA extraction efficiency associated 86 

errors 87 

Extracting DNA of a diverse community from a complex matrix is a challenging task. Lysis 88 

conditions have to be harsh enough to break up all types of cells but should not cause damage 89 

to the DNA. The strain-specific DNA extraction efficiency, i.e. the recovered amount of 90 

genomic DNA divided by the total amount of genomic DNA present in the sample for a 91 

certain strain, depends on the sample matrix, species’ morphology, and the extraction method.  92 
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Inter-strain differences in DNA extraction efficiency, for example due to different cell walls 93 

and membranes, lead to biased relative and absolute genome abundances. This error can be 94 

minimized by spiking a microbial mock community of known and representative composition 95 

to a sample and testing various DNA extraction methods (Willner et al., 2012). The mock 96 

community should contain a variety of morphologies representative of the sample and E. coli 97 

(if used to determine overall extraction efficiency, see below). The extraction method leading 98 

to the least biased relative taxa-specific abundances of the mock community members should 99 

be chosen.  100 

After minimizing taxa-specific extraction biases, the overall extraction efficiency of 101 

prokaryotic DNA needs to be determined. If DNA loss during extraction is neglected, 102 

absolute genome abundances in the sample will be underestimated. Proposed standards for 103 

efficiency estimation commonly rely on spiking a known number of E. coli cells to the 104 

sample. A target gene in the genomic DNA or on a plasmid of E. coli is then quantified. The 105 

overall extraction efficiency is calculated by the number of detected target genes divided by 106 

the number of spiked target genes. If E. coli is already a member of the community to be 107 

analyzed, its originally present target genes in the sample needs to be subtracted before 108 

calculating the overall extraction efficiency. Using E. coli spikes to cattle manure, overall 109 

extraction efficiencies were between 38% and 99.97% for different extraction methods 110 

(Lebuhn et al., 2016). The extraction efficiency of 38% would result in an error on the 111 

absolute genome abundances of 263%.  112 

Previous to DNA extraction, an additional step for removing extracellular DNA from dead 113 

cells can be performed using for example propidium monoazide (Emerson et al., 2017). While 114 

leading to more accurate results, the application of propidium monoazide to turbid samples 115 

remains a challenge in practice (Kirkegaard et al., 2017). 116 
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In conclusion, inter-species variations in DNA extraction efficiency can lead to substantially 117 

inaccurate relative genome abundances. This error cannot be corrected a posteriori. A mock 118 

community can be used to choose the best DNA extraction method for minimizing this error. 119 

Thereafter, the overall DNA extraction efficiency needs to be estimated by spiking a known 120 

amount of a standard, typically E. coli, to the sample prior to DNA extraction. 121 

2.2. Avoiding PCR-associated biases 122 

After extraction, the genomic DNA is used as a template for PCR amplification, either for 123 

amplicon sequencing of 16S rRNA genes or in qPCR. The PCR amplification step can be a 124 

major source of bias. These errors are associated with the PCR template properties (template 125 

concentration, GC content), primer choice (primer coverage and mismatch), polymerase 126 

choice, and the PCR protocol (annealing temperature and PCR cycle number).  127 

PCR template properties 128 

Diluting the DNA template concentration can positively affect the PCR efficiency if inhibitors 129 

are present in the sample. However, diluting the DNA template concentration for PCR for 130 

amplicon sequencing can exclude rare taxa from the detection and therefore results in a lower 131 

observed richness (Wu et al., 2010). The potential error of using too low DNA template 132 

concentrations can neither be estimated nor corrected for rare taxa and should therefore be 133 

avoided.  134 

A high GC content of template DNA of a certain taxon can lead to an under-representation of 135 

this taxon (Pinto and Raskin, 2012) because high GC contents cause a less efficient initial 136 

denaturation during PCR leading to a lower amplification efficiency (Laursen et al., 2017). 137 

The resulting error of the genomic GC content on the relative gene abundances is hard to 138 

estimate as it is intertwined with other error sources and can be up to one order of magnitude. 139 
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Increasing the time for initial denaturation during PCR can reduce this error but cannot 140 

suppress it completely (Pinto and Raskin, 2012). 141 

Primer coverage 142 

Targeting complex microbial communities requires primer pairs covering all bacterial and 143 

archaeal 16S rRNA gene sequences present in the sample. As indicated by several studies, 144 

there are no universal primer pairs covering both domains equally well (Baker et al., 2003; 145 

Bru et al., 2008; Takahashi et al., 2014). One suggested solution is the use of separate primer 146 

pairs for each domain (Fischer et al., 2016). Furthermore, the use of several primer pairs for 147 

bacteria is recommended because primer pairs covering all bacterial phyla are not available 148 

(Klindworth et al., 2013) and might even not be feasible. An analysis of 500 bacterial 16S 149 

rRNA gene sequences revealed that apart from a very limited region (position 788 to 798) the 150 

absolute base conservation is restricted to four or less consecutive bases (Baker et al., 2003). 151 

Hence, no primer having a suitable length can be designed to cover all bacterial and even less 152 

so all prokaryotic 16S rRNA genes sequences.  153 

For designing highly universal primer pairs, in silico coverages are calculated using tools like 154 

Silva TestPrime, see for example Klindworth et al. (2013). However, comparisons of 155 

predicted and measured coverages show high disagreements for some taxa (Claesson et al., 156 

2010; Fischer et al., 2016; Thijs et al., 2017). Hence, in silico coverages cannot reliably 157 

predict in situ coverage and therefore cannot be applied to correct insufficiently covered taxa 158 

a posteriori. 159 

The coverage of primers is determined by sequence similarity of primer and target sequence. 160 

A single primer target mismatch can substantially decrease the PCR amplification efficiency 161 

(up to 1000-fold), leading to a significant underrepresentation of the specific taxon (Bru et al., 162 

2008).  163 
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Many sequencing techniques have limited read lengths. That is why usually only a limited 164 

number of variable regions of 16S rRNA genes are targeted, for example the V3/V4 regions 165 

(Albertsen et al., 2015) or the V1-V3 regions (Cai et al., 2013). In a 16S rRNA gene database 166 

study, targeting partial regions provided lower phylogenetic resolution than full-length 167 

sequences (Kim et al., 2011). In contrast, another study reported similar community 168 

compositions when targeting the V1 to V4 regions compared to full-length sequences 169 

(Kraková et al., 2016). As a consequence of these conflicting results, there are no indisputable 170 

recommendations on which variable regions to address to characterize complex microbial 171 

communities. A recent method targeting the SSU rRNA molecules instead of their rRNA 172 

genes resulted in a million of full-length rRNA gene sequences free of the primer bias (Karst 173 

et al., 2018). However, this method is laborious and complex and hence, not yet applicable as 174 

standard method.  175 

In conclusion, it is advisable (i) to use primer pairs which are specific for either bacteria or 176 

archaea and target each domain separately and (ii) to use two primer pairs for each domain 177 

targeting different variable regions.  178 

Choice of polymerase 179 

DNA polymerases used for elongation are characterized by their fidelity and proofreading 180 

activity. Fidelity expressed as substitution error rate is in the range of 1 falsely incorporated 181 

base per 2 kb or lower (Potapov and Ong, 2017). This means that this error can be neglected 182 

considering the typical amplicon length of 300 to 500 bp. In theory, this error could be 183 

corrected a posteriori as the substitution error profiles are known (Shagin et al., 2017). 184 

However, such bioinformatics tools are not available yet. The proofreading activity of 185 

polymerase can lead to primer editing (Gohl et al., 2016). If this happens early during PCR, 186 

taxa which show a primer target mismatch will still be amplified efficiently, avoiding the 187 
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potential 1000-fold bias due to the mismatch as described above. Hence, polymerases with a 188 

high fidelity and proofreading activity are desirable.  189 

PCR protocol 190 

Studies on the influence of PCR annealing temperature on relative abundances in microbial 191 

communities show conflicting results. No significant effect of lowering the annealing 192 

temperature was found for complex communities like chicken caecal samples (Sergeant et al., 193 

2012) while an increased number of OTUs was observed in activated sludge (Albertsen et al., 194 

2015). Its effect apparently depends on the sequence similarity between primer and template 195 

DNA. In case of a perfect match, lowering the annealing temperature had no effect on the 196 

PCR product ratios for a mock combination of two bacteria, while an exponential deviation 197 

from the initial 1:1 ratio of two bacterial DNA templates was reported when there was one 198 

mismatch (Sipos et al., 2007). In conclusion, high annealing temperatures should be avoided 199 

as mismatches can lead to biased community composition results. 200 

The effect of varying PCR cycle numbers on PCR products is also ambiguous. For activated 201 

sludge, no effect was found (Albertsen et al., 2015). This contrasts another study reporting 202 

increasing apparent richness when more PCR cycles were performed (Ahn et al., 2012). 203 

However, this might be due to the formation of PCR artifacts like chimeric sequences which 204 

is supposed to happen when PCR components become limiting. Chimeric sequences are 205 

generated when the elongation is not completed within one PCR cycle and the DNA fragment 206 

serves as primer for the next cycle binding to template DNA of another taxon present in the 207 

sample. Chimeric sequences can be a substantial part of the PCR products as libraries with up 208 

to 45% chimeras were found, which can be misinterpreted as additional taxa (Ashelford et al., 209 

2006). The chimera formation cannot be quantified in complex communities and therefore, 210 

the associated error cannot be corrected. In conclusion, it is beneficial to reduce chimera 211 
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formation to a minimum by restricting the number of PCR cycles and to filter at best 212 

remaining chimeras by appropriate sequence analysis as discussed below.  213 

Another type of PCR artifacts are heteroduplex molecules which arise from hybridization of 214 

heterologous sequences and which are less frequent than chimeras (Qiu et al., 2001). They 215 

will not influence the relative abundance obtained by common NGS methods like Illumina 216 

sequencing and pyrosequencing as DNA is denatured before sequencing. This might be 217 

different for other methods using dsDNA for sequencing like SMRT PacBio sequencing or 218 

Oxford Nanopore sequencing. Formation of heteroduplexes can be reduced by reducing the 219 

number of PCR cycles and avoiding high DNA template concentrations as mentioned above 220 

(Thompson, 2002).  221 

2.3. Quantification and correction of errors associated with variations of strain-specific 222 

16S rRNA operon copy numbers per genome 223 

An innate bias of using 16S rRNA genes for relative and absolute taxa-specific genome 224 

abundance quantification are variations of strain-specific 16S rRNA operon copy numbers per 225 

genome (Kembel et al., 2012), with reported ranges of 1-17 for bacteria and 1-4 for archaea 226 

(Stoddard et al., 2015). An unaccounted higher 16S rRNA operon copy number per genome 227 

of a specific taxon will appear as a higher relative and absolute genome abundance of this 228 

taxon. Hence, a correction for strain-specific 16S rRNA operon copy numbers per genome is 229 

necessary, for example by using the rrnDB database (Stoddard et al., 2015).  230 

The correction for strain-specific 16S rRNA operon copy numbers per genome is incomplete 231 

as data is not available for all strains and as operational taxonomic units (OTUs) cannot be 232 

taxonomically assigned on strain level. If the strain-specific number is missing, either median 233 

or mean copy number for the respective higher taxonomic rank can be used. However, this 234 

leads to inaccuracies.  235 
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Here, we used three example data sets A (Klassen et al., 2017), B (Maus et al., 2017) and C 236 

(Müller et al., 2016) to illustrate the effect of correcting for strain-specific 16S rRNA gene 237 

operon copy numbers per genome on relative abundances (see Additional File 1, Chapter A.2, 238 

for details). In our examples, the copy number correction changed the relative genome 239 

abundances compared to the relative 16S rRNA gene abundances by 22% on average though 240 

not uniformly for all taxa (Figure 2a). In a standard analysis of data set A without 16S rRNA 241 

gene operon copy number correction, the phylum Bacteroidetes appeared to be most dominant 242 

followed by Firmicutes and Chlorobi. In contrast, after 16S rRNA operon copy number 243 

correction Chlorobi was the most dominant phylum, followed by Bacteroidetes and 244 

Firmicutes. This was due to the low average 16S rRNA operon copy number per genome for 245 

Chlorobi (2.0) compared to the other dominant phyla Bacteroidetes (3.7) and Firmicutes 246 

(7.0). Hence, negligence of the strain-specific 16S rRNA operon copy numbers per genome 247 

results in biased relative abundances and wrong dominance rankings.  248 
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 249 

Figure 2: Relative abundance of the 15 most abundant bacterial phyla for three example data 250 

sets A (Klassen et al., 2017), B (Maus et al., 2017) and C (Müller et al., 2016). a) Comparison 251 

of relative 16S rRNA gene abundance (the standard approach) with relative genome 252 

abundance after correction for strain-specific 16S rRNA operon copy number per genome 253 
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(corrected). b) Comparison of the relative 16S rRNA gene abundances after use of different 254 

strategies for selecting the representative sequence for each OTU. The standard approach uses 255 

the seed sequence which was used during the clustering process. Alternatively, the longest or 256 

the most abundant sequence per OTU was selected as the representative. Furthermore, an 257 

OTU-free approach was applied as implemented in the DADA2 pipeline. c) Comparison of 258 

relative 16S rRNA gene abundances obtained with different databases used for taxonomic 259 

assignment.  260 

 261 

3. Errors solely associated with amplicon sequencing 262 

3.1. Influence of sequencing technology on relative gene abundances 263 

NGS platforms like 454 pyrosequencing, Illumina, IonTorrent, and PacBio employ different 264 

principles for sequencing DNA (Goodwin et al., 2016). This in turn results in substantial 265 

differences in length and quality of reads as well as sequencing depth, which, in turn, 266 

influences the inferred community composition. As the sequence length is limited due to the 267 

sequencing technology, only subsets of the variable regions of the 16S rRNA genes are 268 

targeted. This is strongly linked to the choice of primers as discussed above. The read quality 269 

heavily depends on the sequencing platform. For example, the frequently used MiSeq 270 

Illumina sequencing platform is associated with a sequencing error rate of less than 1% 271 

(Schirmer et al., 2016). The sequencing depths of NGS platforms depend on their read 272 

numbers which usually range from thousands to millions of sequences. More reads generate 273 

higher apparent richness as more rare taxa are detected (Claesson et al., 2010). Nonetheless, 274 

there is a trade-off between the efficiency of rare taxa detection and artefactual taxa removal 275 

(erroneous sequences) during bioinformatic analyses, see (Zhan and MacIsaac, 2015) for 276 

further discussion. Apart from the rare taxa, the same taxa were detected by different 277 
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sequencing platforms when the same primer pairs were applied (D’Amore et al., 2016; 278 

Tremblay et al., 2015). 279 

In conclusion, a sufficient sequencing depth is necessary to target rare taxa and sequencing 280 

error is considered only as a minor source of error. However due a limited read length, the 281 

sequencing platform restricts the primer choice which has a larger impact than the NGS 282 

platform itself (Hiergeist et al., 2016).  283 

3.2. Avoidance of errors associated with NGS data analysis 284 

Next to biases from wet-lab procedures, errors can be introduced during data processing. For 285 

the analysis of amplicon sequencing data, several pipelines are available. Different pipelines 286 

lead to considerably different relative 16S rRNA gene abundancies (Golob et al., 2017; 287 

Plummer and Twin, 2015; Werner et al., 2012). Here, we focused on general biases which can 288 

be introduced during analysis of amplicon sequencing data and which are not restricted to a 289 

specific analysis pipeline. 290 

Filtering low quality and chimeric sequences 291 

Quality control of raw sequences, i.e. filtering of low quality and chimeric sequences is 292 

common to all pipelines. As chimeric sequences can make up a substantial portion of all 293 

reads, their removal is of importance. Sequences can be filtered for chimeras using a reference 294 

database (e.g., the Gold reference collection) containing 16S rRNA gene sequences of 295 

cultivated bacteria and archaea. However, not all chimeric sequences are detected by this 296 

approach (Ahn et al., 2012). Furthermore, this reference chimera detection will perform 297 

poorly on microbial communities if they contain yet uncultivated organisms (Schloss et al., 298 

2011). To increase chimera detection efficiency, de novo detection methods can be applied, 299 

optionally in combination with reference-based detection (Schloss et al., 2011). However, as 300 
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still not all of the chimeras can be detected (Haas et al., 2011), it is important to reduce 301 

chimera formation by adjusting the PCR conditions appropriately as described above. 302 

In conclusion, chimera formation needs to be reduced by optimizing PCR conditions in the 303 

first place. A substantial part, but not all of the remaining chimeric sequences can be removed 304 

during data analysis. For microbial communities with a lot of undescribed microorganisms, de 305 

novo detection methods optionally combined with reference-based detection should be 306 

applied.  307 

OTU clustering 308 

Filtered sequences are clustered into OTUs according to sequence similarity. For clustering, a 309 

16S rRNA gene sequence similarity threshold of 97% is commonly used to differentiate 310 

between species, though it represents an arbitrary threshold rather than being based on a 311 

commonly accepted species definition (Callahan et al., 2017). Hence, it may assign different 312 

species to the same OTU or one species to several OTUs due to sequence variation in multiple 313 

16S rRNA operons.  314 

After clustering, one representative sequence per OTU is selected and taxonomically 315 

assigned. The effect of the choice of representative sequences for each OTU is illustrated in 316 

Figure 2b. As standard in QIIME analysis, the centroid sequence which has been used for 317 

defining the OTU is taken as the representative. Alternatively, the longest and the most 318 

abundant sequence can be chosen. For the example data sets A (Klassen et al., 2017), B 319 

(Maus et al., 2017) and C (Müller et al., 2016), the selection strategy has only a minor impact 320 

on the obtained community composition. Relative 16S rRNA gene abundances change by 321 

0.3% on average except for data set C if the most abundant sequences per OTU are selected. 322 

Here, the average change of 5% is caused by a higher fraction of unclassified OTUs.  323 
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In order to avoid arbitrary threshold setting for OTU clustering resulting in misassignments, 324 

recently developed analysis pipelines like DADA2 avoid OTU clustering altogether and 325 

instead account for sequence variation down to one nucleotide sequence differences (Callahan 326 

et al., 2016). Community compositions of the example data sets derived from the OTU 327 

clustering approach and exact sequence inference differed by 45% on average comparing the 328 

relative 16S rRNA genes abundances, see Figure 2b. A similar difference was reported for gut 329 

microbiome samples (Allali et al., 2017). 330 

In conclusion, based on our example data sets, OTU clustering-free approaches should be 331 

used to avoid setting arbitrary sequence similarity thresholds. If OTU clustering is desired, 332 

selecting the most abundant sequence should be avoided. Instead, the centroid sequence of 333 

each OTU should be taken as the representative sequence. 334 

Influence of 16S rRNA databases on taxonomic assignment 335 

After selecting representative or inferring exact sequences, these are classified against a 336 

taxonomic database. The choice of database has a strong influence on the observed 337 

community composition for our example data sets A (Klassen et al., 2017), B (Maus et al., 338 

2017) and C (Müller et al., 2016), see Figure 2c. Relative 16S rRNA gene abundances 339 

changed on average by 9% when using SILVA or the SILVA-based MiDAS taxonomies 340 

instead of the Greengenes taxonomy. Previous reports also showed that different databases for 341 

taxonomic assignment give different community compositions (Werner et al., 2012). The 342 

latest Greengenes version is from 2013 [25] and is problematic for the example data set, 343 

because it lacks 16S rRNA sequences of microorganisms which were described more 344 

recently, for example syntrophic acetate oxidizing bacteria. SILVA, RDP, and MiDAS are 345 

more up to date. Using the RDP database results in a substantially higher number of 346 

unclassified OTUs for the example data sets, and therefore does not seem to be 347 

recommendable. The MiDAS database is built on the SILVA database and was amended for 348 
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taxa present in activated sludge, anaerobic digesters, and influent wastewater (McIlroy et al., 349 

2015, 2017), making it the database of choice for the example data set and anaerobic digester 350 

samples in general. Similar to MiDAS, other dedicated databases exist, for example for 351 

human intestinal (Ritari et al., 2015), human oral (Chen et al., 2010), and bee intestinal 352 

(Newton and Roeselers, 2012) microbial communities.   353 

4. Errors solely associated with qPCR data analysis 354 

For qPCR, two reporter systems are commonly used, hybridization probes (also called 355 

TaqManTM probes) and intercalating dyes such as SYBR Green (Smith and Osborn, 2009). 356 

Intercalating dyes bind non-specifically to all amplicons. Therefore, post-PCR melting curve 357 

analyses need to confirm that only target genes were quantified and not non-specific PCR 358 

products such as primer-dimers (Smith and Osborn, 2009). Hybridization probes are designed 359 

to bind to a conserved site on the target gene, ensuring that only the target gene is quantified 360 

(Smith and Osborn, 2009). Such a conserved site, however, might not exist for a target gene 361 

present in various members of a mixed community with potentially unknown members. Here, 362 

a probe might bind unequally to the 16S rRNA genes of all members and lead to biased 363 

results.  364 

For absolute gene quantification with qPCR, an external standard is necessary. From the 365 

fluorescence of the sample compared to that of the standard, the 16S rRNA gene copy number 366 

in the sample is determined. A qPCR standard contains a known number of 16S rRNA genes, 367 

either from a single member or a mixture of members of the microbial community of interest. 368 

The 16S rRNA genes can be in the form of a purified PCR product or a plasmid insert. 369 

Plasmid standards can be linearized which gave more accurate results when quantifying 370 

microalgae (Hou et al., 2010). In that study, the non-linearized standard led to an 371 

overestimation of the target gene copy number by 777%. However, a study targeting two 372 

bacterial and two archaeal species did not find a systematic overestimation by using circular 373 
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plasmids, and similar absolute gene numbers were obtained using linearized, supercoiled or 374 

nicked plasmids or a purified PCR product (Oldham and Duncan, 2012). 375 

Ideally, a new standard representing the community composition is produced from each 376 

sample individually. However this is resource intensive and therefore, it is common to use a 377 

standard from a single species which neglects the possibility that the qPCR efficiency of the 378 

standard could be atypical for the mixture of target genes of the community. However, for 379 

example a 10% lower amplification efficiency of the sample can give rise to 275% 380 

overestimated absolute gene copy numbers (Pérez et al., 2013). Lower amplification 381 

efficiencies can also be caused by inhibitors in the sample matrix. The amplification 382 

efficiencies of all individual samples and standards can be determined with for example the 383 

LinRegPCRProgram as described in the literature (Brankatschk et al., 2012). If a difference in 384 

amplification efficiency is detected, it is necessary to correct it for example by one-point-385 

calibration (Brankatschk et al., 2012) or by repeating the analysis with diluted DNA template 386 

concentrations. A convenient spreadsheet to apply the one-point-calibration method is 387 

provided in Additional file 2. This spreadsheet can also be used to estimate the error of the 388 

differences in efficiencies and other errors discussed above. The problem of amplification 389 

efficiency differences between standard and sample in qPCR can be avoided by using digital 390 

PCR (dPCR) because it does not require a standard (Kim et al., 2015).  391 

The absolute genome abundance of a single taxon can be obtained by qPCR with a specific 392 

primer pair. However, in a mixed culture other taxa than the targeted one can be additionally 393 

amplified leading to inaccurate quantification results. The use of hybridization probes can 394 

reduce this problem. In addition, amplicon sequencing using the same primer pair can be used 395 

to identify and correct the influence of unspecific amplification on the absolute genome 396 

abundance of a single taxon.  397 
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Publication of qPCR data should follow the “minimum information for publication of 398 

quantitative real-time PCR experiments” (MIQE) (Bustin et al., 2009). In particular, the 399 

publication of the qPCR raw data is desirable to enable post-publication error estimates and 400 

corrections for amplification efficiency differences. 401 

In conclusion, there are several error sources in qPCR that can sum up to several orders of 402 

magnitude. Differences in amplification efficiency between standard and sample are often 403 

neglected but can be corrected by one-point calibration. Either linearized plasmids, circular 404 

(supercoiled or nicked) plasmids or PCR products can be used as a standard for prokaryotes. 405 

A decision tree helping to avoid the above mentioned errors is provided in Figure 3. 406 
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 407 

Figure 3: Guideline for minimizing absolute 16S rRNA gene abundance quantification errors 408 

in qPCR 409 

 410 

5. Error identification with plausibility checks based on environmental parameters 411 

The quantification of absolute taxa-specific genome abundances can yield errors of up to 412 

several orders of magnitude. Plausibility checks are thus highly desirable to validate results 413 

and to avoid conclusions based on erroneous data. Several methods are available to estimate 414 
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absolute biomass concentrations based on process parameters and environmental conditions. 415 

Mechanistic mathematical models, such as the Anaerobic Digestion Model No.1 (Batstone et 416 

al., 2002) can be used to predict microbial biomasses. However, such models require 417 

extensive information as input. For systems with scarce information, black box approaches 418 

are more suitable, in particular methods including thermodynamic considerations (Heijnen, 419 

2013; Kleerebezem and Van Loosdrecht, 2010).  420 

An example for a simple plausibility check is presented in Figure 4. Absolute archaeal 16S 421 

rRNA gene copy numbers measured in anaerobic digesters (Lee et al., 2011; Nettmann et al., 422 

2010) were compared with minimum gene copy numbers estimated by a black box approach. 423 

These estimates were based on the assumption that the catabolism of any microbial cell is 424 

limited by a maximum rate for electron transport  (Heijnen, 2002). Given this assumption, the 425 

minimum cell number required to produce the amount of methane measured in the digesters 426 

was calculated (see Additional File 1, section A.4, for details). For the conversion of cell 427 

numbers to gene copies, each cell was conservatively assumed to contain one archaeal 16S 428 

rRNA gene copy. 429 

The archaeal 16S rRNA gene copy numbers measured by Nettmann et al. (2010) lie well 430 

above the estimated minimum copy numbers. However, the copy numbers measured by Lee et 431 

al. (2010) are orders of magnitude below the estimated minimum.  This indicates that their 432 

results likely underestimate absolute quantities in the sampled digesters. DNA extraction 433 

efficiencies were not considered in that study, which might be a reason for the implausibly 434 

low copy numbers. This example illustrates how even simple plausibility checks can be used 435 

to identify implausible quantification results. Such plausibility checks are not restricted to 436 

methanogenic environments. Kleerebezem and Van Loosdrecht (2010) for example provided 437 

biomass yield estimates for 61 organic compounds with either oxygen, nitrate, sulfate and 438 

carbon dioxide as electron acceptors.   439 
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 440 

Figure 4: Example for checking the plausibility of absolute 16S rRNA gene quantification. 441 

Comparison of experimentally derived archaeal 16S rRNA gene copies in anaerobic digesters 442 

(Lee et al., 2011; Nettmann et al., 2010) with estimated minimum gene copy number based on 443 

the maximum electron transfer rate (Heijnen, 2002) and the methane production rates 444 

measured in the digesters (normalized to the digesters working volume). 445 

 446 

6. Errors associated with converting genome abundances to cell numbers and 447 

biomasses 448 

Ideally, taxa-specific genome abundances could be converted to more tangible cell numbers. 449 

However, this requires taxa-specific information on the ploidy, i.e. the number of genome 450 

copies per cell. Prokaryotes have historically been considered as monoploid (1 genome copy 451 

per cell) (Pecoraro et al., 2011). However, several recent studies have found oligoploid (<10 452 

genome copies per cell) and polyploid (>10 genome copies per cell) archaea and bacteria and 453 

it appears that monoploid prokaryotes are rather the exception than the rule (Soppa, 2014).  454 
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A correction for ploidy is difficult. The ploidy can differ even within one genus, for example 455 

within Desulfovibrio and within Neisseria (Pecoraro et al., 2011). Furthermore, the ploidy of a 456 

species does not only vary between one and two during the cell cycle but can differ greatly 457 

between different growth phases, for example from 3-15 genome copies per cell in the 458 

exponential phase to 2-4 genome copies in the stationary phase for Methanocaldococcus 459 

jannaschii (Pecoraro et al., 2011). Taxa-specific ploidy has been determined experimentally 460 

for pure cultures by combining qPCR with cell counting (Pecoraro et al., 2011). For complex 461 

communities, qPCR could be combined with fluorescence-activated cell sorting in the future.  462 

Deriving taxa-specific cell numbers from complex communities was recently suggested by 463 

combining absolute cell numbers derived from flow cytometry with taxa-specific 16S rRNA 464 

genome abundances (Props et al., 2017). However, this method requires the same ploidy of all 465 

taxa which is unlikely given the high variance of ploidy found in prokaryotes (Pecoraro et al., 466 

2011). 467 

As mentioned above, mechanistic models often consider microorganisms not as cells but as 468 

biomass, but it is difficult to determine experimentally the taxa-specific biomasses of species-469 

rich complex microbial communities. Nevertheless, the distinction between cell number and 470 

biomass must not be ignored, because the prokaryotic cell masses can vary over several orders 471 

of magnitude (Loferer-Krößbacher et al., 1998). Taxa-specific biomasses can be inferred from 472 

cell volumes determined by FISH combined with digital image analysis (Daims, 2009). In 473 

addition to FISH, metaproteomics has recently been suggested as a method for taxa-specific 474 

biomass quantification (Kleiner et al., 2017). 475 

In conclusion, taxa-specific average genome copies and biomasses per cell can vary 476 

substantially between taxa and neglecting this fact can lead to errors of up to 10,000%. 477 

Consequently, the accurate conversion between genome abundances and cell numbers as well 478 

as biomasses remains a challenge. 479 
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 480 

7. Conclusions 481 

Relative and absolute taxa-specific genome abundances are important parameters for studying 482 

microbial community dynamics, but their quantification with PCR based approaches has a 483 

number of potential errors that can reach several orders of magnitudes. These errors and 484 

suggested measures to avoid or reduce them are summarized in Table 1. Many errors can 485 

already be reduced by proper data analysis. Others require additional experimental effort, 486 

such as spiking of known microorganisms to estimate DNA extraction efficiencies. Using 487 

different primer pairs for bacteria and archaea is essential for accurate analyses but adds 488 

substantial experimental effort. The accurate conversion of taxa-specific genome abundances 489 

to cell numbers and biomasses is important for their use in mathematical models but remains a 490 

challenge. Flow cytometry, FISH and metaproteomics might bring valuable culture-491 

independent contributions in the future to solve this problem.  492 

  493 
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Table 1: Estimation, avoidance and correction of errors in PCR-based taxa-specific absolute genome abundance quantification 766 

Error type and source Potential 

error size 

Estimation of error Avoidance of error a priori Correction of error a posteriori Additional effort for error 

avoidance/correction 

NGS and qPCR associated errors 

Strain-specific DNA extraction bias  N/A Spike mock community Optimize extraction protocol Impractical High  

Extraction efficiency ~1000 % Spike standard (E. coli cells) Optimize extraction protocol Quantifying spiked standard Medium  

DNA Template concentration PCR for 

amplicon sequencing 

Low (only 

rare taxa) 

Not possible (?) Avoid too low concentrations Impractical  Low 

Primer coverage ~100,000 % Impractical (1) Separate primer pairs for bacteria and archaea; 

(2) Additional primer pair for each domain covering different 

variable region 

Impractical High for (1) 

Very high for (1) + (2) 

PCR  ~1000% Impractical Reduce cycles to reduce PCR artifacts, use high fidelity 

polymerase 

Identification of chimeras and 

their removal 

low 

NGS platform low Impractical Impractical Impractical N/A 

NGS data analysis 

OTU clustering ~10 % N/A Use OTU free clustering approach  Low (only computational) 

Taxonomic database choice ~10% N/A Use dedicated database   Low (only computational) 

Strain-specific 16S rRNA operon copy 

number per genome 

~100% N/A N/A  Use amplicon sequencing data 

and rrnDB database 

Low (only computational) 

qPCR data analysis  

PCR efficiency standard vs sample ~100-1000% Use amplification curves Optimize PCR protocol + standard. Use dPCR instead. Use one-point calibration method  Low (only computational) 
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