This is the preprint version of the contribution published as:

Liu, J., Wu, L., Kümmel, S., Yao, J., Schaefer, T., Herrmann, H., Richnow, H.-H. (2018): Carbon and hydrogen stable isotope analysis for characterizing the chemical degradation of tributyl phosphate *Chemosphere* **212**, 133 – 142

The publisher's version is available at:

http://dx.doi.org/10.1016/j.chemosphere.2018.08.034

1	Carbon and hydrogen stable isotope analysis for characterizing the
2	chemical degradation of tributyl phosphate
3	Jia Liu ^{1,2 §} , Langping Wu ^{2 §} , Steffen Kümmel ² , Jun Yao ³ , Thomas Schaefer ⁴ , Hartmut
4	Herrmann ⁴ , Hans-Hermann Richnow ^{2,3*}
5	¹ School of Energy and Environmental Engineering, University of Science and Technology
6	Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
7	² Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental
8	Research-UFZ, Permoserstraße15, Leipzig 04318, Germany
9	³ School of Water Resources and Environment, China University of Geosciences (Beijing),
10	Xueyuan Road No.29, Haidian District, Beijing 100083, PR China
11	⁴ Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research
12	(TROPOS), Permoserstraße15, Leipzig 04318, Germany
13	
14	
15 16	
17	§ Dual-first authorship: the two authors have contributed equally to this work.
18	* To whom correspondence should be addressed:
19	E-mail: hans.richnow@ufz.de Tel.: +49 (0) 341 235 1212, Fax: +49 (0) 341 2351443
20	

21 Abstract

Tributyl phosphate (TBP) belongs to the group of trialkyl substituted organophosphate 22 esters. Its chemical reactivity depends on the stability of various chemical bonds. TBP was 23 used as a model compound for the development of a concept using stable isotope 24 25 fractionation associated with bond cleavage reactions for better understanding the fate of TBP in the environment. Carbon isotope enrichment factors (ε_{C}) of TBP hydrolysis were 26 found to be pH dependent (-3.8 ± 0.3 % at pH 2, -4.6 ± 0.5 % at pH 7, -2.8 ± 0.1 % at pH 9, 27 no isotope fractionation at pH 12), which is in accordance with the mode of a $S_N 2$ 28 hydrolytic bond cleavage. Hydrogen isotope fractionation was negligible as no H bond 29 cleavage is involved during hydrolysis. The apparent carbon kinetic isotope effect (AKIE_c) 30 ranged from 1.045 to 1.058. In contrast to hydrolysis, both carbon and hydrogen isotope 31 fractionation were observed during radical oxidation of TBP by 'OH and SO₄', yielding $\varepsilon_{\rm C}$ 32 from -0.9 $\pm 0.1\%$ to -0.5 $\pm 0.1\%$ and $\epsilon_{\rm H}$ from -20 $\pm 2\%$ to -11 $\pm 1\%$. AKIE_C and AKIE_H 33 varied from 1.007 to 1.011 and from 1.594 to 2.174, respectively. The correlation of ²H and 34 ¹³C fractionation revealed Λ values ranging from 17 ± 1 to 25 ± 6. Results demonstrated 35 that the correlation of ²H and ¹³C isotope fractionation of TBP allowed to identify radical 36 reactions and to distinguish them from hydrolysis. The presented dual isotope analysis 37 approach has diagnostic value for characterizing the chemical transformation of TBP in the 38 environment. 39

40 Keywords

41 Tributyl phosphate, isotope fractionation, hydrolysis, radical oxidation, AKIE

42 **1. Introduction**

Tributyl phosphate (TBP) is an organophosphorus compound widely used as flame 43 retardant, plasticiser, anti-foamer, component of herbicides and hydraulic fluids (Regnery 44 et al., 2011). In addition, it was extensively used as a solvent for plutonium uranium redox 45 extraction (PUREX) for nuclear fuel reprocessing (Mincher et al., 2008). The production of 46 commercially used TBP is about 3000-5000 tons/year in Europe (Nancharaiah et al., 2015). 47 Due to its extensive use, TBP is frequently detected in the aquatic environment of many 48 countries, including Germany (Fries and Püttmann, 2003; Regnery and Puttmann, 2010), 49 Austria (Martinez-Carballo et al., 2007), Italy (Bacaloni et al., 2008), Spain (Rodil et al., 50 2012), Korea (Lee et al., 2016), and China (He et al., 2014; Shi et al., 2016). 51

TBP can inhibit the enzyme acetylcholine esterase (AChE), resulting in cholinergic toxicity 52 53 of the autonomic system and can thus lead to respiratory paralysis and even death (Bergman 54 et al., 2012; Greget et al., 2016). Given these adverse effects, TBP has been an environmental concern for decades, especially in aquatic systems. The main degradation pathways are 55 hydrolysis, indirect photo-oxidation or microbial degradation (Berne et al., 2005; Watts and 56 Linden, 2009; Nancharaiah et al., 2015; Su et al., 2016). These are probably the key 57 processes how TBP is degraded or attenuated in the environment. Direct chemical oxidation 58 59 is effective for the removal of organic contaminants in waste water. In particular, chemicals, such as hydrogen peroxide, persulfate, permanganate and ozone, have been applied for in situ 60 chemical oxidation (ISCO) for the treatment of subsurface TBP or similar contamination 61 (Watts and Teel, 2006). Hydroxyl radicals ('OH) are an effective oxidant with redox potential 62

of 1.7–2.8 V and are frequently used for wastewater remediation (Waclawek et al., 2017). 63 Similar to 'OH, the sulfate radical (SO₄') with a redox potential of 2.5–3.1 V is efficient for 64 the oxidation of many organic compounds (Neta et al., 1988). SO_4^{-} can be generated for 65 example from peroxydisulfate $(S_2O_8^{2-}, PS)$ or peroxymonosulfate $(HS_2O_5^{-})$ salts by the 66 activation of the persulfate anion $(S_2O_8^{2-}, E_0 = 2.01 \text{ V})$ using light (Herrmann, 2007; Yang et 67 al., 2017) or heat (House, 1962; Liang and Su, 2009). Over the past ten years, considerable 68 attention has been paid to potassium peroxydisulfate (KPS) because of its lower cost 69 compared to H_2O_2 or O_3 and the high efficiency for organic mineralization (Lau et al., 2007; 70 71 Waclawek et al., 2017).

Conventionally, degradation pathways are chemically analysed by measuring the 72 concentrations decrease of reactants and the appearance of degradation products for the 73 identification of reaction products. However, this approach often has large uncertainties 74 because of the influence of physical processes (such as dilution, volatility and sorption), the 75 76 challenges of detecting unknown products and the difficulties to establish mass balances. As an alternative technology, compound specific isotope analysis (CSIA) making use of isotope 77 78 fractionation processes of degradation reactions can be used for the qualitative characterisation and quantitative estimation of processes involved in organic compound 79 degradation in the environment. This technique is becoming a routine and practical approach 80 in biogeochemistry and environmental science (Elsner, 2010; Thullner et al., 2012; Nijenhuis 81 and Richnow, 2016; Vogt et al., 2016). 82

For better understanding of the transformation mechanisms, the kinetic isotope effect (KIE)
based on chemical bond change reactions can be analyzed. The KIE characterizes the rate

limitation of a bond change reaction posed by isotopologues. The rate limitation is equivalent 85 to the stability of heavy and light isotope substituted bonds and characterizes the transition 86 state of a chemical reaction (Northrop, 1981; Wolfsberg et al., 2009). The apparent kinetic 87 isotope effect (AKIE) can be calculated to normalize the isotope enrichment factor (ϵ) for 88 non-reacting positions and intermolecular competition to compensate for "dilution" of the 89 isotope composition in reacting isotopologues. The AKIE can be used to compare the kinetic 90 isotope effect of bond cleavage reactions of different molecules. Multi-element isotope 91 fractionation analysis correlating the isotope fractionation of two (or more) elements can be 92 used to evaluate the degradation pathways (Gray et al., 2002; Elsner et al., 2005). Previous 93 studies demonstrated the potential use of stable isotope fractionation for characterizing the 94 transformation mechanisms of organophosphorus compounds, such as dichlorvos, dimethoate, 95 96 methyl parathion, parathion and tris(2-chloroethyl) phosphate (Wu et al., 2014; Wu et al., 2017; Wu et al., 2018a). 97

In the present study, we systematically examined the carbon and hydrogen isotope 98 fractionation upon hydrolysis of TBP under acidic, neutral and alkaline conditions to 99 characterize the reaction pathways. The isotope fractionation patterns of TBP by radical 100 oxidation (SO₄⁻ and ^{\cdot}OH) were also examined. The objectives of this study were to (1) 101 investigate the kinetic reaction rate constant k_{obs} of hydrolysis and radical oxidation; (2) 102 103 characterize the stable carbon and hydrogen isotope fractionation of TBP during hydrolysis and radical oxidation; (3) distinguish different mechanisms by using the AKIE values and 104 correlating ²H and ¹³C isotope fractionation to obtain Λ values, which may be used 105 diagnostically for tracing TBP degradation in the field. 106

107 **2. Materials and methods**

108 A detailed description of the analytical methods is provided in the Supplementary109 Information (SI).

110 2.1 Chemicals

All chemicals were of analytical grade quality and used without further purification. 111 112 Tributyl phosphate (TBP, 99% purity) and dibutyl phthalate (DBP, >99% purity) were purchased from Xiya Company (China). Dichloromethane (DCM) was supplied by Carl 113 Roth GmbH + Co. KG (Karlsruhe, Germany). Potassium peroxydisulfate $(K_2S_2O_8)$, 114 hydrogen peroxide (30% H₂O₂), di-potassium hydrogen phosphate (K₂HPO₄), potassium 115 dihydrogen phosphate (KH₂PO₄), sodium hydrogen carbonate (NaHCO₃), sodium hydrate 116 (NaOH), and disodium hydrogen phosphate (Na₂HPO₄) were supplied by Merck 117 (Guaranteed reagent quality, Darmstadt, Germany). Solutions and pH buffers were 118 119 prepared in ultrapure water obtained by a Milli-Q System (Millipore GmbH, Germany).

120 2.2 Hydrolysis and radical oxidation experiments

The following buffer solutions were used to obtain hydrolysis at different pH conditions:
KCl-HCl (50 mM for pH 2), K₂HPO₄-KH₂PO₄ (100 mM for pH 7), NaHCO₃-NaOH (45.5
mM for pH 9), and Na₂HPO₄- NaOH (32.5 mM for pH 12).

Hydrolysis experiments: TBP is hydrolyzed with very slow reaction rates at room temperature under neutral to acidic conditions but rapidly hydrolyzed under strong alkaline condition (Su et al., 2016). In order to adjust the hydrolysis rates in the same order of

Potassium peroxydisulfate (KPS) oxidation: For KPS oxidation experiments a molar ratio 137 of TBP to KPS of 1:20 was used. The KPS oxidation reaction was not conducted at pH 2 138 due to the exclusive formation of secondary radicals and complicating subsequent reactions. 139 At pH 2, the SO₄⁻ reacts exclusively with the Cl⁻ from the HCl/ KCl buffer to produce a Cl 140 atom, which will subsequently react to form Cl₂, a dichloride radical anion (Herrmann, 141 2003). Therefore, the KPS oxidation reactions were only conducted at pH 7, pH 9 and pH 142 12, respectively. The initial concentration of TBP was 100 ppm. Buffer solutions with 143 different pH values were prepared as described above. All KPS oxidation reactions were 144 145 carried out at 35 °C. Control experiments were carried out without the addition of KPS. Remaining TBP was extracted and analyzed as described in the hydrolysis experiment. 146 UV/H₂O₂ oxidation experiment: Photolysis experiments were carried out at pH 7 in 147

149	150 W xenon lamp (Type no. L2175, Hamamatsu, Japan), which covered a broad
150	continuous spectrum from 185 nm to 2000 nm. A long-pass filter with a cut-off of short UV
151	wavelengths below 280 nm (20CGA-280, Newport Corporation, Irvine, U.S.) was applied.
152	Direct photolysis is not expected at the applied UV wavelengths due to the almost
153	negligible photon absorption by TBP (Watts and Linden, 2009). The molar ratio of TBP to
154	H_2O_2 was 1:5. In order to investigate the effects of buffer solution concentrations and
155	reaction rates on the isotope fractionation of TBP, three experiments were carried out in
156	100 mM buffer solution at 20 °C (UV/H ₂ O ₂ _1), 100 mM buffer solution at 15 °C
157	(UV/H ₂ O ₂ _2) and 10 mM buffer solution at 15 °C (UV/H ₂ O ₂ _3), respectively. 100 mM
158	buffer solution was applied to make sure that the pH will remain stable at 7 during the
159	reaction. Lower buffer concentration of 10 mM was applied to minimize the formation of
160	the secondary radicals (SI, section 5). The experiments were conducted at different
161	temperature of 20 °C and 15 °C to slow down the reaction rate. For direct photolysis,
162	experiments were conducted under the same conditions but without the addition of H_2O_2 in
163	a 100 mM buffer solution at 20 °C. Dark control experiments were conducted under
164	identical experimental conditions without UV exposure (100 mM buffer solution). More
165	information on the experimental setup of the UV degradation experiments are described
166	elsewhere (Zhang et al., 2016). The transformation products of TBP in UV/H_2O_2
167	experiments were tentatively analyzed by a Fourier-transform ion cyclotron resonance mass
168	
	spectrometer (FT-ICR MS, Solarix XR 12T, Bruker Daltonics), the analytical procedures

Isotope ratios were expressed as delta notation ($\delta^{h}E$) in parts per thousand (∞) based on Eq. [1]. Here, R_{sample} is the ratio of the heavy (${}^{h}E$) to the light isotopes (${}^{l}E$) of a sample and R_{ref} corresponds to the ratio of the respective isotopes of reference. For stable carbon isotope analyses the Vienna Pee Dee Belemnite (V-PDB) is used as reference, whereas for stable hydrogen isotope analyses the Vienna Standard Mean Ocean Water (V-SMOW) is applied (Coplen, 1996).

177
$$\delta^{h} E = \left(\frac{R_{sample}}{R_{ref}} - 1\right) = \left(\frac{{}^{h} E / {}^{l} E}{{}^{h} E_{ref} / {}^{l} E_{ref}} - 1\right)$$
 [1]

The isotope enrichment factor (ε_E) can be determined from the logarithmic form of the Rayleigh equation, as shown in Eq. [2] (Rayleigh, 1896; Elsner, 2010). The variables $\delta^h E_t$ and $\delta^h E_0$ are the isotope compositions of a compound for the element E at time t and time zero, respectively, and *f* is the residual substrate fraction. The changes in concentration during the reaction (C_t/C₀) can be related to the changes in isotope composition by ε_E .

183
$$\ln\left(\frac{\delta^{h}E_{t}+1}{\delta^{h}E_{0}+1}\right) = \varepsilon_{E} \cdot \ln f = \varepsilon_{E} \cdot \ln\left(\frac{C_{t}}{C_{0}}\right)$$
 [2]

The AKIE_E value of the bond cleavage at the reactive position can be calculated with Eq. [3], where n is the total number of atoms for element E in the molecule, x is the number of reactive sites, and z is the number of indistinguishable reactive sites (Elsner et al., 2005). The normalisation of AKIE_E corrects the bulk isotope enrichment for non-reactive positions and the intramolecular isotopic competition.

189 AKIE =
$$\frac{1}{1 + \frac{n}{x} \times z \times \varepsilon}$$
 [3]

190 Assuming that two processes (process 1 and 2) are reacting with the same substrate simultaneously and both processes follow first-order kinetics, the contribution of the 191 individual processes in the mixed reaction can be estimated by an extended Rayleigh-type 192 equation using the individual isotope enrichment factors of the particular reaction (ε_1 and ε_2). 193 The observable ε_i of the mixed reaction and the ε_1 and ε_2 of the individual pathway 1 and 2 194 are needed for this calculation. The rate ratio of two competing degradation pathways (F) can 195 be calculated by Eq. (4) (Van Breukelen, 2007), indicating the isotope fractionation 196 contributed by pathway 1 to the observed ε_i . 197

198
$$\mathbf{F} = \frac{\varepsilon_1 - \varepsilon_2}{\varepsilon_1 - \varepsilon_2}$$
[4]

- 199 **3. Results**
- 200 *3.1 Effects of extraction on isotope signature*
- 201 The recovery of the liquid/liquid DCM extraction method was $91.2 \pm 10.2\%$ (Fig. S2 (a)).
- 202 The isotope shifts of TBP before and after DCM extraction were 0.05 0.65% for δ^{13} C,
- and 1 4% for $\delta^2 H$ (Fig. S2 (b)), respectively. Considering the analytical uncertainty of
- 204 carbon and hydrogen isotope compositions, which is $\leq \pm 0.5\%$ and $\leq \pm 5\%$ for carbon and
- 205 hydrogen, respectively, carbon and hydrogen isotope shifts due to the extraction process are
- 206 insignificant. A detailed description was provided in SI, section 3.
- 207 **3.2** Isotope fractionation of TBP during hydrolysis

The degradation curves and changes in carbon and hydrogen isotope compositions of TBP are illustrated in Fig. 1, and the obtained k_{obs} and ε values for TBP hydrolysis are summarized in Table 1. All hydrolysis experiments followed pseudo-first order kinetics with R² better than 0.97, alkaline conditions resulted in higher reaction rates compared to

212	neutral and acidic conditions (pH 12 > pH 9 > pH 7 \approx pH 2) (Table 1). The stable carbon
213	isotope enrichment could be quantified by the Rayleigh equation. At pH 2, 90%
214	degradation was achieved within 1236 h, resulting in a carbon enrichment factor (ϵ_{C}) of
215	-3.8 ± 0.3 %. 88% degradation was achieved within 1140 h at pH 7, yielding an $\epsilon_{\rm C}$ of -4.6 ±
216	0.5‰. 94% degradation was achieved within 864 h and yielding an $\epsilon_{\rm C}$ of -2.8 ± 0.1‰ at pH
217	9. At pH 12, 80% degradation was achieved after 1464 h and no carbon enrichment was
218	observed. Hydrogen isotope fractionation was not observed in all hydrolysis experiments
219	(Fig. <mark>1</mark>).

- 220 **3.3** Isotope fractionation of TBP during KPS oxidation
- The degradation curves and changes in carbon and hydrogen isotope compositions of TBP 221 are illustrated in Fig. 2, and the corresponding k_{obs} and ε values are summarized in Table 1. 222 All oxidation experiments followed pseudo-first order kinetics and the k_{obs} values 223 decreased with increasing pH (Table 1). The stable carbon and hydrogen isotope 224 225 fractionation could be quantified by the Rayleigh equation. About 95% TBP was degraded within 292 h at pH7/KPS, resulting in a $\varepsilon_{\rm C}$ = -0.9 ± 0.1‰ and $\varepsilon_{\rm H}$ = -16 ± 2‰, respectively. 226 At pH9/KPS, 95% degradation was achieved within 332 h, yielding an $\varepsilon_{\rm C}$ of -0.8 \pm 0.1% 227 and an $\varepsilon_{\rm H}$ of -20 \pm 2‰. At pH12/KPS, TBP was depleted to 90% within 400 h, 228 corresponding to an $\varepsilon_{\rm C}$ = -0.5 ± 0.1‰ and $\varepsilon_{\rm H}$ = -11 ± 1‰. No degradation took place in 229 control experiments except for pH12/KPS (Fig. S2). Due to the hydrolysis at pH 12, 35% 230 of TBP was degraded within 400 h. 231
- 232 3.4 Isotope fractionation of TBP during UV/H₂O₂ oxidation
- 233 Degradation curves and changes in carbon and hydrogen isotope compositions of TBP are
- illustrated in Fig. 2. All experiments followed pseudo-first order kinetics, and the k_{obs}
- 235 values (× 10^{-3} h⁻¹) were 474.2 ± 11.4 in UV/H₂O₂1, 27.9 ± 2.4 in UV/H₂O₂2 and 6.8 ±

0.5 in UV/H₂O₂_3, respectively (Table 1). All coefficients of determination (\mathbb{R}^2) were larger 236 than 0.99. In the experiment UV/ H_2O_2 1, 96% TBP was degraded within 6.7 h, vielding a 237 $\epsilon_{\rm C}$ of -0.8 ± 0.1‰ and $\epsilon_{\rm H}$ of -14 ± 1‰. In the degradation experiment UV/H₂O₂, 85% 238 TBP was depleted in 72.5 h, resulting in a $\varepsilon_{\rm C}$ of $-0.6 \pm 0.3\%$ and $\varepsilon_{\rm H}$ of $-13 \pm 3\%$. In the 239 degradation experiment UV/H₂O₂_3, 93% TBP was transformed within 385 h, and an $\varepsilon_{\rm C}$ of 240 $-0.6 \pm 0.2\%$ and $\epsilon_{\rm H}$ of $-17 \pm 7\%$ were obtained. In the control experiment without H₂O₂ 241 employing the conditions used in UV/H₂O₂_1, no significant change of the TBP 242 concentration was observed (Fig.S2 d), suggesting that direct photolysis did not take place 243 244 during these experiments.

245 **3.5** Analysis of transformation products of TBP in the UV/H_2O_2 experiment

Three potential transformation tentatively 246 products were characterized as di-n-butylphosphate (P1), keto-tri-butylphosphate (P2), and hydroxy-tri-butylphosphate (P3) 247 (Table S1 and Fig. S3). The detailed information of characterized transformation products 248 249 is given in the SI, section 7. The precise position of the hydroxyl or keto group at the side chain of the TBP molecule could not be confirmed, however, it is likely that the functional 250 group is formed by radical attack at the sub-terminal carbon of the butyl chain. 251

252 **3.6** Two dimensional isotope fractionation (C-H)

In order to explore the diagnostic potential of two dimensional isotope fractionation analysis, the hydrogen and carbon isotope fractionation were plotted to obtain Λ values $(\Lambda = \frac{\Lambda^2 H}{\Lambda^{13} c} \approx \frac{\varepsilon_H}{\varepsilon_c}, \Lambda^{13} C = \delta_t^{13} C \cdot \delta_0^{13} C, \Lambda^2 H = \delta_t^2 H \cdot \delta_0^2 H)$. However, due to the absence of hydrogen isotope fractionation Λ could not be defined for hydrolysis. In contrast, the radical oxidation of TBP under pH7/KPS, pH9/KPS and pH12/KPS conditions resulted in Λ values of 17 ± 1, 23 ± 1, 19 ± 1, respectively (Table 1). The reactions of TBP by UV/H₂O₂ (dominant 'OH reaction, described in SI, section 5) yielded an average Λ value of 260 20 ± 4 (Table 1), which is statistically identical with the ones obtained from KPS oxidation 261 experiments. The two dimensional isotope fractionation analysis of all radical oxidation 262 experiments including SO₄⁻⁻ and 'OH gave an average Λ value of 20 ± 4 (Table 1).

263 **4. Discussion**

264 4.1 Insight of the isotope fractionation during hydrolysis

A previous study proposed two hydrolysis pathways of organophosphorus compounds (OPs) 265 (Fig. 3a,b): the first one is OH⁻ or H₂O attacks the phosphorus atom; the second one is H₂O 266 attacks the carbon atom (Wu et al., 2006). The acid-catalysed hydrolysis of esters mainly 267 proceeds via an A_{AC}2 mechanism suggesting an acyl-oxygen fission (AC) in a bimolecular 268 reaction (Day and Ingold, 1941). For instance, under acidic and neutral conditions, 269 270 trimethyl phosphate may lead to a C-O bond split as demonstrated in experiments with 271 ¹⁸O-labelled water as indicator (Blumenthal and Herbert, 1945). Consequently, the C-O 272 bond cleavage leads to carbon isotope fractionation of TBP. At high pH (e.g., pH >10), OH 273 attacks the phosphorus atom through simple nucleophile displacement (S_N2-type) leading to a P–O bond cleavage (Wanamaker et al., 2013). The reaction may proceed via a two-step 274 addition-elimination pathway involving a pentacoordinate intermediate, such as TS1 and 275 TS2 (Fig. 3b) (Kirby et al., 2013). The observed negligible carbon and hydrogen isotope 276 fractionation of TBP at pH 12 highly supports a P–O bond split. 277

At pH 9, the observed carbon isotope fractionation of TBP provided evidence for a C–O bond split. However, the $\varepsilon_{\rm C}$ value at pH 9 was lower than that of pH 2 and pH 7. The same phenomenon was observed during methyl parathion and ethyl parathion hydrolysis (Wu et al., 2018a). Given that hydrolysis of OPs is pH dependent, no precise pH boundary can be

282	used for the identification of C–O or P–O bond split. The two major degradation pathways
283	occurred simultaneously at pH 9. The P-O bond cleavage is not associated with carbon
284	isotope fractionation, and thus carbon isotope fractionation can be solely attributed to the
285	splitting of the C–O bond. Considering that the carbon fractionation observed in
286	experiments for acid hydrolysis (pH 2) and alkaline hydrolysis (pH 12) are representative
287	for the mechanism for C–O and P–O bond split respectively, and both processes follow the
288	first-order kinetics, Eq. [4] can be applied for the calculation of the contribution of the two
289	pathways acting during the hydrolysis at pH 9. The carbon isotope enrichment factors of
290	hydrolysis at pH 2 (ϵ_1 = -3.8 ± 0.3‰) and the ϵ_2 value of 0‰ representing hydrolysis at pH
291	12 were used for calculation. Within the uncertainty of isotope enrichment factors observed
292	in the experiments, the enrichment factor of TBP at pH 9 ($\varepsilon_i = -2.8 \pm 0.1\%$) suggests that
293	67–80% of TBP was hydrolysed via the C–O bond cleavage pathway, and the remaining
294	20–33% was attributed to the P–O bond split. The mechanism of acidic and neutral
295	hydrolysis is almost identical, and the calculation is also valid for comparing contributions
296	at neutral conditions.

For testing the hypothesis of the degradation mechanisms the AKIE values were compared to intrinsic KIE reactions. For TBP hydrolysis, $AKIE_{C}$ (calculation is described in SI, section 6) ranged from 1.048 to 1.058, which is in line with the intrinsic KIE values of nucleophilic substitution (1.03–1.09; S_N2 type on C–O bond) (Paneth et al., 1992), supporting the conclusion of C–O bond cleavage during TBP hydrolysis.

- 302 *4.2 pH-dependency of radical oxidation*
- 303 In this study, either SO_4^{-} or 'OH was involved in persulfate oxidation, which is a

pH-dependent reaction. Once SO_4^{-} was generated by $S_2O_8^{2-}$ scission, it could propagate a 304 chain of reactions involving the formation of other reactive species. SO_4 can react with 305 water at all pH levels, forming 'OH (Eq. [S1]) (Neta et al., 1988; Herrmann et al., 1995). 306 With the increase of pH, SO_4^{-} preferentially reacts with OH⁻ forming 'OH with an 307 increasing rate constant (Eq. [S2]) (Neta et al., 1988; Herrmann et al., 1995). Hence, at low 308 pH (i.e. pH 7), SO₄⁻ is the predominant reactive species, whereas at pH 9, both SO₄⁻ and 309 'OH could coexist and at pH 12, 'OH is predominant (Liang and Su, 2009). Considering 310 both radical species can be quenched to some extent by the PO_4^{3-} and CO_3^{2-} components in 311 312 the buffer, the contributions of secondary radicals formed during the reaction and subsequent reaction with TBP were taken into account and the contributions were estimated 313 to be minor (description in SI, section 5). 314

During radical oxidation of TBP, the rate constants have the following order: pH 7 > pH 9 > 315 316 pH 12 (Table 1), demonstrating that the reaction can be retarded by increasing pH. The rate constants are associated with the reactivity of the radicals as SO_4 has a stronger redox 317 potential than 'OH (Buxton et al., 1988; Neta et al., 1988), and thus may result in larger 318 kinetic rate constants. The TBP oxidation by KPS at pH 12 had a 5 times larger rate 319 constant compared to the hydrolysis at pH 12 (Table 1) suggesting that radical oxidation 320 was dominating the degradation reaction. Nevertheless, two degradation processes 321 co-existed in the degradation of TBP in the pH12/KPS system, namely, radical oxidation 322 and alkaline hydrolysis. The contribution of alkaline hydrolysis on the TBP degradation 323 324 was 35% based on the control experiment without the addition of KPS (Fig. S2).

325 4.3 Insight of isotope fractionation during 'OH and SO₄' reaction with TBP

³²⁶ OH which can be generated by H_2O_2 under UV irradiation has a high tendency to react ³²⁷ non-selectively on functional groups via electron transfer, hydrogen abstraction or ³²⁸ electrophilic/radical addition (Buxton et al., 1988). The transformation products formed in

16

the UV/H2O2 reaction with TBP were tentatively identified as keto and hydroxylated 329 derivatives (Table S1), suggesting a hydrogen abstraction from the alkyl chain at 330 sub-terminal positions. This suggests a formation of a radical at the side chain which is 331 332 quenched by oxygen forming a meta stable intermediate radical followed by a Russell mechanism (Russell, 1957) to form keto and hydroxyl TBP (Fig. 3c). In subsequent steps 333 further reactions may lead to the formation of dibutyl phosphate. The hydrogen abstraction 334 mechanism will lead to ²H and ¹³C isotope fractionation of TBP. Alternatively, radical 335 addition, for example 'OH addition to the central phosphorus atom, may form a 336 (C₄H₉O)₃PO'OH radical leading to elimination of butanol and resulting in dibutyl 337 phosphate (Fig. 3c). However, 'OH addition to phosphate will lead to P-O cleavage and is 338 unlikely to induce ²H and ¹³C isotope fractionation. Similar mechanisms have been 339 observed in previous studies during the 'OH reaction with tri-(2chloroethyl) phosphate (Wu 340 341 et al., 2018a) and dimethyl phenylphosphonate (Oh et al., 2003). According to the reaction mechanisms of SO_4^{\bullet} and tri-(2chloroethyl) phosphate, SO_4^{\bullet} was reported to react with 342 343 phosphorus and carbon atoms, thereby causing a P–O and C–H bond split (Ou et al., 2017). Similarly, two pathways were proposed to be involved in TBP oxidation induced by SO_4^{-} . 344 One pathway involves the addition to the phosphorus centre and rupturing of 345 -OCH₂CH₂CH₂CH₃ chains and the other one involves the addition to the -CH₂- moieties 346 causing the C-H bond split. 347

The radical reaction with the alkane side chain at the sub-terminal position cleaving a C-H bond in the transition state leads to ²H and ¹³C isotope fractionation. The observed ²H and ¹³C isotope fractionation in our experiments showed that this pathway took place during radical oxidation of TBP by 'OH and SO₄⁻⁻. The obtained ε_C and ε_H at pH7/KPS (SO₄⁻⁻ dominating) and pH9/KPS (SO₄⁻⁻ and 'OH co-existing) were very similar with the ones from UV/H₂O₂ (pure 'OH) (Table 1). The slightly smaller ε_C of -0.5±0.1‰ and ε_H of -11±1‰ 354 at pH12/KPS (OH dominating) is due to the effect of alkaline hydrolysis of TBP at pH 12. Considering 35% of TBP degradation was contributed by alkaline hydrolysis (process 1) at 355 pH12/KPS (Fig. S2), the ε associated with the 'OH oxidation process (process 2) can be 356 estimated using Eq. (4) where F = 0.35, $\varepsilon_i = -0.5 \pm 0.1\%$ for carbon and $-11 \pm 1\%$ for 357 hydrogen, $\varepsilon_1 = 0$ %. Thus, ε_2 was calculated to be -0.8±0.2‰ for carbon and -17±2‰ for 358 hydrogen, which were identical with the ones obtained from radical oxidation of TBP at 359 pH7/KPS, pH9/KPS and UV/H₂O₂ conditions (Table 1). The average values of $\varepsilon_{\rm C}$ = 360 -0.7±0.1‰, $\varepsilon_{\rm H}$ = -16±3‰, and Λ = 20±4 calculated from all individual radical oxidation 361 experiments suggest that SO₄^{•-} and 'OH radical oxidation processes of TBP could not be 362 distinguished based on isotope enrichment factors within the uncertainty of our results, and 363 it may suggest that both reaction processes had similar mechanisms of attacking carbon 364 365 atoms and cleaving C–H bonds. However, P–O bond splitting cannot be characterized by the ²H and ¹³C isotope fractionation of TBP in this study, therefore, ²H and ¹³C isotope 366 fractionation studies cannot provide direct evidence to evaluate the process of P-O bond 367 cleavage. 368

369 The AKIE_C which ranged from 1.007 to 1.011 for all radical oxidation experiments (Table 1) is consistent with those reported for n-alkanes' chemical transformation (1.01–1.02) 370 (Bouchard et al., 2008) and lower than the Streitwieser Limits for a C-H bond (1.021) 371 cleavage (Elsner et al., 2005). A series of studies yield AKIE_H values between 2–23 that are 372 typical for H-bond cleavage (Elsner et al., 2005). The AKIE_H values reported in this study 373 were lower and ranged from 1.608 to 2.174, indicating that steps other than the C-H bond 374 cleavage were also rate-determining for radical oxidation of TBP. Potentially a radical 375 reaction at the phosphate moiety may contribute to TBP degradation (Fig. 3c 2) but do not 376 contribute to ²H and ¹³C isotope fractionation. This may explain why the calculated AKIE 377 values are lower than those typically expected for C-H bond cleavage. In our case the 378

of TBP because the overall transformation reaction has a contribution of OH addition to the 380 phosphate. However our current data do not allow validating this hypothesis in more detail. 381 4.4 Identification of degradation pathways by 2D-plot to analyse A values 382 The SO_4^{-} and 'OH resulted in a characteristic isotope fractionation pattern (A values) for 383 radical oxidation reactions of TBP. As hydrolysis did not lead to primary hydrogen isotope 384 effects, hydrolysis and radical oxidation of TBP can be clearly distinguished by the 385 correlation of ²H and ¹³C fractionation (Fig. 4). Similar results have been reported for 386 387 radical oxidation of tris(2-chloroethyl) phosphate by 'OH formed in Fenton reactions and UV/H_2O_2 (Wu et al., 2018a). However, considering the obtained identical Λ values (section 388 3.5), the Λ values do not allow for separating the mechanisms of SO₄⁻⁻ and 'OH reactions' 389 with TBP. The Λ values are not affected when non-isotope-fractionating processes such as 390 391 alkaline hydrolysis are influencing overall degradation, showing that mechanisms can also be identified when non-isotope-fractionating processes are at work. This may imply that the 392 extent of isotope fractionation can be used for the assessment of radical reactions and may 393 allow for the selection of an isotope enrichment factor representative for radical reactions. 394 This isotope enrichment factor could then be used to calculate the contribution of 395 degradation of TBP by radical reactions to the overall degradation in the environment. For 396 example the hydrogen enrichment factor could be used to quantify the contribution of 397 radical reactions because hydrolysis does not exhibit ²H fractionation. The ²H and ¹³C 398 isotope fractionation pattern of parathion has been used at an industrial dumpsite to 399 characterise the contribution of neutral and acidic hydrolysis of parathion in a remediation 400 measure (Wu et al., 2018b). Similarly, the Λ values determined throughout the current 401 study could be used in the future to characterise degradation reaction in field studies for 402

calculated AKIE values do not describe the KIE of the C-H bond cleavage at the side chain

quantifying hydrolysis or chemical oxidation reactions. Further information for
quantification of degradation reactions in the environment using enrichment factors have
been summarised previously (Thullner et al., 2012).

406 **5.** Conclusions

In this study, the carbon and hydrogen isotope fractionation caused by hydrolysis and 407 408 radical oxidation of TBP were systematically examined at different pH conditions. The AKIE_c of the hydrolysis under neutral and acidic conditions was 1.048 - 1.058, which was 409 consistent with an S_N 2-type displacement reaction cleaving the C-O bond. At pH 12, a 410 S_N 2-type nucleophilic displacement reaction cleaving the P-O bond was characterized by 411 the absence of carbon and hydrogen isotope fractionation. During hydrolysis at pH 9, the 412 S_N 2-type displacement reaction cleaving the C-O bond affects the carbon isotope 413 fractionation and contributes to 67 - 80% of the overall reaction. The radical oxidation of 414 TBP results in $AKIE_{C}$ and $AKIE_{H}$ of 1.007 - 1.011 and 1.608 - 2.174, respectively, which is 415 consistent with a major contribution of a C-H bond cleavage. The correlation of 2 H and 13 C 416 417 isotope fractionation of TBP allows identifying radical reactions and distinguishing radical reactions from hydrolysis. 418

419 Acknowledgements

420 Jia Liu and Langping Wu were financially supported by the China Scholarship Council

- 421 (File No. 201506460057 and 201306460007, respectively). The work was partially
- 422 supported by the National Science Foundation of China [grant number 41430106, 2014 and
- 423 41573080, 2015]. The authors are grateful for using the analytical facilities of the Centre

424	for Chemical Microscopy (ProVIS) at the Helmholtz Centre for Environmental Research –
425	UFZ, which is supported by the European Regional Development Funds (EFRE - Europe
426	funds Saxony) and the Helmholtz Association. The authors thank Dr. Oliver J. Lechtenfeld
427	for his support on transformation products analysis in ProVIS, and thank Dr. Matthias
428	Gehre for his help in the Isotope Laboratory of the UFZ. We are grateful to Axel Horst for
429	critical reading of our manuscript.
430	

431 Conflicts of interest: none.

432 **References**

- Bacaloni, A., Cucci, F., Guarino, C., Nazzari, M., Samperi, R., Laganà, A., 2008.
 Occurrence of organophosphorus flame retardant and plasticizers in three volcanic
 lakes of central Italy. Environ. Sci. Technol. 42, 1898-1903.
- Bergman, A., Ryden, A., Law, R.J., de Boer, J., Covaci, A., Alaee, M., Birnbaum, L.,
 Petreas, M., Rose, M., Sakai, S., Van den Eede, N., van der Veen, I., 2012. A novel
 abbreviation standard for organobromine, organochlorine and organophosphorus flame
 retardants and some characteristics of the chemicals. Environ. Int. 49, 57-82.
- Berne, C., Allainmat, B., Garcia, D., 2005. Tributyl phosphate degradation by
 Rhodopseudomonas palustris and other photosynthetic bacteria. Biotechnol. Lett. 27,
 561-566.
- Blumenthal, E., Herbert, J., 1945. The mechanism of the hydrolysis of trimethyl
 orthophosphate. Trans. Faraday Soc. 41, 611-617.
- Bouchard, D., Hunkeler, D., Höhener, P., 2008. Carbon isotope fractionation during aerobic
 biodegradation of n-alkanes and aromatic compounds in unsaturated sand. Org.
 Geochem. 39, 23-33.
- Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B., 1988. Critical review of rate
 constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals
 (·OH/·O–) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513-886.
- 451 Coplen, T.B., 1996. New guidelines for reporting stable hydrogen, carbon, and oxygen
 452 isotope-ratio data. Geochim. Cosmochim. Acta 60, 3359-3360.
- Day, J.N.E., Ingold, C.K., 1941. Mechanism and kinetics of carboxylic ester hydrolysis and
 carboxyl esterification. Trans. Faraday Soc. 1941, 686-705.
- Elsner, M., 2010. Stable isotope fractionation to investigate natural transformation
 mechanisms of organic contaminants: principles, prospects and limitations. J. Environ.
 Monit. 12, 2005-2031.
- Elsner, M., Zwank, L., Hunkeler, D., Schwarzenbach, R.P., 2005. A new concept linking
 observable stable isotope fractionation to transformation pathways of organic
 pollutants. Environ. Sci. Technol. 39, 6896-6916.

- 461 Fries, E., Püttmann, W., 2003. Monitoring of the three organophosphate esters TBP, TCEP
 462 and TBEP in river water and ground water (Oder, Germany). J. Environ. Monit. 5,
 463 346-352.
- Gray, J.R., Lacrampe-Couloume, G., Gandhi, D., Scow, K.M., Wilson, R.D., Mackay, D.M.,
 Sherwood Lollar, B., 2002. Carbon and hydrogen isotopic fractionation during
 biodegradation of methyl tert-butyl ether. Environ. Sci. Technol. 36, 1931-1938.
- 467 Greget, R., Dadak, S., Barbier, L., Lauga, F., Linossier-Pierre, S., Pernot, F., Legendre, A.,
- Ambert, N., Bouteiller, J.M., Dorandeu, F., Bischoff, S., Baudry, M., Fagni, L.,
 Moussaoui, S., 2016. Modeling and simulation of organophosphate-induced
 neurotoxicity: Prediction and validation by experimental studies. Neurotoxicology 54,
 140-152.
- He, X., Mezyk, S.P., Michael, I., Fatta-Kassinos, D., Dionysiou, D.D., 2014. Degradation
 kinetics and mechanism of beta-lactam antibiotics by the activation of H2O2 and
 Na2S2O8 under UV-254nm irradiation. J. Hazard. Mater. 279, 375-383.
- 475 Herrmann, H., 2003. Kinetics of aqueous phase reactions relevant for atmospheric
 476 chemistry. Chem. Rev. 103, 4691-4716.
- Herrmann, H., 2007. On the photolysis of simple anions and neutral molecules as sources
 of O-/OH, SOx- and Cl in aqueous solution. Phys. Chem. Chem. Phys. 9, 3935-3964.
- 479 Herrmann, H., Reese, A., Zellner, R., 1995. Time-resolved UV/VIS diode array absorption
- 480 spectroscopy of SOx-(x=3, 4, 5) radical anions in aqueous solution. J. Mol. Struct. 348,
 481 183-186.
- House, D.A., 1962. Kinetics and Mechanism of Oxidations by Peroxydisulfate. Chem. Rev.
 62, 185-&.
- Kirby, A.J., Mora, J.R., Nome, F., 2013. New light on phosphate transfer from triesters.
 Biochim. Biophys. Acta. 1834, 454-463.
- Lau, T.K., Chu, W., Graham, N.J., 2007. The aqueous degradation of butylated
 hydroxyanisole by UV/S2O82-: study of reaction mechanisms via dimerization and
 mineralization. Environ. Sci. Technol. 41, 613-619.
- Lee, S., Jeong, W., Kannan, K., Moon, H.B., 2016. Occurrence and exposure assessment of
- 490 organophosphate flame retardants (OPFRs) through the consumption of drinking water

- 491 in Korea. Water Res. 103, 182-188.
- 492 Liang, C., Su, H.-W., 2009. Identification of sulfate and hydroxyl radicals in thermally
 493 activated persulfate. Ind. Eng. Chem. Res. 48, 5558-5562.
- Martinez-Carballo, E., Gonzalez-Barreiro, C., Sitka, A., Scharf, S., Gans, O., 2007.
 Determination of selected organophosphate esters in the aquatic environment of
 Austria. Sci. Total Environ. 388, 290-299.
- 497 Mincher, B.J., Mezyk, S.P., Martin, L.R., 2008. A pulse radiolysis investigation of the
 498 reactions of tributyl phosphate with the radical products of aqueous nitric acid
 499 irradiation. J. Phys. Chem. A 112, 6275-6280.
- Nancharaiah, Y.V., Reddy, G.K.K., Mohan, T.V.K., Venugopalan, V.P., 2015.
 Biodegradation of tributyl phosphate, an organosphate triester, by aerobic granular
 biofilms. J. Hazard. Mater. 283, 705-711.
- Neta, P., Huie, R.E., Ross, A.B., 1988. Rate constants for reactions of inorganic radicals in
 aqueous solution. J. Phys. Chem. Ref. Data 17, 1027-1284.
- Nijenhuis, I., Richnow, H.H., 2016. Stable isotope fractionation concepts for characterizing
 biotransformation of organohalides. Curr. Opin. Biotechnol. 41, 108-113.
- Northrop, D.B., 1981. The expression of isotope effects on enzyme-catalyzed reactions.
 Annual review of biochemistry 50, 103-131.
- Oh, Y.-C., Bao, Y., Jenks, W.S., 2003. Isotope studies of photocatalysis: TiO2-mediated
 degradation of dimethyl phenylphosphonate. J. Photoch. Photobio. A: Chem 161,
 69-77.
- 512 Ou, H.s., Liu, J., Ye, J.s., Wang, L.l., Gao, N.y., Ke, J., 2017. Degradation of 513 tris(2-chloroethyl) phosphate by ultraviolet-persulfate: Kinetics, pathway and 514 intermediate impact on proteome of Escherichia coli. Chem. Eng. J. 308, 386-395.
- 515 Paneth, P., Buncel, E., Saunders Jr, W., 1992. Isotopes in Organic Chemistry Vol. 8.
 516 Elsevier, New York.
- Rayleigh, L., 1896. L.Theoretical considerations respecting the separation of gases by
 diffusion and similar processes. Philos. Mag. 42, 493-498.
- Regnery, J., Puttmann, W., 2010. Occurrence and fate of organophosphorus flame
 retardants and plasticizers in urban and remote surface waters in Germany. Water Res.

521 44, 4097-4104.

- Regnery, J., Puttmann, W., Merz, C., Berthold, G., 2011. Occurrence and distribution of
 organophosphorus flame retardants and plasticizers in anthropogenically affected
 groundwater, J. Environ. Monit. 13, 347-354.
- Rodil, R., Quintana, J.B., Concha-Grana, E., Lopez-Mahia, P., Muniategui-Lorenzo, S.,
 Prada-Rodriguez, D., 2012. Emerging pollutants in sewage, surface and drinking water
 in Galicia (NW Spain). Chemosphere 86, 1040-1049.
- Russell, G.A., 1957. Deuterium-isotope effects in the autoxidation of aralkyl hydrocarbons.
 Mechanism of the interaction of peroxy radicals. J. Am. Chem. Soc. 79, 3871-3877.
- Shi, Y., Gao, L., Li, W., Wang, Y., Liu, J., Cai, Y., 2016. Occurrence, distribution and
 seasonal variation of organophosphate flame retardants and plasticizers in urban
 surface water in Beijing, China. Environ. Pollut. 209, 1-10.
- Su, G., Letcher, R.J., Yu, H., 2016. Organophosphate Flame Retardants and Plasticizers in
 Aqueous Solution: pH-Dependent Hydrolysis, Kinetics, and Pathways. Environ. Sci.
 Technol. 50, 8103-8111.
- Thullner, M., Centler, F., Richnow, H.-H., Fischer, A., 2012. Quantification of organic
 pollutant degradation in contaminated aquifers using compound specific stable isotope
 analysis Review of recent developments. Org. Geochem. 42, 1440-1460.
- 539 Van Breukelen, B.M., 2007. Extending the Rayleigh equation to allow competing isotope
- fractionating pathways to improve quantification of biodegradation. Environ. Sci.Technol. 41, 4004-4010.
- Vogt, C., Dorer, C., Musat, F., Richnow, H.H., 2016. Multi-element isotope fractionation
 concepts to characterize the biodegradation of hydrocarbons from enzymes to the
 environment. Curr. Opin. Biotechnol. 41, 90-98.
- 545 Waclawek, S., Lutze, H.V., Grubel, K., Padil, V.V.T., Cernik, M., Dionysiou, D.D., 2017.
- 546 Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J.547 330, 44-62.
- Wanamaker, E.C., Chingas, G.C., McDougal, O.M., 2013. Parathion hydrolysis revisited:
 in situ aqueous kinetics by 1H NMR. Environ. Sci. Technol. 47, 9267-9273.
- 550 Watts, M.J., Linden, K.G., 2009. Advanced oxidation kinetics of aqueous tri alkyl

- 551 phosphate flame retardants and plasticizers. Environ. Sci. Technol. 8, 2937-2942.
- Watts, R.J., Teel, A.L., 2006. Treatment of contaminated soils and groundwater using ISCO.
 Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 10, 2-9.
- Wolfsberg, M., Van Hook, W.A., Paneth, P., Rebelo, L.P.N., 2009. Isotope effects: in the
 chemical, geological, and bio sciences. Springer Science & Business Media.
- Wu, L., Chládková, B., Lechtenfeld, O.J., Lian, S., Schindelka, J., Herrmann, H., Richnow,
 H.H., 2018a. Characterizing chemical transformation of organophosphorus compounds
 by 13C and 2H stable isotope analysis. Sci. Total Environ. 615, 20-28.
- Wu, L., Kummel, S., Richnow, H.H., 2017. Validation of GC-IRMS techniques for δ13C
 and δ2H CSIA of organophosphorus compounds and their potential for studying the
 mode of hydrolysis in the environment. Anal. Bioanal. Chem. 409, 2581-2590.
- Wu, L., Verma, D., Bondgaard, M., Melvej, A., Vogt, C., Subudhi, S., Richnow, H.H.,
 2018b. Carbon and hydrogen isotope analysis of parathion for characterizing its natural
 attenuation by hydrolysis at a contaminated site. Water Res. 143, 146-154.
- Wu, L., Yao, J., Trebse, P., Zhang, N., Richnow, H.H., 2014. Compound specific isotope
 analysis of organophosphorus pesticides. Chemosphere 111, 458-463.
- Wu, T., Gan, Q., Jans, U., 2006. Nucleophilic substitution of phosphorothionate ester
 pesticides with bisulfide (HS-) and polysulfides (Sn2-). Environ. Sci. Technol. 40,
 5428-5434.
- Yang, Y., Lu, X., Jiang, J., Ma, J., Liu, G., Cao, Y., Liu, W., Li, J., Pang, S., Kong, X., Luo,
 C., 2017. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate
 (PDS): Formation of oxidation products and effect of bicarbonate. Water Res. 118,
 196-207.
- Zhang, N., Geronimo, I., Paneth, P., Schindelka, J., Schaefer, T., Herrmann, H., Vogt, C.,
 Richnow, H.H., 2016. Analyzing sites of OH radical attack (ring vs. side chain) in
 oxidation of substituted benzenes via dual stable isotope analysis (δ13C and δ2H). Sci.
- 577 Total Environ. 542, 484-494.
- 578

Highlights

- 1. Quantification of ²H and ¹³C isotope enrichment factors of TBP
- 2. Comparison of isotope fractionation patterns upon hydrolysis and radical oxidation
- 3. Characterization of the C-O and C-H bond cleavage of TBP using AKIE

1	Carbon and hydrogen stable isotope analysis for characterizing the
2	chemical degradation of tributyl phosphate
3	Jia Liu ^{1,2 §} , Langping Wu ^{2 §} , Steffen Kümmel ² , Jun Yao ³ , Thomas Schaefer ⁴ , Hartmut
4	Herrmann ⁴ , Hans-Hermann Richnow ^{2,3*}
5	¹ School of Energy and Environmental Engineering, University of Science and Technology
6	Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, PR China
7	² Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental
8	Research-UFZ, Permoserstraße15, Leipzig 04318, Germany
9	³ School of Water Resources and Environment, China University of Geosciences (Beijing),
10	Xueyuan Road No.29, Haidian District, Beijing 100083, PR China
11	⁴ Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research
12	(TROPOS), Permoserstraße15, Leipzig 04318, Germany
13	
14	
15	
10	S Dual first outborship, the two outbors have contributed equally to this work
1/	§ Dual-first authorship: the two authors have contributed equally to this work.
18	* To whom correspondence should be addressed:
19	E-mail: hans.richnow@ufz.de Tel.: +49 (0) 341 235 1212, Fax: +49 (0) 341 2351443
20	

21 Abstract

Tributyl phosphate (TBP) belongs to the group of trialkyl substituted organophosphate 22 esters. Its chemical reactivity depends on the stability of various chemical bonds. TBP was 23 used as a model compound for the development of a concept using stable isotope 24 25 fractionation associated with bond cleavage reactions for better understanding the fate of TBP in the environment. Carbon isotope enrichment factors (ε_{C}) of TBP hydrolysis were 26 found to be pH dependent (-3.8 \pm 0.3‰ at pH 2, -4.6 \pm 0.5‰ at pH 7, -2.8 \pm 0.1‰ at pH 9, 27 no isotope fractionation at pH 12), which is in accordance with the mode of a $S_N 2$ 28 hydrolytic bond cleavage. Hydrogen isotope fractionation was negligible as no H bond 29 cleavage is involved during hydrolysis. The apparent carbon kinetic isotope effect (AKIE_C) 30 31 ranged from 1.045 to 1.058. In contrast to hydrolysis, both carbon and hydrogen isotope fractionation were observed during radical oxidation of TBP by 'OH and SO₄', yielding $\varepsilon_{\rm C}$ 32 33 from -0.9 \pm 0.1‰ to -0.5 \pm 0.1‰ and $\varepsilon_{\rm H}$ from -20 \pm 2‰ to -11 \pm 1‰. AKIE_C and AKIE_H varied from 1.007 to 1.011 and from 1.594 to 2.174, respectively. The correlation of ²H and 34 ¹³C fractionation revealed Λ values ranging from 17 ± 1 to 25 ± 6. Results demonstrated 35 that the correlation of ²H and ¹³C isotope fractionation of TBP allowed to identify radical 36 37 reactions and to distinguish them from hydrolysis. The presented dual isotope analysis approach has diagnostic value for characterizing the chemical transformation of TBP in the 38 environment. 39

40 Keywords

41 tributyl phosphate, isotope fractionation, hydrolysis, radical oxidation, AKIE

42 **1. Introduction**

Tributyl phosphate (TBP) is an organophosphorus compound widely used as flame 43 retardant, plasticiser, anti-foamer, component of herbicides and hydraulic fluids (Regnery 44 et al., 2011). In addition, it was extensively used as a solvent for plutonium uranium redox 45 extraction (PUREX) for nuclear fuel reprocessing (Mincher et al., 2008). The production of 46 commercially used TBP is about 3000-5000 tons/year in Europe (Nancharaiah et al., 2015). 47 Due to its extensive use, TBP is frequently detected in the aquatic environment of many 48 countries, including Germany (Fries and Püttmann, 2003; Regnery and Puttmann, 2010), 49 Austria (Martinez-Carballo et al., 2007), Italy (Bacaloni et al., 2008), Spain (Rodil et al., 50 2012), Korea (Lee et al., 2016), and China (He et al., 2014; Shi et al., 2016). 51

TBP can inhibit the enzyme acetylcholine esterase (AChE), resulting in cholinergic toxicity 52 53 of the autonomic system and can thus lead to respiratory paralysis and even death (Bergman 54 et al., 2012; Greget et al., 2016). Given these adverse effects, TBP has been an environmental concern for decades, especially in aquatic systems. The main degradation pathways are 55 hydrolysis, indirect photo-oxidation or microbial degradation (Berne et al., 2005; Watts and 56 Linden, 2009; Nancharaiah et al., 2015; Su et al., 2016). These are probably the key 57 processes how TBP is degraded or attenuated in the environment. Direct chemical oxidation 58 59 is effective for the removal of organic contaminants in waste water. In particular, chemicals, such as hydrogen peroxide, persulfate, permanganate and ozone, have been applied for in situ 60 chemical oxidation (ISCO) for the treatment of subsurface TBP or similar contamination 61 (Watts and Teel, 2006). Hydroxyl radicals ('OH) are an effective oxidant with redox potential 62

of 1.7–2.8 V and are frequently used for wastewater remediation (Waclawek et al., 2017). 63 Similar to 'OH, the sulfate radical (SO₄') with a redox potential of 2.5–3.1 V is efficient for 64 the oxidation of many organic compounds (Neta et al., 1988). SO_4^{-} can be generated for 65 example from peroxydisulfate $(S_2O_8^{2-}, PS)$ or peroxymonosulfate $(HS_2O_5^{-})$ salts by the 66 activation of the persulfate anion $(S_2O_8^{2-}, E_0 = 2.01 \text{ V})$ using light (Herrmann, 2007; Yang et 67 al., 2017) or heat (House, 1962; Liang and Su, 2009). Over the past ten years, considerable 68 attention has been paid to potassium peroxydisulfate (KPS) because of its lower cost 69 compared to H_2O_2 or O_3 and the high efficiency for organic mineralization (Lau et al., 2007; 70 71 Waclawek et al., 2017).

Conventionally, degradation pathways are chemically analysed by measuring the 72 concentrations decrease of reactants and the appearance of degradation products for the 73 identification of reaction products. However, this approach often has large uncertainties 74 because of the influence of physical processes (such as dilution, volatility and sorption), the 75 76 challenges of detecting unknown products and the difficulties to establish mass balances. As an alternative technology, compound specific isotope analysis (CSIA) making use of isotope 77 78 fractionation processes of degradation reactions can be used for the qualitative characterisation and quantitative estimation of processes involved in organic compound 79 degradation in the environment. This technique is becoming a routine and practical approach 80 in biogeochemistry and environmental science (Elsner, 2010; Thullner et al., 2012; Nijenhuis 81 and Richnow, 2016; Vogt et al., 2016). 82

For better understanding of the transformation mechanisms, the kinetic isotope effect (KIE)
based on chemical bond change reactions can be analyzed. The KIE characterizes the rate

limitation of a bond change reaction posed by isotopologues. The rate limitation is equivalent 85 to the stability of heavy and light isotope substituted bonds and characterizes the transition 86 state of a chemical reaction (Northrop, 1981; Wolfsberg et al., 2009). The apparent kinetic 87 isotope effect (AKIE) can be calculated to normalize the isotope enrichment factor (ε) for 88 89 non-reacting positions and intermolecular competition to compensate for "dilution" of the isotope composition in reacting isotopologues. The AKIE can be used to compare the kinetic 90 91 isotope effect of bond cleavage reactions of different molecules. Multi-element isotope fractionation analysis correlating the isotope fractionation of two (or more) elements can be 92 93 used to evaluate the degradation pathways (Gray et al., 2002; Elsner et al., 2005). Previous studies demonstrated the potential use of stable isotope fractionation for characterizing the 94 transformation mechanisms of organophosphorus compounds, such as dichlorvos, dimethoate, 95 96 methyl parathion, parathion and tris(2-chloroethyl) phosphate (Wu et al., 2014; Wu et al., 2017; Wu et al., 2018a). 97

In the present study, we systematically examined the carbon and hydrogen isotope 98 fractionation upon hydrolysis of TBP under acidic, neutral and alkaline conditions to 99 characterize the reaction pathways. The isotope fractionation patterns of TBP by radical 100 oxidation (SO₄⁻ and ^{\cdot}OH) were also examined. The objectives of this study were to (1) 101 investigate the kinetic reaction rate constant k_{obs} of hydrolysis and radical oxidation; (2) 102 characterize the stable carbon and hydrogen isotope fractionation of TBP during hydrolysis 103 and radical oxidation; (3) distinguish different mechanisms by using the AKIE values and 104 correlating ²H and ¹³C isotope fractionation to obtain Λ values, which may be used 105 106 diagnostically for tracing TBP degradation in the field.

107 **2. Materials and methods**

108 A detailed description of the analytical methods is provided in the Supplementary109 Information (SI).

110 2.1 Chemicals

All chemicals were of analytical grade quality and used without further purification. 111 112 Tributyl phosphate (TBP, 99% purity) and dibutyl phthalate (DBP, >99% purity) were purchased from Xiya Company (China). Dichloromethane (DCM) was supplied by Carl 113 Roth GmbH + Co. KG (Karlsruhe, Germany). Potassium peroxydisulfate $(K_2S_2O_8)$, 114 hydrogen peroxide (30% H₂O₂), di-potassium hydrogen phosphate (K₂HPO₄), potassium 115 dihydrogen phosphate (KH₂PO₄), sodium hydrogen carbonate (NaHCO₃), sodium hydrate 116 (NaOH), and disodium hydrogen phosphate (Na₂HPO₄) were supplied by Merck 117 (Guaranteed reagent quality, Darmstadt, Germany). Solutions and pH buffers were 118 119 prepared in ultrapure water obtained by a Milli-Q System (Millipore GmbH, Germany).

120 2.2 Hydrolysis and radical oxidation experiments

The following buffer solutions were used to obtain hydrolysis at different pH conditions:
KCl-HCl (50 mM for pH 2), K₂HPO₄-KH₂PO₄ (100 mM for pH 7), NaHCO₃-NaOH (45.5 mM for pH 9), and Na₂HPO₄- NaOH (32.5 mM for pH 12).

Hydrolysis experiments: TBP is hydrolyzed with very slow reaction rates at room temperature under neutral to acidic conditions but rapidly hydrolyzed under strong alkaline condition (Su et al., 2016). In order to adjust the hydrolysis rates in the same order of

magnitude for a better comparison of the isotope fractionation patterns associated with 127 different reaction pathways, hydrolysis experiments were carried out at 80 °C to accelerate 128 the hydrolysis rate at pH 2, pH 7 and pH 9, respectively. Hydrolysis experiments at pH 12 129 were performed at 35 °C to slow down the reaction. All experiments were conducted in 40 130 mL buffer solutions in 150-mL serum bottles with 100 mg L^{-1} TBP as initial concentration. 131 132 At different time intervals, the reaction solutions were extracted by adding 1 mL DCM containing 1000 mg L⁻¹ DBP as internal standard and shaking for at least 4 h at 10 °C. 133 Extracts were stored at 4 °C prior to analysis. The extraction recovery and effect of the 134 extraction procedure on carbon and hydrogen isotope signature were evaluated as described 135 in Section 3 of the Supplementary Information. 136

Potassium peroxydisulfate (KPS) oxidation: For KPS oxidation experiments a molar ratio 137 of TBP to KPS of 1:20 was used. The KPS oxidation reaction was not conducted at pH 2 138 due to the exclusive formation of secondary radicals and complicating subsequent reactions. 139 At pH 2, the SO_4 reacts exclusively with the Cl^- from the HCl/ KCl buffer to produce a Cl 140 atom, which will subsequently react to form Cl₂, a dichloride radical anion (Herrmann, 141 2003). Therefore, the KPS oxidation reactions were only conducted at pH 7, pH 9 and pH 142 12, respectively. The initial concentration of TBP was 100 ppm. Buffer solutions with 143 different pH values were prepared as described above. All KPS oxidation reactions were 144 145 carried out at 35 °C. Control experiments were carried out without the addition of KPS. Remaining TBP was extracted and analyzed as described in the hydrolysis experiment. 146

147 UV/H_2O_2 oxidation experiment: Photolysis experiments were carried out at pH 7 in 148 phosphate buffer with 200 mg L⁻¹ initial TBP concentration. Irradiation was achieved by

150 W xenon lamp (Type no. L2175, Hamamatsu, Japan), which covered a broad 149 continuous spectrum from 185 nm to 2000 nm. A long-pass filter with a cut-off of short UV 150 wavelengths below 280 nm (20CGA-280, Newport Corporation, Irvine, U.S.) was applied. 151 Direct photolysis is not expected at the applied UV wavelengths due to the almost 152 negligible photon absorption by TBP (Watts and Linden, 2009). The molar ratio of TBP to 153 154 H₂O₂ was 1:5. In order to investigate the effects of buffer solution concentrations and reaction rates on the isotope fractionation of TBP, three experiments were carried out in 155 100 mM buffer solution at 20 °C (UV/H₂O₂_1), 100 mM buffer solution at 15 °C 156 157 (UV/H₂O₂_2) and 10 mM buffer solution at 15 °C (UV/H₂O₂_3), respectively. 100 mM buffer solution was applied to make sure that the pH will remain stable at 7 during the 158 reaction. Lower buffer concentration of 10 mM was applied to minimize the formation of 159 160 the secondary radicals (SI, section 5). The experiments were conducted at different temperature of 20 °C and 15 °C to slow down the reaction rate. For direct photolysis, 161 experiments were conducted under the same conditions but without the addition of H₂O₂ in 162 a 100 mM buffer solution at 20 °C. Dark control experiments were conducted under 163 identical experimental conditions without UV exposure (100 mM buffer solution). More 164 information on the experimental setup of the UV degradation experiments are described 165 elsewhere (Zhang et al., 2016). The transformation products of TBP in UV/H₂O₂. 166 experiments were tentatively analyzed by a Fourier-transform ion cyclotron resonance mass 167 spectrometer (FT-ICR MS, Solarix XR 12T, Bruker Daltonics), the analytical procedures 168 169 were described in **SI**.

Isotope ratios were expressed as delta notation ($\delta^{h}E$) in parts per thousand (∞) based on Eq. [1]. Here, R_{sample} is the ratio of the heavy (${}^{h}E$) to the light isotopes (${}^{l}E$) of a sample and R_{ref} corresponds to the ratio of the respective isotopes of reference. For stable carbon isotope analyses the Vienna Pee Dee Belemnite (V-PDB) is used as reference, whereas for stable hydrogen isotope analyses the Vienna Standard Mean Ocean Water (V-SMOW) is applied (Coplen, 1996).

177
$$\delta^{h} E = \left(\frac{R_{sample}}{R_{ref}} - 1\right) = \left(\frac{h_{E/l}}{h_{E_{ref}/l}} - 1\right)$$
 [1]

The isotope enrichment factor (ε_E) can be determined from the logarithmic form of the Rayleigh equation, as shown in Eq. [2] (Rayleigh, 1896; Elsner, 2010). The variables $\delta^h E_t$ and $\delta^h E_0$ are the isotope compositions of a compound for the element E at time t and time zero, respectively, and *f* is the residual substrate fraction. The changes in concentration during the reaction (C_t/C₀) can be related to the changes in isotope composition by ε_E .

183
$$\ln\left(\frac{\delta^{h}E_{t}+1}{\delta^{h}E_{0}+1}\right) = \varepsilon_{E} \cdot \ln f = \varepsilon_{E} \cdot \ln\left(\frac{C_{t}}{C_{0}}\right)$$
 [2]

The AKIE_E value of the bond cleavage at the reactive position can be calculated with Eq. [3], where n is the total number of atoms for element E in the molecule, x is the number of reactive sites, and z is the number of indistinguishable reactive sites (Elsner et al., 2005). The normalisation of AKIE_E corrects the bulk isotope enrichment for non-reactive positions and the intramolecular isotopic competition.

189 AKIE =
$$\frac{1}{1 + \frac{n}{x} \times z \times \varepsilon}$$
 [3]

Assuming that two processes (process 1 and 2) are reacting with the same substrate 190 simultaneously and both processes follow first-order kinetics, the contribution of the 191 individual processes in the mixed reaction can be estimated by an extended Rayleigh-type 192 equation using the individual isotope enrichment factors of the particular reaction (ε_1 and ε_2). 193 194 The observable ε_i of the mixed reaction and the ε_1 and ε_2 of the individual pathway 1 and 2 195 are needed for this calculation. The rate ratio of two competing degradation pathways (F) can be calculated by Eq. (4) (Van Breukelen, 2007), indicating the isotope fractionation 196 contributed by pathway 1 to the observed ε_i . 197

198
$$\mathbf{F} = \frac{\varepsilon_1 - \varepsilon_2}{\varepsilon_1 - \varepsilon_2}$$
[4]

199 **3. Results**

200 *3.1 Effects of extraction on isotope signature*

The recovery of the liquid/liquid DCM extraction method was $91.2 \pm 10.2\%$ (Fig. S2 (a)). The isotope shifts of TBP before and after DCM extraction were 0.05 - 0.65% for δ^{13} C, and 1 - 4% for δ^{2} H (Fig. S2 (b)), respectively. Considering the analytical uncertainty of carbon and hydrogen isotope compositions, which is $< \pm 0.5\%$ and $< \pm 5\%$ for carbon and hydrogen, respectively, carbon and hydrogen isotope shifts due to the extraction process are insignificant. A detailed description was provided in SI, section 3.

207 *3.2 Isotope fractionation of TBP during hydrolysis*

The degradation curves and changes in carbon and hydrogen isotope compositions of TBP are illustrated in Fig. 1, and the obtained k_{obs} and ε values for TBP hydrolysis are summarized in Table 1. All hydrolysis experiments followed pseudo-first order kinetics with R² better than 0.97, alkaline conditions resulted in higher reaction rates compared to 212 neutral and acidic conditions (pH 12 > pH 9 > pH 7 \approx pH 2) (Table 1). The stable carbon isotope enrichment could be quantified by the Rayleigh equation. At pH 2, 90% 213 degradation was achieved within 1236 h, resulting in a carbon enrichment factor (ε_{C}) of 214 215 $-3.8 \pm 0.3\%$. 88% degradation was achieved within 1140 h at pH 7, yielding an $\varepsilon_{\rm C}$ of $-4.6 \pm$ 0.5‰. 94% degradation was achieved within 864 h and yielding an ε_{C} of -2.8 ± 0.1‰ at pH 216 9. At pH 12, 80% degradation was achieved after 1464 h and no carbon enrichment was 217 218 observed. Hydrogen isotope fractionation was not observed in all hydrolysis experiments (Fig. 1). 219

220 3.3 Isotope fractionation of TBP during KPS oxidation

The degradation curves and changes in carbon and hydrogen isotope compositions of TBP 221 are illustrated in Fig. 2, and the corresponding k_{obs} and ε values are summarized in Table 1. 222 All oxidation experiments followed pseudo-first order kinetics and the k_{obs} values 223 decreased with increasing pH (Table 1). The stable carbon and hydrogen isotope 224 225 fractionation could be quantified by the Rayleigh equation. About 95% TBP was degraded within 292 h at pH7/KPS, resulting in a $\varepsilon_{\rm C}$ = -0.9 ± 0.1‰ and $\varepsilon_{\rm H}$ = -16 ± 2‰, respectively. 226 At pH9/KPS, 95% degradation was achieved within 332 h, yielding an $\varepsilon_{\rm C}$ of -0.8 ± 0.1 % 227 and an $\varepsilon_{\rm H}$ of -20 ± 2‰. At pH12/KPS, TBP was depleted to 90% within 400 h, 228 corresponding to an $\varepsilon_{\rm C}$ = -0.5 ± 0.1‰ and $\varepsilon_{\rm H}$ = -11 ± 1‰. No degradation took place in 229 control experiments except for pH12/KPS (Fig. S2). Due to the hydrolysis at pH 12, 35% 230 of TBP was degraded within 400 h. 231

232 3.4 Isotope fractionation of TBP during UV/H₂O₂ oxidation

Degradation curves and changes in carbon and hydrogen isotope compositions of TBP are illustrated in Fig. 2. All experiments followed pseudo-first order kinetics, and the k_{obs} values (× 10⁻³ h⁻¹) were 474.2 ± 11.4 in UV/H₂O₂_1, 27.9 ± 2.4 in UV/H₂O₂_2 and 6.8 ±

0.5 in UV/H₂O₂_3, respectively (Table 1). All coefficients of determination (\mathbb{R}^2) were larger 236 than 0.99. In the experiment UV/H₂O₂_1, 96% TBP was degraded within 6.7 h, yielding a 237 $\epsilon_{\rm C}$ of -0.8 ± 0.1‰ and $\epsilon_{\rm H}$ of -14 ± 1‰. In the degradation experiment UV/H₂O₂_2, 85% 238 239 TBP was depleted in 72.5 h, resulting in a $\varepsilon_{\rm C}$ of -0.6 \pm 0.3‰ and $\varepsilon_{\rm H}$ of -13 \pm 3‰. In the degradation experiment UV/H₂O₂_3, 93% TBP was transformed within 385 h, and an $\varepsilon_{\rm C}$ of 240 $-0.6 \pm 0.2\%$ and $\epsilon_{\rm H}$ of $-17 \pm 7\%$ were obtained. In the control experiment without H₂O₂ 241 employing the conditions used in UV/H₂O₂_1, no significant change of the TBP 242 concentration was observed (Fig.S2 d), suggesting that direct photolysis did not take place 243 244 during these experiments.

245 3.5 Analysis of transformation products of TBP in the UV/H_2O_2 experiment

Three potential transformation tentatively characterized 246 products were as di-n-butylphosphate (P1), keto-tri-butylphosphate (P2), and hydroxy-tri-butylphosphate (P3) 247 (Table S1 and Fig. S3). The detailed information of characterized transformation products 248 249 is given in the SI, section 7. The precise position of the hydroxyl or keto group at the side chain of the TBP molecule could not be confirmed, however, it is likely that the functional 250 group is formed by radical attack at the sub-terminal carbon of the butyl chain. 251

252 3.6 Two dimensional isotope fractionation (C-H)

In order to explore the diagnostic potential of two dimensional isotope fractionation analysis, the hydrogen and carbon isotope fractionation were plotted to obtain Λ values $(\Lambda = \frac{\Lambda^2 H}{\Lambda^{13} c} \approx \frac{\varepsilon_H}{\varepsilon_c}, \Lambda^{13} C = \delta_t^{13} C \cdot \delta_0^{13} C, \Lambda^2 H = \delta_t^2 H \cdot \delta_0^2 H)$. However, due to the absence of hydrogen isotope fractionation Λ could not be defined for hydrolysis. In contrast, the radical oxidation of TBP under pH7/KPS, pH9/KPS and pH12/KPS conditions resulted in Λ values of 17 ± 1, 23 ± 1, 19 ± 1, respectively (Table 1). The reactions of TBP by UV/H₂O₂ (dominant 'OH reaction, described in SI, section 5) yielded an average Λ value of 260 20 ± 4 (Table 1), which is statistically identical with the ones obtained from KPS oxidation 261 experiments. The two dimensional isotope fractionation analysis of all radical oxidation 262 experiments including SO₄⁻⁻ and 'OH gave an average Λ value of 20 ± 4 (Table 1).

263 **4. Discussion**

264 4.1 Insight of the isotope fractionation during hydrolysis

A previous study proposed two hydrolysis pathways of organophosphorus compounds (OPs) 265 (Fig. 3a,b): the first one is OH⁻ or H₂O attacks the phosphorus atom; the second one is H₂O 266 attacks the carbon atom (Wu et al., 2006). The acid-catalysed hydrolysis of esters mainly 267 proceeds via an AAC2 mechanism suggesting an acyl-oxygen fission (AC) in a bimolecular 268 reaction (Day and Ingold, 1941). For instance, under acidic and neutral conditions, 269 270 trimethyl phosphate may lead to a C-O bond split as demonstrated in experiments with 271 ¹⁸O-labelled water as indicator (Blumenthal and Herbert, 1945). Consequently, the C-O 272 bond cleavage leads to carbon isotope fractionation of TBP. At high pH (e.g., pH >10), OH 273 attacks the phosphorus atom through simple nucleophile displacement (S_N2-type) leading to a P–O bond cleavage (Wanamaker et al., 2013). The reaction may proceed via a two-step 274 addition-elimination pathway involving a pentacoordinate intermediate, such as TS1 and 275 TS2 (Fig. 3b) (Kirby et al., 2013). The observed negligible carbon and hydrogen isotope 276 fractionation of TBP at pH 12 highly supports a P–O bond split. 277

At pH 9, the observed carbon isotope fractionation of TBP provided evidence for a C–O bond split. However, the $\varepsilon_{\rm C}$ value at pH 9 was lower than that of pH 2 and pH 7. The same phenomenon was observed during methyl parathion and ethyl parathion hydrolysis (Wu et al., 2018a). Given that hydrolysis of OPs is pH dependent, no precise pH boundary can be

used for the identification of C–O or P–O bond split. The two major degradation pathways 282 occurred simultaneously at pH 9. The P-O bond cleavage is not associated with carbon 283 isotope fractionation, and thus carbon isotope fractionation can be solely attributed to the 284 splitting of the C-O bond. Considering that the carbon fractionation observed in 285 experiments for acid hydrolysis (pH 2) and alkaline hydrolysis (pH 12) are representative 286 for the mechanism for C–O and P–O bond split respectively, and both processes follow the 287 first-order kinetics, Eq. [4] can be applied for the calculation of the contribution of the two 288 pathways acting during the hydrolysis at pH 9. The carbon isotope enrichment factors of 289 290 hydrolysis at pH 2 ($\varepsilon_1 = -3.8 \pm 0.3\%$) and the ε_2 value of 0% representing hydrolysis at pH 12 were used for calculation. Within the uncertainty of isotope enrichment factors observed 291 in the experiments, the enrichment factor of TBP at pH 9 ($\varepsilon_i = -2.8\pm0.1\%$) suggests that 292 293 67-80% of TBP was hydrolysed via the C-O bond cleavage pathway, and the remaining 20-33% was attributed to the P-O bond split. The mechanism of acidic and neutral 294 hydrolysis is almost identical, and the calculation is also valid for comparing contributions 295 296 at neutral conditions.

For testing the hypothesis of the degradation mechanisms the AKIE values were compared to intrinsic KIE reactions. For TBP hydrolysis, $AKIE_C$ (calculation is described in SI, section 6) ranged from 1.048 to 1.058, which is in line with the intrinsic KIE values of nucleophilic substitution (1.03–1.09; S_N2 type on C–O bond) (Paneth et al., 1992), supporting the conclusion of C–O bond cleavage during TBP hydrolysis.

- 302 4.2 pH-dependency of radical oxidation
- 303 In this study, either SO_4^{-} or 'OH was involved in persulfate oxidation, which is a

pH-dependent reaction. Once SO_4^{-} was generated by $S_2O_8^{2-}$ scission, it could propagate a 304 chain of reactions involving the formation of other reactive species. SO_4 can react with 305 water at all pH levels, forming 'OH (Eq. [S1]) (Neta et al., 1988; Herrmann et al., 1995). 306 With the increase of pH, SO₄⁻ preferentially reacts with OH⁻ forming 'OH with an 307 increasing rate constant (Eq. [S2]) (Neta et al., 1988; Herrmann et al., 1995). Hence, at low 308 pH (i.e. pH 7), SO₄⁻ is the predominant reactive species, whereas at pH 9, both SO₄⁻ and 309 'OH could coexist and at pH 12, 'OH is predominant (Liang and Su, 2009). Considering 310 both radical species can be quenched to some extent by the PO_4^{3-} and CO_3^{2-} components in 311 312 the buffer, the contributions of secondary radicals formed during the reaction and subsequent reaction with TBP were taken into account and the contributions were estimated 313 to be minor (description in SI, section 5). 314

During radical oxidation of TBP, the rate constants have the following order: pH 7 > pH 9 > 315 316 pH 12 (Table 1), demonstrating that the reaction can be retarded by increasing pH. The rate constants are associated with the reactivity of the radicals as SO_4 has a stronger redox 317 potential than 'OH (Buxton et al., 1988; Neta et al., 1988), and thus may result in larger 318 kinetic rate constants. The TBP oxidation by KPS at pH 12 had a 5 times larger rate 319 constant compared to the hydrolysis at pH 12 (Table 1) suggesting that radical oxidation 320 was dominating the degradation reaction. Nevertheless, two degradation processes 321 co-existed in the degradation of TBP in the pH12/KPS system, namely, radical oxidation 322 and alkaline hydrolysis. The contribution of alkaline hydrolysis on the TBP degradation 323 324 was 35% based on the control experiment without the addition of KPS (Fig. S2).

325 4.3 Insight of isotope fractionation during 'OH and SO₄' reaction with TBP

³²⁶ OH which can be generated by H_2O_2 under UV irradiation has a high tendency to react ³²⁷ non-selectively on functional groups via electron transfer, hydrogen abstraction or ³²⁸ electrophilic/radical addition (Buxton et al., 1988). The transformation products formed in 329 the UV/H₂O₂ reaction with TBP were tentatively identified as keto and hydroxylated derivatives (Table S1), suggesting a hydrogen abstraction from the alkyl chain at 330 sub-terminal positions. This suggests a formation of a radical at the side chain which is 331 332 quenched by oxygen forming a meta stable intermediate radical followed by a Russell mechanism (Russell, 1957) to form keto and hydroxyl TBP (Fig. 3c). In subsequent steps 333 further reactions may lead to the formation of dibutyl phosphate. The hydrogen abstraction 334 mechanism will lead to ²H and ¹³C isotope fractionation of TBP. Alternatively, radical 335 addition, for example 'OH addition to the central phosphorus atom, may form a 336 (C₄H₉O)₃PO'OH radical leading to elimination of butanol and resulting in dibutyl 337 phosphate (Fig. 3c). However, 'OH addition to phosphate will lead to P-O cleavage and is 338 unlikely to induce ²H and ¹³C isotope fractionation. Similar mechanisms have been 339 observed in previous studies during the 'OH reaction with tri-(2chloroethyl) phosphate (Wu 340 341 et al., 2018a) and dimethyl phenylphosphonate (Oh et al., 2003). According to the reaction mechanisms of SO4⁻⁻ and tri-(2chloroethyl) phosphate, SO4⁻⁻ was reported to react with 342 343 phosphorus and carbon atoms, thereby causing a P–O and C–H bond split (Ou et al., 2017). Similarly, two pathways were proposed to be involved in TBP oxidation induced by SO_4^{-} . 344 One pathway involves the addition to the phosphorus centre and rupturing of 345 -OCH₂CH₂CH₂CH₃ chains and the other one involves the addition to the -CH₂- moieties 346 causing the C-H bond split. 347

The radical reaction with the alkane side chain at the sub-terminal position cleaving a C-H bond in the transition state leads to ²H and ¹³C isotope fractionation. The observed ²H and ¹³C isotope fractionation in our experiments showed that this pathway took place during radical oxidation of TBP by 'OH and SO₄⁻⁻. The obtained $\varepsilon_{\rm C}$ and $\varepsilon_{\rm H}$ at pH7/KPS (SO₄⁻⁻ dominating) and pH9/KPS (SO₄⁻⁻ and 'OH co-existing) were very similar with the ones from UV/H₂O₂ (pure 'OH) (Table 1). The slightly smaller $\varepsilon_{\rm C}$ of -0.5±0.1‰ and $\varepsilon_{\rm H}$ of -11±1‰ 354 at pH12/KPS (OH dominating) is due to the effect of alkaline hydrolysis of TBP at pH 12. Considering 35% of TBP degradation was contributed by alkaline hydrolysis (process 1) at 355 pH12/KPS (Fig. S2), the ε associated with the 'OH oxidation process (process 2) can be 356 estimated using Eq. (4) where F = 0.35, $\varepsilon_i = -0.5 \pm 0.1\%$ for carbon and $-11 \pm 1\%$ for 357 hydrogen, $\varepsilon_1 = 0$ %. Thus, ε_2 was calculated to be -0.8±0.2‰ for carbon and -17±2‰ for 358 hydrogen, which were identical with the ones obtained from radical oxidation of TBP at 359 pH7/KPS, pH9/KPS and UV/H₂O₂ conditions (Table 1). The average values of $\varepsilon_{\rm C}$ = 360 -0.7±0.1‰, $\varepsilon_{\rm H}$ = -16±3‰, and Λ = 20±4 calculated from all individual radical oxidation 361 experiments suggest that SO₄⁻⁻ and 'OH radical oxidation processes of TBP could not be 362 distinguished based on isotope enrichment factors within the uncertainty of our results, and 363 it may suggest that both reaction processes had similar mechanisms of attacking carbon 364 365 atoms and cleaving C-H bonds. However, P-O bond splitting cannot be characterized by the ²H and ¹³C isotope fractionation of TBP in this study, therefore, ²H and ¹³C isotope 366 fractionation studies cannot provide direct evidence to evaluate the process of P-O bond 367 cleavage. 368

369 The AKIE_C which ranged from 1.007 to 1.011 for all radical oxidation experiments (Table 1) is consistent with those reported for *n*-alkanes' chemical transformation (1.01-1.02)370 (Bouchard et al., 2008) and lower than the Streitwieser Limits for a C-H bond (1.021) 371 cleavage (Elsner et al., 2005). A series of studies yield AKIE_H values between 2–23 that are 372 typical for H-bond cleavage (Elsner et al., 2005). The AKIE_H values reported in this study 373 were lower and ranged from 1.608 to 2.174, indicating that steps other than the C-H bond 374 cleavage were also rate-determining for radical oxidation of TBP. Potentially a radical 375 reaction at the phosphate moiety may contribute to TBP degradation (Fig.3c 2) but do not 376 contribute to ²H and ¹³C isotope fractionation. This may explain why the calculated AKIE 377 values are lower than those typically expected for C-H bond cleavage. In our case the 378

calculated AKIE values do not describe the KIE of the C-H bond cleavage at the side chain
of TBP because the overall transformation reaction has a contribution of OH addition to the
phosphate. However our current data do not allow validating this hypothesis in more detail.

382 4.4 Identification of degradation pathways by 2D-plot to analyse A values

The SO_4^{-} and 'OH resulted in a characteristic isotope fractionation pattern (A values) for 383 radical oxidation reactions of TBP. As hydrolysis did not lead to primary hydrogen isotope 384 effects, hydrolysis and radical oxidation of TBP can be clearly distinguished by the 385 correlation of ²H and ¹³C fractionation (Fig. 4). Similar results have been reported for 386 radical oxidation of tris(2-chloroethyl) phosphate by 'OH formed in Fenton reactions and 387 UV/H_2O_2 (Wu et al., 2018a). However, considering the obtained identical Λ values (section 388 3.5), the Λ values do not allow for separating the mechanisms of SO₄⁻ and 'OH reactions 389 with TBP. The Λ values are not affected when non-isotope-fractionating processes such as 390 391 alkaline hydrolysis are influencing overall degradation, showing that mechanisms can also be identified when non-isotope-fractionating processes are at work. This may imply that the 392 extent of isotope fractionation can be used for the assessment of radical reactions and may 393 394 allow for the selection of an isotope enrichment factor representative for radical reactions. This isotope enrichment factor could then be used to calculate the contribution of 395 degradation of TBP by radical reactions to the overall degradation in the environment. For 396 example the hydrogen enrichment factor could be used to quantify the contribution of 397 radical reactions because hydrolysis does not exhibit ²H fractionation. The ²H and ¹³C 398 isotope fractionation pattern of parathion has been used at an industrial dumpsite to 399 characterise the contribution of neutral and acidic hydrolysis of parathion in a remediation 400 measure (Wu et al., 2018b). Similarly, the Λ values determined throughout the current 401 study could be used in the future to characterise degradation reaction in field studies for 402

quantifying hydrolysis or chemical oxidation reactions. Further information for
quantification of degradation reactions in the environment using enrichment factors have
been summarised previously (Thullner et al., 2012).

406 **5.** Conclusions

In this study, the carbon and hydrogen isotope fractionation caused by hydrolysis and 407 408 radical oxidation of TBP were systematically examined at different pH conditions. The AKIE_c of the hydrolysis under neutral and acidic conditions was 1.048 - 1.058, which was 409 consistent with an S_N2-type displacement reaction cleaving the C-O bond. At pH 12, a 410 S_N2-type nucleophilic displacement reaction cleaving the P-O bond was characterized by 411 the absence of carbon and hydrogen isotope fractionation. During hydrolysis at pH 9, the 412 S_N2-type displacement reaction cleaving the C-O bond affects the carbon isotope 413 414 fractionation and contributes to 67 - 80% of the overall reaction. The radical oxidation of TBP results in $AKIE_{C}$ and $AKIE_{H}$ of 1.007 - 1.011 and 1.608 - 2.174, respectively, which is 415 consistent with a major contribution of a C-H bond cleavage. The correlation of 2 H and 13 C 416 417 isotope fractionation of TBP allows identifying radical reactions and distinguishing radical reactions from hydrolysis. 418

419 Acknowledgements

420 Jia Liu and Langping Wu were financially supported by the China Scholarship Council

- 421 (File No. 201506460057 and 201306460007, respectively). The work was partially
- 422 supported by the National Science Foundation of China [grant number 41430106, 2014 and
- 423 41573080, 2015]. The authors are grateful for using the analytical facilities of the Centre

424	for Chemical Microscopy (ProVIS) at the Helmholtz Centre for Environmental Research –
425	UFZ, which is supported by the European Regional Development Funds (EFRE - Europe
426	funds Saxony) and the Helmholtz Association. The authors thank Dr. Oliver J. Lechtenfeld
427	for his support on transformation products analysis in ProVIS, and thank Dr. Matthias
428	Gehre for his help in the Isotope Laboratory of the UFZ. We are grateful to Axel Horst for
429	critical reading of our manuscript.
430	

431 Conflicts of interest: none.

432 **References**

- Bacaloni, A., Cucci, F., Guarino, C., Nazzari, M., Samperi, R., Laganà, A., 2008.
 Occurrence of organophosphorus flame retardant and plasticizers in three volcanic
 lakes of central Italy. Environ. Sci. Technol. 42, 1898-1903.
- Bergman, A., Ryden, A., Law, R.J., de Boer, J., Covaci, A., Alaee, M., Birnbaum, L.,
 Petreas, M., Rose, M., Sakai, S., Van den Eede, N., van der Veen, I., 2012. A novel
 abbreviation standard for organobromine, organochlorine and organophosphorus flame
 retardants and some characteristics of the chemicals. Environ. Int. 49, 57-82.
- Berne, C., Allainmat, B., Garcia, D., 2005. Tributyl phosphate degradation by
 Rhodopseudomonas palustris and other photosynthetic bacteria. Biotechnol. Lett. 27,
 561-566.
- Blumenthal, E., Herbert, J., 1945. The mechanism of the hydrolysis of trimethyl
 orthophosphate. Trans. Faraday Soc. 41, 611-617.
- Bouchard, D., Hunkeler, D., Höhener, P., 2008. Carbon isotope fractionation during aerobic
 biodegradation of n-alkanes and aromatic compounds in unsaturated sand. Org.
 Geochem. 39, 23-33.
- Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B., 1988. Critical review of rate
 constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals
 (·OH/·O–) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513-886.
- 451 Coplen, T.B., 1996. New guidelines for reporting stable hydrogen, carbon, and oxygen
 452 isotope-ratio data. Geochim. Cosmochim. Acta 60, 3359-3360.
- Day, J.N.E., Ingold, C.K., 1941. Mechanism and kinetics of carboxylic ester hydrolysis and
 carboxyl esterification. Trans. Faraday Soc. 1941, 686-705.
- Elsner, M., 2010. Stable isotope fractionation to investigate natural transformation
 mechanisms of organic contaminants: principles, prospects and limitations. J. Environ.
 Monit. 12, 2005-2031.
- Elsner, M., Zwank, L., Hunkeler, D., Schwarzenbach, R.P., 2005. A new concept linking
 observable stable isotope fractionation to transformation pathways of organic
 pollutants. Environ. Sci. Technol. 39, 6896-6916.

- 461 Fries, E., Püttmann, W., 2003. Monitoring of the three organophosphate esters TBP, TCEP
 462 and TBEP in river water and ground water (Oder, Germany). J. Environ. Monit. 5,
 463 346-352.
- Gray, J.R., Lacrampe-Couloume, G., Gandhi, D., Scow, K.M., Wilson, R.D., Mackay, D.M.,
 Sherwood Lollar, B., 2002. Carbon and hydrogen isotopic fractionation during
 biodegradation of methyl tert-butyl ether. Environ. Sci. Technol. 36, 1931-1938.
- 467 Greget, R., Dadak, S., Barbier, L., Lauga, F., Linossier-Pierre, S., Pernot, F., Legendre, A.,
- Ambert, N., Bouteiller, J.M., Dorandeu, F., Bischoff, S., Baudry, M., Fagni, L.,
 Moussaoui, S., 2016. Modeling and simulation of organophosphate-induced
 neurotoxicity: Prediction and validation by experimental studies. Neurotoxicology 54,
 140-152.
- He, X., Mezyk, S.P., Michael, I., Fatta-Kassinos, D., Dionysiou, D.D., 2014. Degradation
 kinetics and mechanism of beta-lactam antibiotics by the activation of H2O2 and
 Na2S2O8 under UV-254nm irradiation. J. Hazard. Mater. 279, 375-383.
- 475 Herrmann, H., 2003. Kinetics of aqueous phase reactions relevant for atmospheric
 476 chemistry. Chem. Rev. 103, 4691-4716.
- Herrmann, H., 2007. On the photolysis of simple anions and neutral molecules as sources
 of O-/OH, SOx- and Cl in aqueous solution. Phys. Chem. Chem. Phys. 9, 3935-3964.
- 479 Herrmann, H., Reese, A., Zellner, R., 1995. Time-resolved UV/VIS diode array absorption
- 480 spectroscopy of SOx-(x=3, 4, 5) radical anions in aqueous solution. J. Mol. Struct. 348,
 481 183-186.
- House, D.A., 1962. Kinetics and Mechanism of Oxidations by Peroxydisulfate. Chem. Rev.
 62, 185-&.
- Kirby, A.J., Mora, J.R., Nome, F., 2013. New light on phosphate transfer from triesters.
 Biochim. Biophys. Acta. 1834, 454-463.
- Lau, T.K., Chu, W., Graham, N.J., 2007. The aqueous degradation of butylated
 hydroxyanisole by UV/S2O82-: study of reaction mechanisms via dimerization and
 mineralization. Environ. Sci. Technol. 41, 613-619.
- Lee, S., Jeong, W., Kannan, K., Moon, H.B., 2016. Occurrence and exposure assessment of
- 490 organophosphate flame retardants (OPFRs) through the consumption of drinking water

- 491 in Korea. Water Res. 103, 182-188.
- 492 Liang, C., Su, H.-W., 2009. Identification of sulfate and hydroxyl radicals in thermally
 493 activated persulfate. Ind. Eng. Chem. Res. 48, 5558-5562.
- Martinez-Carballo, E., Gonzalez-Barreiro, C., Sitka, A., Scharf, S., Gans, O., 2007.
 Determination of selected organophosphate esters in the aquatic environment of
 Austria. Sci. Total Environ. 388, 290-299.
- 497 Mincher, B.J., Mezyk, S.P., Martin, L.R., 2008. A pulse radiolysis investigation of the
 498 reactions of tributyl phosphate with the radical products of aqueous nitric acid
 499 irradiation. J. Phys. Chem. A 112, 6275-6280.
- Nancharaiah, Y.V., Reddy, G.K.K., Mohan, T.V.K., Venugopalan, V.P., 2015.
 Biodegradation of tributyl phosphate, an organosphate triester, by aerobic granular
 biofilms. J. Hazard. Mater. 283, 705-711.
- Neta, P., Huie, R.E., Ross, A.B., 1988. Rate constants for reactions of inorganic radicals in
 aqueous solution. J. Phys. Chem. Ref. Data 17, 1027-1284.
- Nijenhuis, I., Richnow, H.H., 2016. Stable isotope fractionation concepts for characterizing
 biotransformation of organohalides. Curr. Opin. Biotechnol. 41, 108-113.
- Northrop, D.B., 1981. The expression of isotope effects on enzyme-catalyzed reactions.
 Annual review of biochemistry 50, 103-131.
- Oh, Y.-C., Bao, Y., Jenks, W.S., 2003. Isotope studies of photocatalysis: TiO2-mediated
 degradation of dimethyl phenylphosphonate. J. Photoch. Photobio. A: Chem 161,
 69-77.
- 512 Ou, H.s., Liu, J., Ye, J.s., Wang, L.l., Gao, N.y., Ke, J., 2017. Degradation of 513 tris(2-chloroethyl) phosphate by ultraviolet-persulfate: Kinetics, pathway and 514 intermediate impact on proteome of Escherichia coli. Chem. Eng. J. 308, 386-395.
- 515 Paneth, P., Buncel, E., Saunders Jr, W., 1992. Isotopes in Organic Chemistry Vol. 8.
 516 Elsevier, New York.
- Rayleigh, L., 1896. L.Theoretical considerations respecting the separation of gases by
 diffusion and similar processes. Philos. Mag. 42, 493-498.
- Regnery, J., Puttmann, W., 2010. Occurrence and fate of organophosphorus flame
 retardants and plasticizers in urban and remote surface waters in Germany. Water Res.

521 44, 4097-4104.

- Regnery, J., Puttmann, W., Merz, C., Berthold, G., 2011. Occurrence and distribution of
 organophosphorus flame retardants and plasticizers in anthropogenically affected
 groundwater, J. Environ. Monit. 13, 347-354.
- Rodil, R., Quintana, J.B., Concha-Grana, E., Lopez-Mahia, P., Muniategui-Lorenzo, S.,
 Prada-Rodriguez, D., 2012. Emerging pollutants in sewage, surface and drinking water
 in Galicia (NW Spain). Chemosphere 86, 1040-1049.
- Russell, G.A., 1957. Deuterium-isotope effects in the autoxidation of aralkyl hydrocarbons.
 Mechanism of the interaction of peroxy radicals. J. Am. Chem. Soc. 79, 3871-3877.
- Shi, Y., Gao, L., Li, W., Wang, Y., Liu, J., Cai, Y., 2016. Occurrence, distribution and
 seasonal variation of organophosphate flame retardants and plasticizers in urban
 surface water in Beijing, China. Environ. Pollut. 209, 1-10.
- Su, G., Letcher, R.J., Yu, H., 2016. Organophosphate Flame Retardants and Plasticizers in
 Aqueous Solution: pH-Dependent Hydrolysis, Kinetics, and Pathways. Environ. Sci.
 Technol. 50, 8103-8111.
- Thullner, M., Centler, F., Richnow, H.-H., Fischer, A., 2012. Quantification of organic
 pollutant degradation in contaminated aquifers using compound specific stable isotope
 analysis Review of recent developments. Org. Geochem. 42, 1440-1460.
- 539 Van Breukelen, B.M., 2007. Extending the Rayleigh equation to allow competing isotope
- fractionating pathways to improve quantification of biodegradation. Environ. Sci.Technol. 41, 4004-4010.
- Vogt, C., Dorer, C., Musat, F., Richnow, H.H., 2016. Multi-element isotope fractionation
 concepts to characterize the biodegradation of hydrocarbons from enzymes to the
 environment. Curr. Opin. Biotechnol. 41, 90-98.
- 545 Waclawek, S., Lutze, H.V., Grubel, K., Padil, V.V.T., Cernik, M., Dionysiou, D.D., 2017.
- 546 Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J.547 330, 44-62.
- Wanamaker, E.C., Chingas, G.C., McDougal, O.M., 2013. Parathion hydrolysis revisited:
 in situ aqueous kinetics by 1H NMR. Environ. Sci. Technol. 47, 9267-9273.
- 550 Watts, M.J., Linden, K.G., 2009. Advanced oxidation kinetics of aqueous tri alkyl

- 551 phosphate flame retardants and plasticizers. Environ. Sci. Technol. 8, 2937-2942.
- Watts, R.J., Teel, A.L., 2006. Treatment of contaminated soils and groundwater using ISCO.
 Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 10, 2-9.
- Wolfsberg, M., Van Hook, W.A., Paneth, P., Rebelo, L.P.N., 2009. Isotope effects: in the
 chemical, geological, and bio sciences. Springer Science & Business Media.
- Wu, L., Chládková, B., Lechtenfeld, O.J., Lian, S., Schindelka, J., Herrmann, H., Richnow,
 H.H., 2018a. Characterizing chemical transformation of organophosphorus compounds
 by 13C and 2H stable isotope analysis. Sci. Total Environ. 615, 20-28.
- Wu, L., Kummel, S., Richnow, H.H., 2017. Validation of GC-IRMS techniques for δ13C
 and δ2H CSIA of organophosphorus compounds and their potential for studying the
 mode of hydrolysis in the environment. Anal. Bioanal. Chem. 409, 2581-2590.
- Wu, L., Verma, D., Bondgaard, M., Melvej, A., Vogt, C., Subudhi, S., Richnow, H.H.,
 2018b. Carbon and hydrogen isotope analysis of parathion for characterizing its natural
 attenuation by hydrolysis at a contaminated site. Water Res. 143, 146-154.
- Wu, L., Yao, J., Trebse, P., Zhang, N., Richnow, H.H., 2014. Compound specific isotope
 analysis of organophosphorus pesticides. Chemosphere 111, 458-463.
- Wu, T., Gan, Q., Jans, U., 2006. Nucleophilic substitution of phosphorothionate ester
 pesticides with bisulfide (HS-) and polysulfides (Sn2-). Environ. Sci. Technol. 40,
 5428-5434.
- Yang, Y., Lu, X., Jiang, J., Ma, J., Liu, G., Cao, Y., Liu, W., Li, J., Pang, S., Kong, X., Luo,
 C., 2017. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate
 (PDS): Formation of oxidation products and effect of bicarbonate. Water Res. 118,
 196-207.
- Zhang, N., Geronimo, I., Paneth, P., Schindelka, J., Schaefer, T., Herrmann, H., Vogt, C.,
 Richnow, H.H., 2016. Analyzing sites of OH radical attack (ring vs. side chain) in
 oxidation of substituted benzenes via dual stable isotope analysis (δ13C and δ2H). Sci.
- 577 Total Environ. 542, 484-494.
- 578

Table 1. Pseudo-first order kinetic rate constants (k_{obs}), isotope enrichment factors (ε), AKIE and Λ values obtained from the hydrolysis and the radical oxidation of TBP at different

pH.

	<i>k</i> _{obs}	Temp.	TBP:oxidant	Major	$\Delta \delta^{13} C^h$	$\Delta\delta^2 H^h$								
Conditions	$(\times 10^{-3}h^{-1})$	⁰ C	molar ratio	radicals	(‰)	(‰)	$\epsilon_{\rm C}(\%)$	R^2_{C}	ε _H (‰)	R^2_{H}	AKIE _C	AKIE _H	Λ	R^2_{Λ}
Hydrolysis														
pH 2	2.0±0.3 ^a	80			9.1		-3.8±0.3	0.990	n.d. ^b		1.048±0.004	n.c. ^c	n.d.	
pH 7	1.8±0.2	80			9.9		-4.6±0.5	0.990	n.d.		1.058 ± 0.007	n.c.	n.d.	
pH 9	4.0±0.5	80			8.3		-2.8±0.1	0.997	n.d.		n.c.	n.c.	n.d.	
pH 12	1.1±0.2	35					n.d.		n.d.		n.c.	n.c.	n.d.	
Radical oxidation														
pH7/KPS	10.4±0.4	35	1:20	SO ₄ •-	2.7	52	-0.9±0.1	0.986	-16±2	0.987	1.011 ± 0.001	1.761±0.167	17±1	0.996
pH9/KPS	8.8±1.1	35	1:20	SO₄•-,•OH	2.1	51	-0.8±0.1	0.989	-20±2	0.991	1.010 ± 0.001	2.174±0.255	23±1	0.990
pH12/KPS	5.5±0.3	35	1:20	•OH	1.1	21	-0.5±0.1	0.980	-11±1	0.993	n.c.	n.c.	19±1	0.991
^d pH7/UV/H ₂ O ₂ _1	474.2±11.4	20	1:5	•OH	2.4	38	-0.8±0.1	0.995	-14±1	0.993	1.010 ± 0.001	1.608±0.070	17±1	0.996
^e pH7/UV/H ₂ O ₂ _2	27.9±2.4	15	1:5	•OH	1.3	23	-0.6±0.3	0.928	-13±3	0.985	1.007 ± 0.004	1.610±0.209	19±7	0.956
^e pH7/UV/H ₂ O ₂ _3	6.8±0.5	15	1:5	•OH	1.6	40	-0.6±0.2	0.972	-17±7	0.983	1.007 ± 0.001	1.761±0.418	25±6	0.994
$^{\mathrm{f}}\mathrm{pH7/UV/H_{2}O_{2}}$ ave.						-0.7±0.1 ^e		-15 ± 2^{e}				20 ± 4^{e}		
^g average							-0.7±0.1 ^f		-16±3 ^f				$20\pm4^{\mathrm{f}}$	

a: "±" indicates the 95% confidence interval; b: "n.d." is short for not detected; c: "n.c." is short for not calculated;

d-e: the distance between the photo-reactor and light source was 13 cm and 22 cm, respectively;

f: average values of ϵ and Λ for UV/H₂O₂ experiment, calculating from the three individual UV/H₂O₂ experiments;

g: average values of ε and Λ for radical oxidation of TBP, calculating from all individual radical oxidation experiments expect pH 12/KPS.

h: isotope shifts of the δ^{13} C and δ^{2} H values from the first and last sampling points during the degradation period.

3 **Fig. 1**: TBP degradation via hydrolysis at (a) pH 2, (b) pH 7, (c) pH9, and (d) pH 12.

4 Changes in concentrations (C_t/C_0 , black squares) are correlated with the changes of the

5 carbon (δ^{13} C, red triangles) and hydrogen isotope ratios (δ^{2} H, blue circles).

10 **Fig. 2**: TBP degradation via radical oxidation. Reaction conditions were as follows: (a) 11 pH7/KPS; (b) pH9/KPS; (c) pH12/KPS; (d) UV/H₂O₂_1; (e) UV/H₂O₂_2; (f) 12 UV/H₂O₂_3. Changes in concentrations (C_t/C₀, black squares) are correlated with 13 changes of the carbon (δ^{13} C, red triangles) and hydrogen isotope ratios (δ^{2} H, blue 14 circles). 15

a. Low pH hydrolysis:

b. High pH hydrolysis:

c. Radical oxidation

17 18

19 Fig. 3: Proposed transformation mechanisms of TBP via hydrolysis and radical oxidation. Hydrolysis 20 of TBP occurs via two pathways: (a) attacked by H_2O at the α -carbon with S_N2 -type substitution at low pH or (b) attacked by H₂O at the P atom with S_N2-type substitution at high pH. The latter reaction 21 22 is accompanied with two transition states. Three water molecules assisting the hydrolysis reaction by allowing two proton transfers, via a concerted six-membered cyclic activated complex (TS1) that 23 24 includes general base catalysis in the first step and the cleavage of the pentacoordinated intermediate 25 in the second step (TS2). The radical oxidation by 'OH can process via two mechanisms. Both 26 processes can occur simultaneously: (1). H-abstraction by 'OH, followed by an oxygen addition and finally undergoing the Russell mechanism; (2). the 'OH addition formed the $(ButO)_2POC \cdot HC_3H_7$ 27 radical followed by the elimination of butanol. 28

31

32 Fig. 4: Two dimensional isotope plots for TBP degradation via hydrolysis and radical

33 oxidation.

Figure captions

1	Figure cap	tions
2	Fig. 1.	TBP degradation via hydrolysis at different pH. Changes in concentrations
3		(C_t/C_0) are correlated to changes in the carbon $(\delta^{13}C)$ and hydrogen isotope
4		ratios (δ^2 H).
5	Fig. 2.	TBP degradation via radical oxidation. Changes in concentrations (C_t/C_0)
6		are correlated with changes in the carbon (δ^{13} C) and hydrogen isotope ratios
7		$(\delta^2 H).$
8	Fig. 3.	Proposed transformation mechanisms of TBP via hydrolysis and radical
9		oxidation.
10		
11	Fig. 4.	Two dimensional isotope plots for TBP degradation via hydrolysis and
12		radical oxidation.

Supplementary Material Click here to download Supplementary Material: CHEM53166R1_Revised Supplementary Information.docx Supplementary Material 2 Click here to download Supplementary Material: Supporting Info_calculation_06-04-18.xlsx