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Highlights: 1 

• Lotka-Volterra models are commonly used to study interspecific interactions 2 
• However, these models can fail when interaction strengths among species are uncertain 3 
• We show that underlying mechanisms constrain relationships among model parameters 4 
• We approximate these constraints by deriving expected covariance among parameters 5 
• We find that covariance significantly improves predictions in diverse communities 6 
 7 

Abstract: 8 

 Because the Lotka-Volterra competitive equations posit no specific competitive 9 

mechanisms, they are exceedingly general, and can theoretically approximate any underlying 10 

mechanism of competition near equilibrium. In practice, however, these models rarely generate 11 

accurate predictions in diverse communities. We propose that this difference between theory and 12 

practice may be caused by how uncertainty propagates through Lotka-Volterra systems. In 13 

approximating mechanistic relationships with Lotka-Volterra models, associations among 14 

parameters are lost, and small variation can correspond to large and unrealistic changes in 15 

predictions. We demonstrate that constraining Lotka-Volterra models using correlations among 16 

parameters expected from hypothesized underlying mechanisms can reintroduce some of the 17 

underlying structure imposed by those mechanisms, thereby improving model predictions by 18 

both reducing bias and increasing precision. Our results suggest that this hybrid approach may 19 

combine some of the generality of phenomenological models with the broader applicability and 20 

meaningful interpretability of mechanistic approaches. These methods could be useful in poorly 21 

understood systems for identifying important coexistence mechanisms, or for making more 22 

accurate predictions. 23 

 24 

 25 

 26 
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1. Introduction: 27 

 Of all of the ecological models used to describe species dynamics, none is so ubiquitous 28 

as the Lotka-Volterra competitive equations (Lotka 1932, MacArthur and Levins 1967, 29 

Wangersky 1978). These equations approximate interactions among species as a series of simple, 30 

linear functions describing the per-capita effect of each species on other species’ growth rates. 31 

Lotka-Volterra competition models are therefore considered the simplest possible abstraction of 32 

competition (MacArthur 1970, Tilman 1982). They are typically one of the first models of 33 

interspecific interactions taught to students, and underpin an enormous span of ecological theory, 34 

ranging from the criteria for coexistence and competitive displacement (MacArthur and Levins 35 

1967, Chesson 1990, 2000), to relationships among community diversity, productivity, and 36 

stability (May 1973, Lehman and Tilman 2000, Loreau 2004). 37 

 Because of their relatively simple nature, Lotka-Volterra competition models make no 38 

specific assumptions about the mechanisms underlying competitive interactions – i.e. they are 39 

entirely “phenomenological.” Models that include specific mechanisms necessarily restrict the 40 

kinds of interactions that can take place among species. Because Lotka-Volterra models include 41 

no such restrictions, they can be parameterized in ways that approximate any combination of 42 

underlying mechanisms, at least locally around equilibrium (MacArthur 1970). This can be quite 43 

valuable, as it means that Lotka-Volterra models can be applied to a broad array of systems, as 44 

opposed to more mechanistic approaches for which the “correct” underlying mechanism may 45 

need to be identified in order to make accurate predictions (but see Schaffer 1981). Indeed, there 46 

are many classic examples of ecological systems in which dynamics are consistent with the 47 

qualitative expectations of Lotka-Volterra models, including aquatic microbial communities 48 

(Gause 1934), flour beetles (Park 1936), and warblers (MacArthur 1958), and even some 49 
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examples where quantitative estimates from these models accurately predict abundances in 50 

multi-species communities (Vandermeer 1969, Carrara et al. 2015). 51 

Despite this broad applicability, there are substantially more examples of cases where 52 

Lotka-Volterra models have failed to accurately predict outcomes of competition. This 53 

frequently manifests as a phenomenon known as “non-additivity” or “higher-order interactions,” 54 

in which the effects of two species on one another’s growth rates vary depending on the presence 55 

of a third species, or of some other factor such as environmental variation (Wilbur 1972, 56 

Roxburgh and Wilson 2000, Dormann and Roxburgh 2005, Weigelt et al. 2007, Michalet et al. 57 

2015, Bairey et al. 2016, Mayfield and Stouffer 2017, Levine et al. 2017, Grilli et al. 2017). 58 

While predictions can occasionally be improved by augmenting models to include parameters 59 

that describe these higher-order interactions (Gause 1934, Wilbur 1972, Weigelt et al. 2007, 60 

Mayfield and Stouffer 2017), predictive power generally remains low, and the changes in model 61 

form make them more difficult to generalize to other systems. 62 

 The poor performance of Lotka-Volterra models in many real-world ecological systems 63 

is hardly surprising. A hallmark of ecological data is that it is highly uncertain – because of both 64 

observation error, which results from imperfect measurement of a system, and process noise, 65 

which describes natural variability in the characteristics of the system. Because Lotka-Volterra 66 

models abstract systems into a series of linear interactions regardless of the underlying 67 

mechanism, they are disproportionately influenced by this uncertainty, particularly in systems 68 

with many interacting species (Dormann 2008, Palamara et al. 2016). For coexistence to be 69 

stable in the Lotka-Volterra framework, a primary requirement is that the dominant eigenvalue of 70 

the Jacobian matrix (i.e. the most positive eigenvalue) must have a negative real part when 71 

evaluated at equilibrium (n.b. stability also requires the system to be “feasible”, i.e. all species 72 

must have abundance greater than or equal to zero). This requires that the matrix summarizing all 73 
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pairwise interactions among coexisting species be of full rank (i.e. all rows and columns must be 74 

linearly independent) (Levin 1970, Chesson 1990, Haygood 2002, Meszéna et al. 2006). 75 

However, even infinitesimal additions of error or noise will lead to all interactions “appearing” 76 

as though they are linearly independent, and can distort the original model in ways that are 77 

difficult to predict or reverse (Anderson et al. 2010). 78 

In contrast, constraints caused by particular mechanisms of interaction typically limit the 79 

kinds of effects that stochasticity can impart. For example, in a model of competition for a single 80 

limiting resource, variability in a species’ competitive ability for that resource will alter its 81 

interactions with all other species in the community in similar ways. Furthermore, coexistence in 82 

systems with mechanistic constraints usually implies the existence of interspecific tradeoffs (i.e. 83 

strategies that unavoidably come at a cost to one another) (Tilman 1990, 2011, Chesson 2000). 84 

These relationships cause species to differentiate along several trait axes simultaneously and 85 

prevent any single species from dominating under all possible circumstances. Provided that error 86 

and noise are sufficiently small or constrained that they do not drive species away from these 87 

tradeoffs, then predictions from mechanism-based models can be relatively robust to uncertainty 88 

(Clark et al. 2018). Importantly, there is abundant evidence for such tradeoffs in many empirical 89 

systems (Wright et al. 2004, Litchman and Klausmeier 2008, Reich 2014). 90 

 In many cases, observation error can be mitigated through proper replication and 91 

experimental controls (but see 3.3. Some notes on observation error). In contrast, process noise 92 

results from variation that is inherent to the system itself (e.g. within-species trait variability, 93 

environmental heterogeneity), and cannot be so easily mitigated. However, because process 94 

noise actually influences the dynamics of systems, it may be possible to use this variation to 95 

learn about the system’s dynamic structure. This is, after all, the primary insight behind 96 

regression analysis: if variability is shared among several components of a system, this may 97 
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indicate that they are meaningfully related. Importantly, because individual mechanisms can only 98 

recreate a subset of the types of interactions that can be expressed in Lotka-Volterra models, this 99 

suggests that the mechanisms that actually underlie coexistence in a system should leave behind 100 

a specific “signature” in the parameters of the Lotka-Volterra model (Tilman 1982). 101 

One of the simplest ways to identify this mechanism-driven correspondence among 102 

parameters is through covariance. Covariance measures the degree of correspondence between 103 

two variables (n.b. correlation is simply covariance standardized by univariate variance). As we 104 

will show, the covariance among interaction parameters in the Lotka-Volterra competitive 105 

equations can be derived directly from a hypothesized underlying mechanistic model, and doing 106 

so often requires relatively little information about the specific parameter values and functional 107 

form of this mechanistic model. Once calculated, this covariance can be used to constrain the 108 

Lotka-Volterra system. Though covariance alone will not capture the full dynamics of the 109 

underlying mechanistic model, it may be that it can reintroduce some aspects of the mechanistic 110 

structure and interspecific tradeoffs that regulate coexistence in real-world systems. Modeling 111 

covariance could therefore be useful for improving predictions, and identifying signatures left 112 

behind by influential coexistence mechanisms. This method is similar to that employed in spatial 113 

moment models, which utilize information about the spatial covariance of observed patterns to 114 

analytically approximate species dynamics in spatial systems (Bolker and Pacala 1999, Detto and 115 

Muller-Landau 2013). 116 

In this manuscript, we demonstrate the potential utility of harnessing covariance to detect 117 

and integrate components of mechanistic models into the phenomenological Lotka-Volterra 118 

framework. As a worked example, we use a model developed by MacArthur (1970), which 119 

relates a mechanistic resource competition model to the classical Lotka-Volterra framework. 120 

After (i) introducing this model, we will use it to (ii) demonstrate how process noise in the 121 



 

 7 

mechanistic parameters propagates through the system and changes model predictions, (iii) 122 

derive the covariance relationship among phenomenological parameters that results from this 123 

process noise, (iv) show how this information can reduce distortion of the model, and (v) explore 124 

how this theoretical insight can be applied in the analyses of empirical data to identify 125 

underlying mechanisms and improve model predictions. 126 

 127 

2. Model and Results: 128 

2.1. MacArthur’s resource competition model 129 

MacArthur’s 1970 resource competition model relates a mechanism-based model of 130 

interspecific competition for perfectly substitutable resources to the classical Lotka-Volterra 131 

competition framework (MacArthur 1970, Tilman 1982). MacArthur’s simplifying assumption 132 

was to propose that resource dynamics occurred much faster than consumer dynamics, which 133 

allowed resource concentrations to be estimated as a simple function of consumer abundance. 134 

Because of this simplification, the model can be re-written in a way that is mathematically 135 

identical to the classical Lotka-Volterra competitive equations, despite the fact that it includes 136 

parameters that can be interpreted mechanistically (though see caveats in 3.1. Potential 137 

limitations). In this model, interspecific interaction terms of the Lotka-Volterra competitive 138 

equations (aij, which describe the per-capita effect of species j on the growth rate of species i) 139 

can be directly related to a function of the mechanistic parameters (cil, which describe the ability 140 

of species i to acquire resource l). Note that we use the notation of Chesson (1990). 141 

 MacArthur’s resource competition model has been extensively developed in many 142 

subsequent studies (e.g. Schoener 1974, Chesson 1990, 2000, Haygood 2002), and has been 143 

found to be particularly tractable for a number of reasons. First, given any combination of n 144 

species and lmax ≥ n limiting resources for which an “interior” equilibrium exists (i.e. all species 145 
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have positive abundances), the model is globally stable, meaning that it approaches a single 146 

equilibrium from any starting point (Haygood 2002). Second, competition is symmetric between 147 

species (i.e. aij = aji), which provides a specific structure to competitive interactions and reduces 148 

the number of parameters. Lastly, and most importantly for our purposes, the model provides a 149 

simple link between “mechanistic” parameters describing species consumption rates (cil), and 150 

“phenomenological” parameters describing the outcomes of competitive interactions (i.e. aij). 151 

These parameters are typically grouped into matrices c and a, respectively. 152 

 To facilitate the process of tracking error propagation, we further simplify MacArthur’s 153 

original model (full derivation of our model, and a more detailed discussion of how the 154 

parameters relate to other ways of expressing the Lotka-Volterra system, are available in 155 

Appendix A.I in the supplement). In our framework, c and a are related following 156 

 𝑎"# = ∑ 𝑐"'𝑐#'
'()*
'+,  Eq. (1) 157 

Dynamics in the abundance of species i, Xi, depend only on the species growth rate, bi, the 158 

maximum amount of resource taken up in the absence of other competitors, ki, and competitive 159 

interactions with other species, following the form 160 

 ,
-.

/-.
/0
= 𝑏"2𝑘" − ∑ 𝑎"#𝑋#6

#+, 7 Eq. (2) 161 

Eq. (2) is mathematically identical to the classical Lotka-Volterra competitive equations, though 162 

with mechanistic constraints on the values of a. Note, however, that we use a different 163 

parameterization in Eq. (2) than is presented in many ecological textbooks. Unlike these 164 

“classical” forms, carrying capacities and interaction coefficients in our model are not 165 

standardized by the strength of species self-inhibition. Thus, the classical carrying capacity Ki 166 

(i.e. species abundance in the absence of competitors) is equal to ki/aii in our model’s 167 
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parameterization, and self-inhibition in our model aii (i.e. the effect of species i on itself) is not 168 

necessarily equal to one (unlike the classical a terms, for which aij = aij/aii) (Chesson 2000). 169 

For a stable equilibrium to occur in this system, there must be a tradeoff among species 170 

consumption vectors such that each species is able to access a unique combination of resources, 171 

which implies lmax ≥ n and that the columns of c must be linearly independent (MacArthur 1970, 172 

Chesson 1990). Because a is composed of pairwise products of c, satisfying these conditions 173 

ensures that all rows and columns of a are also linearly independent (i.e. that matrix a is of “full 174 

rank”) (Chesson 1990). Recall, however, that not all communities that meet these criteria will 175 

coexist stably, as the equilibrium must also be interior (Chesson 1990, Haygood 2002). A 176 

discussion of the full stability criteria is available in Appendix A.II in the supplement. 177 

 178 

2.2. Effects of process noise on model predictions  179 

We define “process noise” as variation in the mechanistic consumption parameters of c 180 

that alters the consumption vectors themselves, rather than merely changing our ability to 181 

accurately measure these parameters (i.e. in contrast to observation error). This variation might 182 

be caused by genetic differences, trait plasticity, spatial heterogeneity, or any other such process 183 

that drives within-species trait differences. Process noise therefore can lead to changes in species 184 

dynamics, equilibrium population abundances, and even persistence. 185 

As demonstrated in Eq. (1), process noise also leads to variation in a. Consider a system 186 

where process noise is normally and independently distributed around each of the elements of c, 187 

with standard deviation σc. Based on the mechanistic relationship between c and a in Eq. (1), 188 

process noise in c can be analytically related to variation in the terms of a as 189 

 𝜎9..
: = 2𝜎<:2𝑙>9?𝜎<

: + 2𝑎""7 Eq. (3a) 190 



 

 10 

 𝜎9.A
: = 𝜎<:2𝑙>9?𝜎<

: + 𝑎"" + 𝑎##7 Eq. (3b) 191 

where σaii and σaij are the standard deviation in the terms of a resulting from σc, i and j are both 192 

assumed to be less than n, and i ≠ j. These terms increase roughly as a linear function of σc (Fig. 193 

1a), and are of a similar magnitude as σc regardless of community size when scaled by their 194 

corresponding mean values aii and aij, respectively (Fig. 1b). 195 

 In Appendix B.I in the supplement, we include full derivations for these terms based on 196 

the mathematical properties of means and variances. However, intuitively, one can also think of 197 

Eqs. (3a-b) as the effect of a change in the consumption parameters c on the interaction matrix a. 198 

Recall that variance is the average squared distance between a random variable and its mean. 199 

Thus, the square root of Eqs. (3a-b) represent the change in the interaction coefficients that is 200 

expected from the average observed deviation in the elements in c. In other words, just as σc 201 

represents the mean deviation in species consumption rates caused by process noise, 𝜎9.. and 𝜎9.A  202 

represent the corresponding mean deviation in self-limitation or competitive effects, respectively. 203 

For simplicity, let us suppose that we can perfectly measure all of the parameters in this 204 

system, and that the terms ki and bi are not subject to any kind of process noise. In this case, 205 

variability in the outcomes of competitive interactions can be entirely attributed to σc and its 206 

effects on the realized values of c and a. For example, consider a case of two species competing 207 

for two limiting resources that are able to coexist in the absence of process noise (i.e. σc = 0). If 208 

we increase process noise in this system, the increasing variability in c and a will increase the 209 

probability of competitive exclusion between the two species (Fig. 2a). Now, suppose that we 210 

attempt to predict the outcome of competition by directly measuring the components of a. Most 211 

commonly, this is accomplished by measuring aii and ajj under circumstances where only one 212 

species is present, and aij and aji under circumstances where both species are jointly present. In 213 
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this case, we would find something curious: even if we perfectly measure the components of a in 214 

the presence of process noise, we will overestimate the frequency of competitive exclusion (Fig. 215 

2b). This is because we fail to take into account the correlation among the components of a that 216 

is caused by the mechanistic constraints and tradeoffs that govern coexistence in MacArthur’s 217 

model. However, note that if we account for covariance among these terms (for example, by 218 

measuring the terms at the same time in the same system), we are able to much more closely 219 

match the outcome expected from the mechanistic model. 220 

 221 

2.3. Model covariance relationship 222 

The correlations between elements of a impose limitations on their structure, thereby 223 

restricting the very general form of the Lotka-Volterra competitive equations to behave more like 224 

the specific mechanisms posited in the MacArthur model. As the number of competing species 225 

grows, these relationships become increasingly complex and influential. It is therefore helpful to 226 

derive the expected covariance relationship among all terms in a based on their mechanistic 227 

relationships in the MacArthur model. This reveals six classes of elements, including the two 228 

variance terms in Eqs. (3a-b) 229 

 cov2𝑎"#, 𝑎#"7 = 𝜎<:2𝑙>9?𝜎<
: + 𝑎"" + 𝑎##7 Eq. (3c) 230 

 cov2𝑎"#, 𝑎""7 = 2𝜎<:𝑎"# Eq. (3d) 231 

 cov2𝑎"#, 𝑎"F7 = 𝜎<:𝑎#F  Eq. (3e) 232 

 cov2𝑎"#, 𝑎F>7 = 0 Eq. (3f) 233 

where i, j, k, and m represent any four distinct species (i.e. i,j,k,m < n, and  i ≠ j ≠ k ≠ m). 234 

Because of symmetry in a, these classes include several kinds of associations (e.g. cov(aij, aii) = 235 

cov(aij, ajj)). Full derivations and details are available in Appendix B.I in the supplement. 236 
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 Note that though the relationships in Eqs. (3a-f) constrain the parameters of a, they are 237 

not guaranteed to perfectly mimic the underlying relationships imposed by the mechanistic 238 

model. This is because we include only the first two “statistical moments” describing the effects 239 

of process noise (i.e. mean and variance), and thus we omit more complex aspects of statistical 240 

distributions, such as asymmetry or “fat tails.” Thus, just as models that ignore higher-order 241 

interactions will fail to characterize context-dependent changes in the elements of a, ignoring 242 

higher-order statistical moments (e.g. skew or kurtosis) can lead to prediction error if 243 

stochasticity in a system is not normally distributed. 244 

 245 

2.4. Testing the covariance model 246 

 We can demonstrate how the covariance relationships capture some aspects of the 247 

mechanistic model by simulating three types of models with added process noise: (i) the 248 

mechanistic model based on Eqs. (1-2); (ii) an uncorrelated model, in which variance in a is 249 

calculated following Eqs. (3a-b), but covariance is ignored; and (iii) a covariance model, which 250 

accounts for all variance and covariance relationships among components of a following Eqs. 251 

(3a-f). Thus, the mechanistic model represents the “true” process, the uncorrelated model 252 

represents a sampling design that ignores correlations among species interaction coefficients, and 253 

the covariance model demonstrates potential improvements in predictions resulting from 254 

properly accounting for the mechanistic model’s effects on the correlation structure of a. 255 

To demonstrate the effects of community diversity and noise on these three models, we 256 

simulated each of them across five sizes of communities (n = 2, 4, 6, 8, 10), and four levels of 257 

process noise (σc = 0.01, 0.02, 0.05, 0.1). In each scenario, we generated species consumption 258 

vectors by drawing points from a tradeoff, such that Sl cil = lmax for all species (i.e. all points in c 259 
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fell along a single lmax – 1 dimensional surface). We randomly selected points from along this 260 

tradeoff surface using a random normal variable with mean equal to 1 and standard deviation 261 

equal to 0.1 (n.b. we applied a logit transformation to ensure positive values – see Appendix C in 262 

the supplement for details). Note, σc/0.1 therefore corresponds to the standard deviation in the 263 

elements of c caused by process noise, relative to the standard deviation in consumption 264 

parameters observed between species. This tradeoff ensured that increased effectiveness of 265 

foraging for one resource (i.e. larger values of cil) implies decrease effectiveness for others (i.e 266 

smaller values of cik), thereby helping to maintain coexistence in the mechanistic model. As 267 

discussed above, such a tradeoff is consistent with both empirical observations (Wright et al. 268 

2004, Reich 2014) and theoretical expectations (Tilman 1990, 2011, Clark et al. 2018) for 269 

communities of coexisting species. 270 

For all scenarios, we set lmax = n/2. Thus, in the mechanistic models, a maximum of n/2 271 

species could coexist, whereas the uncorrelated and covariance model could potentially predict 272 

coexistence among a larger number of species. For each scenario, we identified stable equilibria 273 

and compared model predictions for species richness, species abundance, and for the elements of 274 

a. We ran 20,000 iterations for each model to identify the distribution of potential outcomes. 275 

Detailed methods for these three models are available in Appendix C in the supplement. 276 

 For predictions of community richness, we find that the covariance model matches the 277 

mechanistic model much more closely than does the uncorrelated model, both in terms of 278 

increased precision (i.e. less variance around the mean prediction) and decreased bias (i.e. 279 

predictions are centered around the true values) (Fig. 3). Correlation between estimates of a from 280 

the three models remains relatively high across all models and scenarios. For large community 281 

sizes and large process noise (e.g. n = 10 and σc = 0.1), the uncorrelated model also tends to 282 
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over-predict coexistence, while the covariance model does not. On average, the covariance 283 

model also provides better predictions of abundance, but the difference is relatively small. 284 

 285 

2.5. Applying theoretical results 286 

 The results from Fig. 3 demonstrate that we can more accurately predict outcomes of the 287 

MacArthur model by incorporating the mechanistic signature of covariance imposed on the 288 

interaction matrix a than we can by measuring the components of a independently. Note that this 289 

procedure assumes that we already know the “correct” expected values of all of the terms in a, 290 

and the magnitude of σc. However, under these circumstances we would often have enough 291 

information to reconstruct c, at which point it would be more efficient to simply make 292 

predictions based on the underlying mechanistic model. To make our results more useful for 293 

real-world applications, we demonstrate a series of methods in the section below that could be 294 

used to parameterize the covariance model based on empirical observations of species 295 

communities, even when the true values of a and c are not known. 296 

 297 

2.5.1. Detecting model dimensionality 298 

The first challenge is to identify the number of limiting resources in the system (but see 299 

Appendix B.I for approximations that can sometimes avoid this necessity). In theory, the number 300 

of nonzero eigenvalues of a should indicate its rank. In practice, this is less straightforward 301 

because variation in the uncorrelated model will artificially increase the dimensionality of a to 302 

full rank regardless of lmax. However, if process noise is small, then it is possible that these added 303 

dimensions will only be weakly present in a, in which case they might be identified as 304 

corresponding to particularly small eigenvalues, or as components of a that can be removed 305 

without worsening model predictions. 306 
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 For example, in a simulated system with four species, but only two limiting resources, the 307 

“true” dimensionality of a should not exceed two, and the third and fourth eigenvalues should be 308 

equal to zero (n.b. these eigenvalues are calculated from the interaction matrix as a metric of 309 

dimensionality, not from the Jacobian matrix as a metric of stability). Encouragingly, we find 310 

that these eigenvalues from the uncorrelated model are small relative to the other two 311 

eigenvalues (Fig. 4a). Furthermore, if we transform this matrix to set the value of these 312 

eigenvalues to zero, which effectively removes some of the effects of the uncorrelated noise 313 

from the matrix, this leads to improved predictions of richness and abundance, but has very little 314 

effect on the actual values of the elements of a (Fig. 4b-d). Detailed methods are described in 315 

Appendix D.I in the supplement. 316 

 In a system with unknown dimensionality, similar results would be a good indication that 317 

the information associated with these eigenvalues was not mechanistically meaningful, and could 318 

be useful for detecting the true dimensionality of a. Note, however, that this technique is 319 

probably not a good method for making predictions directly from the uncorrelated model. First, 320 

we find that the improvement in prediction power is smaller than that achieved by the covariance 321 

model. Second, as systems grow larger, this correction technique becomes more difficult to 322 

apply, because the transformation can introduce imaginary parts into a, and because rounding 323 

errors tend to make it impossible to fully remove many small eigenvalues simultaneously. 324 

 325 

2.5.2. Estimating covariance model parameters 326 

Once the true dimensionality of the system is known, the second challenge is to 327 

determine whether the parameters of the covariance model can be properly estimated by fitting 328 

the model to observed data. If we parameterize the covariance model with values centered at the 329 

“true” expected values of a from the mechanistic model, we find that these correspond closely to 330 
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the average predictions from the mechanistic model (Fig. 5a-g). Similarly, if we calculate the 331 

likelihood of observed outcomes, we find that likelihood increases as the estimated a terms 332 

approach their true values (Fig. 5g-h). Moreover, as outlined above, differences in the 333 

distribution of eigenvalues resulting from these parameterizations of a successfully identify 334 

systems with different numbers of limiting resources (Fig. 5i). 335 

Jointly, these results show that by optimizing parameters in the covariance model such 336 

that they maximize the likelihood of observed data given the covariance model, parameter 337 

estimates should converge on the true values of a. These analyses therefore provide a proof of 338 

concept that regression or optimization tools that are able to estimate components of a covariance 339 

matrix (e.g. generalized least squares, Bayesian hierarchical modeling) could be used to 340 

empirically parameterize the covariance model based on observed data. Full methods for this 341 

procedure are described in Appendix D.II in the supplement. 342 

 343 

3. Discussion: 344 

Our results demonstrate two points. First, we show that predictions of abundance, 345 

interaction coefficients, and coexistence from Lotka-Volterra models that do not account for 346 

mechanistic associations among model parameters can be inaccurate and biased, particularly for 347 

communities with many competing species. Second, we find that underlying mechanistic 348 

relationships among the interaction parameters of a Lotka-Volterra system can be successfully 349 

approximated using analytically derived covariance, which helps improve predictions and 350 

ameliorate bias. These results therefore suggest that naively parameterizing Lotka-Volterra 351 

models from field data will often lead to models with poor predictive power. Most importantly, 352 

our findings suggest that it may be relatively straightforward to parameterize a semi-mechanistic 353 

“hybrid model,” which uses covariance to incorporate the rough skeleton of hypothesized 354 
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coexistence mechanisms, but does not require as much detailed information as would a fully 355 

mechanistic approach. 356 

Note that poor performance of the uncorrelated model is not contingent on uncertainty 357 

arising from process noise. Any variation that is not constrained by underlying mechanistic 358 

relationships will deform the interaction matrix a, resulting in increased dimensionality 359 

(Anderson et al. 2010, Bates and Maechler 2016), and therefore poorer predictions (Dormann 360 

2008). Thus, even if uncertainty arises from observation error rather than process noise, methods 361 

that do not constrain a to retain its mechanistic structure will likely fail when making predictions 362 

for communities of more than a few species (but see Barabás and Allesina 2015 for discussion of 363 

predictions from Lotka-Volterra models that can be robust to uncertainty). 364 

Though models that incorporate true underlying mechanisms will likely generate 365 

predictions that are more accurate and generalizable than those from covariance approximations, 366 

there are nevertheless advantages to the hybrid approach we introduce here. Note that Eqs. (3a-f) 367 

do not require knowledge of species consumption rates, nor the identity of the resources for 368 

which species compete. Likewise, the number of limiting resources can often be estimated 369 

directly from a (Fig. 4, and Appendix D.II). Thus, even with relatively limited mechanistic 370 

information, it may be possible to derive and parameterize a covariance model such as the one 371 

we present here. 372 

The potentially broad applicability of covariance models raises the question of whether 373 

covariances among elements in a could be measured entirely empirically, rather than deriving 374 

them from a hypothesized mechanistic model. We suspect not. There are n4 terms describing 375 

covariance among the elements of a, and measuring many of these components (e.g. Eqs. (3e-f)) 376 

would likely require replicated observations of all possible three-way combinations of species. 377 

While there are some examples of studies that realize this level of replication (Wilbur 1972, 378 
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Miller 1994, Weigelt et al. 2007), these are limited to communities of relatively few species, and 379 

are generally only feasible for study organisms that are small and fast-growing. Thus, while 380 

empirically calibrated covariance might serve as a preliminary test to narrow down a large list of 381 

potential coexistence mechanisms, we think it is very unlikely that such a method could be used 382 

to improve model predictions without first specifying a mechanistic “backbone.” 383 

Interestingly, covariance could potentially explain higher-order interactions observed in 384 

some other studies (Wilbur 1972, Miller 1994, Dormann and Roxburgh 2005, Bairey et al. 2016, 385 

Mayfield and Stouffer 2017). For example, consider the terms aij and aik, describing the effect on 386 

species i of species j and k, respectively. Because var(aij + aik) = var(aij) + var(aik) + cov(aij, aik), 387 

individual observations of the joint effect of these species will either be weaker or more extreme 388 

than would be expected from two-way interactions. Unless replication of three-way interactions 389 

is sufficiently large, covariance would manifest as a change in the strength of competitive 390 

interactions depending on the presence of a third species. Thus, studies that have identified non-391 

additive competitive interactions in the past may constitute further evidence for the important 392 

role of covariance in Lotka-Volterra models. 393 

 394 

3.1. Potential limitations 395 

Though simple and relatively easy to interpret, an important caveat for the 396 

implementation of MacArthur’s resource competition that we utilize here is that it is only “semi-397 

mechanistic.” A major underlying assumption of this model is that resources are perfectly 398 

substitutable – i.e. any species can theoretically persist on a sufficient quantity of any single 399 

resource (Tilman 1982). Furthermore, the combination of traits that we generate for species (and 400 

that are usually utilized for this model) assumes that all species forage for multiple resources 401 

simultaneously. Lastly, the model assumes strictly linear relationships among resource 402 
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requirements (i.e. the effect on individual species of adding one type of resource to the system is 403 

always a fixed fraction of the effect of adding another type of resource, regardless of the 404 

available concentration of either resource). These assumptions are relatively unrealistic, as few 405 

resources are actually perfectly substitutable, competition among substitutable resources tends to 406 

lead towards “switching” behavior (i.e. species specializing on harvesting a single type of 407 

resource), and species responses to most resources tend to saturate at higher availabilities, 408 

leading to nonlinear responses (Tilman 1982). Because of these caveats, we would expect 409 

evolution to drive species in our model to become specialists on individual resources. Thus, 410 

though helpful as a worked example, we would not necessarily expect this model to accurately 411 

predict community dynamics in most real-world systems. 412 

A more general potential problem with the covariance approach that we use here is that in 413 

some cases, we may find that mechanistic systems cannot be well-approximated merely by 414 

incorporating covariance. Because we characterize the components of a entirely by their mean, 415 

variance and covariance, we effectively assume that these terms are drawn from a shared 416 

multivariate normal distribution. However, the terms for a in the MacArthur model are actually 417 

the result of product distributions (Grimmett and Stirzaker 2001). While an approximation based 418 

on normal distributions worked well in our tests, this will not always be the case, as product 419 

distributions include higher-order moments. Higher-order moments arise in any stochastic 420 

system where probability distributions are not perfectly described by mean, variance, and 421 

covariance, and can include features such as asymmetry for fat tails that cannot be approximated 422 

using normal distributions. Thus, for other types of mechanistic models, or even other 423 

realizations of MacArthur’s model, more complex distributions or higher-order moments may 424 

therefore be needed to accurately characterize dynamics. 425 
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Lastly, another potential problem with our approach is model identifiability. Because 426 

covariance includes relatively little information about mechanistic structure, there may be 427 

multiple models that generate similar covariance signatures. Nevertheless, this limitation could 428 

also be a useful property of our method. For example, mechanistic models of disease propagation 429 

(May and Anderson 1987) and plant metapopulation dynamics (Tilman 1994) can be developed 430 

with identical relationships among model parameters, despite obvious differences between the 431 

systems. Lotka-Volterra abstractions for these models would therefore also have identical 432 

covariance. In less obvious cases, such correspondences might be helpful for identifying 433 

seemingly disparate, but mechanistically related, classes of models. 434 

 435 

3.2 Broader implications 436 

Though we use one version of the MacArthur model as an example, the underlying 437 

methods we present here could be applied to other mechanistic models. Importantly, even where 438 

analytical derivation relating process noise to variation in phenomenologically observable 439 

parameters is not practical, the same results can be achieved by empirically calculating 440 

covariance from simulations of the posited underlying mechanistic model. Such a method could 441 

be particularly powerful, as it would allow inclusion of multiple sources of stochasticity (e.g. 442 

process error and observation error in multiple parameters), as well as more complex stochastic 443 

processes (e.g. non-Gaussian stochasticity). For example, a suite of individual based models 444 

could be constructed to characterize the dynamics of many different combinations of potential 445 

underlying mechanisms and types of stochasticity (Black and McKane 2012, Grimm et al. 2016). 446 

Based on simulations of these models, one could then calculate the relationships among species 447 

interaction strengths, generating a matrix of covariances among the elements of a. Lastly, these 448 
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relationships could be used to constrain an optimization algorithm in order to fit observed data, 449 

similar to the procedure we demonstrate in Fig. 5. 450 

Estimating covariance directly from simulations could also help better integrate 451 

information from tradeoffs into our methods. In our model, we impose tradeoffs among species 452 

consumption vectors, but do not constrain process noise to adhere to this surface, as this would 453 

have produced covariance among the elements of c, making the system analytically intractable 454 

(see Appendix C in the supplement). Because process noise is relatively small in our tests, 455 

species traits always fall closely around the tradeoff surface. This is equivalent to assuming that 456 

the underlying physiological tradeoffs that constrain species traits in our system are higher 457 

dimensional than is the ecological trait space that determines coexistence in our model (Roff and 458 

Fairbairn 2007). Nevertheless, more restrictive adherence of process noise to the tradeoff surface 459 

could be incorporated into computational estimates of covariance, which might generate more 460 

stable estimates of species abundances, and improved predictive ability. 461 

 462 

3.3. Some notes on observation error 463 

As previously explained, we primarily discuss the effects of process noise rather than 464 

observation error because observation error can often be mitigated. Nevertheless, some kinds of 465 

variables are by nature pathological – that is, they have no mean, and therefore no variance, 466 

regardless of sample size. Ratios of normally distributed variables, which commonly arise in 467 

Lotka-Volterra systems, are an important example of such a variable (Marsaglia 2006). For 468 

example, competition coefficients are typically estimated as aij =(Ki – Xi)/Xj, growth rates are 469 

often calculated as ri=ln(Xi(time=τ)/Xi(time=0))(1/τ), and even the Jacobian matrix that we use to 470 

determine stability includes ratios of potentially random variables (Eqs. (SA12a-b)). 471 



 

 22 

There are some strategies for reducing the influence of these ratios. If the mean of the 472 

numerator and denominator are of a suitable magnitude relative to their variance, then their ratio 473 

may be roughly normally distributed, though the precise conditions for this are not trivial 474 

(Marsaglia 2006). Alternatively, by fitting models to dynamic data, it may be possible to 475 

estimate some of these parameters directly, rather than as a ratio of empirically measured 476 

variables (Carrara et al. 2015, Palamara et al. 2016). Nevertheless, some variables are necessarily 477 

the outcome of ratios. For example, coexistence in the MacArthur model depends on the relative 478 

consumption rates and carrying capacities of species, not their absolute magnitude (Chesson 479 

1990, Haygood 2002). It therefore seems unavoidable that Lotka-Volterra-like methods (and 480 

likely a great many other models of species interactions) will be especially susceptible to the 481 

effects of observation error. We therefore advocate cautious testing for the effects of observation 482 

error before attributing uncertainty to process noise. 483 

 484 

3.4. Conclusion: 485 

Our findings suggest that a simple hybrid approach that tracks the propagation of 486 

uncertainty through ecological systems might be useful for identifying important coexistence 487 

mechanisms and predicting species abundances in poorly understood competitive communities. 488 

It remains to be seen whether the simple approach that we use based on covariance will be 489 

tractable and effective for other types of mechanisms and in real-world ecological systems. 490 

However, we hope that the methods and concepts that we introduce here both provide a warning 491 

of ways that Lotka-Volterra models can be mis-calibrated, and will help expand the utility of 492 

Lotka-Volterra approaches in diverse systems, and help guide how ecologists use these 493 

approaches in the future. 494 

 495 
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Figures: 617 

Figure 1: Propagation of 618 

process noise in model 619 

parameters. (a) saij shows 620 

standard deviation of the 621 

competition coefficients aij 622 

(blue) and aii (red) as a 623 

function of sc, the standard 624 

deviation of noise added to 625 

the mechanistic 626 

consumption parameters, c, 627 

in MacArthur’s resource 628 

model. Circles show 629 

analytical expectations for 630 

the relationship, triangles 631 

show average results from 632 

20,000 simulations of the 633 

mechanistic model, and lines show linear approximations, as described in the Appendix B.I in 634 

the supplement. Additional axis labels sc(cmin) -1 and sa(aij) -1 show the magnitude of these 635 

variabilities relative to the minimum c value and mean aij value, respectively. (b) Mean observed 636 

value of saij as a function of community size, n (lmax = n/2 in all cases). With the exception of 637 

n=2, saij scales with aij by a factor of sc (corresponding values of sc shown in grey). See online 638 

version of article for color rendering of figures. 639 
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 640 

Figure 2: Effects of process noise 641 

on coexistence for a system with 642 

two species and two limiting 643 

resources. (a) Species i and j 644 

coexist when the ratio of their 645 

carrying capacities Ki/Kj falls 646 

between aij/aii and ajj/aji (i.e. 647 

between the dark red and dark 648 

blue lines – see Fig. 1 in Chesson 649 

(1990) for a similar approach). 650 

Lines, dark shaded intervals, and 651 

light shaded intervals show the 652 

mean, standard deviation, and 653 

95% confidence interval, respectively, for these ratios as a function of process noise, sc, while 654 

dotted line shows fixed value for Ki/Kj. Top axis shows magnitude of noise relative to the mean 655 

difference between species consumption rates for the two limiting resources. (b) Effect of 656 

process noise. Pr[exclusion] shows the probability that one of two competing species will drive 657 

its competitor extinct. Empirical results show the average of 20,000 simulations of the 658 

mechanistic model, while uncorrelated and covariance predictions are based on the analytical 659 

expectation of variance and covariance in a, respectively, as described in the main text. Distance 660 

from the empirical estimates (black points) demonstrates prediction error. See online version of 661 

article for color rendering of figures. 662 
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 663 

Figure 3: Correspondence between mechanistic model and approximations from the Lotka-664 

Volterra competitive equations as a function of process noise, sc, for communities of 2 to 10 665 

species (note that lmax = n/2 in all cases). Intervals show mean ± one standard deviation based on 666 

20,000 simulations. Red intervals show results for uncorrelated model, blue shows covariance 667 

model, and purple regions show overlap between the two. Black dashed line shows mean result 668 

from the mechanistic model. ρ2abundance and ρ2a show the square of Pearson’s correlation 669 

coefficient comparing predictions of species abundances or predictions of the interaction matrix 670 

a, respectively. See online version of article for color rendering of figures. 671 

 672 

 673 

 674 
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 675 

Figure 4: Influences of uncorrelated error on predictions of community stability. (a) Real 676 

components of the eigenvalues for the interaction matrix a in a system with four species and two 677 

limiting resources. Black horizontal lines and dashed segments show mean values for the 678 

mechanistic model (n.b. fourth and fifth eigenvalues are always zero). Width of shaded intervals 679 

shows frequency distribution of results for Lotka-Volterra systems with uncorrelated error (i.e. 680 

the uncorrelated model). (b-d) Correspondence between mechanistic model and Lotka-Volterra 681 

approximations for 2 to 10 species with sc = 0.01 and lmax = n/2. Red intervals show results for 682 

uncorrelated model as described in the legend to Fig. 3, blue intervals show results for model 683 

with eigenvalues n>lmax coerced to zero, as described in Appendix D.I in the supplement, and 684 

purple regions show overlap between the two. See online version of article for color rendering of 685 

figures. 686 

 687 
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 688 

Figure 5: Fitting the covariance model to empirical data. Figures show variability in predictions 689 

from the covariance model based on observations from simulations from the mechanistic model 690 

of 100 “plots”. (a-f) Frequency distributions of species abundance for a system with n=3 and 691 

lmax=2 (a-c), and for a system with n=3 and lmax=3 (d-f). In all simulations, sc = 0.05. Bar plots 692 

show frequency of zero abundances for each species, and density plots show distribution of 693 

positive abundances. Blue shows expected results for the mechanistic model, while red shows 694 

mean ± one standard deviation based on results from 5,000 iterations of the covariance model. 695 

(g) Comparison of observed and estimated elements of a. Vertical lines show 95% confidence 696 

intervals for parameter estimates from the covariance model. (h) Model likelihood as a function 697 

of the mean square error (MSE) comparing estimated and observed parameters for the interaction 698 

matrix, a. (i) Distribution of the third (smallest) eigenvalue of a for the two systems. See online 699 

version of article for color rendering of figures. 700 


