This is the author's final version of the contribution published as:

Hiltner, U., Huth, A., Bräuning, A., Hérault, B., **Fischer, R.** (2018): Simulation of succession in a neotropical forest: High selective logging intensities prolong the recovery times of ecosystem functions *For. Ecol. Manage.* **430**, 517 - 525

The publisher's version is available at:

http://dx.doi.org/10.1016/j.foreco.2018.08.042

Simulation of succession in a Neotropical forest: High selective logging intensities prolong the recovery times of ecosystem functions

- 4 Ulrike Hiltner^{1,2,°}, Andreas Huth^{2,4,5}, Achim Bräuning¹, Bruno Hérault^{3, 6}, Rico Fischer²
- ⁵ ¹Institute of Geography, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- ⁶ ²Department of Ecological Modelling, Helmholtz-Centre for Environmental Research GmbH UFZ,
- 7 Leipzig, Germany
- 8 ³Centre International de Recherche en Agronomie pour le Développement CIRAD, University
- 9 Montpellier, UR Forests & Societies, Montpellier, France
- ⁴Institute of Environmental System Research, University of Osnabruck, Osnabruck, Germany
- ⁵German Centre for Integrative Biodiversity Research iDiv, University of Leipzig, Leipzig, Germany
- 12 ⁶INPHB Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Ivory Coast
- 13 °Corresponding author: Department of Ecological Modelling, Helmholtz-Centre for Environmental
- 14 Research GmbH UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Tel. +49(0)341-235-1723; E-Mail.
- 15 ulrike.hiltner@ufz.de

16 Abstract

17 There is increasing concern, to what extent production forests in the Neotropics are sustainably managed.
18 The implementation of effective forest management strategies that are ecologically beneficial plays thus a
19 central role to prevent forest degradation. However, to identify effective forest management strategies,
20 there is a need for methods supporting the decision-making process.

The main objective of our study is to analyze the mid- and long-term impacts of different management intensities, such as varying the minimum stem diameter of harvestable commercial trees, on the dynamic and structure of a species-rich tropical lowland forest of French Guiana. Therefore, we have applied the management module of a dynamic forest model and analyzed simulation experiments for undisturbed forest growth and selective logging. For the first time we were able to quantify the mean recovery times of multiple ecosystem functions and properties (biomass, gross primary production, leaf area index, Shanon diversity, timber volume) after selective logging.

29 Accordingly, we validated simulation results (biomass, number of trees harvested) of selective logging with forest inventory data from the last 32 years. The forest model reliably reproduces the observed pre-30 31 logging biomass, tree-size distribution, and logging intensity (10 trees/ha, 39 m³/ha). In addition, it 32 became clear how strongly management with higher logging intensities influence the forest in the long 33 term: (1.) the mean recovery times of the investigated ecosystem functions were significantly extended. With very intensive logging (116 m³/ha), the average recovery time of forest biomass was almost twice as 34 35 long as in a moderate simulation scenario (t_{int} 138 a, t_{mod} 77 a). Similar patterns were observed for other ecosystem functions, e.g. timber volume (t_{int} 158 a, t_{mod} 62 a). (2.) Additionally, the functional 36 37 composition shifted, as up to 30% pioneer tree species in particular invaded the forest.

38 This innovative use of forest growth models may help in the development of ecologically reasonable39 forest management strategies.

Keywords: forest gap model FORMIND, dbh of lower cutting threshold, biomass productivity, leaf area
index, Shannon diversity, timber volume.

42 **1. Introduction**

43 Forest ecosystems bind carbon and thus have a stabilizing effect on the global climate (IPCC, 2014; Pan et al., 2011; Watson et al., 2018). In particular, tropical forests play an important role in the global carbon 44 45 cycle (Houghton et al., 2015; Malhi and Grace, 2000), as they store about 363±28Pg of the Earth's 46 terrestrial carbon in their living biomass (Bonan, 2008; Pan et al., 2013). Logging is widely practiced in topical regions with about half of all humid tropical forests (> 4.0 10^8 ha) that can be designated as 47 production forests (Blaser et al., 2011). Depending on choices of management strategies (e. g. stem 48 diameter of cutting threshold, cutting cycles) of a silvicultural treatment (e.g. enrichment planting, liana 49 pruning, and thinning around potential crop trees), there is a risk that large areas of these forests will 50 change their carbon storage behavior from sinks to sources (Putz et al., 2008b; Bonan, 2008). Tropical 51 forests are a net carbon source as a result of human-induced forest disturbances (Baccini et al., 2017) and 52

53 most of the world's remaining tropical forests are logged (Pearson et al., 2017). Against this background, 54 it is of global relevance that efforts are made to reduce carbon emissions from forestry (Houghton et al., 55 2015), and forest management strategies also have a key role within the frameworks of climate and 56 biodiversity protection (IPCC, 2014; Pan et al., 2013). Currently, two challenges are discussed by the 57 public: (i.) Often, logging techniques applied are not sustainable on a long-term, which may result in 58 ecosystem degradation due to overexploitation (Huth et al., 2004; Molina, 2009; Reischl, 2012; Roopsind 59 et al., 2018; Steffen et al., 2015) and (ii.) management decisions may suffer from an incomplete 60 understanding of the long-term effects of forest management strategies on the growth of tropical forests (Houghton et al., 2015; Werger et al., 2011). 61

62 On an international level, action programs have been implemented to reduce detrimental impacts of logging. Prominent examples are the climate protection instrument REDD+ (Danielsen et al., 2011; 63 64 Mollicone et al., 2007; Tyukavina et al., 2015; World Bank, 2011) and certification systems, such as FSC 65 or PEFC (Clark and Kozar, 2011; Durst et al., 2006; Rotherham, 2011). Such programs create incentives through compensation payments or certification of timber to initiate a transformation of conventional 66 forestry into sustainable forest management (Long, 2013). If timber and carbon stocks do not recover at 67 healthy harvesting intervals, these managed forests become susceptible to conversion to intensified land 68 use with all the associated carbon emissions (Asner et al., 2006; Roopsind et al., 2018), and the objectives 69 70 of the action programs may not be achieved. Different challenges arise: On the one hand, it is difficult to 71 quantify the regional biomass distribution and logging rates on a high degree of detail (Gibbs et al., 2007; Malhi and Grace, 2000; Van Breugel et al., 2011), which is important to estimate variations in the global 72 73 carbon balance. Regarding this, vegetation status is one of the most uncertain variables in quantifying the 74 carbon cycle (Pan et al., 2013). On the other hand, the long-term effects of the applied management 75 strategies on forest growth need to be studied (Houghton et al., 2015; Piponiot et al., 2016a). 76 Consequently, a successful implementation of such international action programs requires methods and 77 knowledge to assess the impact of forest management options, such as selective logging, on forest growth 78 in the tropics (De Sy et al., 2015; Molina, 2009; Reischl, 2012; Steffen et al., 2015). Forest models can be 79 used to assess the long-term effects of current management actions (Huth et al., 2004; Shugart et al., 80 2018) and thus contribute to the decision-making process (De Sy et al., 2015). Complex interrelationships 81 between ecosystem functions and management strategies can thus be revealed.

To investigate the effects of selective logging on the regeneration ability of five forest attributes in French 82 Guiana (Paracou), we applied the individual-based forest growth model FORMIND with a newly 83 84 implemented management module (Fischer et al., 2016; Kammesheidt et al., 2002). One original aspect of the study are the complex analyses in which the recovery times of several forest attributes were taken into 85 86 account simultaneously. In addition to biomass, model outputs such as gross primary production, the leaf 87 area index, the functional diversity of the species groups, and timber volume could be projected with a high degree of detail. In our study, we defined the recovery of a specific forest attribute as followed: Once 88 89 an attribute value has reached its mean value of the pre-logging phase after the simulated logging intervention, we considered the remaining forest stands at the Paracou site as recovered. 90

91 The Paracou research station is located in the permanent forest estate (PFE) of French Guiana (Piponiot et 92 al., 2016a). When the Paracou experiment was established in 1982, the main research focus was on timber 93 and its sustainable renewal in order to strengthen the development of management rules in the PFE area. 94 Forestry forms the primary economic sector's main part of the country and about 45 % of the PFE areas 95 have been certified according to PEFC (PEFC International, 2017) since 2013. This high proportion demonstrates the importance of forestry for the country and at the same time indicates the interest of the 96 97 French National Forest Service (ONF) in resource-efficient, modern forestry techniques. The available forest inventory data from Paracou provide an excellent basis for the parameterization of forest models. 98 99 Cooperation with the ONF helped to further develop model studies, from which other tropical regions can 100 also benefit. The linkage of these precise field data with the individual-based forest growth model 101 FORMIND enabled us for the first time to evaluate the effects of logging on tree growth in a high degree 102 of detail - such as five forest attributes simultaneously, in an annual resolution, for three successional 103 stages - and a qualitatively good reproduction of the observed pre- and post-logging biomass values and tree size distribution. This kind of innovative use of forest growth models can assist in the development of 104 105 ecologically reasonable forest management strategies.

106 In this study, we address the following research questions:

Is it possible to reproduce the medium-term dynamics of a selectively logged forest with individual based forest modeling?

109 2. How do different management intensities (stem diameter of lower cutting threshold) affect the
110 ecosystem functions of the forest (biomass, gross primary production, leaf area index, diversity,
111 timber volume)?

112 3. How are the recovery rates of the forest's ecosystem functions influenced by logging intensities?

To examine these questions, the FORMIND forest model was parameterized for the Paracou site. Secondly, we compared the simulation results with field data. Then, we analyzed different logging scenarios in simulation experiments. Finally, we analyzed the mean recovery times of diverse forest attributes across logging intensities very detailed from an ecological point of view. For investigating different intensities of selective logging, the model parameter of the minimum stem diameter at breast height of harvestable commercial trees was varied (hereinafter referred to as dbh of lower cutting threshold).

120 **2. Material and methods**

121 2.1 The Paracou test site and forest inventory data

The Paracou test site is located in French Guiana (Location: 5° 16' 28" N, 52° 55' 25" W), which belongs to the Guiana Shield, north-eastern of the Amazon Basin. More than 94% of French Guiana's land area is covered with moist lowland terra firme rain forest that has a high number of tree species (150-220 species per hectare) and standing biomass (Fauset et al., 2015). The floristic composition is typical of Guianan rainforests with dominant families including Leguminoseae, Chrysobalanaceae, Lecythidaceae, Sapotaceae and Burseraceae (Guitet et al., 2014).

In 1984, twelve 6.25 ha plots, each one divided into 4 subplots of 1.56 ha, were established. All trees with 128 129 a stem greater than 0.1 m diameter breast height (dbh) have been identified, tagged, mapped, and 130 measured in these plots. From 1986 to 1988 different logging treatments were applied to 9 plots (details in Blanc et al., (2009); Hérault and Piponiot, (2018)), with 4 plots established as controls (T0). 131 132 Furthermore, there was one undisturbed 25-hectare-plot that was set up in 1992. In 3 logged plots (T1), 133 selected timbers were extracted, with an average of 10.4 tress (from 5.8 to 15.4 trees) greater than 0.5 m dbh removed per hectare, corresponding to a timber volume average of 32.5 m³/ha (from 15.4 to 51.8 134 m³/ha). In 8 plots, in which intensive timber stand improvement (TSI) was applied, logging intensity 135

averaged 20.6 trees (from 5.1 to 41.7 trees) greater than 0.5 m dbh removed per hectare, corresponding to a timber volume average of 53.4m³/ha (from 12.4 to 109.8m³/ha). Subsequent poison girdling of selected non-commercial species killed an average of 16.6 trees greater than 0.4 m dbh/ha. Skid trails and logging roads were mapped during the logging operation (Herault et al., 2010). Furthermore, the damage status of the trees was recorded using a categorical code for each type of damage (see Table A4). Complete inventories were conducted annually until 1995, then every two years, with a most recent census in 2016.

In order to parameterize and calibrate the forest model of FORMIND, we used the part of the inventory data set that belongs to the T0-control and biodiversity plots (primary forest totaled 62.5ha). To parameterize and validate the logging simulations, the plots with treatment T1 were chosen (18.75 ha in total).

146 **2.2 Description of the FORMIND forest model**

147 In this study we used the individual-based forest gap model FORMIND plus management module 148 (Fischer et al., 2016; Huth et al., 2005, 2004) to point out the mean recovery times of aboveground 149 biomass, gross primary production, leaf area index, diversity and timber volume after selective logging. 150 Forest gap models describe forest succession in small-scale forest patches (patch: 20 m x 20 m, time step: 1 a). The simulated forest area can range from 1 ha up to several km^2 (in this study 16 ha) being 151 152 composed of squared patches. The demographic processes considered are tree growth, mortality and 153 recruitment; the trees within a forest patch compete for space and light. Individual tree growth is 154 calculated on a carbon balance, based on eco-physiological processes, such as photosynthesis, respiration, carbon allocation, and litter fall. The relationship between aboveground biomass and carbon can be 155 156 estimated by multiplying with a factor of 0.47 (IPCC, 2003).

In tropical forests, the high number of tree species is a particular challenge for forest models. In FORMIND, tree species are therefore grouped into plant functional types (pfts) according to speciesspecific functional traits, such as maximum growth heights, maximum growth rates or light demands. In order to assess the forest dynamics and structure, e.g. tree species composition and tree size distribution can be calculated. The tree shape is simplified and described assuming cylindrical stems and crowns.

The model architecture of FORMIND is modularized. This concept allows extending the forest model by 162 adding a module to simulate different types of forest management, e.g. selective logging. All trees that 163 164 meet certain criteria will be logged. Simultaneously, surrounding trees can be damaged, depending on the chosen logging strategy, intensity, and dbh of lower cutting threshold. Different logging strategies can be 165 166 investigated with the management-module: (i.) reduced impact logging, in which the damage is reduced 167 by directing the felled trees' direction to the closest gap and thus lower damage to the remaining forest 168 stock. Furthermore, damage to potential crop trees are excluded; and (ii.) conventional logging, in which 169 a felled tree's direction of fall is randomly chosen and damage to the remaining forest stock is 170 uncontrollable. A detailed model description is provided in Fischer et al. (2016). The FORMIND model's 171 general concept is shown in the supplementary material (Appendix A, Figure A1).

172 **2.3 Parameterization of the forest model**

173 The forest inventory data of the undisturbed plots (T0-control) were used (i.) to parameterize tree 174 allometry (e. g. maximum stem diameter increment, maximum tree height), (ii.) to classify tree species into plant functional types (pft), (iii.) and to calibrate some remaining uncertain model parameter values. 175 Each tree species has been assigned to one of eight pfts, based on both maximum stem diameter 176 177 increment and maximum tree height. About 800 tree species (Appendix C) were grouped into three classes of growth rates (successional state) and four height classes (see Figure A2). Table 1 shows the 178 179 functional traits assigned for each of the eight pfts. Table 1 also lists the attribute values of mean aboveground biomasses, mean basal area, and mean tree numbers calculated from the undisturbed plots. 180 181 FORMIND internal allometric relationships were used for this (see table A1). Some parameters were numerically calibrated (maximum leaf photosynthesis, global number of seeds, maximum annual stem 182 diameter increment, maximum stem diameter) using an optimization method (dynamically dimensioned 183 184 search algorithm; Lehmann and Huth, 2015). For model calibration we used the tree size distribution and 185 aboveground biomass of each pft in order to reproduce the forest stand structure as realistically as 186 possible over time (Figure A3). Following this approach, the model was calibrated against 136 data points originating from the forest inventories (see Appendix A). To compare the simulated results and forest 187 inventory data we visualized both in 1:1 plots and maximized the R² Figure A4 (Leyer and Wesche, 188 189 2007).

190 Furthermore, an established management module was enabled in order to investigate the effects of 191 selective logging (Huth et al., 2004). The parameters were determined from the forest inventory data of 192 the T1 plots: The number of commercial trees out of all trees per pft were calculated as well as the dbh of 193 lower cutting threshold was averaged to 0.55 m; the parameter dam₁ describes the proportion of damaged 194 trees in the residual forest stand per stem diameter class dam_{dia} during a selective logging event. The 195 simulation results of the logging scenario with a dbh of lower cutting threshold of 0.55 m were compared 196 with forest inventory data from the logged plots (T1 plots), such as the stem number and stem volume of 197 the harvested commercial trees as well as the loss of the mean aboveground forest biomass. For more 198 information about the parameterization, see Appendix A, and C.

199 2.4 Simulation of selective logging

200 For the simulation of selective logging we enabled the management module and simulated a single 201 logging event. To simulate different selective logging intensities we varied the dbh of lower cutting 202 threshold between 0.1 m - 1.0 m in 0.1 m-steps. In total, we simulated 11 logging scenarios with varying dbh of lower cutting thresholds. A reference illustrated the undisturbed growth of primary forest in an 203 equilibrium phase, before selective logging took place (pre-logging phase). To simulate undisturbed 204 205 forest growth, we used the parameter settings conforming to Paracou's undisturbed control plots (TO). Additionally for the logging scenarios, we used parameter settings of the logging event according to 206 207 Paracou's T1-plots. This referred to the simulation scenario with a lower cutting threshold of dbh equal to 0.55 m (so-called moderate logging scenario: 39 m³/ha or 10 trees/ha were harvested), where the fall 208 209 direction of the felled trees was controlled. In this case, the simulation results were compared with the 210 associated field data (T1) during the post-logging phase. In the other 10 logging scenarios, the falling 211 direction of felled trees was not controlled and potentially crop trees were damaged. One of these 212 scenarios, with a dbh of cutting threshold of 0.1 m, was referred to as an intense logging scenario (yield: 213 $116 \text{ m}^3/\text{ha or } 306 \text{ trees/ha}$).

The simulation for all scenarios began on a treeless (empty) area of 16 hectares. Annual time steps and a total of 750 years were simulated. Simulation results for the spin-up time of 450 years were excluded from further analysis. One single logging event took place after the 500th simulation time step. This was then assigned to the observed logging event in the year 1986. By doing so, we could count years after selective logging (time of logging equals 0). Of the entire model outputs, we analyzed the final 300 years of each simulation scenario. The time interval [1; 250] corresponded to the post-logging phase and the time interval [-50; 0] to the pre-logging phase.

221 Beyond the analysis of aboveground biomass (AGB) for the three successional states (see Table 1) and the overall forest stand, the forest model was used to extrapolate the development of the entire forest 222 223 stand's gross primary production (GPP), leaf area index (LAI), normalized Shannon diversity (H'), and timber volume (V_T) . We also analyzed the mean recovery times of these five forest attributes for the 224 years after logging. In our study, the mean recovery times for the simulated forest attributes after logging 225 226 were determined as follows: For each logging scenario, the simulation results of these attributes were 227 smoothed using local regression models (loess; smoothing span = 0.05). These smoothed curves were 228 then analyzed to identify the point of time during the post-logging phase at which the attribute values, 229 within a given tolerance range, returned to the pre-logging baseline. The tolerance ranges were set to the 230 standard deviations of every simulated mean attribute value (averaged over 16 ha and 150 a). To better 231 interpret mean recovery times of five forest attributes of different logging intensities expressed by changing dbh of lower cutting thresholds, we fitted trend lines of non-linear least squares to logarithmic 232 233 dbh of lower cutting thresholds. The quality of these trends was given as residuals (see Figure A6). Moreover, we used the normalized Shannon diversity H' (1) to explain the diversity of tree species groups 234 235 (pft), taking into account the relative abundance of species groups (Marcon et al., 2014; Spellerberg and Fedor, 2003). A change in H' should illustrate the impact of damage on forest structure in different 236 selective logging scenarios, where p_i is the proportion of individuals belonging to the ith pft and P is the 237 238 total number of pfts (here 8) in the data set:

239
$$H' = -\frac{\sum_{i=1}^{P} p_i \cdot \ln p_i}{\ln P}$$
 (1).

H' has been normalized and ranges between 0 and 1. The higher the index is, the more homogenous is the
distribution of pfts (Huston, 1994). Standard deviations for the total forest stand's aboveground biomass
(16 ha simulation area) were given to measure the deviation from the average forest attributes over 1 ha,
and to interpret the stability of the ecosystem (Leyer and Wesche, 2007). Detailed information about the
software used throughout our analysis, see Appendix B.

3. Results

246 **3.1 Simulated biomass dynamics of a selectively logged forest**

First, we analyzed aboveground biomass (Figure 1.a, 1.b) for a moderate and an intensive logging 247 scenario's aboveground biomass (Figure 1.a, 1.b). In the moderate scenario 10 trees/ha with 39 m³/ha 248 were harvested and in the intensive scenario 116 m³/ha and 306 trees/ha. Logging intensity was expressed 249 by the dbh of lower cutting threshold. It can clearly be seen that the first logging event (time = 0 a) in 250 251 both scenarios was followed by an immediate decline in aboveground biomass (AGB), accompanied by an increase in productivity in comparison to the reference (mean AGB_{ref} 439 t_{ODM}/ha, mean sd_{ref} ±67 252 t_{ODM}/ha; averaged over 16 ha simulation area). Generally, the decline in aboveground biomass was 253 254 directly proportional to the intensity of selective logging, but the increase in productivity was indirectly 255 proportional. In the moderate scenario, 10 trees per hectare were harvested with an overall commercial bole volume around 39m³/ha; aboveground biomass decreased by 109 t_{ODM} /ha one year after logging 256 257 (Figure 1.a). In the intense scenario, the overall aboveground biomass decline was twice as strong (Figure 258 1.b). In this scenario, more than 306 commercial trees were harvested per hectare, with a total stem volume of 116 m³/ha, so that the overall above ground biomass decreased by 211 t_{ODM} /ha. 259

In a second step, we explored the structural development of the forest stand by analyzing species compositions. In the moderate scenario (Figure 1.a) the tree species' group composition shifted slightly during 70-80 years after logging: the aboveground biomass of the pioneer species recovered their initial levels faster than that of the climax or intermediate tree species. After this phase both the forest stand structure and overall biomass returned to the reference values of primary forest growth (pre-logging phase); likewise the timber volume.

A comparison of the simulated and observed aboveground biomass per species group (pfts grouped by successional state) between 1986 and 2016 shows that our model can reproduce the dynamics and species group composition of a selectively logged forest (Figure 1.c). During the post-logging phase the simulated total aboveground biomass corresponded well to the observed values (R^2 0.991, rmse 4.6 t_{ODM}/ha). Slight deviations were visible in the simulated and observed aboveground biomass of the climax species after logging (see also Figure A5). For the pre-logging phase, the forest model also slightly overestimated the observed total mean aboveground biomass (418 t_{ODM} /ha) with 5 %. The deviations between observed and simulated biomass values were less than the observed standard deviation (sd_{obs} ±67 t_{ODM} /ha) (see also Figure A4).

The intense scenario was characterized by a stronger shift in the species group composition and the aboveground biomass was only slowly recovering (138 a) (Figure 1.b). A rapid increase in the forest stand's overall aboveground biomass was particularly noticeable during about 50 years after logging. In this phase there is a steady increase of fast-growing pioneer species' biomass. The increase of rapid gross primary production directly after logging was followed by a phase (> 130 a after logging), which was characterized by productivity rates around 20 t_{ODM}/ha similar to the baseline (Figure 1.d).

281 3.2 Effect of different selective logging intensities on ecosystem functions

We investigated the impacts of different logging intensities on the productivity of the remnant forest 282 283 stand's aboveground biomass in a set of simulation scenarios. Therefore, we varied the dbh of lower 284 cutting threshold stepwise between 0.1 m - 1.0 m in 0.1-m-intervals. Figure 2 shows the relation between 285 a changing dbh of lower cutting threshold and the remaining forest stand biomass (Figure 2.a) or gross 286 primary production (Figure 2.b) after logging: The fewer trees were harvested (high dbh of lower cutting 287 thresholds), the higher the remaining forest biomass, meaning that with low logging intensity, 288 productivity shows only minor changes. Additionally, it becomes clear that a large part of the stand 289 biomass has already grown back to the level of the baseline after about 60 years. However, complete 290 biomass recovery of the forest structure takes almost twice as long (130-140 a), as the functional 291 composition is still strongly shifted (cf. Figure 1.b). In the case of gross primary production, a higher 292 logging intensity resulted in a higher productivity of the logged forest. Figure 2.c represents the 293 relationships between the forest's gross primary productions and forest stand biomass during six decades 294 after selective logging. It can be seen that there is a negative relationship between the two attributes, 295 meaning higher productivity values for forest stands with low biomass. This negative relationship becomes stronger the longer the logging event has passed. 296

We explored also the average duration that the entire forest stand needed to recover after logging (mean recovery time; Figure 3) for five specific forest attributes, such as the aboveground biomass, gross primary production, leaf area index, Shannon diversity, and timber volume. We found that timber volume 300 has the longest mean recovery times in all scenarios, followed by forest biomass, leaf area index and 301 gross primary productivity (Figure 3.a). The Shannon diversity index has the shortest mean recovery time. 302 Figure 3.b displays the mean recovery times of the moderate and intense logging scenarios. In the 303 intensive scenario, the forest stand takes at least twice as long to recover compared to the moderate 304 scenario. This applies to all forest attributes examined. When evaluating different management strategies 305 (Figure 3.a), we found logarithmic relations between the different dbh of lower cutting thresholds and 306 mean recovery time of the forest attributes. For the intense and moderate logging scenarios, the mean 307 recovery times of the attributes under consideration were compared with the official cutting cycle of 65 years in French Guiana (Figure 3.b). For the moderate logging scenario this recovery time of the attribues 308 309 was sufficient, only the recovery time of the aboveground biomass was about 5-15 years longer (70-80 a). 310 In contrast, the mean recovery times of the five forest attributes of intensive logging were at least twice as 311 long as the official cutting cycle in French Guiana. The timber volume and forest biomass are particularly 312 remarkable, as they have the longest recovery times compared to LAI, GPP, and Shannon diversity. With 313 increasing dbh of lower cutting threshold the values of the recovery time converge at 1.0m. From this dbh 314 onwards, there were nearly no commercial trees in the simulated forest stand. The recovery time of the 315 Shannon index was approximately 40 years, which is below French Guiana's official cutting cycle of 65 316 years.

317 **4. Discussion**

318 4.1 Incorporation of the model approach

One of the main achievements of this simulation study are the detailed findings for the quantitative evaluation of the succession of several forest attributes for the Paracou test site in French Guiana, which have either not yet been recorded extensively in the terrain (e.g. GPP, LAI, Shannon diversity) or are being relevant in public discussions (AGB, timber volume).

With the term "detailed" we mean the resolution of the simulation results (e.g. annually, per pft), and a qualitatively good reproduction of the observed pre- and post-logging biomass values and tree size distribution. Literature research has shown that for the Amazon and adjacent regions most empirical information focus on the recovery of a single forest attribute, e.g. the standing biomass after disturbance, which is important to calculate carbon fluxes (Piponiot et al., 2016b; Poorter et al., 2016; Rutishauser et al., 2015). An original aspect of our study are the complex analyses in which the mean recovery times of five forest attributes were taken into account simultaneously. We considered the five attribute values of AGB, GPP, LAI, Shannon diversity, and timber volume to be important to estimate over a longer period of time, as they provide valuable insights into the condition of a production forest for tropical forestry.

332 The accuracy of the forest model was achieved by by linking large-scale, long-term and consistently 333 recorded field data and forest modelling. Most of the model parameter values could be calculated, hence, only three uncertain parameters were numerically calibrated with the inventory data of the undisturbed 334 335 control plots (T0) of Paracou using the dynamically dimension search (Lehmann and Huth, 2015). As a 336 result, the forest model only slightly overestimated the observed mean aboveground biomass by 5% (AGB_{obs} 418 t_{ODM}/ha, AGB_{sim} 439 t_{ODM}/ha). Rutishauser et al. (2010) obtained values between 388 337 t_{ODM}/ha and 443 t_{ODM}/ha for the aboveground biomass of the same control plots in 1991 and 2007 (using 338 339 allometry for wet tropical forests by Chave et al. (2005)), respectively, which confirms our results for 340 allometry used by FORMIND (see Table A1; Fischer et al., 2016).

As a second important step, we validated our simulation results of one of the selective logging scenarios (moderate: 39 m³/ha or 10 trees/ha) with an independent set of Paracou's forest inventory data (T1 plots). Deviations between simulated and observed aboveground biomass values during 30 years after logging were low (R^2 0.991, rmse 4.6 t_{ODM}/ha), indicating that biomass dynamics and recovery time of logged forests were well represented by the model simulations.

346 One reason for these reasonably simulation results was the excellent database of the Paracou forest. 347 Indeed, the Paracou database is unique in terms of (i.) the frequency of forest inventories every two years, 348 (ii.) the spatial extent (120 ha area), (iii.) the duration (35 years of inventories) including more than 30 349 years of post-logging inventories, and (iv.) the methodological consistency, with same team of staff from 350 the beginning. This and the close cooperation with French Guiana's National Forest Service (ONF) 351 helped to further develop such model studies, from which other tropical regions can also benefit. With the 352 FORMIND forest model inclusive management-module it is possible to estimate the mean recovery times 353 of at least these five forest stand attributes for logged forest at Paracou with a high degree of detail. The 354 model can be easily adapted to simulate further forest management strategies by varying parameters, such

as the dbh of lower cutting threshold, the cutting cycle or the number of trees per commercial tree species to be harvested. The model parameterization developed can also be applied to obtain new knowledge on the dynamics of forests or to test novel management strategies, such as the impact of modernized techniques to reduce logging damage (Piponiot et al., 2018; Putz et al., 2008a); given that such modern techniques are being used in less than 5% of selectively logged forest areas worldwide (Nasi et al., 2011).

360 The approach of this study was based on the grouping of over 800 observed tree species into eight pfts. 361 This aggregation is suitable for applications with process-based models (Fischer et al., 2018; Köhler et al., 2000). This was also valid with increasing model complexity (forest model plus management-362 module), as required by this investigation. The advantages of tree species aggregation are that information 363 364 from all trees recorded was included in the model parameterization. This had a positive effect on the model's accuracy and the robustness of model outcomes; evenly, the parameterization effort was 365 366 manageable. However, the representation of temporal changes in tree species diversity is limited with the 367 concept of pfts. This may be an explanation for the fast recovery time of the Shannon diversity in this study. Maréchaux and Chave (2017) developed another process-based model in which 139, out of 800, 368 tree species were parameterized one by one for the Paracou site. Compared to the pft approach, a high 369 370 number of represented species in a forest model allows reproducing trait variability between species in more detail. However, a very detailed functional trait data basis is needed, and the model 371 372 parameterization is laborious, especially for rare tree species. The latter could mean that only subsets of 373 data on dominant tree species can be considered, making it difficult to investigate complex interactive processes on the entire forest stand. In addition, transferring the model concept to other locations is 374 375 challenging. Nevertheless, such a species-specific model approach could be perspectively used to 376 evaluate the interactions between logging and the species composition. The FORMIND forest model of 377 the Paracou test site represents the tree species composition in aggregated form, meaning the functional 378 composition of the forest stand is emphasized, which seems reasonable for the long-term evaluation of the 379 effects of logging.

380 4.2 Long-term effects of logging intensity on forest functions

381 A major challenge for tropical forestry is the identification of timber harvesting thresholds that are 382 compatible with recovery times of forest attributes that can be used as indicators to ensure stable values of 383 biomass, harvest yield or other ecosystem services (Petrokofsky et al., 2015). Assuming that there are as 384 many indicators as possible to estimate the long-term impact of logging interventions on forest growth, 385 the higher the confidence of the stability or instability of a management strategy can be considered 386 (Duelli and Obrist, 2003; Mace et al., 2012). The recovery times of remaining aboveground biomass vary 387 with the intensity of timber harvest, as discussed in the literature (Huang and Asner, 2010; Roopsind et 388 al., 2018; Rutishauser et al., 2015). Our results support studies who concluded that logging strategies 389 postulating reduced impacts do not necessarily ensure full recovery of forest biomass; at least not within 390 government-specific thresholds of minimum cutting cycles (Huth et al., 2004; Keller et al., 2007; 391 Roopsind et al., 2018; Sist and Ferreira, 2007; Valle et al., 2007; Zarin et al., 2007). This can also be said 392 of the Amazon Basin (Piponiot et al., 2016b), where forest management practices differ between 393 countries (Rutishauser et al., 2015). The minimum cutting cycles are fixed between 30-60 years with 394 harvests of 10-30 m³/ha, often too short to restore commercial timber reserves. In particular, in French Guiana, with an official cutting cycle of 65 years and a mean logging intensity of 8-29 m³/ha (averaged 395 396 over the last 15 years), reduced impact logging-techniques are used in practice (Piponiot et al., 2016a). 397 Our results showed that, under assumptions of our moderate logging conditions (dbh of lower cutting 398 threshold 0.55m, 39 m³/ha), the recovery for aboveground biomass took about 5-15 years longer than the 399 French Guiana's official cutting cycle is. For instance, if the biomass stock of the moderate scenario is to 400 fully regenerate, we recommend raising the average dbh of lower cutting threshold, overall pfts, to at least 401 0.6 m, so that the pre-logging value could be reached after 65 years. It can also be assumed that the timber 402 volume will also recover during this period of time (see Fig 3). In this study, we assumed the same value 403 of dbh of lower cutting threshold for all pfts in each logging scenario. The effects of diversifying this 404 parameter on the recovery time of forest attributes by assuming group-specific parameter values would 405 have to be investigated in future.

Another challenge of this study was that we were able to demonstrate that French Guiana's official cutting cycle of 65 years, under assumptions of the moderate logging scenario, may be sufficient for the restoration of the LAI, and gross primary production at the study site Paracou. Besides, we have also analyzed the average recovery time of functional diversity to give a rudimentary indication that a cutting cycle of 65 years could be sufficient to restore the structural composition of the tree species. We showed, the complete regeneration of multiple forest attributes following a logging intervention can be used as 412 important indicator of ecological stability. However, we would still have to investigate the impact of 413 sequential logging interventions on forest growth and timber volume yields. The expectation is that 414 managed forests will maintain both their ecological and economic value and provide ecosystem services 415 over long periods of time. As long as logging intensities are low, selectively logged forests supply 416 biomass and timber, as long as the regeneration time is shorter than a country's cutting cycle. Roopsind et 417 al.(2018) found that vulnerabilities can occur as early as the second cutting cycle and start forest 418 degradation, with negative consequences for the carbon balance; however, the biodiversity and ecosystem 419 services of a forest can also be affected (Millennium Ecosystem Assessment, 2005). There is a risk to lose these ecosystem services through opportunity costs that bring financial benefits. Therefore, payments 420 421 must be made for ecosystem services that require effective decision-making and monitoring structures to initiate improved forest management strategies for carbon sequestration and biodiversity protection. 422

423 Another important question to discuss is how forestry interventions may decrease the time to biomass or 424 timber recovery. Our results showed at the example of French Guiana that the forest stand could 425 regenerate completely within the official cutting cycle unless the dbh of the lower cutting threshold was 426 reasonable. It also became clear that the relationship between aboveground biomass and gross primary 427 production is variable: both change as a function of logging intensity and the time passed since logging. This show that it is crucial to consider the successional state of a forest stand to be logged (Hérault and 428 429 Piponiot, 2018). One option to shorten the recovery times of ecosystem functions and properties is to 430 reduce damage by using gentle harvesting techniques (Putz et al., 2008a). At the same time, the cutting cycles must be extended and depletion must be prevented (Piponiot et al., 2018). Different forestry 431 432 practices to increase the growth rates and yields of commercially viable species such as enrichment 433 planting, liana pruning and thinning around potential crop trees are also likely to stop over-exploitation of 434 forests. Fundamental problems regarding these techniques are high costs and the acceptance of using 435 toxic chemicals in the environment. Another strategy is diversifying commercial species lists while 436 adapting the timber industry to this diversification. However, the extensive adoption of such practices 437 implies a change in the prevailing approach to forest management (Messier et al., 2013). This means that 438 more sustainable logging strategies can reduce both yield and income. The trade-offs must therefore be 439 balanced between ecological and economic aspects by applying techniques to reduce the impacts of 440 selective logging.

441 In this study, we looked at the dynamics of forest functions and properties from an ecological point of 442 view. These must be extended by economic aspects in future studies. It is important to develop forest 443 management strategies that reduce damage to forest as well as increase effective harvest volumes. Furthermore, it is needed to evaluate the effects of forest management on biomass dynamics in the 444 445 context of climatic changes (Fargeon et al., 2016). The question of how ecosystem attribute changes 446 affect recovery of the forest during climate change must be analyzed (Hérault and Piponiot, 2018). For 447 example, the cutting cycle, the minimum dbh of cutting threshold value of commercial tree species or 448 reduced impact logging techniques can be adjusted by changes in forest management regulations (Putz et 449 al., 2008a; 2008b). Besides, it is an open question to what extent climate change influences the biomass 450 or carbon balance of the forest stand (Guimberteau et al., 2016; IPCC, 2014).

451 **5. Conclusions**

452 The key objective of this study was to apply the FORMIND forest model that enables to evaluate the 453 impact of various forest management strategies in controlled simulation experiments to be carried out 454 over long periods of time in scenarios. By linking empirical data from an intensively studied test site and 455 forest modeling, we succeeded in developing a parameterization for the forest model including a 456 management-module. Additionally, it was possible to evaluate important functional attributes (gross 457 primary production, leaf area index, and Shannon-diversity, timber volume) whose empirical measurement is challenging or has not yet been carried out. For the first time we were able to analyze and 458 459 quantify the mean recovery times of complex forest attributes simultaneously with a high degree of detail. We have found that increasing logging intensities, by reducing the dbh of the lower cutting thresholds of 460 commercial trees, extend the mean recovery times of the investigated ecosystem functions and properties 461 462 considerably. As an example, based on our simulation results for Paracou in French Guiana, we recommend a dbh of lower cutting threshold for commercial tree species of at least 0.55 m for a cutting 463 464 cycle of 65 years.

In future, it might be very interesting to discuss the trade-off between maximizing the harvested timber volume and minimizing the damage to the residual forest stand with respect to recovering the amount of timber. In addition to the ecological aspects, on which we are focusing in particular, economic aspects, but also climatic changes, should also be taken into account in future studies.

469	This methodological approach of forest modeling may allow developing forest management strategies
470	that are more economic and ecological friendly. Knowledge gained through such simulation experiments
471	will support the decision-making processes (e.g. REDD+ and FSC-labeling).

472 Acknowledgements

We want to thank Dr. S. Traissac very much for his valuable comments and support regarding the model
parameterization as well as L. Descroix and M. Karmann for helpful discussions on the forest
management of French Guiana's production forests or timber certification. U.H. would like to thank A.
Keberer for his assistance. U.H. was supported by the German Federal Environmental Foundation - DBU
[AZ 20015/398], R.F. and A.H. were supported by the Helmholtz Alliance Remote Sensing and Earth
System Dynamics, the work was supported by the European FEDER funds [GFclim project GY0006894],

and the Agence Nationale de la Recherche [ANR-10-LABX-0025].

480 **Conflicts of Interest**

- 481 The authors declare no conflict of interest. The funders had no role in the design of the study; in the
- 482 collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to

483 publish the results.

484 **References**

- Asner, G.P., Broadbent, E.N., Oliveira, P.J.C., Keller, M., Knapp, D.E., 2006. Condition and fate of logged
 forests in the Brazilian Amazon 103.
- Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., Houghton, R.A., 2017. Tropical
 forests are a net carbon source based on aboveground measurements of gain and loss. Science
 (80-.). 358, 230–234. https://doi.org/10.1126/science.aam5962
- Blanc, L., Echard, M., Herault, B., Bonal, D., Marcon, E., Chave, J., Baraloto, C., 2009. Dynamics of
 aboveground carbon stocks in a selectively logged tropical forest. Ecol. Appl. 19, 1397–1404.
 https://doi.org/10.1890/08-1572.1
- Blaser, J., Sarre, A., Poore, D., Johnson, S., 2011. Status of Tropical Forest Management 2011, ITTO
 Technical Series. International Tropical Timber Organization, Yokohama.
- 495Bonan, G.B., 2008. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of496Forests. Science (80-.). 320, 1444–1449. https://doi.org/10.1126/science.1155121
- Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Fölster, H., Fromard, F., Higuchi,
 N., Kira, T., Lescure, J.-P., Nelson, B.W., Ogawa, H., Puig, H., Riéra, B., Yamakura, T., 2005. Tree
 allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145,
 87–99. https://doi.org/10.1007/s00442-005-0100-x

- 501 Clark, M.R., Kozar, J.S., 2011. Comparing sustainable Forest Management certifications standards: A
 502 Meta-Analysis. Ecol. Soc. https://doi.org/10.5751/ES-03736-160103
- Danielsen, F., Skutsch, M., Burgess, N.D., Jensen, P.M., Andrianandrasana, H., Karky, B., Lewis, R., Lovett,
 J.C., Massao, J., Ngaga, Y., Phartiyal, P., Poulsen, M.K., Singh, S.P., Solis, S., Sørensen, M., Tewari,
 A., Young, R., Zahabu, E., 2011. At the heart of REDD+: A role for local people in monitoring
 forests? Conserv. Lett. 4, 158–167. https://doi.org/10.1111/j.1755-263X.2010.00159.x
- 507 De Sy, V., Herold, M., Achard, F., Beuchle, R., Clevers, J.G.P.W., Lindquist, E., Verchot, L., 2015. Land use
 508 patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10.
 509 https://doi.org/10.1088/1748-9326/10/12/124004
- 510 Duelli, P., Obrist, M.K., 2003. Biodiversity indicators : the choice of values and measures 98, 87–98. 511 https://doi.org/10.1016/S0167-8809(03)00072-0
- 512 Durst, P.,, McKenzie, P.,, Brown, C.,, Appanah, S., 2006. Challenges facing certification and eco-labelling 513 products of forest in developing countries. Int. For. Rev. 8, 193-200. 514 https://doi.org/10.1505/ifor.8.2.193
- Fargeon, H., Aubry-Kientz, M., Brunaux, O., Descroix, L., Gaspard, R., Guitet, S., Rossi, V., Hérault, B.,
 2016. Vulnerability of Commercial Tree Species to Water Stress in Logged Forests of the Guiana
 Shield. Forests 7, 105. https://doi.org/10.3390/f7050105
- 518 Fauset, S., Johnson, M.O., Gloor, M., Baker, T.R., Monteagudo M., A., Brienen, R.J.W., Feldpausch, T.R., 519 Lopez-Gonzalez, G., Malhi, Y., Ter Steege, H., Pitman, N.C.A., Baraloto, C., Engel, J., Pétronelli, P., 520 Andrade, A., Camargo, J.L.C., Laurance, S.G.W., Laurance, W.F., Chave, J., Allie, E., Vargas, P.N., 521 Terborgh, J.W., Ruokolainen, K., Silveira, M., Aymard C., G.A., Arroyo, L., Bonal, D., Ramirez-Angulo, 522 H., Araujo-Murakami, A., Neill, D., Hérault, B., Dourdain, A., Torres-Lezama, A., Marimon, B.S., 523 Salomão, R.P., Comiskey, J.A., Réjou-Méchain, M., Toledo, M., Licona, J.C., Alarcón, A., Prieto, A., 524 Rudas, A., Van Der Meer, P.J., Killeen, T.J., Marimon Junior, B.H., Poorter, L., Boot, R.G.A., Stergios, 525 B., Torre, E.V., Costa, F.R.C., Levis, C., Schietti, J., Souza, P., Groot, N., Arets, E., Moscoso, V.C., 526 Castro, W., Coronado, E.N.H., Peña-Claros, M., Stahl, C., Barroso, J., Talbot, J., Vieira, I.C.G., Van 527 Der Heijden, G., Thomas, R., Vos, V.A., Almeida, E.C., Davila, E.Á., Aragão, L.E.O.C., Erwin, T.L., 528 Morandi, P.S., De Oliveira, E.A., Valadão, M.B.X., Zagt, R.J., Van Der Hout, P., Loayza, P.A., Pipoly, 529 J.J., Wang, O., Alexiades, M., Cerón, C.E., Huamantupa-Chuquimaco, I., Di Fiore, A., Peacock, J., 530 Camacho, N.C.P., Umetsu, R.K., De Camargo, P.B., Burnham, R.J., Herrera, R., Quesada, C.A., 531 Stropp, J., Vieira, S.A., Steininger, M., Rodríguez, C.R., Restrepo, Z., Muelbert, A.E., Lewis, S.L., 532 Pickavance, G.C., Phillips, O.L., 2015. Hyperdominance in Amazonian forest carbon cycling. Nat. 533 Commun. 6. https://doi.org/10.1038/ncomms7857
- 534 Fischer, R.; Rödig, E.; Huth, A., 2018. Consequences of a Reduced Number of Plant Functional Types for 535 the Simulation of Forest Productivity. Forests 460. https://doi.org/10.3390/f9080460
- 536 Fischer, R., Bohn, F., Dantas de Paula, M., Dislich, C., Groeneveld, J., Gutiérrez, A.G., Kazmierczak, M., 537 Knapp, N., Lehmann, S., Paulick, S., Pütz, S., Rödig, E., Taubert, F., Köhler, P., Huth, A., 2016. 538 Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics 539 of complex tropical forests. Ecol. Modell. 326, 124-133. 540 https://doi.org/10.1016/j.ecolmodel.2015.11.018
- Gibbs, H.K., Brown, S., Niles, J.O., Foley, J.A., 2007. Monitoring and estimating tropical forest carbon
 stocks: making REDD a reality. Environ. Res. Lett. 2, 045023. https://doi.org/10.1088/17489326/2/4/045023
- Guimberteau, M., Ciais, P., Ducharne, A., Boisier, J.P., Aguiar, A.P.D., Biemans, H., De Deurwaerder, H.,
 Galbraith, D., Kruijt, B., Langerwisch, F., Poveda, G., Rammig, A., Rodriguez, D.A., Tejada, G.,
 Thonicke, K., Von Randow, C., Von Randow, R.C.S., Zhang, K., Verbeeck, H., 2016. Impacts of future
 deforestation and climate change on the hydrology of the Amazon basin: a multi-model analysis
 with a new set of land-cover change scenarios. Hydrol. Earth Syst. Sci. Discuss. 1–34.
 https://doi.org/10.5194/hess-2016-430

- Guitet, S., Sabatier, D., Brunaux, O., Hérault, B., Aubry-Kientz, M., Molino, J.F., Baraloto, C., 2014.
 Estimating tropical tree diversity indices from forestry surveys: A method to integrate taxonomic
 uncertainty. For. Ecol. Manage. 328, 270–281. https://doi.org/10.1016/j.foreco.2014.05.045
- Herault, B., Ouallet, J., Blanc, L., Wagner, F., Baraloto, C., 2010. Growth responses of neotropical trees to
 logging gaps. J. Appl. Ecol. 47, 821–831. https://doi.org/10.1111/j.1365-2664.2010.01826.x
- 555 Hérault, B., Piponiot, C., 2018. Key drivers of ecosystem recovery after disturbance in a neotropical 556 forest. For. Ecosyst. 5, 2. https://doi.org/10.1186/s40663-017-0126-7
- Houghton, R.A., Byers, B., Nassikas, A.A., 2015. A role for tropical forests in stabilizing atmospheric CO2.
 Nat. Clim. Chang. https://doi.org/10.1038/nclimate2869
- Huang, M., Asner, G.P., 2010. Long-term carbon loss and recovery following selective logging in Amazon
 forests. Global Biogeochem. Cycles 24, 1–15. https://doi.org/10.1029/2009GB003727
- Huston, M., 1994. Biological diversity: The coexistence of species on changing landscapes, Cambridge
 University Press, Cambridge University Press, Cambridge, UK.
- Huth, A., Drechsler, M., Köhler, P., 2005. Using multicriteria decision analysis and a forest growth model
 to assess impacts of tree harvesting in Dipterocarp lowland rain forests. For. Ecol. Manage. 207,
 215–232. https://doi.org/10.1016/j.foreco.2004.10.028
- Huth, A., Drechsler, M., Köhler, P., 2004. Multicriteria evaluation of simulated logging scenarios in a
 tropical rain forest. J. Environ. Manage. 71, 321–333.
 https://doi.org/10.1016/j.jenvman.2004.03.008
- IPCC, 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects.
 Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel
 on Climate Change. Organ. Environ. 24, 688. https://doi.org/https://ipcc-wg2.gov/AR5/report/full report/
- IPCC, 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry (GPG-LULUCF), in: Jim
 Penman, Michael Gytarsky, Taka Hiraishi, Thelma Krug, D.K., Riitta Pipatti, Leandro Buendia, Kyoko
 Miwa, T.N., Wagner, K.T. and F. (Eds.), IPCC AR 3. IGES/IPCC, Hayama, Japan, p. 590.
- Kammesheidt, L., Köhler, P., Huth, A., 2002. Simulating logging scenarios in secondary forest embedded
 in a fragmented neotropical landscape. For. Ecol. Manage. 170, 89–105.
 https://doi.org/10.1016/S0378-1127(01)00783-6
- Keller, M., Asner, G.P., Blate, G., McGlocklin, J., Merry, F., Peña-Claros, M., Zweede, J., 2007. Timber
 production in selectively logged tropical forests in South America. Front. Ecol. Environ. 5, 213–216.
 https://doi.org/10.1890/1540-9295(2007)5[213:TPISLT]2.0.CO;2
- Köhler, P., Ditzer, T., Huth, A., 2000. Concepts for the aggregation of tropical tree species into functional
 types and the application to Sabah's lowland rain forests. J. Trop. Ecol. 16, 591–602.
 https://doi.org/10.1017/S0266467400001590
- Lehmann, S., Huth, A., 2015. Fast calibration of a dynamic vegetation model with minimum observation
 data. Ecol. Modell. 301, 98–105. https://doi.org/10.1016/j.ecolmodel.2015.01.013
- Leyer, I., Wesche, K., 2007. Multivariate Statistik in der Ökologie. Eine Einführung., Springer-Lehrbuch.
 Springer Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37706-1
- Long, A., 2013. REDD + , Adaptation , and sustainable forest management : toward effective polycentric
 global forest governance. Trop. Conserv. Sci. 6, 384–408.
- 591 Mace, G.M., Norris, K., Fitter, A.H., 2012. Biodiversity and ecosystem services : a multilayered 592 relationship 27, 19–26. https://doi.org/10.1016/j.tree.2011.08.006
- Malhi, Y., Grace, J., 2000. Tropical forests and atmospheric carbon dioxide. Trends Ecol. Evol. 15, 332–
 337. https://doi.org/10.1016/S0169-5347(00)01906-6
- 595 Marcon, E., Scotti, I., Hérault, B., Rossi, V., Lang, G., 2014. Generalization of the partitioning of shannon

- 596 diversity. PLoS One 9. https://doi.org/10.1371/journal.pone.0090289
- Maréchaux, I., Chave, J., 2017. An individual-based forest model to jointly simulate carbon and tree
 diversity in Amazonia: description and applications. Ecol. Monogr. 87, 632–664.
 https://doi.org/10.1002/ecm.1271
- 600 Messier, C.C., Puettmann, K.J., Coates, K.D., 2013. Managing forests as complex adaptive systems : 601 building resilience to the challenge of global change, 1. ed. Erthscan, London.
- 602 Millennium Ecosystem, A., 2005. Ecosystems And Human Well-Being: Synthesis. Washington, DC.
- Molina, M.J., 2009. Planetary boundaries: Identifying abrupt change. Nat. Reports Clim. Chang. 115–116.
 https://doi.org/10.1038/climate.2009.96
- Mollicone, D., Freibauer, A., Schulze, E.D., Braatz, S., Grassi, G., Federici, S., 2007. Elements for the
 expected mechanisms on 'reduced emissions from deforestation and degradation, REDD' under
 UNFCCC. Environ. Res. Lett. 2, 045024. https://doi.org/10.1088/1748-9326/2/4/045024
- 608 Nasi, R., Putz, F.E., Pacheco, P., Wunder, S., Anta, S., 2011. Sustainable forest management and carbon 609 REDD+. 200-217. in tropical latin America: The case for Forests 2, 610 https://doi.org/10.3390/f2010200
- Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis,
 S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S., Rautiainen, A.,
 Sitch, S., Hayes, D., 2011. A Large and Persistent Carbon Sink in the World's Forests. Science (80-.).
 333, 988–993. https://doi.org/10.1126/science.1201609
- Pan, Y., Birdsey, R.A., Phillips, O.L., Jackson, R.B., 2013. The Structure, Distribution, and Biomass of the
 World's Forests. Annu. Rev. Ecol. Evol. Syst. 44, 593–622. https://doi.org/10.1146/annurevecolsys-110512-135914
- Pearson, T.R.H., Brown, S., Murray, L., Sidman, G., 2017. Greenhouse gas emissions from tropical forest
 degradation : an underestimated source. Carbon Balance Manag. https://doi.org/10.1186/s13021 017-0072-2
- Petrokofsky, G., Sist, P., Blanc, L., Doucet, J., Finegan, B., Gourlet-fleury, S., Healey, J.R., Livoreil, B., Nasi,
 R., Peña-claros, M., Putz, F.E., Zhou, W., 2015. Comparative effectiveness of silvicultural
 interventions for increasing timber production and sustaining conservation values in natural
 tropical production forests . A systematic review protocol 1–7. https://doi.org/10.1186/s13750 015-0034-7
- Piponiot, C., Cabon, A., Descroix, L., Dourdain, A., Mazzei, L., Ouliac, B., Rutishauser, E., Sist, P., Hérault,
 B., 2016a. A methodological framework to assess the carbon balance of tropical managed forests.
 Carbon Balance Manag. 11, 15. https://doi.org/10.1186/s13021-016-0056-7
- Piponiot, C., Derroire, G., Descroix, L., Mazzei, L., 2018. Assessing timber volume recovery after
 disturbance in tropical forests A new modelling framework. Ecol. Modell. 384, 353–369.
 https://doi.org/10.1016/j.ecolmodel.2018.05.023
- Piponiot, C., Sist, P., Mazzei, L., Peña-Claros, M., Putz, F.E., Rutishauser, E., Shenkin, A., Ascarrunz, N., de
 Azevedo, C.P., Baraloto, C., França, M., Guedes, M., Coronado, E.N.H., d'Oliveira, M.V.N., Ruschel,
 A.R., da Silva, K.E., Sotta, E.D., de Souza, C.R., Vidal, E., West, T.A.P., Hérault, B., 2016b. Carbon
 recovery dynamics following disturbance by selective logging in amazonian forests. Elife 5.
 https://doi.org/10.7554/eLife.21394
- Poorter, L., Bongers, F., Aide, T.M., Almeyda Zambrano, A.M., Balvanera, P., Becknell, J.M., Boukili, V.,
 Brancalion, P.H.S., Broadbent, E.N., Chazdon, R.L., Craven, D., de Almeida-Cortez, J.S., Cabral,
 G.A.L., de Jong, B.H.J., Denslow, J.S., Dent, D.H., DeWalt, S.J., Dupuy, J.M., Durán, S.M., EspíritoSanto, M.M., Fandino, M.C., César, R.G., Hall, J.S., Hernandez-Stefanoni, J.L., Jakovac, C.C.,
 Junqueira, A.B., Kennard, D., Letcher, S.G., Licona, J.-C., Lohbeck, M., Marín-Spiotta, E., MartínezRamos, M., Massoca, P., Meave, J.A., Mesquita, R., Mora, F., Muñoz, R., Muscarella, R., Nunes,

- Y.R.F., Ochoa-Gaona, S., de Oliveira, A.A., Orihuela-Belmonte, E., Peña-Claros, M., Pérez-García,
 E.A., Piotto, D., Powers, J.S., Rodríguez-Velázquez, J., Romero-Pérez, I.E., Ruíz, J., Saldarriaga, J.G.,
 Sanchez-Azofeifa, A., Schwartz, N.B., Steininger, M.K., Swenson, N.G., Toledo, M., Uriarte, M., van
 Breugel, M., van der Wal, H., Veloso, M.D.M., Vester, H.F.M., Vicentini, A., Vieira, I.C.G., Bentos,
 T.V., Williamson, G.B., Rozendaal, D.M.A., 2016. Biomass resilience of Neotropical secondary
 forests. Nature 530, 211–214. https://doi.org/10.1038/nature16512
- 649 Putz, F.E., Sist, P., Fredericksen, T., Dykstra, D., 2008a. Reduced-impact logging: Challenges and 650 opportunities. For. Ecol. Manage. 256, 1427–1433. https://doi.org/10.1016/j.foreco.2008.03.036
- Putz, F.E., Zuidema, P.A., Pinard, M.A., Boot, R.G.A., Sayer, J.A., Sheil, D., Sist, P., Elias, Vanclay, J.K.,
 2008b. Improved tropical forest management for carbon retention. PLoS Biol. 6, 1368–1369.
 https://doi.org/10.1371/journal.pbio.0060166
- Reischl, G., 2012. Designing institutions for governing planetary boundaries Lessons from global forest
 governance. Ecol. Econ. 81, 33–40. https://doi.org/10.1016/j.ecolecon.2012.03.001
- Roopsind, A., Putz, F.E., Caughlin, T.T., Hout, P. Van Der, Arets, E., 2018. Trade-offs between carbon
 stocks and timber recovery in tropical forests are mediated by logging intensity 2862–2874.
 https://doi.org/10.1111/gcb.14155
- Rotherham, T., 2011. Forest management certification around the world Progress and problems. For.
 Chron. 87, 603–611. https://doi.org/10.5558/tfc2011-067
- Rutishauser, E., Hérault, B., Baraloto, C., Blanc, L., Descroix, L., Sotta, E.D., Ferreira, J., Kanashiro, M.,
 Mazzei, L., D'Oliveira, M.V.N., De Oliveira, L.C., Peña-Claros, M., Putz, F.E., Ruschel, A.R., Rodney,
 K., Roopsind, A., Shenkin, A., Da Silva, K.E., De Souza, C.R., Toledo, M., Vidal, E., West, T.A.P.,
 Wortel, V., Sist, P., 2015. Rapid tree carbon stock recovery in managed Amazonian forests. Curr.
 Biol. 25, R787–R788. https://doi.org/10.1016/j.cub.2015.07.034
- Rutishauser, E., Wagner, F., Herault, B., Nicolini, E.-A., Blanc, L., 2010. Contrasting above-ground 666 667 Sci. biomass balance in а Neotropical rain forest. J. Veg. 21, 672-682. 668 https://doi.org/10.1111/j.1654-1103.2010.01175.x
- Shugart, H.H., Wang, B., Fischer, R., Ma, J., Fang, J., Yan, X., 2018. Gap models and their individual-based
 relatives in the assessment of the consequences of global change. https://doi.org/10.1088/17489326/aaaacc
- Sist, P., Ferreira, F.N., 2007. Sustainability of reduced-impact logging in the Eastern Amazon. For. Ecol.
 Manage. 243, 199–209. https://doi.org/10.1016/j.foreco.2007.02.014
- Spellerberg, I.F., Fedor, P.J., 2003. A tribute to Claude Shannon (1916-2001) and a plea for more rigorous
 use of species richness, species diversity and the 'Shannon-Wiener' Index. Glob. Ecol. Biogeogr. 12,
 177–179. https://doi.org/10.1046/j.1466-822X.2003.00015.x
- 677 Steffen, W., Richardson, K., Rockstrom, J., Cornell, S.E., Fetzer, I., Bennett, E.M., Biggs, R., Carpenter, 678 S.R., de Vries, W., de Wit, C.A., Folke, C., Gerten, D., Heinke, J., Mace, G.M., Persson, L.M., 679 Ramanathan, V., Reyers, B., Sorlin, S., 2015. Planetary boundaries: Guiding human development on 680 changing planet. Science (80-.). 347, 1259855-1259855. а 681 https://doi.org/10.1126/science.1259855
- Tyukavina, A., Baccini, A., Hansen, M.C., Potapov, P. V., Stehman, S. V., Houghton, R.A., Krylov, A.M.,
 Turubanova, S., Goetz, S.J., 2015. Aboveground carbon loss in natural and managed tropical forests
 from 2000 to 2012. Environ. Res. Lett. 10. https://doi.org/10.1088/1748-9326/10/7/074002
- Valle, D., Phillips, P., Vidal, E., Schulze, M., Grogan, J., Sales, M., van Gardingen, P., 2007. Adaptation of a
 spatially explicit individual tree-based growth and yield model and long-term comparison between
 reduced-impact and conventional logging in eastern Amazonia, Brazil. For. Ecol. Manage. 243, 187–
 https://doi.org/10.1016/j.foreco.2007.02.023
- Van Breugel, M., Ransijn, J., Craven, D., Bongers, F., Hall, J.S., 2011. Estimating carbon stock in secondary

- 690 forests: Decisions and uncertainties associated with allometric biomass models. For. Ecol. Manage.
 691 262, 1648–1657. https://doi.org/10.1016/j.foreco.2011.07.018
- Watson, J.E.M., Evans, T., Venter, O., Williams, B., Tulloch, A., Stewart, C., Thompson, I., Ray, J.C.,
 Murray, K., Salazar, Alvaro, McAlpine, C., Potapov, P., Walston, J., Robinson, J., Painter, M., Wilkie,
 D., Filardi, C., Laurance, W.F., Houghton, R.A., Maxwell, S., Grantham, H., Samper, C., Wang, S.,
 Laestadius, L., Runting, R.K., Silva-Chávez, G.A., Lindenmayer, D.B., 2018. The exceptional value of
 intact forest ecosystems. Nat. Ecol. Evol. in press. https://doi.org/10.1038/s41559-018-0490-x
- Werger, M.J.A., Poels, R., Ketner, P., Jonkers, W., 2011. Sustainable Management of Tropical Rainforests:
 the CELOS Management System., Tropenbos Series 25.
- 699WorldBank,2011.EstimatingtheOpportunityCostsofREDD.Finance262.700https://doi.org/10.1016/j.jenvman.2003.12.013
- Zarin, D.J., Schulze, M.D., Vidal, E., Lentini, M., 2007. Beyond reaping the first harvest: Management
 objectives for timber production in the Brazilian Amazon. Conserv. Biol. 21, 916–925.
 https://doi.org/10.1111/j.1523-1739.2007.00670.x
- PEFC International, 2017. PEFC Caring for our forests globally. The French Guianese forest-based
 sector strengthens its commitment to PEFC certification. Accessed online (2017-10-23):
- 706 https://pefc.org/news-a-media/general-sfm-news/1200-the-french-guianese-forest-based-sector-
- 707 strengthens-its-commitment-to-pefc-certification

1 Captions for figures and tables of the Manuscript FORECO_2018_1045

2

3 Tables (manuscript):

4 Table 1: Grouping of tree species into eight plant function types pfts for the Paracou test site (T0-control 5 plots). Functional traits were assigned to each pft. Besides, attribute values of the mean aboveground 6 biomass, mean basal area, and mean stem number were calculated (averaged over all forest inventory 7 years 1984-2016) using allometric relations (see Appendix table A1, figure A2; ODM: organic dry 8 matter).

9 Figures (manuscript):

10 Figure 1: Comparison of a moderate and intense logging scenario (dbh of lower cutting thresholds 0.55 11 m; 0.10 m) after a 50-year pre-logging phase reflecting primary forest growth as a reference. Depending 12 on the intensity of the selective logging event the amplitude and elasticity of the mean aboveground 13 biomass plus standard deviation (a., b.) and gross primary production (d.) changed. Model outputs are 14 shown either for the total forest stand or the plant functional types grouped by successional states averaged over 16 ha-simulations. (c.) The dots indicate mean annual aboveground biomass values 15 calculated on basis of Paracou's forest inventory data of the T1-plots. The year of logging (1986) was 16 17 assigned to simulated time equaled 0.

Figure 2: Interrelationships between aboveground biomass (a.) or gross primary production (b.) and minimum dbh of harvestable commercial trees during six decades after selective logging (0 a < time \leq 60 a; see Figure 1). The trend lines were determined using the linear regression of a second-degree polynomial. (c.) Relationships of gross primary productivity to the aboveground biomass also during 60 years after logging. The trend lines were determined using least square regression of a logarithmic biomass. The baselines indicate averaged attribute values of primary forest growth as a reference (averages over 150 years and 16 ha, pre-logging phase).

Figure 3: Evaluation of different management strategies. (a.) Development of the mean recovery time of different forest attributes (aboveground biomass, gross primary productivity, leaf area index, and Shannon index) analyzed in relation to the logging intensity (dbh lower cutting threshold). The dots correspond to

- 28 the recovery time determined from the simulation scenarios. The trend lines were derived by modeling
- 29 the nearest least squares of a logarithmic dbh. (b.) Comparison of mean recovery times for the moderate
- 30 and intense logging scenarios (dbh of lower cutting thresholds 0.55 m, 0.1 m) regarding the same
- 31 attributes. The dashed line indicates French Guiana's official 65-years cutting cycle.

1 Captions for figures and tables of the Manuscript FORECO_2018_1045

2

3 **Tables (manuscript):**

4 Table 1:

pft	potential tree height [m]	growth rates	successional state	mean stem numbers [ha ⁻¹]	mean biomass [t _{орм} /ha]	mean basal area [m²/ha]
1	< 16.0	slow growing	late	2.11	0.20	0.02
2	16.0-26.5	slow growing	late	236.63	59.23	5.05
3	16.0-26.5	semi-fast growing	mid	15.07	3.91	0.38
4	16.0-26.5	fast growing	early	5.20	1.70	0.19
5	26.5-34.0	slow growing	late	154.59	122.86	8.09
6	26.5-34.0	semi-fast growing	mid	174.64	184.91	13.25
7	26.5-34.0	fast growing	early	16.90	14.32	1.34
8	34.0	whole range	mid	15.50	30.68	2.40
total				620.64	417.81	30.72

5

6 Tables (Appendix A):

7 Table A1:

Geometric relation	Function
stem circumference-dbh	$dbh(circ) = circ/\pi$
aboveground biomass-dbh	$agb(dbh) = \pi/4 * \rho/tr * dbh^2 * h * f$
crown diameter-dbh	$cd(dbh) = cd_0 * dbh^{cd_1}$
crown length-height	$cl(h) = cl_0 * h$
stem diameter increment-dbh	$dinc(dbh) = a_0 * dbh * (1 - dbh/dbh_{max}) * exp(-a_1 * dbh)$
form factor-dbh	$f(dbh) = f_0 * dbh^{f_1}$
tree height-dbh	$h(dbh) = h_0 * dbh/(h_1 + dbh)$
leaf area index-dbh	$lai(dbh) = l_0 * dbh^{l_1}$
mortality-dbh	$m(dbh) = m_0 * e^{-m_1 * dbh}$

8

10	Table	A2:

Parameter	Description	Unit	PFT1	PFT2	PFT3	PFT4	PFT5	PFT6	PFT7	PFT8	Reference
Light and esta	Light and establishment										
k	light extinction coefficient	-	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	(Köhler et al., 2003)
n _{seed}	global number of seeds	1 ha ⁻¹	2	27	2	15	14	16	20	2	calibrated
i _{seed}	Minimum light intensity to establish	-	0.01	0.01	0.05	0.20	0.01	0.02	0.15	0.01	(Köhler et al., 2003)
Geometry											
h _{max}	maximum growth height	m	16.50	34.22	34.61	34.85	40.40	39.96	38.58	39.06	derived from inventory data
h _o	height-dbh-relation	-	47.0	47.0	47.0	47.0	47.0	47.0	47.0	47.0	Calculated from (Molto et al., 2014a, 2014b)
h1	height-dbh-relation	-	0.276	0.276	0.276	0.276	0.276	0.276	0.276	0.276	Calculated from (Molto et al., 2014a, 2014b)
cd_0	crown diameter-dbh- relation	-	13.12	13.12	13.12	13.12	13.12	13.12	13.12	13.12	calculated from (Jucker et al., 2017)
cd_1	crown diameter-dbh- relation	-	0.59	0.59	0.59	0.59	0.59	0.59	0.59	0.59	calculated from (Jucker et al., 2017)
I ₀	LAI-dbh-relation	-	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	(Köhler et al., 2003)
I_1	LAI-dbh-relation	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(Köhler et al., 2003)
f _o	form factor-dbh-relation	-	0.425	0.425	0.425	0.425	0.425	0.425	0.425	0.425	derived from inventory data
f ₁	form factor-dbh-relation	-	-0.18	-0.18	-0.18	-0.18	-0.18	-0.18	-0.18	-0.18	(Fischer et al., 2014)
cl ₀	crown length factor- height-relation	-	0.358	0.358	0.358	0.358	0.358	0.358	0.358	0.358	(Köhler et al., 2003)
σ	fraction of stem biomass- total biomass	-	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	Derived from inventory data, fine-tuned after (Rutishauser et al., 2010)

Biomass and	Biomass and productivity										
ρ	wood density	$t_{odm} * m^{-3}$	0.76	0.77	0.66	0.55	0.83	0.73	0.56	0.62	calculated from (Chave et al., 2009; Zanne et al., 2009)
Μ	transmission coefficient of leafs	-	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	(Larcher, 1994)
r _g	Growth respiration	-	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	(Ryan, 1991)
α	slope of light response curve	$\mu mol_{CO_2}*\mu mol_{photons}^{-1}$	0.043	0.043	0.035	0.086	0.043	0.043	0.086	0.043	(Köhler et al., 2003); calibrated
p _{max}	maximum leaf photosynthesis	$\mu mol_{CO_2} * (m^2 * s)^{-1}$	1.12	0.55	2.00	20.59	1.35	1.50	27.00	1.46	calibrated
g _{max}	maximum annual stem diameter increment	m/a	0.011	0.018	0.017	0.014	0.025	0.013	0.022	0.031	derived from inventory data, fine-tuned
g _{DBHmax}	maximum stem diameter	-	0.24	0.17	0.12	0.11	0.30	0.11	0.17	0.37	derived from inventory data, fine-tuned
Mortality											
m _{mean}	background mortality rate	-	0.01	0.01	0.013	0.02	0.01	0.01	0.02	0.01	derived from inventory data
fallP	probability of dead tree to fall	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	derived from inventory data
Management	- module										
comm _{spec}	proportion of commercially logged species	-	0.0	0.0362	0.2393	0.0865	0.5718	0.5531	0.3311	0.2706	derived from inventory data
log _{DBH}	dbh lower cutting threshold	m	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	derived from inventory data
Site-specific c	limate										
I _S	Mean annual irradiance above canopy	$\mu mol_{photons}/(m^2*s)^{-1}$	694.0								(Köhler et al., 2003)

	DL	Length of daily photosynthetic active period	h	12	(Huth and Ditzer, 2000)
11					

pft	Range of n _{seed}	Range of p _{max}
1	[1; 10]	[0.9; 3.0]
2	[1; 35]	[0.4; 3.0]
3	[1; 60]	[3.0; 10.0]
4	[15; 100]	[10.0; 25.0]
5	[1; 25]	[0.9; 3.0]
6	[1; 60]	[3.0; 10.0]
7	[15; 100]	[10.0; 28.0]
8	[1; 25]	[0.9; 3.0]

15 Table A4:

Coding alive	Coding measure	Meaning
0	1	dead tree, destroyed through overthrow of logged trees
0	5	dead tree, destroyed through exoploitation
0	8	dead tree, destroyed after exploitation

16

17 Tables (Appendix C):

18 Table C1:

family	genre	species	pft	logged species	abundance [ha ⁻¹]
Anacardiaceae	Anacardium	spruceanum	6	FALSE	111
Anacardiaceae	Indet.Anacardiaceae	Indet.	3	FALSE	65
Anacardiaceae	Tapirira	bethanniana	4	FALSE	68
Anacardiaceae	Tapirira	guianensis	4	FALSE	386
Anacardiaceae	Tapirira	Indet.	4	FALSE	495
Anacardiaceae	Tapirira	obtusa	4	FALSE	299
Anacardiaceae	Thyrsodium	guianense	2	FALSE	121
Anacardiaceae	Thyrsodium	Indet.	3	FALSE	12
Anacardiaceae	Thyrsodium	puberulum	6	FALSE	93
Anacardiaceae	Thyrsodium	spruceanum	2	FALSE	8
Annonaceae	Anaxagorea	acuminata	1	FALSE	1
Annonaceae	Anaxagorea	dolichocarpa	1	FALSE	22
Annonaceae	Annona	ambotay	2	FALSE	13
Annonaceae	Annona	exsucca	3	FALSE	71
Annonaceae	Annona	foetida	2	FALSE	8
Annonaceae	Annona	Indet.	3	FALSE	12
Annonaceae	Duguetia	calycina	2	FALSE	112

Annonaceae	Duguetia	inconspicua	1	FALSE	1
Annonaceae	Duguetia	yeshidan	1	FALSE	1
Annonaceae	Fusaea	longifolia	1	FALSE	19
Annonaceae	Guatteria	citriodora	4	FALSE	3
Annonaceae	Guatteria	guianensis	2	FALSE	24
Annonaceae	Guatteria	Indet.	1	FALSE	5
Annonaceae	Guatteria	punctata	1	FALSE	1
Annonaceae	Guatteria	schomburgkiana	3	FALSE	54
Annonaceae	Indet.Annonaceae	Indet.	2	FALSE	383
Annonaceae	Oxandra	asbeckii	2	FALSE	3213
Annonaceae	Oxandra	Indet.	1	FALSE	4
Annonaceae	Unonopsis	Indet.	2	FALSE	2
Annonaceae	Unonopsis	rufescens	2	FALSE	149
Annonaceae	Xylopia	aromatica	1	FALSE	1
Annonaceae	Xylopia	cayennensis	3	FALSE	2
Annonaceae	Xylopia	crinita	2	FALSE	26
Annonaceae	Xylopia	frutescens	3	FALSE	26
Annonaceae	Xylopia	Indet.	3	FALSE	304
Annonaceae	Xylopia	nitida	4	FALSE	477
Annonaceae	Xylopia	pulcherrima	3	FALSE	15
Annonaceae	Xylopia	surinamensis	3	FALSE	2
Apocynaceae	Ambelania	acida	2	FALSE	176
Apocynaceae	Ambelania	Indet.	4	FALSE	1
Apocynaceae	Aspidosperma	album	6	FALSE	18
Apocynaceae	Aspidosperma	desmanthum	2	FALSE	39
Apocynaceae	Aspidosperma	excelsum	6	FALSE	74
Apocynaceae	Aspidosperma	helstonei	5	FALSE	4
Apocynaceae	Aspidosperma	Indet.	6	TRUE	84
Apocynaceae	Aspidosperma	oblongum	2	FALSE	2
Apocynaceae	Aspidosperma	sandwithianum	5	FALSE	1
Apocynaceae	Aspidosperma	spruceanum	5	FALSE	11
Apocynaceae	Couma	guianensis	6	FALSE	128
Apocynaceae	Geissospermum	laeve	6	FALSE	1
Apocynaceae	Himatanthus	articulatus	5	FALSE	21
Apocynaceae	Himatanthus	bracteatus	2	FALSE	3
Apocynaceae	Himatanthus	Indet.	3	FALSE	1
Apocynaceae	Indet.Apocynaceae	Indet.	5	TRUE	204
Apocynaceae	Lacmellea	aculeata	2	FALSE	113
Apocynaceae	Macoubea	guianensis	6	TRUE	94
Apocynaceae	Parahancornia	fasciculata	6	FALSE	23
Apocynaceae	Rauvolfia	paraensis	5	FALSE	10
Apocynaceae	Tabernaemontana	attenuata	2	FALSE	82
Apocynaceae	Tabernaemontana	Indet.	1	FALSE	2
Apocynaceae	Tabernaemontana	undulata	1	FALSE	1
Aquifoliaceae	llex	inundata	5	FALSE	3
Aquifoliaceae	llex	sp.2CAY-ATDN	5	FALSE	6
Araliaceae	Schefflera	decaphylla	4	FALSE	465
Araliaceae	Schefflera	Indet.	6	TRUE	105

Araliaceae	Schefflera	morototoni	5	FALSE	1
Arecaceae	Attalea	maripa	2	FALSE	34
Arecaceae	Euterpe	Indet.	1	FALSE	1
Arecaceae	Euterpe	oleracea	2	FALSE	1034
Arecaceae	Indet.Arecaceae	Indet.	2	FALSE	362
Arecaceae	Oenocarpus	bacaba	2	FALSE	386
Arecaceae	Oenocarpus	bataua	2	FALSE	1953
Arecaceae	Oenocarpus	Indet.	2	FALSE	2
Arecaceae	Socratea	exorrhiza	2	FALSE	4
Arecaceae	Syagrus	inajai	3	FALSE	3
Bignoniaceae	Handroanthus	Indet.	5	FALSE	4
Bignoniaceae	Handroanthus	serratifolius	6	FALSE	4
Bignoniaceae	Indet.Bignoniaceae	Indet.	5	FALSE	4
Bignoniaceae	Jacaranda	copaia	7	TRUE	729
Bignoniaceae	Tabebuia	Indet.	2	FALSE	6
Bignoniaceae	Tabebuia	insignis	6	FALSE	43
Boraginaceae	Cordia	exaltata	1	FALSE	1
Boraginaceae	Cordia	Indet.	2	FALSE	11
Boraginaceae	Cordia	nervosa	3	FALSE	13
Boraginaceae	Cordia	sagotii	3	FALSE	250
Boraginaceae	Cordia	sprucei	3	FALSE	3
Boraginaceae	Cordia	toqueve	1	FALSE	1
Burseraceae	Dacryodes	nitens	5	FALSE	77
Burseraceae	Dacryodes	sp.4CAY-ATDN	2	FALSE	6
Burseraceae	Indet.Burseraceae	Indet.	6	TRUE	674
Burseraceae	Protium	apiculatum	2	FALSE	10
Burseraceae	Protium	aracouchini	2	FALSE	1
Burseraceae	Protium	decandrum	3	FALSE	20
Burseraceae	Protium	gallicum	3	FALSE	31
Burseraceae	Protium	giganteum	6	FALSE	65
Burseraceae	Protium	guianense	2	FALSE	46
Burseraceae	Protium	Indet.	3	FALSE	75
Burseraceae	Protium	opacum	3	TRUE	846
Burseraceae	Protium	plagiocarpium	2	FALSE	14
Burseraceae	Protium	sagotianum	2	FALSE	46
Burseraceae	Protium	subserratum	6	FALSE	174
Burseraceae	Protium	tenuifolium	2	FALSE	32
Burseraceae	Protium	trifoliolatum	3	FALSE	6
Burseraceae	Tetragastris	altissima	2	FALSE	2
Burseraceae	Tetragastris	hostmannii	6	FALSE	76
Burseraceae	Tetragastris	Indet.	3	FALSE	1
Burseraceae	Tetragastris	panamensis	6	FALSE	26
Burseraceae	Trattinnickia	demerarae	6	FALSE	36
Burseraceae	Trattinnickia	rhoifolia	3	TRUE	60
Calophyllaceae	Caraipa	densifolia	3	FALSE	13
Calophyllaceae	Caraipa	Indet.	2	FALSE	2
Calophyllaceae	Caraipa	punctulata	2	FALSE	2
Calophyllaceae	Caraipa	racemosa	6	FALSE	19

Calophyllaceae	Mahurea	palustris	6	FALSE	46
Capparaceae	Capparidastrum	frondosum	1	FALSE	1
Capparaceae	Indet.Capparaceae	Indet.	2	FALSE	1
Capparaceae	Neocalyptrocalyx	leprieurii	1	FALSE	4
Cardiopteridaceae	Dendrobangia	boliviana	6	FALSE	203
Caryocaraceae	Caryocar	glabrum	8	TRUE	222
Celastraceae	Cheiloclinium	cognatum	2	FALSE	14
Celastraceae	Indet.Celastraceae	Indet.	1	FALSE	1
Celastraceae	Maytenus	guyanensis	5	FALSE	2
Celastraceae	Maytenus	Indet.	5	FALSE	40
Celastraceae	Maytenus	oblongata	5	FALSE	165
Celastraceae	Maytenus	sp.1CAY-ATDN	5	FALSE	1
Celastraceae	Maytenus	sp.7CAY-ATDN	2	FALSE	2
Celastraceae	Maytenus	sp.P1	1	FALSE	1
Chrysobalanaceae	Couepia	bracteosa	5	FALSE	74
Chrysobalanaceae	Couepia	caryophylloides	6	FALSE	75
Chrysobalanaceae	Couepia	guianensis	5	FALSE	91
Chrysobalanaceae	Couepia	habrantha	6	FALSE	79
Chrysobalanaceae	Couepia	Indet.	6	FALSE	57
Chrysobalanaceae	Couepia	magnoliifolia	2	FALSE	1
Chrysobalanaceae	Couepia	obovata	3	FALSE	5
Chrysobalanaceae	Couepia	parillo	5	FALSE	11
Chrysobalanaceae	Gaulettia	parillo	5	FALSE	6
Chrysobalanaceae	Hirtella	bicornis	2	FALSE	204
Chrysobalanaceae	Hirtella	glandistipula	2	FALSE	1
Chrysobalanaceae	Hirtella	glandulosa	5	FALSE	54
Chrysobalanaceae	Hirtella	hispidula	1	FALSE	2
Chrysobalanaceae	Hirtella	Indet.	2	FALSE	25
Chrysobalanaceae	Hirtella	racemosa	2	FALSE	5
Chrysobalanaceae	Indet.Chrysobalanaceae	Indet.	5	TRUE	594
Chrysobalanaceae	Indet.Chrysobalanaceae	sp.1CAY-ATDN	2	FALSE	4
Chrysobalanaceae	Indet.Chrysobalanaceae	sp.2CAY-ATDN	2	FALSE	2
Chrysobalanaceae	Licania	alba	5	TRUE	5307
Chrysobalanaceae	Licania	canescens	2	FALSE	557
Chrysobalanaceae	Licania	densiflora	5	FALSE	126
Chrysobalanaceae	Licania	glabriflora	3	FALSE	1
Chrysobalanaceae	Licania	granvillei	5	FALSE	5
Chrysobalanaceae	Licania	heteromorpha	2	FALSE	1428
Chrysobalanaceae	Licania	hypoleuca	2	FALSE	4
Chrysobalanaceae	Licania	Indet.	5	FALSE	381
Chrysobalanaceae	Licania	kunthiana	2	FALSE	5
Chrysobalanaceae	Licania	latistipula	5	FALSE	13
Chrysobalanaceae	Licania	laxiflora	2	FALSE	58
Chrysobalanaceae	Licania	licaniiflora	6	FALSE	46
Chrysobalanaceae	Licania	longistyla	5	FALSE	9
Chrysobalanaceae	Licania	majuscula	5	FALSE	2
Chrysobalanaceae	Licania	membranacea	6	FALSE	1122
Chrysobalanaceae	Licania	micrantha	5	FALSE	272

Chrysobalanaceae	Licania	ovalifolia	5	FALSE	227
Chrysobalanaceae	Licania	parviflora	2	FALSE	1
Chrysobalanaceae	Licania	parvifructa	2	FALSE	23
Chrysobalanaceae	Licania	robusta	1	FALSE	2
Chrysobalanaceae	Licania	sprucei	2	FALSE	221
Chrysobalanaceae	Parinari	campestris	6	FALSE	139
Chrysobalanaceae	Parinari	Indet.	6	FALSE	5
Chrysobalanaceae	Parinari	montana	6	FALSE	50
Chrysobalanaceae	Parinari	parvifolia	2	FALSE	1
Chrysobalanaceae	Parinari	rodolphii	6	FALSE	11
Clusiaceae	Garcinia	benthamiana	2	FALSE	140
Clusiaceae	Garcinia	Indet.	2	FALSE	166
Clusiaceae	Garcinia	madruno	2	FALSE	138
Clusiaceae	Indet.Clusiaceae	Indet.	6	TRUE	340
Clusiaceae	Moronobea	coccinea	6	FALSE	399
Clusiaceae	Platonia	insignis	6	TRUE	121
Clusiaceae	Symphonia	globulifera	7	FALSE	197
Clusiaceae	Symphonia	Indet.	6	FALSE	658
Clusiaceae	Symphonia	sp.1	6	TRUE	816
Clusiaceae	Tovomita	brasiliensis	2	FALSE	1
Clusiaceae	Tovomita	brevistaminea	2	FALSE	12
Clusiaceae	Tovomita	Indet.	2	FALSE	977
Clusiaceae	Tovomita	macrophylla	2	FALSE	21
Clusiaceae	Tovomita	obovata	3	FALSE	141
Clusiaceae	Tovomita	sp.10CAY-ATDN	1	FALSE	1
Clusiaceae	Tovomita	sp.11CAY-ATDN	2	FALSE	220
Clusiaceae	Tovomita	sp.22CAY-ATDN	2	FALSE	13
Clusiaceae	Tovomita	sp.2CAY-ATDN	2	FALSE	272
Clusiaceae	Tovomita	sp.3CAY-ATDN	2	FALSE	15
Clusiaceae	Tovomita	sp.5CAY-ATDN	1	FALSE	48
Clusiaceae	Tovomita	sp.9CAY-ATDN	2	FALSE	45
Clusiaceae	Tovomita	sp.B1	2	FALSE	15
Clusiaceae	Tovomita	sp.B5	5	FALSE	1
Clusiaceae	Tovomita	sp.P4	2	FALSE	1
Clusiaceae	Tovomita	sp.P6	2	FALSE	1
Combretaceae	Buchenavia	grandis	5	FALSE	16
Combretaceae	Buchenavia	guianensis	6	FALSE	12
Combretaceae	Buchenavia	nitidissima	6	FALSE	7
Combretaceae	Buchenavia	tetraphylla	3	FALSE	2
Combretaceae	Indet.Combretaceae	Indet.	3	FALSE	10
Combretaceae	Terminalia	amazonia	2	FALSE	2
Dichapetalaceae	Tapura	amazonica	2	FALSE	2
Dichapetalaceae	Tapura	capitulifera	5	TRUE	469
Dichapetalaceae	Tapura	Indet.	1	FALSE	1
Ebenaceae	Diospyros	capreifolia	2	FALSE	4
Ebenaceae	Diospyros	carbonaria	2	FALSE	48
Ebenaceae	Diospyros	guianensis	6	FALSE	1
Ebenaceae	Diospyros	Indet.	2	FALSE	3

Ebenaceae	Diospyros	vestita	2	FALSE	3
Elaeocarpaceae	Sloanea	brevipes	2	FALSE	45
Elaeocarpaceae	Sloanea	eichleri	2	FALSE	1
Elaeocarpaceae	Sloanea	garckeana	1	FALSE	1
Elaeocarpaceae	Sloanea	grandiflora	3	FALSE	12
Elaeocarpaceae	Sloanea	guianensis	3	FALSE	31
Elaeocarpaceae	Sloanea	Indet.	6	FALSE	233
Elaeocarpaceae	Sloanea	latifolia	1	FALSE	2
Elaeocarpaceae	Sloanea	latifolia_form2	2	FALSE	1
Elaeocarpaceae	Sloanea	laxiflora	5	FALSE	31
Elaeocarpaceae	Sloanea	parviflora	2	FALSE	4
Elaeocarpaceae	Sloanea	sp.14CAY-ATDN	6	FALSE	16
Elaeocarpaceae	Sloanea	sp.17CAY-ATDN	3	FALSE	6
Elaeocarpaceae	Sloanea	sp.20CAY-ATDN	6	FALSE	12
Elaeocarpaceae	Sloanea	sp.21(DS)	5	FALSE	1
Elaeocarpaceae	Sloanea	sp.21CAY-ATDN	2	FALSE	42
Elaeocarpaceae	Sloanea	sp.22CAY-ATDN	6	FALSE	4
Elaeocarpaceae	Sloanea	sp.24CAY-ATDN	3	FALSE	12
Elaeocarpaceae	Sloanea	sp.2CAY-ATDN	3	FALSE	7
Elaeocarpaceae	Sloanea	sp.32CAY-ATDN	2	FALSE	1
Elaeocarpaceae	Sloanea	sp.4CAY-ATDN	6	FALSE	15
Elaeocarpaceae	Sloanea	sp.5CAY-ATDN	2	FALSE	9
Elaeocarpaceae	Sloanea	sp.8CAY-ATDN	5	FALSE	14
Elaeocarpaceae	Sloanea	sp.P33	1	FALSE	1
Elaeocarpaceae	Sloanea	tuerckheimii	3	FALSE	10
Emmotaceae	Emmotum	fagifolium	6	FALSE	16
Erythroxylaceae	Erythroxylum	citrifolium	1	FALSE	2
Erythroxylaceae	Erythroxylum	ligustrinum	2	FALSE	3
Erythroxylaceae	Erythroxylum	lineolatum	1	FALSE	1
Erythroxylaceae	Erythroxylum	sp.1CAY-ATDN	2	FALSE	1
Euphorbiaceae	Alchornea	discolor	2	FALSE	1
Euphorbiaceae	Alchornea	triplinervia	5	FALSE	5
Euphorbiaceae	Alchorneopsis	floribunda	7	FALSE	6
Euphorbiaceae	Alchorneopsis	Indet.	1	FALSE	1
Euphorbiaceae	Chaetocarpus	Indet.	6	FALSE	71
Euphorbiaceae	Chaetocarpus	schomburgkianus	5	TRUE	396
Euphorbiaceae	Chaetocarpus	sp.1	5	FALSE	5
Euphorbiaceae	Chaetocarpus	sp.1CAY-ATDN	6	FALSE	75
Euphorbiaceae	Conceveiba	guianensis	2	FALSE	380
Euphorbiaceae	Conceveiba	Indet.	2	FALSE	92
Euphorbiaceae	Glycydendron	amazonicum	6	TRUE	69
Euphorbiaceae	Glycydendron	Indet.	6	FALSE	13
Euphorbiaceae	Неvea	guianensis	6	TRUE	179
Euphorbiaceae	Indet.Euphorbiaceae	Indet.	6	FALSE	36
Euphorbiaceae	Indet.Euphorbiaceae	sp.P4	1	FALSE	3
Euphorbiaceae	Mabea	Indet.	6	FALSE	38
Euphorbiaceae	Mabea	piriri	2	FALSE	151
Euphorbiaceae	Pera	glabrata	1	FALSE	1

Euphorbiaceae	Pogonophora	Indet.	1	FALSE	4
Euphorbiaceae	Pogonophora	schomburgkiana	2	FALSE	2281
Euphorbiaceae	Sagotia	racemosa	2	FALSE	34
Euphorbiaceae	Sandwithia	guyanensis	2	FALSE	306
Fabaceae	Abarema	Indet.	7	FALSE	50
Fabaceae	Abarema	jupunba	7	TRUE	176
Fabaceae	Abarema	mataybifolia	2	FALSE	14
Fabaceae	Albizia	Indet.	1	FALSE	2
Fabaceae	Albizia	pedicellaris	8	TRUE	190
Fabaceae	Alexa	wachenheimii	8	FALSE	9
Fabaceae	Andira	coriacea	6	TRUE	138
Fabaceae	Andira	Indet.	8	TRUE	13
Fabaceae	Восоа	prouacensis	5	TRUE	1725
Fabaceae	Cassia	spruceana	4	FALSE	8
Fabaceae	Copaifera	guianensis	2	FALSE	1
Fabaceae	Crudia	aromatica	2	FALSE	2
Fabaceae	Dialium	guianense	3	FALSE	11
Fabaceae	Dicorynia	guianensis	6	TRUE	982
Fabaceae	Dimorphandra	polyandra	7	FALSE	4
Fabaceae	Diplotropis	Indet.	5	FALSE	4
Fabaceae	Diplotropis	purpurea	6	TRUE	37
Fabaceae	Dipteryx	Indet.	4	FALSE	22
Fabaceae	Dipteryx	odorata	6	FALSE	20
Fabaceae	Dipteryx	punctata	5	FALSE	1
Fabaceae	Enterolobium	Indet.	8	TRUE	26
Fabaceae	Enterolobium	oldemanii	6	FALSE	28
Fabaceae	Enterolobium	schomburgkii	8	FALSE	39
Fabaceae	Enterolobium	sp.1CAY-ATDN	6	FALSE	2
Fabaceae	Eperua	falcata	6	TRUE	2830
Fabaceae	Eperua	grandiflora	6	FALSE	826
Fabaceae	Eperua	Indet.	6	TRUE	493
Fabaceae	Eperua	rubiginosa	8	FALSE	167
Fabaceae	Hymenolobium	flavum	8	FALSE	7
Fabaceae	Indet.Fabaceae	Indet.	7	TRUE	56
Fabaceae	Indet.Mimosaceae	Indet.	5	TRUE	2
Fabaceae	Indet.Papilionaceae	Indet.	6	TRUE	49
Fabaceae	Inga	acreana	4	FALSE	2
Fabaceae	Inga	acrocephala	4	FALSE	1
Fabaceae	Inga	alba	7	FALSE	270
Fabaceae	Inga	bourgonii	3	FALSE	2
Fabaceae	Inga	brachystachys	1	FALSE	1
Fabaceae	Inga	brevipes	1	FALSE	1
Fabaceae	Inga	capitata	7	FALSE	15
Fabaceae	Inga	capitata_form2	1	FALSE	1
Fabaceae	Inga	cayennensis	3	FALSE	87
Fabaceae	Inga	cordatoalata	4	FALSE	1
Fabaceae	Inga	cylindrica	2	FALSE	1
Fabaceae	Inga	graciliflora	1	FALSE	9

Fabaceae	Inga	gracilifolia	6	FALSE	22
Fabaceae	Inga	Indet.	7	FALSE	1424
Fabaceae	Inga	jenmanii	4	FALSE	57
Fabaceae	Inga	lomatophylla	2	FALSE	30
Fabaceae	Inga	longipedunculata	1	FALSE	1
Fabaceae	Inga	loubryana	6	FALSE	268
Fabaceae	Inga	marginata	4	FALSE	43
Fabaceae	Inga	melinonis	4	FALSE	19
Fabaceae	Inga	nobilis	2	FALSE	2
Fabaceae	Inga	nouragensis	3	FALSE	4
Fabaceae	Inga	paraensis	7	FALSE	6
Fabaceae	Inga	pezizifera	7	FALSE	147
Fabaceae	Inga	pilosula	6	FALSE	1
Fabaceae	Inga	rubiginosa	4	FALSE	48
Fabaceae	Inga	sarmentosa	4	FALSE	31
Fabaceae	Inga	sp.12CAY-ATDN	7	FALSE	49
Fabaceae	Inga	sp.16CAY-ATDN	3	FALSE	1
Fabaceae	Inga	sp.18CAY-ATDN	3	FALSE	3
Fabaceae	Inga	sp.P11	7	FALSE	2
Fabaceae	Inga	splendens	7	FALSE	24
Fabaceae	Inga	stipularis	3	TRUE	130
Fabaceae	Inga	thibaudiana	4	FALSE	55
Fabaceae	Inga	tubiformis	3	FALSE	8
Fabaceae	Inga	umbellifera	3	FALSE	10
Fabaceae	Inga	virgultosa	1	FALSE	1
Fabaceae	Macrolobium	bifolium	6	FALSE	7
Fabaceae	Ormosia	bolivarensis	4	FALSE	5
Fabaceae	Ormosia	coccinea	2	FALSE	1
Fabaceae	Ormosia	coutinhoi	6	FALSE	88
Fabaceae	Ormosia	Indet.	3	FALSE	3
Fabaceae	Ormosia	paraensis	3	FALSE	18
Fabaceae	Ormosia	stipularis	5	FALSE	2
Fabaceae	Parkia	Indet.	7	TRUE	106
Fabaceae	Parkia	nitida	7	FALSE	114
Fabaceae	Parkia	pendula	8	FALSE	35
Fabaceae	Parkia	ulei	8	FALSE	12
Fabaceae	Parkia	velutina	7	FALSE	94
Fabaceae	Peltogyne	Indet.	6	FALSE	20
Fabaceae	Peltogyne	paniculata	7	FALSE	3
Fabaceae	Peltogyne	sp.1CAY-ATDN	6	FALSE	9
Fabaceae	Peltogyne	sp.2CAY-ATDN	2	FALSE	2
Fabaceae	Peltogyne	venosa	5	FALSE	4
Fabaceae	Platymiscium	Indet.	3	FALSE	4
Fabaceae	Platymiscium	pinnatum	6	FALSE	25
Fabaceae	Poecilanthe	hostmannii	2	FALSE	47
Fabaceae	Pseudopiptadenia	Indet.	8	TRUE	7
Fabaceae	Pseudopiptadenia	psilostachya	7	FALSE	2
Fabaceae	Pterocarpus	officinalis	6	FALSE	165

Fabaceae	Pterocarpus	rohrii	2	FALSE	1
Fabaceae	Recordoxylon	speciosum	6	TRUE	585
Fabaceae	Stryphnodendron	polystachyum	8	FALSE	11
Fabaceae	Swartzia	arborescens	2	FALSE	33
Fabaceae	Swartzia	benthamiana	1	FALSE	1
Fabaceae	Swartzia	grandifolia	2	FALSE	33
Fabaceae	Swartzia	guianensis	2	FALSE	154
Fabaceae	Swartzia	Indet.	2	FALSE	177
Fabaceae	Swartzia	leblondii	2	FALSE	3
Fabaceae	Swartzia	panacoco	5	FALSE	103
Fabaceae	Swartzia	polyphylla	5	FALSE	219
Fabaceae	Tachigali	guianensis	1	FALSE	2
Fabaceae	Tachigali	Indet.	7	TRUE	273
Fabaceae	Tachigali	melinonii	7	FALSE	289
Fabaceae	Tachigali	paraensis	7	FALSE	54
Fabaceae	Tachigali	richardiana	7	FALSE	41
Fabaceae	Tachigali	sp.5CAY-ATDN	4	FALSE	2
Fabaceae	Vatairea	Indet.	3	FALSE	3
Fabaceae	Vatairea	paraensis	8	FALSE	10
Fabaceae	Vataireopsis	surinamensis	6	FALSE	8
Fabaceae	Vouacapoua	americana	6	TRUE	1168
Fabaceae	Zygia	tetragona	2	FALSE	47
Goupiaceae	Goupia	glabra	6	TRUE	482
Goupiaceae	Goupia	Indet.	1	FALSE	1
Humiriaceae	Humiriastrum	excelsum	2	FALSE	4
Humiriaceae	Humiriastrum	Indet.	2	FALSE	3
Humiriaceae	Humiriastrum	subcrenatum	6	FALSE	46
Humiriaceae	Indet.Humiriaceae	Indet.	6	FALSE	12
Humiriaceae	Sacoglottis	cydonioides	6	FALSE	45
Humiriaceae	Sacoglottis	guianensis	6	FALSE	77
Humiriaceae	Sacoglottis	Indet.	1	FALSE	1
Humiriaceae	Vantanea	guianensis	5	FALSE	12
Humiriaceae	Vantanea	Indet.	7	FALSE	1
Humiriaceae	Vantanea	parviflora	5	FALSE	36
Hypericaceae	Vismia	cayennensis	4	FALSE	11
Hypericaceae	Vismia	guianensis	4	FALSE	99
Hypericaceae	Vismia	Indet.	4	FALSE	515
Hypericaceae	Vismia	latifolia	4	FALSE	170
Hypericaceae	Vismia	ramuliflora	4	FALSE	2
Hypericaceae	Vismia	sessilifolia	3	FALSE	240
Hypericaceae	Vismia	sp.1Guyafor	3	FALSE	8
Hypericaceae	Vismia	sp.P1	1	FALSE	1
Icacinaceae	Poraqueiba	guianensis	2	FALSE	519
Indet.	Indet.Indet.	Indet.	5	TRUE	5581
Indet.	Indet.Indet.	sp.3Guyafor	2	FALSE	1
Lacistemataceae	Lacistema	aggregatum	1	FALSE	1
Lacistemataceae	Lacistema	grandifolium	2	FALSE	1
Lacistemataceae	Lacistema	polystachyum	1	FALSE	1

Lamiaceae	Indet.Lamiaceae	Indet.	5	FALSE	2
Lamiaceae	Vitex	guianensis	5	FALSE	3
Lamiaceae	Vitex	triflora	1	FALSE	10
Lauraceae	Aniba	citrifolia	2	FALSE	17
Lauraceae	Aniba	guianensis	2	FALSE	16
Lauraceae	Aniba	hostmanniana	2	FALSE	1
Lauraceae	Aniba	Indet.	2	FALSE	3
Lauraceae	Aniba	rosaeodora	2	FALSE	5
Lauraceae	Aniba	taubertiana	2	FALSE	56
Lauraceae	Aniba	williamsii	2	FALSE	17
Lauraceae	Endlicheria	melinonii	2	FALSE	23
Lauraceae	Indet.Lauraceae	Indet.	6	TRUE	576
Lauraceae	Indet.Lauraceae	sp.34CAY-ATDN	2	FALSE	2
Lauraceae	Indet.Lauraceae	sp.35CAY-ATDN	2	FALSE	1
Lauraceae	Indet.Lauraceae	sp.38Guyafor	4	FALSE	19
Lauraceae	Indet.Lauraceae	sp.39Guyafor	3	FALSE	2
Lauraceae	Licaria	cannella	5	FALSE	52
Lauraceae	Licaria	chrysophylla	6	FALSE	21
Lauraceae	Licaria	debilis	3	FALSE	2
Lauraceae	Licaria	guianensis	2	FALSE	1
Lauraceae	Licaria	martiniana	2	FALSE	19
Lauraceae	Mezilaurus	sp.1CAY-ATDN	1	FALSE	1
Lauraceae	Nectandra	globosa	2	FALSE	5
Lauraceae	Ocotea	amazonica	3	FALSE	4
Lauraceae	Ocotea	argyrophylla	7	FALSE	76
Lauraceae	Ocotea	cernua	3	FALSE	27
Lauraceae	Ocotea	cinerea	6	FALSE	13
Lauraceae	Ocotea	glomerata	6	FALSE	21
Lauraceae	Ocotea	Indet.	3	FALSE	1
Lauraceae	Ocotea	nigra	3	FALSE	5
Lauraceae	Ocotea	oblonga	7	FALSE	1
Lauraceae	Ocotea	percurrens	3	FALSE	51
Lauraceae	Ocotea	puberula	7	FALSE	10
Lauraceae	Ocotea	splendens	1	FALSE	1
Lauraceae	Ocotea	subterminalis	2	FALSE	44
Lauraceae	Ocotea	tomentella	7	FALSE	3
Lauraceae	Rhodostemonodaphne	grandis	3	FALSE	123
Lauraceae	Rhodostemonodaphne	Indet.	3	FALSE	4
Lauraceae	Rhodostemonodaphne	kunthiana	1	FALSE	1
Lauraceae	Rhodostemonodaphne	morii	6	FALSE	5
Lauraceae	Rhodostemonodaphne	rufovirgata	3	FALSE	29
Lauraceae	Sextonia	rubra	8	TRUE	395
Lecythidaceae	Couratari	calycina	3	FALSE	4
Lecythidaceae	Couratari	gloriosa	2	FALSE	3
Lecythidaceae	Couratari	guianensis	8	FALSE	78
Lecythidaceae	Couratari	Indet.	5	TRUE	149
Lecythidaceae	Couratari	multiflora	5	TRUE	513
Lecythidaceae	Couratari	oblongifolia	8	FALSE	4

Lecythidaceae	Eschweilera	chartaceifolia	2	FALSE	1
Lecythidaceae	Eschweilera	collina	2	FALSE	7
Lecythidaceae	Eschweilera	congestiflora	5	FALSE	323
Lecythidaceae	Eschweilera	coriacea	6	FALSE	1260
Lecythidaceae	Eschweilera	decolorans	5	FALSE	191
Lecythidaceae	Eschweilera	grandiflora	2	FALSE	5
Lecythidaceae	Eschweilera	grandiflora_form2	6	FALSE	18
Lecythidaceae	Eschweilera	Indet.	2	FALSE	70
Lecythidaceae	Eschweilera	micrantha	2	FALSE	1
Lecythidaceae	Eschweilera	parviflora	1	FALSE	1
Lecythidaceae	Eschweilera	pedicellata	2	FALSE	53
Lecythidaceae	Eschweilera	sagotiana	5	FALSE	3585
Lecythidaceae	Eschweilera	simiorum	2	FALSE	21
Lecythidaceae	Eschweilera	squamata	1	FALSE	1
Lecythidaceae	Eschweilera	wachenheimii	2	FALSE	33
Lecythidaceae	Gustavia	augusta	1	FALSE	2
Lecythidaceae	Gustavia	hexapetala	2	FALSE	953
Lecythidaceae	Gustavia	Indet.	2	FALSE	69
Lecythidaceae	Indet.Lecythidaceae	Indet.	5	TRUE	2293
Lecythidaceae	Indet.Lecythidaceae	sp.2Guyafor	1	FALSE	1
Lecythidaceae	Indet.Lecythidaceae	sp.5Guyafor	3	FALSE	3
Lecythidaceae	Indet.Lecythidaceae	sp.6Guyafor	3	FALSE	2
Lecythidaceae	Indet.Lecythidaceae	sp.7Guyafor	2	FALSE	6
Lecythidaceae	Indet.Lecythidaceae	sp.8Guyafor	2	FALSE	4
Lecythidaceae	Lecythis	chartacea	6	FALSE	42
Lecythidaceae	Lecythis	corrugata	5	TRUE	67
Lecythidaceae	Lecythis	corrugata subsp.	5	FALSE	147
Lecythidaceae	Lecythis	holcogyne	2	FALSE	9
, Lecythidaceae	Lecythis	idatimon	5	FALSE	8
Lecythidaceae	Lecythis	Indet.	5	FALSE	27
Lecythidaceae	Lecythis	persistens	2	FALSE	4571
Lecythidaceae	Lecythis	persistens subsp.	5	FALSE	2
Lecvthidaceae	Lecvthis	poiteaui	5	TRUE	376
, Lecythidaceae	Lecythis	, zabucajo	5	TRUE	110
Linaceae	, Hebepetalum	humiriifolium	6	FALSE	332
Loganiaceae	Antonia	ovata	6	FALSE	93
Malpighiaceae	Byrsonima	aerugo	4	FALSE	127
Malpighiaceae	Byrsonima	densa	7	FALSE	80
Malpighiaceae	Byrsonima	Indet.	4	FALSE	43
Malpighiaceae	Byrsonima	laevigata	7	FALSE	85
Malvaceae	Apeiba	glabra	6	TRUE	125
Malvaceae	Apeiba	Indet.	6	FALSE	75
Malvaceae	Apeiba	petoumo	7	FALSE	2
Malvaceae	Catostemma	fragrans	2	TRUE	554
Malvaceae	Catostemma	Indet.	1	FALSE	1
Malvaceae	Eriotheca	globosa	7	FALSE	87
Malvaceae	Eriotheca	Indet.	3	FALSE	10

Malvaceae	Eriotheca	longitubulosa	7	FALSE	37
Malvaceae	Indet.Bombacaceae	Indet.	6	TRUE	135
Malvaceae	Indet.Malvaceae	Indet.	5	FALSE	4
Malvaceae	Luehea	speciosa	6	FALSE	61
Malvaceae	Lueheopsis	Indet.	5	FALSE	2
Malvaceae	Lueheopsis	rosea	4	FALSE	1
Malvaceae	Lueheopsis	rugosa	6	FALSE	97
Malvaceae	Pachira	dolichocalyx	2	FALSE	113
Malvaceae	Pachira	insignis	1	FALSE	5
Malvaceae	Sterculia	excelsa	7	FALSE	10
Malvaceae	Sterculia	Indet.	7	TRUE	490
Malvaceae	Sterculia	multiovula	7	FALSE	27
Malvaceae	Sterculia	pruriens	7	FALSE	539
Malvaceae	Sterculia	sp.P1	1	FALSE	1
Malvaceae	Sterculia	speciosa	6	FALSE	100
Malvaceae	Theobroma	Indet.	2	FALSE	31
Malvaceae	Theobroma	subincanum	2	FALSE	393
Malvaceae	Theobroma	velutinum	2	FALSE	6
Melastomataceae	Bellucia	grossularioides	7	FALSE	5
Melastomataceae	Henriettea	succosa	1	FALSE	3
Melastomataceae	Henriettella	flavescens	2	FALSE	95
Melastomataceae	Indet.Melastomataceae	Indet.	2	FALSE	424
Melastomataceae	Loreya	arborescens	4	FALSE	307
Melastomataceae	Loreya	Indet.	1	FALSE	1
Melastomataceae	Loreya	mespiloides	4	FALSE	15
Melastomataceae	Miconia	acuminata	3	FALSE	1056
Melastomataceae	Miconia	argyrophylla	3	FALSE	3
Melastomataceae	Miconia	Indet.	3	FALSE	2
Melastomataceae	Miconia	minutiflora	3	FALSE	178
Melastomataceae	Miconia	plukenetii	1	FALSE	1
Melastomataceae	Miconia	poeppigii	3	FALSE	17
Melastomataceae	Miconia	prasina	2	FALSE	4
Melastomataceae	Miconia	ruficalyx	1	FALSE	2
Melastomataceae	Miconia	trinervia	1	FALSE	1
Melastomataceae	Miconia	tschudyoides	3	FALSE	1895
Melastomataceae	Mouriri	collocarpa	1	FALSE	1
Melastomataceae	Mouriri	crassifolia	5	TRUE	350
Melastomataceae	Mouriri	dumetosa	2	FALSE	3
Melastomataceae	Mouriri	huberi	5	FALSE	59
Melastomataceae	Mouriri	Indet.	5	FALSE	61
Melastomataceae	Mouriri	nervosa	2	FALSE	2
Melastomataceae	Mouriri	sagotiana	1	FALSE	13
Melastomataceae	Mouriri	sp.2CAY-ATDN	1	FALSE	1
Melastomataceae	Votomita	guianensis	2	FALSE	66
Meliaceae	Carapa	procera	1	FALSE	6
Meliaceae	Carapa	surinamensis	6	TRUE	1108
Meliaceae	Guarea	costata	1	FALSE	2
Meliaceae	Guarea	guidonia	2	FALSE	1

Meliaceae	Guarea	Indet.	2	FALSE	7
Meliaceae	Guarea	pubescens	2	FALSE	153
Meliaceae	Guarea	silvatica	3	FALSE	1
Meliaceae	Trichilia	Indet.	2	FALSE	2
Meliaceae	Trichilia	micrantha	2	FALSE	13
Meliaceae	Trichilia	schomburgkii	2	TRUE	122
Moraceae	Bagassa	guianensis	8	TRUE	6
Moraceae	Brosimum	guianense	2	FALSE	115
Moraceae	Brosimum	Indet.	2	TRUE	21
Moraceae	Brosimum	rubescens	5	FALSE	100
Moraceae	Brosimum	utile	6	TRUE	58
Moraceae	Ficus	Indet.	5	FALSE	23
Moraceae	Ficus	nymphaeifolia	8	FALSE	3
Moraceae	Ficus	piresiana	8	FALSE	5
Moraceae	Ficus	pulchella	3	FALSE	2
Moraceae	Helicostylis	Indet.	2	FALSE	1
Moraceae	Helicostylis	pedunculata	2	FALSE	59
Moraceae	Helicostylis	tomentosa	2	FALSE	32
Moraceae	Indet.Moraceae	Indet.	5	TRUE	246
Moraceae	Maquira	guianensis	2	FALSE	15
Moraceae	Naucleopsis	guianensis	2	FALSE	21
Moraceae	Perebea	guianensis	2	FALSE	2
Moraceae	Perebea	mollis	1	FALSE	3
Moraceae	Perebea	rubra	2	FALSE	10
Moraceae	Pseudolmedia	laevis	2	FALSE	14
Moraceae	Trymatococcus	amazonicus	2	FALSE	5
Moraceae	Trymatococcus	Indet.	2	FALSE	1
Moraceae	Trymatococcus	oligandrus	2	FALSE	120
Myristicaceae	Iryanthera	hostmannii	2	FALSE	767
Myristicaceae	Iryanthera	Indet.	2	TRUE	417
Myristicaceae	Iryanthera	sagotiana	2	FALSE	1137
Myristicaceae	Virola	Indet.	4	FALSE	5
Myristicaceae	Virola	michelii	6	FALSE	583
Myristicaceae	Virola	sebifera	1	FALSE	1
Myristicaceae	Virola	surinamensis	7	TRUE	108
Myrtaceae	Calycolpus	goetheanus	5	FALSE	15
Myrtaceae	Eugenia	albicans	1	FALSE	1
Myrtaceae	Eugenia	anastomosans	2	FALSE	16
Myrtaceae	Eugenia	coffeifolia	2	FALSE	36
Myrtaceae	Eugenia	cupulata	2	FALSE	20
Myrtaceae	Eugenia	exaltata	2	FALSE	52
Myrtaceae	Eugenia	Indet.	2	FALSE	2
Myrtaceae	Eugenia	latifolia	1	FALSE	3
Myrtaceae	Eugenia	marowynensis	2	FALSE	1
Myrtaceae	Eugenia	patens	2	FALSE	4
Myrtaceae	Eugenia	patrisii	2	FALSE	44
Myrtaceae	Eugenia	pseudopsidium	2	FALSE	23
Myrtaceae	Eugenia	sp.FG14-Holst	2	FALSE	1

Myrtaceae	Eugenia	sp.FG21-Holst	2	FALSE	24
Myrtaceae	Eugenia	sp.FG9-Holst	2	FALSE	6
Myrtaceae	Eugenia	tetramera	2	FALSE	37
Myrtaceae	Indet.Myrtaceae	Indet.	2	FALSE	241
Myrtaceae	Indet.Myrtaceae	sp.36CAY-ATDN	1	FALSE	1
Myrtaceae	Indet.Myrtaceae	sp.P22	2	FALSE	3
Myrtaceae	Myrcia	decorticans	1	FALSE	21
Myrtaceae	Myrcia	fallax	2	FALSE	16
Myrtaceae	Myrcia	magnoliifolia	3	FALSE	5
Myrtaceae	Myrciaria	floribunda	2	FALSE	22
Nyctaginaceae	Indet.Nyctaginaceae	Indet.	7	FALSE	21
Nyctaginaceae	Indet.Nyctaginaceae	sp.13CAY-ATDN	2	FALSE	1
Nyctaginaceae	Indet.Nyctaginaceae	sp.4CAY-ATDN	2	FALSE	3
Nyctaginaceae	Indet.Nyctaginaceae	sp.7CAY-ATDN	6	FALSE	16
Nyctaginaceae	Indet.Nyctaginaceae	sp.P9	2	FALSE	1
Nyctaginaceae	Neea	Indet.	6	FALSE	6
Nyctaginaceae	Neea	sp.1CAY-ATDN	1	FALSE	1
Ochnaceae	Elvasia	elvasioides	2	FALSE	5
Ochnaceae	Indet.Ochnaceae	Indet.	2	FALSE	3
Ochnaceae	Lacunaria	crenata	2	FALSE	27
Ochnaceae	Lacunaria	Indet.	2	FALSE	5
Ochnaceae	Lacunaria	jenmanii	2	FALSE	23
Ochnaceae	Ouratea	decagyna	2	FALSE	9
Ochnaceae	Ouratea	guianensis	2	FALSE	7
Ochnaceae	Ouratea	Indet.	1	FALSE	1
Ochnaceae	Ouratea	sp.P1	2	FALSE	1
Ochnaceae	Quiina	guianensis	1	FALSE	5
Ochnaceae	Quiina	Indet.	2	FALSE	1
Ochnaceae	Quiina	integrifolia	2	FALSE	25
Ochnaceae	Quiina	macrophylla	1	FALSE	1
Ochnaceae	Quiina	obovata	2	FALSE	32
Ochnaceae	Quiina	oiapocensis	2	FALSE	1
Ochnaceae	Touroulia	guianensis	3	FALSE	12
Olacaceae	Chaunochiton	Indet.	2	FALSE	6
Olacaceae	Chaunochiton	kappleri	6	FALSE	168
Olacaceae	Heisteria	densifrons	2	FALSE	28
Olacaceae	Heisteria	Indet.	1	FALSE	1
Olacaceae	Heisteria	ovata	5	FALSE	10
Olacaceae	Indet.Olacaceae	Indet.	5	FALSE	4
Olacaceae	Minquartia	guianensis	8	FALSE	95
Olacaceae	Minquartia	Indet.	2	FALSE	4
Opiliaceae	Agonandra	silvatica	5	FALSE	22
Phyllanthaceae	Amanoa	congesta	3	FALSE	6
Phyllanthaceae	Amanoa	guianensis	6	FALSE	40
Phyllanthaceae	Hieronyma	oblonga	6	FALSE	30
Phyllanthaceae	Richeria	grandis	2	FALSE	7
Polygonaceae	Coccoloba	Indet.	3	FALSE	14
Polygonaceae	Coccoloba	mollis	2	FALSE	75

Primulaceae	Cybianthus	guyanensis	1	FALSE	1
Primulaceae	Cybianthus	microbotrys	2	FALSE	5
Proteaceae	Euplassa	pinnata	6	FALSE	16
Proteaceae	Panopsis	sessilifolia	2	FALSE	4
Putranjivaceae	Drypetes	fanshawei	3	FALSE	161
Putranjivaceae	Drypetes	Indet.	5	FALSE	20
Putranjivaceae	Drypetes	variabilis	5	FALSE	404
Rhizophoraceae	Cassipourea	guianensis	1	FALSE	10
Rosaceae	Prunus	accumulans	1	FALSE	1
Rosaceae	Prunus	myrtifolia	6	FALSE	7
Rubiaceae	Amaioua	corymbosa	1	FALSE	1
Rubiaceae	Amaioua	guianensis	2	FALSE	33
Rubiaceae	Amaioua	Indet.	1	FALSE	1
Rubiaceae	Chimarrhis	turbinata	6	FALSE	61
Rubiaceae	Coussarea	Indet.	1	FALSE	2
Rubiaceae	Coussarea	machadoana	2	FALSE	29
Rubiaceae	Coussarea	racemosa	1	FALSE	1
Rubiaceae	Duroia	aquatica	2	FALSE	28
Rubiaceae	Duroia	eriopila	2	FALSE	22
Rubiaceae	Duroia	Indet.	2	FALSE	5
Rubiaceae	Duroia	longiflora	2	FALSE	176
Rubiaceae	Duroia	micrantha	2	FALSE	7
Rubiaceae	Faramea	pedunculata	1	FALSE	3
Rubiaceae	Ferdinandusa	paraensis	5	FALSE	12
Rubiaceae	Indet.Rubiaceae	Indet.	2	FALSE	316
Rubiaceae	Isertia	coccinea	3	FALSE	107
Rubiaceae	Isertia	Indet.	1	FALSE	1
Rubiaceae	Kutchubaea	insignis	2	FALSE	6
Rubiaceae	Palicourea	guianensis	3	FALSE	1
Rubiaceae	Palicourea	Indet.	3	FALSE	10
Rubiaceae	Posoqueria	Indet.	2	FALSE	4
Rubiaceae	Posoqueria	latifolia	2	FALSE	271
Rubiaceae	Posoqueria	longiflora	2	FALSE	1
Rutaceae	Zanthoxylum	acuminatum	2	FALSE	2
Rutaceae	Zanthoxylum	ekmanii	3	FALSE	2
Salicaceae	Casearia	decandra	3	FALSE	54
Salicaceae	Casearia	guianensis	2	FALSE	2
Salicaceae	Casearia	Indet.	2	FALSE	12
Salicaceae	Casearia	javitensis	2	FALSE	31
Salicaceae	Casearia	pitumba	2	FALSE	44
Salicaceae	Casearia	sp.1CAY-ATDN	1	FALSE	2
Salicaceae	Casearia	sp.3CAY-ATDN	1	FALSE	2
Salicaceae	Casearia	sp.5CAY-ATDN	3	FALSE	4
Salicaceae	Casearia	sp.D	1	FALSE	1
Salicaceae	Casearia	sylvestris	2	FALSE	40
Salicaceae	Casearia	ulmifolia	1	FALSE	3
Salicaceae	Hasseltia	floribunda	3	FALSE	2
Salicaceae	Indet.Salicaceae	Indet.	1	FALSE	1

Salicaceae	Laetia	procera	6	TRUE	192
Sapindaceae	Cupania	hirsuta	1	FALSE	1
Sapindaceae	Cupania	Indet.	2	FALSE	155
Sapindaceae	Cupania	rubiginosa	2	FALSE	21
Sapindaceae	Cupania	scrobiculata	2	FALSE	98
Sapindaceae	Indet.Sapindaceae	Indet.	2	FALSE	206
Sapindaceae	Indet.Sapindaceae	sp.2CAY-ATDN	2	FALSE	1
Sapindaceae	Matayba	arborescens	3	FALSE	8
Sapindaceae	Matayba	guianensis	2	FALSE	3
Sapindaceae	Matayba	inelegans	1	FALSE	3
Sapindaceae	Matayba	ораса	1	FALSE	1
Sapindaceae	Melicoccus	pedicellaris	2	FALSE	3
Sapindaceae	Talisia	furfuracea	2	FALSE	27
Sapindaceae	Talisia	hexaphylla	2	TRUE	141
Sapindaceae	Talisia	Indet.	2	FALSE	35
Sapindaceae	Talisia	megaphylla	1	FALSE	4
Sapindaceae	Talisia	microphylla	1	FALSE	2
Sapindaceae	Talisia	praealta	2	FALSE	85
Sapindaceae	Talisia	simaboides	2	FALSE	89
Sapindaceae	Talisia	sp.2CAY-ATDN	2	FALSE	1
Sapindaceae	Toulicia	guianensis	1	FALSE	1
Sapindaceae	Vouarana	guianensis	2	FALSE	11
Sapotaceae	Chromolucuma	congestifolia	2	FALSE	1
Sapotaceae	Chrysophyllum	argenteum	2	TRUE	113
Sapotaceae	Chrysophyllum	cuneifolium	2	FALSE	30
Sapotaceae	Chrysophyllum	Indet.	6	FALSE	104
Sapotaceae	Chrysophyllum	pomiferum	5	FALSE	35
Sapotaceae	Chrysophyllum	prieurii	5	FALSE	258
Sapotaceae	Chrysophyllum	sanguinolentum	6	TRUE	330
Sapotaceae	Chrysophyllum	sp.3CAY-ATDN	2	FALSE	4
Sapotaceae	Chrysophyllum	venezuelanense	7	TRUE	5
Sapotaceae	Ecclinusa	guianensis	5	FALSE	80
Sapotaceae	Ecclinusa	Indet.	6	FALSE	4
Sapotaceae	Ecclinusa	ramiflora	2	FALSE	30
Sapotaceae	Elaeoluma	Indet.	6	FALSE	1
Sapotaceae	Indet.Sapotaceae	Indet.	6	TRUE	1238
Sapotaceae	Manilkara	bidentata	6	TRUE	199
Sapotaceae	Micropholis	egensis	6	FALSE	87
Sapotaceae	Micropholis	guyanensis	6	FALSE	167
Sapotaceae	Micropholis	Indet.	6	FALSE	27
Sapotaceae	Micropholis	longipedicellata	3	FALSE	8
Sapotaceae	Micropholis	melinoniana	6	FALSE	74
Sapotaceae	Micropholis	mensalis	2	FALSE	2
Sapotaceae	Micropholis	obscura	6	FALSE	27
Sapotaceae	Micropholis	venulosa	5	FALSE	60
Sapotaceae	Pouteria	ambelaniifolia	5	FALSE	101
Sapotaceae	Pouteria	aubrevillei	1	FALSE	1
Sapotaceae	Pouteria	bangii	2	FALSE	96

Sapotaceae	Pouteria	bilocularis	2	FALSE	65
Sapotaceae	Pouteria	caimito	2	FALSE	4
Sapotaceae	Pouteria	cayennensis	1	FALSE	1
Sapotaceae	Pouteria	cicatricata	2	FALSE	16
Sapotaceae	Pouteria	coriacea	1	FALSE	2
Sapotaceae	Pouteria	egregia	3	FALSE	1
Sapotaceae	Pouteria	engleri	6	FALSE	36
Sapotaceae	Pouteria	eugeniifolia	6	FALSE	99
Sapotaceae	Pouteria	fimbriata	2	FALSE	74
Sapotaceae	Pouteria	flavilatex	6	FALSE	18
Sapotaceae	Pouteria	gongrijpii	2	FALSE	210
Sapotaceae	Pouteria	grandis	5	FALSE	9
Sapotaceae	Pouteria	guianensis	5	TRUE	224
Sapotaceae	Pouteria	hispida	6	FALSE	19
Sapotaceae	Pouteria	Indet.	2	FALSE	44
Sapotaceae	Pouteria	jariensis	5	FALSE	47
Sapotaceae	Pouteria	melanopoda	5	FALSE	47
Sapotaceae	Pouteria	oblanceolata	1	FALSE	1
Sapotaceae	Pouteria	reticulata	2	FALSE	2
Sapotaceae	Pouteria	retinervis	1	FALSE	1
Sapotaceae	Pouteria	sagotiana	2	FALSE	14
Sapotaceae	Pouteria	singularis	6	FALSE	82
Sapotaceae	Pouteria	sp.42CAY-ATDN	5	FALSE	24
Sapotaceae	Pouteria	sp.46Guyafor	2	FALSE	1
Sapotaceae	Pouteria	torta	2	FALSE	136
Sapotaceae	Pouteria	venosa	5	FALSE	11
Sapotaceae	Pradosia	cochlearia	6	TRUE	912
Sapotaceae	Pradosia	Indet.	8	TRUE	350
Sapotaceae	Pradosia	ptychandra	5	FALSE	9
Sapotaceae	Sarcaulus	brasiliensis	3	FALSE	2
Sapotaceae	Sarcaulus	Indet.	6	FALSE	1
Simaroubaceae	Simaba	cedron	2	FALSE	781
Simaroubaceae	Simaba	Indet.	6	TRUE	81
Simaroubaceae	Simaba	morettii	6	FALSE	65
Simaroubaceae	Simaba	polyphylla	3	FALSE	47
Simaroubaceae	Simarouba	amara	7	TRUE	85
Siparunaceae	Siparuna	cuspidata	2	FALSE	23
Siparunaceae	Siparuna	decipiens	2	FALSE	102
Siparunaceae	Siparuna	guianensis	2	FALSE	1
Stemonuraceae	Discophora	guianensis	1	FALSE	5
Ulmaceae	Ampelocera	edentula	2	FALSE	4
Urticaceae	Cecropia	Indet.	4	FALSE	278
Urticaceae	Cecropia	obtusa	4	TRUE	1376
Urticaceae	Cecropia	sciadophylla	4	FALSE	987
Urticaceae	Indet.Urticaceae	Indet.	4	FALSE	5
Urticaceae	Pourouma	bicolor	4	FALSE	84
Urticaceae	Pourouma	guianensis	3	FALSE	1
Urticaceae	Pourouma	Indet.	4	FALSE	131

Urticaceae	Pourouma	melinonii	4	FALSE	258
Urticaceae	Pourouma	minor	2	FALSE	1
Urticaceae	Pourouma	mollis	3	FALSE	15
Urticaceae	Pourouma	villosa	7	FALSE	12
Violaceae	Amphirrhox	Indet.	2	FALSE	2
Violaceae	Amphirrhox	longifolia	2	FALSE	112
Violaceae	Indet.Violaceae	Indet.	1	FALSE	3
Violaceae	Leonia	glycycarpa	2	FALSE	63
Violaceae	Paypayrola	guianensis	1	FALSE	2
Violaceae	Rinorea	flavescens	2	FALSE	55
Violaceae	Rinorea	guianensis	2	FALSE	21
Violaceae	Rinorea	Indet.	3	FALSE	2
Violaceae	Rinorea	pectinosquamata	1	FALSE	1
Violaceae	Rinorea	sp.1CAY-ATDN	2	FALSE	4
Violaceae	Rinorea	sp.P3	1	FALSE	1
Vochysiaceae	Indet.Vochysiaceae	Indet.	8	TRUE	236
Vochysiaceae	Qualea	dinizii	6	FALSE	3
Vochysiaceae	Qualea	Indet.	1	FALSE	2
Vochysiaceae	Qualea	rosea	8	FALSE	1200
Vochysiaceae	Ruizterania	albiflora	8	FALSE	138
Vochysiaceae	Vochysia	guianensis	8	FALSE	14
Vochysiaceae	Vochysia	Indet.	6	FALSE	4
Vochysiaceae	Vochysia	surinamensis	8	FALSE	7
Vochysiaceae	Vochysia	tomentosa	8	FALSE	11

