
This is the preprint version of the contribution published as:

Bittermann, K., Linden, L., Goss, K.-U. (2018):

Screening tools for the bioconcentration potential of monovalent organic ions in fish

Environ. Sci.-Proc. Imp. 20 (5), 845 – 853

The publisher’s version is available at:

http://dx.doi.org/10.1039/c8em00084k



Screening Tools for the Bioconcentration Potential of monovalent organic ions in fish

Kai Bittermanna,c, Lukas Lindena,c, Kai-Uwe Gossa,b,*

a Helmholtz  Centre  for  Environmental  Research  UFZ,  Department  of  Analytical

Environmental Chemistry,  Permoserstr. 15, D-04318 Leipzig, Germany

b University of Halle-Wittenberg, Institute of Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle,

Germany

c shared first authorship

* corresponding author

Abstract

Currently the bioaccumulation potential of organic chemicals is assessed in a first tier approach

via  their  octanol-water  partition  coefficient..  This  approach  has  been  developed  for  neutral

chemicals and cannot work for ionizable and ionic chemicals because the latter have different

sorption-mechanisms and -preferences.  Thus, suitable screening tools for the bioconcentration

potential of ionic and ionizable chemicals need to be developed because it cannot be expected

that these chemicals are non-bioaccumulative per se. Here, we present such screening tools for

monovalent  ions  and ionizable chemicals  based  on calibrated  sorption models  for  membrane

lipids, structural  proteins and albumin. The molecular descriptors used for these models arise

from quantum chemical calculations and are based on COSMO-RS theory. When we applied our

screening  tools  to  1839  preselected  chemicals  from  the  REACH  registration  data  base,  we

identified 187 chemicals as potentially bioconcentrating (still ignoring any kind of metabolism).

Among these were carbon and sulphur based aromatic and aliphatic acids mostly with a rather

high  molecular  surface  area.  We hope that  this  outcome will  trigger  further  research  on ion

specific  sorption mechanisms and lead to a re-evaluation of the bioconcentration potential  of

ionic chemicals.
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1 Introduction

There is no generally accepted approach to estimate the bioaccumulation potential of organic ions

1 – despite the fact that the regulation of organic ions is a prevailing challenge.2 Ionogenic organic

chemicals  comprise  very  diverse  structures  and  chemical  classes  such  as  surfactants,

pharmaceuticals,  some  classes  of  pesticides,  poly-  or  perfluorinated  acids2 as  well  as  ionic

liquids.3 The use of a single and easy to determine threshold value (such as a certain logarithmic

octanol-water partition coefficient value), which is applied for neutral chemicals by regulation

authorities,4 will not suffice as a standard criterion to identify the bioaccumulation potential of

charged chemicals1. Previous work focused on the description of rates of uptake and elimination

(including metabolism) to describe the bioaccumulation potential of organic ions, aiming at a

holistic picture.5 While we agree that physiologically based pharmacokinetic modelling is highly

needed,  we  consider  the  underlying  physicochemical  parameters,  especially  the  equilibrium

sorption  coefficients  to  the  different  relevant  phases,  as  a  major  uncertainty  in  our  current

knowledge. In previous work, both sorption to proteins as well as sorption to membrane lipids

was estimated for organic ions via the respective octanol-water partition coefficient.5 In our own

work we have recently shown that this is not appropriate.6 In this work we therefore develop

mechanistic and semi empirical models to predict such equilibrium sorption coefficients. These

can then be used to screen the bioaccumulation potential of organic ions in a first tier approach

that still neglects any biotransformation or other kinetics and can thus be seen as a worst case

scenario.  Here,  we use  the  newly developed  predictive  tools  to  provide  such  a  screening  of

chemicals  for  their  bioconcentration  potential  in  fish  and  based  on a  depiction of  the  major

sorption  matrices.  Analogous  to  the  pharmacokinetic  literature,4,7–9 we  assume  the  following

sorption matrices in organisms to be the most relevant for organic ions: membrane lipid, muscle

protein (which is our proxy for structural protein), serum albumin (which is our proxy for plasma

proteins in fish) and water. We have to note that not all fish species have albumin and also there

are other blood constituents that might be important sorbents for organic ions. For organic ions

we assume that the sorption capacity of storage lipid (fat) can be neglected, based on the finding

that ions partition into octanol only marginally as ion pairs10,11 and octanol is a pretty good proxy

for storage lipid,4 within our general model uncertainties. 
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While our general approach is straight forward and not new4 (and has been applied by us before

for a few selected ionizable chemicals with available experimental data),12 the challenge lies in

providing all the different partition coefficients required for a broad screening. For the neutral

species of ionizable chemicals the usage of poly parameter free energy relationships (pp-LFERs)

is an appropriate way to obtain these data as shown in a recent review.13 In general, pp-LFERs are

capable  of  describing  the  equilibrium  partitioning  of  neutral  organic  chemicals  between  a

multitude of biologically relevant matrices and water as well as technical partitioning systems

and water. Unfortunately, the applicability of pp-LFERs for ionic organic chemicals is still in its

infancy and of rather empirical nature, limited to few chemical classes.6,14,15 Thus, we investigate

here,  to  what   extend  required  partition  coefficients  can  be  estimated  with  the  help  of  the

commercial  software  COSMOthermX171,  which  is  the  only  predictive  tool  that  cannot  only

handle  neutral  species  but  that  is  principally  able  to  provide  meaningful  predictions  for  the

partitioning of organic ions.6 COSMOtherm is based on quantum mechanical (QM) calculations

and fundamental  fluid phase thermodynamics (namely the conductor like screening model for

real  solvents,  COSMO-RS)16,17 which operates with only very general  fitting parameters.  The

COSMO-RS  implementation  within  COSMOtherm  is  principally  applicable  to  both  neutral

chemicals as well as ions.18 For ions, it has particularly been shown to be a good model for the

description of the membrane-water partition coefficient 19 and for ionic liquid properties.20 

Out of the four sorption matrices, only the membrane and water itself are well-defined and are

thus directly describable within COSMOtherm.19,21 The other two important sorption matrices are

structural proteins and plasma proteins.  About 10% of the whole body mass of vertebrates is

made of structural proteins, which themselves consist to about 50% of muscle proteins (e.g., actin

and myosin), while the other half is mostly keratin and collagen.14 In the case of blood plasma

the composition of  the  sorbing matrix  varies  in  different  organisms  and the  contributions  of

specific proteins are not always clear. Here, we used albumin, which is expected to dominate

anionic sorption in human blood, as a proxy for the plasma proteins.  For structural proteins and

albumin, the only chance to grasp the major characteristics of the respective sorption matrices

with COSMOtherm is via fitting experimental partition coefficients of organic ions to so-called

sigma moments via a multiple linear regression (MLR). The sigma moments are an output of the

quantum chemical  cosmo  calculation  for  molecules  and  account  for  the  solutes’  interaction

1 Eckert F, Klamt A. COSMOtherm.COSMOlogic, Leverkusen, Germany
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properties.  Calibrating MLR models  based on sigma moments  with experimental  equilibrium

partitioning data works well for neutral chemicals as has been shown for a big variety of liquid-

liquid partitioning systems (personal  communication COSMOlogic) and is conducted in exact

analogy to the pp-LFER approach, as outlined in detail below. We tested this approach both for

the partitioning of  organic ions between plasma protein and water  and structural  protein and

water.

The major aims of this work were twofold: to develop reliable predictive sorption models, for

neutral and ionic chemicals in order to describe the bioaccumulation potential of organic ions and

ionizable  chemicals  (without  metabolism);  second  to  identify  potentially  bioaccumulative

compoounds by applying our models to a set of almost 2000 organic ions or ionizable chemicals.

For  the  first  aim  we  developed  MLRs  based  on  sigma  moments  describing  the  sorption  to

structural proteins and to albumin (for neutral and monovalent ionic chemicals, respectively). For

our second aim, we combined these MLRs with the pp-LFER models for neutral species and

COSMOmic for neutral and ionic chemicals and applied it to almost 2000 chemicals. 

Materials and Methods for the development of sorption model

Materials for the development of sorption model

Temperature dependence of sorption coefficients

The  experimental  sorption  data  for  phospholipid  membrane  are  available  for  temperatures

between 20 to 37°C. The sorption differences within this temperature range are negligible,  as

long as the membrane is in its natural liquid crystalline state.22 The data for structural and muscle

proteins  and  albumin had  been  measured  at  37°C because  they originally  aimed to  describe

sorption capacities in humans.  Although the modeled fish has a temperature between 13 and

17°C,23 we expect only little influence of the temperature dependence of the sorption coefficients

and regard this as one of the minor uncertainties of our model.

Sorption to structural (muscle) proteins

Structural  proteins  such  as  muscle  protein  is  abundant  in  vertebrates  and  of  polar  nature.14

Analogous  to  previous  work,14,24 we  assumed  the  experimental  sorption  data  from water  to

chicken  muscle to  be a  generally valid  proxy for  the  partition coefficient  between  structural

proteins and water, Kstructural proteins/water, for both the ionic as well as the neutral species. In fact, for
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40 neutral chemicals it has been shown in previous work that the differences in Kstructural proteins/water

between  chicken,  fish  and  pig  muscle  proteins  were  small.24 We  used  the  experimental

partitioning data from,14,24 comprising 63 neutral chemicals, 41 anions and 10 cations (we left out

those values that are only given as lower border). In order to be used in our screening model the

experimental values had to be converted into volume based partitioning coefficients (multiplied

with the density of muscle protein of 1.36 kg/L).25 Note that this is a rather limited dataset of

chemicals. Increasing predictive errors have to be expected for chemicals that do not fall into the

range spanned by the calibration data.  Given that  there are only ten cations in the dataset,  a

meaningful MLR for cations is not possible (i.e., overfitting is inevitable). This gap needs to be

filled by future work. For the time being it might be advisable for the screening to just use a log

Kstructural proteins (cation) value of 1.5 for any cationic chemical (being the mean value of the exisiting

experimental data).

Sorption to albumin

The partitioning to blood plasma is dominated by the sorption to the plasma proteins. Among

these  proteins  serum  albumin  is  the  major  sorption  matrix  for  both  neutral  and  ionic

chemicals.26,27 We rely on two consistent experimental datasets26,27 for our model development.

The experimental data were derived with bovine serum albumin, which is comparable to human

serum albumin.27 Due to the lack of reliable partitioning data for rainbow trout albumin, we use

bovine serum albumin as a surrogate. Obviously, this assumption needs to be revised when new

experimental values for fish plasma protein come up and as the circumstances require, a new

MLR will have to be set up. In order to be used in our screening, the experimental values were

converted to volume based partition coefficients (i.e., they were multiplied with the density of

serum albumin, being 1.36 kg/L).25

Methods for the development of the sorption model

Calculation of log Kfish/water

The partitioning of a permanently charged ionic chemical between any organism and water can

be described as the additive sorption to all the sorption matrices in the body of the organism. For

ions this is expressed in the following equation for the partitioning into fish:

 (1)

with fx denoting the volume fractions of the respective matrices/phases and the K’s describing the
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partition coefficients between the matrices/phases and water given in the subscripts (trivially,

Kwater/water equals one and thus only fwater needs to be considered). For our screening approach we

looked at a 1 kg rainbow trout with the following composition (volume %): storage lipid 11%,

phospholipids  1.0 %,  structural  proteins  15.8 %,  plasma proteins  0.27 %, and water  69.8 %

(adapted from Nichols et al. ).28 A side note to the wording used here: a ‘phase’ is per definition

homogeneous like water or hexadecane. Phospholipids and albumin are highly heterogeneous,

while muscle protein is probably a little less heterogeneous14 – therefore we denote these latter

sorption media as (sorption) matrices.

When we describe the bioaccumulation potential of acids and bases that are partly neutral at the

investigated  pH,  then  the  partitioning  of  both  species  needs  to  be  assessed.  For  the  neutral

species,  we  also  consider  storage  lipids  (triglycerides)  as  a  major  sorbing  compartment  in

addition to membranes, structural proteins and albumin.4

(2)

The total partition coefficients of both species are then combined according to their fractionation

in water that depends on the respective pKa value. 

(3)

Note again, that this model is purely based on equilibrium partitioning and does not account for

any kind of metabolism and kinetics.

Predicting Kx/water for neutral chemicals with pp-LFERs

The partitioning of neutral chemicals to the different sorption phases/matrices listed in Eq. 2 can

be predicted with poly parameter free energy relationships (pp-LFERs) from the literature.  In

general,  pp-LFER  models  are  widely  used  and  accepted  as  documented  by  a  number  of

reviews.13,29,30 We  used  the  UFZ-LSER  database31 in  order  to  get  a  maximum  amount  of

experimentally determined solute descriptors, L (log of the hexadecane-air partition coefficient),

S (dipolarity/polarizability parameter), A (solute H-bond acidity), B (solute H-bond basicity), and

V (molar volume). For cases where no experimental solute descriptors were available we used the

UFZ-QSPR, available free of charge from the same source. We used these solute descriptors in

the  following  pp-LFERs  from  the  literature  to  calculate  Kmembrane/water(neutral),

Kstorage lipid/water(neutral), Kstructural proteins/water(neutral), and Kalbumin/water(neutral) respectively22,24,26,32:
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; n=131, SE=0.28, T=37°C   (4)

; n=247, SE=0.20, T=37°C   (5)

; n=46, SE=0.23, T=37°C   (6)

; n=82, SE=0.41, T=37°C   (7)

In addition to the pp-LFER predictions, the partitioning of neutral chemicals to structural proteins

and  albumin  were  also  predicted  with  multi-linear  regressions  (MLRs)  against  the  sigma

moments  of  the  respective  chemicals  (as  outlined in  detail  below),  while  the  partitioning of

neutral  chemicals  to  membrane  was also  predicted  with  COSMOmic.  Hence,  for  the neutral

chemicals we ended up having two predictive models (based on the same calibration data sets)

one  using  the  pp-LFER approach  and  one  using  the  sigma  moments  derived  from quantum

chemical cosmo calculations (see below).  We expect that all models have their shortcomings due

to the finite training set, so we decided to use a consensus model for neutral chemicals, meaning

that  Kx/water of the respective sorption matrix was finally determined by the average of the two

respective model results. For storage lipid we relied solely on the ppLFER Eq. 5.

Generation of COSMOfiles

Prior  to  the  partitioning  calculations  with  COSMOtherm  (including  the  calculations  via

COSMOmic or via sigma moments) COSMOfiles of the respective chemicals were generated

with  quantum mechanical  calculations  (BP-TZVP  level):33–35 We  used  COSMOconfX16  and

Turbomole  version  7.1  for  full  energy  minimization  and  conformer  generation  (up  to  ten

conformers were generated).36

Predicting Kx/water of ionic and neutral chemicals via sigma moments

Analogous  to  the  pp-LFER  approach  which  uses  5  solute  descriptors  (called  Abraham

descriptors) the interaction possibilities of a solute can also be described with five descriptors,

derived from the COSMOfile of the specific chemical. In fact, it has been demonstrated that the

five  Abraham solute descriptors  for  neutral  chemicals  correlate  well  with  the  following  five

sigma moments Sig0, Sig2, Sig3, Hb_acc3 and Hb_don3 – all of which can be calculated with the

commercial  software COSMOtherm.37 Given that a) these five sigma moments are also well-

suited for describing partitioning for neutral chemicals via a multi-linear regression (MLR) 37,38

and  b)  the  partitioning  systems  of  structural  protein  and  plasma  protein  cannot  directly  be
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modelled with COSMOtherm it is an obvious choice to use the sigma moments to describe the

respective partitioning systems with a MLR of the following general form:

 (8)

This is  done in exact analogy to the calibration of a pp-LFER equation – but unlike the pp-

LFERs, sigma moments should per se be able to describe both ionic and neutral chemicals, if we

also consider the additional sigma moment Sig1, which describes the charge. A big advantage of

sigma moments based MLR’s over other QSAR’s is, that the sigma moments describe intuitively

understandable physicochemical parameters, as outlined in the SI. 

Sorption to structural (muscle) proteins

For  Kstructural  proteins/water (ion) a tentative ppLFER had already been set up for monovalent ions by

including additional descriptors accounting for the charge.14 However,  this pp-LFER can only

account for the ionic forms of phenols, carboxylic acids, pyridines and amines and is therefore

not suited for our screening purpose. Therefore we modeled Kstructural proteins/water via the MLR based

on sigma moments as discussed above (range of the sigma moments is shown in SI Table 1).

Sorption to albumin

The sorption of ions to serum albumin is partly influenced by strong steric effects,14 which can

only be included in a modelling approach through extensive calibration and calculation effort.25

Such a  model  is  not  feasible  for  our  screening  purpose  because  a)  it  requires  a  very  time-

consuming and meticulous calculation effort and b) its domain of applicability is rather narrow.25

But we can use the existing experimental data for a simplified model (which is expected to have a

wider applicability domain while predicting the fitting data set less accurate) that is based on the

sigma moments as discussed above. Prior to construction of this sigma-moment based model we

excluded those chemicals  whose sorption behaviour to albumin is highly influenced by steric

effects,  which  cannot  be  covered  by  the  sigma  moments.  Due  to  our  previous  3D-QSAR

modeling experience25 we know that especially anions that have a substitution in direct vicinity to

the carboxylic  group are strongly influenced by steric effects  (they experience a twist of  the

carboxyl  group).  Thus,  we excluded  these  anions  from the calibration dataset,27 namely 2,6-

dichlorobenzoic  acid  anion,  2-chlorobenzoic  acid  anion,  2-naphthalenacetic  acid  anion,  2-

naphthoic acid anion, and naphthalene-2-sulphonate anion. We have to note here that there are
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not enough experimental data to provide reliable rules as to which other chemicals would fall

outside the application range. 

Sorption to membrane lipid

Kmembrane/water(ion) of ionic organic chemicals can be modeled with the COSMOmic application in

COSMOtherm,19 which is currently the most reliable method available for this purpose6 and the

only prediction method that can be used for screening purposes39 (in contrary to MD simulations).

COSMOmic has been validated with a rather diverse dataset, including a few zwitterions and di-

cations.  For  our  screening  approach,  we used  exactly  the  same  calculation  details  as  in  the

original COSMOmic publication: 1401 parametrization of the COSMOtherm software with an

offset of 0.32 log units for the prediction of  Kmembrane/water of organic ions, using a pure DMPC

membrane.19 

For neutral chemicals the sorption to membrane lipid, Kmembrane/water(neutral) was also modeled with

COSMOmic (with the same settings as used for ions), and, additionally, with the ppLFER shown

in Eq. 4.

Overall Workflow

Once, all predictive models for the required partition coefficients had been set up, we were able

to start the screening task. Our overall Screening workflow can be summarzized as outlined in

Fig. 1.
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Figure 1: Workflow for our screening procedure for potentially bioaccumulative chemicals. 

All models based on MLRs with sigma moments were newly developed in this work.

Screening for potentially bioaccumulative chemicals

For our screening for potentially bioaccumulative ions we largely investigated

a  dataset  provided  by  ECHA  of  more  than  70000  non-confidential  chemical

structures  from  the  REACH  registration  database  and  Classification  and

Labelling inventory.  We first  filtered  the  dataset  for  those  chemicals  with  a  molecular

weight between 100 and 800, having only one pKa. For chemicals with a pKa between 3 and 7

both, the neutral and anionic species were considered. Here, we relied on the pKa‘s given in the

ECHA dataset, which were predicted with the ChemAxon software package. If the pKa‘s were

below 3, we only considered the anionic fraction, if the pKa‘s were above 11 we only considered

the cationic species. Also, we restricted our investigation on chemicals constructed by the atoms

H, C, N, S, O, P and halogenates. We further included some chemicals in our screening of known

environmental  relevance  such  as  perfluorinated  chemicals,  ionic  liquids  and  quaternary

phosphonium cations. If adequate, we predicted the pKa of these chemicals with JChem for Excel,

version  15.10.2600.341  (Copyright  2008-2015  ChemAxon  Ltd.  https://www.chemaxon.com/)
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using a SMILES code as input. According to the literature, JChem performs equally well as ACD

and the topological method MoKa on pKa predictions.40

Results and Discussion

Models for the different sorption matrices

Structural protein

The Abraham solute descriptors are always positive (with the notable exception of perfluorinated

chemicals  and  silicates),  which makes  the resulting pp-LFER equation instructive and  easily

understandable.13 In contrast, Sig 1 and Sig3 can also take on negative values. This and the fact

that the absolute values of the sigma moments are not normalized prohibit an easy interpretation

of MLRs fitted with sigma moments as compared to pp-LFER equations. 

In a first attempt, we fitted the experimental data of the 63 neutral chemicals, 41 anions and ten

cations altogether with a MLR and obtained a promising correlation already (RMSE = 0.46, R² =

0.67, SI Fig. 2). But we also assumed that differently charged chemicals might sorb to different

sorption sites within the muscle proteins, so we also fitted the neutral chemicals and anions with

MLRs  separately.  These  two  fits  have  less  fitting  parameters  because  we  excluded  those

parameters that had a standard deviation larger than the fitted parameters themselves (resulting in

three sigma moments and one constant for the anions, and four sigma moments and one constant

for neutral chemicals).  Additionally,  the separate fits had a better statistical outcome (i.e.,  the

RMSE was smaller and R² was higher) and are thus our first choice for screening.

; R²= 0.81, RMSE=0.30, F=53, n=41 anions (9)

, 

R²= 0.78, RMSE=0.38, F=52, n=63 neutral chemicals (10)
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Figure  2: MLR based on sigma moments for structural protein (chicken muscle), left for

anions (3 descriptors + constant),  RMSE = 0.30, R² = 0.81, right for neutral chemicals (4

descriptors + constant), RMSE = 0.38, R² = 0.78.

Unfortunately,  for  cationic chemicals,  there were  only ten data points;  we regard this as not

enough  for  a  meaningful  MLR.  Therefore  we  decided  to  add  the  average

log Kstructural proteins/water(cation) value of  1.5 for cations for screening purposes as a rough estimate

(originating from the ten cations of the dataset and their log Kalbumin/water(cation) range of 0.97 to

2.29).

For neutral chemicals the prediction of Kstructural proteins/water(neutral) is also possible with a pp-LFER

equation.24 Analogous to the calculation of  Kmembrane/water(neutral) we used a consensus model for

the neutral chemicals, averaging the outcomes of Eq.s 6 and 10.

Albumin

Analogous to the structural protein, it is plausible to assume that anions and neutral chemicals

sorb to different sorption sites within the BSA protein. This can explain the rather poor fit of the

data, when the 40 anions and the 83 neutral chemicals are fitted together (SI Fig 3). The separated

fits of anions and neutral chemicals yield the following system descriptors (again leaving out

insignificant descriptors). 

; R²= 0.82, RMSE= 0.33, F= 39, n=40 anions (11)
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Note that this model has to be used with caution for those anionic chemicals that are sterically

hindered in vicinity to a carboxyl group, as explained above.

; R²= 0.56, RMSE= 0.57, F= 25, n=83 neutral chemicals (12)

Figure  3:  MLR based  on  sigma  moments  for  albumin,  left  for  anions  (4  descriptors  +

constant), right for neutral chemicals (4 descriptors + constant).

Again,  we described  the partitioning to  BSA for  neutral  chemicals  with  a  consensus  model,

averaging the results from Eq. 12 and the ppLFER Eq. 7 (SI Fig. 4).

As before, there are not enough data for cations to establish a MLR, so we used the average log K

value of 1.25 (originating from the four cations of the dataset and their log  Kalbumin/water(cation)

range of 0.97 to 1.58).

Model constraints

In order to facilitate the interpretation of the results and prevent misuse of the model, we repeat

the model weaknesses in a bullet point form here.

 It is questionable whether poly- and perfluorinated chemicals are well-described with the

sigma moment approach, given that van der Waals interactions are only depicted via the

Sig1 (area). We therefore expect systematic deviations for perfluorinated chemicals, but

due to the lack of experimental data this cannot be quantified.
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 Unfortunately,  also  for  neutral  chemicals  there  is  a  lack  of  experimental  data  for

perfluorinated chemicals. So also the pp-LFER based submodels for neutral  chemicals

can only be used with great caution for this class of chemicals

 Sorption of cations to structural proteins and plasma proteins is only roughly estimated by

average  values  due  to  an  insufficient  number  of  calibration  data  (i.e.,  the sorption to

serum albumin is presumably weak for cations but they sorb stronger to other plasma

proteins than albumin which are not included in our screening approach due to the lack of

consistent data).41

 Complex ions, i.e., ions with several ionizable groups, as well as surfactants were not part

of the calibration or validation set of our models and the model performance for these

chemicals/species is unknown.

 Chemicals that show a distinct steric effect in their sorption to serum albumin might not

be correctly covered by our modelling approach.

Screening of potentially bioaccumulative monovalent organic ions
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Figure 4: Histogram of calculated log Kfish/water according to Eq. 3.

We screened 1839 preselected chemicals for their bioaccumulative potential, 187 (10%) of them

have predicted log Kfish/water values larger than 4 (Fig 4, see SI Table 3 for the dominating sorption

phase).  The molecular weight of these potentially bioaccumulative chemicals ranged between

255 and 756 u thus spanning almost the entire range of the preselected values (see methods).

Figure 5: Calculated log Kfish/water (combining the contribution from the neutral and ionic species)

against Sig0 (area) .

Log Kfish/water correlates reasonably with the molecular surface area as it can be expected (Fig 5);

larger  chemicals  tend  to  be  more  bioaccumulative  than  smaller  ones  due  to  their  increased

hydrophobicity. For the chemicals that possess a neutral and anionic species at a pH of 7 (acids),

the neutral species has generally the higher log Kfish/water value compared to the anionic species (SI

Fig. 7). But, we also compared the pH dependent contribution of the two species to Kfish/water(total)
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and in most of the cases the anionic species dominated the Kfish/water(total) at pH 7 (SI Fig. 8). The

two outliers in Fig. 5 with a relatively high log Kfish/water but a rather small Sig0 of roughly 200 are

adamantanes, which are cubic molecules with a relatively small volume.

For  the  further  discussion,  we only consider  the  contribution  and  the  influence  of  the  ionic

species on the bioaccumulative potential because this is the most important contribution.

Table 1: Overview of screened chemicals. Note that the sum of the chemicals in the sub-

groups does not always add up to the total of 1839 chemicals, because not always all 

chemicals fit into the shown categories.

 log Kfish/water < 4 log Kfish/water > 4

 quantity % quantity %

total  1839 1652 89.83% 187 10.17%

aromatic 822 783 95.26% 39 4.74%

aliphatic  942 794 84.29% 148 15.71%

S based acid 409 343 83.86% 66 16.14%

C based acid  606 562 92.74% 44 7.26%

Sorbing matrix

dominated by 

structural proteins

177 165 93.22% 12 6.78%

dominated by plasma 

proteins
408 354 86.76% 54 13.24%

S based acid 102 75 73.53% 27 26.47%

C based 

acid
223 207 92.83% 16 7.17%

aromatic 250 228 91.20% 22 8.80%

 aliphatic 158 207 131.01% 32 20.25%

dominated by 

membrane lipids
266 171 64.29% 95 35.71%

S based acid 34 12 35.29% 22 64.71%

C based 

acid
33 17 51.52% 16 48.48%

aromatic 66 59 89.39% 7 10.61%

aliphatic 200 112 56.00% 88 44.00%

Figure  6 log  KFish/water  ionic against the surface area of the ionic chemical.  The color code

indicates the dominating sorption matrix that contributes for more than 60% of the total

log K value. 

Analysis of the results indicated the following general trends :

- aliphatic chemicals tend to be more bioaccumulative than aromatic chemicals (Tab. 1)

16

357

358

359

360

361

362

363

364

365

366

367

368

369

370



- Sorption to albumin is generally dominated by smaller chemicals while bigger molecules tend

to sorb stronger to membrane lipids

- Structural  proteins as a dominating sorption matrix (>60%) rarely leads to bioconcentration

potential (Fig. 6)

- Albumin and membranes dominate the sorption behaviour of bioconcentrating chemicals, (Fig.

6).

-  aromatic  chemicals  preferably sorb to  albumin while  aliphatic  chemicals  preferably sorb to

membranes (Table 1)

- sorption of S based acids is dominated by plasma proteins while for C based acids  sorption can

be dominated by both plasma proteins and membranes (Table SI 4).

- Sorption to plasma proteins is similar to sorption to structural proteins but higher (SI Fig. 9)

- Sorption to plasma proteins is considerably different to sorption to membranes but high values

correlate (SI Fig. 10)

Implications for the regulatory process

Assessment of the bioconcentration potential of ionizable organic chemicals often assumes that

ionic species do not partition into biological matrices. However, there are sufficient data in the

literature to show that this general assumption does not hold. Hence, it is inacceptable to waive

the bioconcentration potential of organic ions based on this assumption.. Here, we have shown

that  a first  tier  screening of  ions is  possible,  based on molecular  descriptors  that  came from

quantum chemical calculation. It must be noted that our assessment was based on the assumption

that the exposure pH value is the same as the internal pH of the fish (i.e., pH=7). If this is not the

case then an ion-trap effect will occur which further increases the bioconcentration potential for

organic acids  42. If the pH in the exposure medium is 2 log units smaller (i.e., pH= 5) then the

BCF increases by a factor 100 for acids with a pKa < 5 due to ion trapping. 

We also point out that the presented screening was only directed towards bioaccumulation in fish.

Many of the chemicals that are not expected to have a BCF potential may still have a substantial
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bioaccumulation potential in terrestrial organisms. Chemicals that are not volatile (log Koa > 5)

and that do not metabolize, possess a bioaccumulative potential in terrestrial organisms if their

log Korganism/water exceeds 1 43–46. If we take the Kfish/water as a proxy for a more general Korganism/water for

all vertebrates, then a large portion of the ionizable chemicals tested here would be classified as

potentially  bioaccumulative  in  air  breathing  organisms.  Of  course,  any  initial  screening  for

partition  properties  has  to  be  followed  by  more  specific  testing  that  also  considers

biotransformation in the test organisms.
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