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Abstract 13 

We present an improved method for estimating interfacial curvatures from x-ray computed 14 

microtomography (CMT) data that significantly advances the potential for this tool to unravel 15 

the mechanisms and phenomena associated with multi-phase fluid motion in porous media. 16 

CMT data, used to analyze the spatial distribution and pressure-saturation (P-S) relationships of 17 

liquid phases, requires accurate estimates of interfacial curvature. Our improved method for 18 

curvature estimation combines selective interface modification and distance weighting 19 

approaches. It was verified against synthetic (analytical computer-generated) and real image 20 

data sets, demonstrating a vast improvement over previous methods. Using this new tool on a 21 

previously published data set (multiphase flow) yielded important new insights regarding the 22 

pressure state of the disconnected nonwetting phase during drainage and imbibition. The 23 

trapped and disconnected non-wetting phase delimits its own hysteretic P-S curve that inhabits 24 

the space within the main hysteretic P-S loop of the connected wetting phase. Data suggests 25 

that the pressure of the disconnected, non-wetting phase is strongly modified by the pore 26 

geometry rather than solely by the bulk liquid phase that surrounds it.  27 
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pressure measurement.  29 

1. Introduction and Background 30 

Systems involving multi-phase flow in porous media are encountered in many different 31 

technical fields of interest to society, including environmental engineering, hydrogeology, 32 

agriculture, and petroleum engineering. For a several decades now, x-ray computed micro-33 

tomography (CMT) has made it possible to visualize and quantify microscale characteristics 34 

associated with interfacial properties and fluid distributions of relevance to multi-phase fluid 35 

systems in the subsurface. Consequently, image analysis of the resulting three-dimensional 36 

microtomographic image data has become an essential component of pore-scale investigations.  37 

For analysis, original gray scale images generated by CMT are first filtered to reduce noise and 38 

then segmented into a number of phase classes via multiple algorithms such that all voxels 39 

belonging to an individual phase in the system (oil, water, solid) have the same integer value. 40 

The segmented data is typically used for a variety of measurements, but the resulting estimates 41 

are known to vary depending on the quality and fidelity of the original images, the precision of 42 

the segmentation processes, and appropriateness of the implemented measurement 43 

algorithms (Porter and Wildenschild, 2010; Schlüter et al., 2014). An important characteristic of 44 

flow in unsaturated porous media is the capillary pressure-saturation relationship. The 45 

connection between capillary pressure and fluid-fluid interfacial curvature expressed by the 46 

Young-Laplace (Y-L) equation, opens new avenues of exploration in pore-scale imaging and 47 

image analysis.  48 

In the Young-Laplace equation,   49  = + = 2        (1) 50 

Pc is capillary pressure, r1 and r2 are the two orthogonal principal radii of curvature,  Kmean is 51 

mean interfacial curvature, and  is interfacial tension. 52 
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Two fundamentally different approaches exist for estimating the interface curvature from 53 

image data: (1) A voxel-based approach that uses the image intensity gradient, however 54 

curvature estimation using this method is associated with various limitations, and is highly 55 

sensitive to image quality (Bullard et al., 1995; Thirion and Gourdon, 1995). (2) A surface-based 56 

approach, introduced by Armstrong et al. (2012a), that uses a triangulated surface generated 57 

from the segmented images to estimate curvature. The most commonly adopted approach for 58 

surface generation is the marching cubes algorithm (Lorensen and Cline, 1987). Although the 59 

surface-based approach is becoming more frequently used (Armstrong et al., 2012b; Armstrong 60 

and Wildenschild, 2012; Andrew et al., 2014; Armstrong et al., 2014; Singh et al., 2016 and 61 

Garing et al., 2017), curvature estimates remain sensitive to various issues such as the amount 62 

of smoothing, segmentation accuracy, and image pixelation (e.g. Armstrong et al., 2012a; and 63 

Garing et al., 2017). Recent attempts to improve the accuracy of curvature estimation have 64 

mainly focused on image quality. Garing et al. (2017) for instance reported that variation in 65 

curvatures seen at 2x resolution (3.28 micron voxels) was absent at 4x resolution (1.62 micron 66 

voxels) for their glass bead samples. Yet, for their sandstone rock samples, there was variation 67 

in curvatures for disconnected phase at both the 2x and 4x resolutions.  Two very recent studies 68 

by Herring et al. (2017) and Singh et al. (2017) employ techniques similar to what is presented 69 

here; Herring et al. based their approach directly on the work presented here, while Singh et al. 70 

applied dilation by a fixed number of voxels of their rock surfaces to achieve a similar approach 71 

to what we achieve with a percentage “clipping” of the interface near the solid surface. 72 

Instead of focusing on increased image resolution, this paper introduces a more accurate 73 

method for curvature estimation. The improved algorithm is validated against synthetic data 74 

and real CMT data sets using measured capillary pressure values from a multi-phase flow 75 

drainage-imbibition experiment. Finally, the new method is used to gain insights into the 76 

evolution of the capillary pressure of a disconnected nonwetting phase trapped within a porous 77 

medium. 78 

2. Materials and Methods 79 
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This section describes the different image processing approaches used for curvature estimation, 80 

and the experimental and synthetic data sets used for verification and testing of the new 81 

method. 82 

2.1. Experimental data sets 83 

The first (numerical) data set discussed is a series of computer-generated images of interface 84 

menisci within capillary tubes of different radii.  These analytical configurations were used to 85 

validate the new curvature algorithm and quantify curvature estimation error. A hemisphere 86 

was generated within a column in order to create a perfect concave meniscus, then a grey scale 87 

image was generated, and the image analyzed using the same method as for CMT-obtained 88 

images. For these computer generated data sets, the theoretical mean curvature values for 89 

each data set is known, calculated as the reciprocal of the radius.  90 

The second (real, CMT) data set was collected at the Advanced Photon Source, Argonne 91 

National Laboratory. The experimental system consisted of water-wet glass beads with a ratio 92 

of 35% 0.6 mm diameter, 35% 0.8 mm diameter, and 30% 1.0-1.4 mm diameter packed into a 93 

25.0 mm long glass column with an inside radius of 3.5 mm (Porter et al., 2010; Armstrong et 94 

al., 2012a). The two phases used were Soltrol 220 (non-wetting phase, =0.79 g/cm3, =0.0378 95 

N/m) and potassium iodide-doped water (wetting phase, 1:6 mass ratio of KI:H2O, density = 96 

1.17 g/mL). The non-wetting phase was connected to the top of the column, and the wetting 97 

phase was connected to the bottom of the column. A semi permeable hydrophilic membrane 98 

was placed at the bottom of the column to prevent the non-wetting phase from entering the 99 

water path. Pressure transducers connected to the oil and water lines (and referenced to the 100 

top of the sample) were used to externally record capillary pressures as the difference between 101 

wetting and nonwetting phase pressures. Wetting phase volume was controlled to ±1 μl by a 102 

syringe pump (Gilson 402). The system was first fully saturated with wetting phase, followed by 103 

primary drainage (PD) which nearly saturated the bead pack with oil, then main imbibition (MI), 104 

main drainage (MD), secondary imbibition (SI), and secondary drainage (SD) all referring to the 105 

wetting phase. For each drainage or imbibition, a varying, but precise ( l) amount of wetting 106 

phase was pumped out of (drainage) or into (imbibition) the system at a flow rate of 0.6 ml/hr 107 
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in a number of incremental steps. About 15 minutes were required for the fluids to reach quasi-108 

equilibrium after each saturation change. We define quasi-equilibrium as a state where 109 

significant progress towards equilibrium has been made on a time-scale of minutes, but where 110 

complete equilibrium is not expected to be achieved for many hours, Gray et al. (2015) and 111 

Schlüter et al. (2017). Quasi-equilibrium was verified by checking the images; if fluids were still 112 

moving during the scan, the resulting images would be blurry. If that was the case, the sample 113 

would be rescanned after another 15 minute wait period. X-ray CMT images were obtained 114 

from a 5.5 mm section of the column at 13 μm/voxel resolution. All of the two-dimensional 115 

radiographs were preprocessed and reconstructed using algorithms developed by 116 

GeoSoilEnviro Consortium for Advanced Radiation Sources (GSECARS) (Rivers et al., 1999) to 117 

produce 3D volumes of data. Additional details about the experimental setup can be found in 118 

Porter et al. (2010). 119 

2.2 Image Processing 120 

All image processing was accomplished using the commercial software program Avizo Fire®. 121 

Segmentation is a necessary and crucial step that allows for subsequent accurate data analysis, 122 

and obviously relies heavily on the fidelity of the greyscale images. Generally, greyscale images 123 

are noisy and depending on how significant the noise is, it can negatively affect the quality of 124 

image segmentation. Hence, image filtering is commonly employed as a first step in image 125 

analysis. All the greyscale images in this work were subject to non-local means filtering to 126 

remove noise and blur, and then segmented using a watershed algorithm to render each phase 127 

to consist of a single label field.  128 

2.2.1 Non-local means filter 129 

Because of the particle nature of (synchrotron) light, shot noise (random variations in 130 

brightness) is prevalent in photon-counting optical devices, and x-ray based images are 131 

therefore inherently noisy. Due to its efficiency at noise removal (Buades et al., 2005), we 132 

applied a non-local means filter to the greyscale images. Based on trial, the search window, 133 

local neighborhood, and similarity value, which define the window size, the importance of each 134 

voxel in the window, and weighting factor, respectively, were set to 4, 7, and 3 voxels. As 135 
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shown in Figure 1, it was challenging to identify peaks and valleys in the original greyscale 136 

histogram. However, after applying the non-local means filter most of the noise is removed, 137 

leading to a sharper histogram with distinct peaks representing oil, water and beads, and an 138 

image that is much more homogeneous and significantly easier to segment.  139 

2.2.2 Segmentation 140 

Image segmentation is the process of classifying or dividing an image into different regions of 141 

voxels with similar greyscale intensity. Thus, the main goal of segmentation is to identify and 142 

convert a greyscale image into a simpler labeled image that is ready for subsequent analyses. 143 

For segmentation of the data presented here, we adopted the watershed segmentation as 144 

described by Vincent et al. (1991). 145 

A recent study by Schlüter et al. (2014) compared various segmentation methods and 146 

concluded that the watershed algorithm was among the best for segmenting datasets of two-147 

phase flow in porous media. A scan of the dry bead pack was used to identify the solid phase, 148 

which could then be superimposed on all other greyscale images. Relative to the analysis of 149 

Armstrong et al. (2012a), in the present analysis we also fixed some minor (and very local) 150 

segmentation artifacts. Using the watershed approach, the known regions in the data were 151 

initially identified by using a simple threshold. Next, the unknown transition regions, consisting 152 

of the points at the inflection between the two known phases, are allocated to one of the 153 

phases by analyzing the image intensity gradient. Eventually, the transitional regions will be 154 

minimized by the watershed module and labeled such that the 64000 greyscale values are 155 

sorted into only 3 classes: oil, water, and beads. Connected and disconnected wetting and non-156 

wetting phases were distinguished using markers. This algorithm retrieves voxels in the image 157 

that are connected to a marker by using a 26 neighborhood connectivity requirement. A marker 158 

for connected non-wetting phase was placed on the top of the image (the oil reservoir was 159 

physically connected to the top of the sample) and a marker for connected wetting phase was 160 

placed at the bottom of the image (connected to the water reservoir). Therefore, the two fluid 161 

phases could be parsed into four configurations: connected wetting, connected non-wetting, 162 

disconnected wetting, and disconnected non-wetting. The interface between the connected 163 
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wetting phase and the connected non-wetting phase exerts a capillary pressure that can be 164 

measured by an externally placed pressure transducer. The connected phases, therefore, 165 

provide a basis for comparison between image-based estimates of capillary pressure and 166 

externally measured capillary pressures. In contrast, pressure of disconnected phases can not 167 

be measured externally. Therefore, accurately quantifying the interface geometry of 168 

disconnected fluid phases from tomographic images also provides us unprecedented insight 169 

into disconnected phase dynamics. 170 

2.3 Surface generation 171 

Three-dimensional surface generation was accomplished with the marching cubes algorithm 172 

(Lorensen and Cline, 1987) which approximates a smoothed interface between different phases 173 

using thousands of triangles. The number of triangles depends on the resolution of the input 174 

images, i.e., higher resolution results in more triangles. Once the image is segmented and 175 

labeled, the surface generation module in Avizo can be applied with different smoothing 176 

settings (type and extent). The surface generation module provides two smoothing options: 177 

constrained and unconstrained smoothing. Constrained smoothing guarantees that no label is 178 

altered during surface generation; any two voxel centers that have been labeled differently 179 

before the smoothing are separated by the generated surface afterwards. This is not necessarily 180 

the case for every small detail in the unconstrained case, and is therefore not considered in this 181 

work. Smoothing extent was studied in detail due to its parabolic characteristics and because 182 

selection of an appropriate value involves some trade-off; higher smoothing extent does not 183 

necessarily result in an improved, i.e., more accurate interface. Through careful evaluation of 184 

test spheres and caplillary tubes, we found that constrained smoothing using a Gausssian filter, 185 

with a smoothing extent of 3 voxels, preserves the characteristics of the original data and 186 

provides adequate smoothing of the interface, which allows for greatest accuracy in the 187 

subsequent data analysis. In the interest of conciseness, the details of this separate 188 

investigation is not included here. We refer to Li (2015) for further details about the smoothing 189 

process. 190 

2.4 Curvature Calculation 191 
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For a two-dimensional system, curvature is the inverse of the radius of an infinitely closely 192 

inscribed circle at a given point. In a three-dimensional shape, the normal vector and tangent 193 

vector are used to define the plane on which the curvature is calculated (Figure 2). All curves 194 

with the same tangent vector occupy the same normal vector. Taking into account all possible 195 

curvatures at a point on a surface, the maximum and minimum curvature values are called the 196 

principal curvatures, K1 and K2, respectively. The mean curvature is then used to calculate 197 

capillary pressures by the Young-Laplace equation (Eq.1). The mean curvature is defined as half 198 

the sum of the principal curvatures, Kmean = (K1+K2)/2. While the Gaussian curvature, which is 199 

the product of the principal curvatures (K1 x K2), can also been used to extract details of 200 

interfacial geometry, it is not relevant for estimation of capillary pressures.  201 

Capillary pressures estimated from surface-based curvature calculations suffer from errors 202 

introduced by limited image resolution along the triple line and physicochemical interactions 203 

near solid surfaces. No matter the image data size and resolution, the edge of the interface 204 

where oil and water connects near the solid surface will be rough, and this generates inaccurate 205 

curvature estimates in this region (Figure 3). Armstrong et al. (2012a) dealt with this problem 206 

by eliminating all positive curvatures values when calculating mean curvature (Method 2 in 207 

Table 1). 208 

 In this study, we propose a different methodology to increase the accuracy of the mean 209 

curvature estimate; the triangles that are close to the solid surface should either be given lower 210 

weight when generating the mean estimate, or be entirely eliminated from consideration based 211 

on their proximity to the solid surface. By doing so, mean curvature is estimated based 212 

primarily on segments of the interface that are not affected by their proximity to the solid 213 

surface. Each triangle is defined by three vertices as shown in Figure 4a. To accomplish this, we 214 

measure the shortest distance between each triangle’s vertex and the solid surface (Figure 4b). 215 

The vertex distance calculation was performed based on Dijkstra’s shortest edge distance 216 

algorithm (Dijkstra, 1959). The shortest edge distance of a triangle is calculated as the average 217 

of its three shortest vertex distances. Following the argument above, we introduce two new 218 

approaches that eliminate the effect of the solid surface on the curvature estimates. 219 
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 220 

2.4.1 Distance weighting 221 

The shortest edge distance for each triangle is used as a weight factor to improve curvature 222 

calculations, by assigning more weight to triangles far from the solid surface and less to those 223 

that may be affected by the solid surface, see method 3 in Table 1. This so-called “distance 224 

weighted” mean curvature value for the interface (Km,dw) is estimated based on the following 225 

equation: 226 

, =  (2) 227 

where the curvature value for each triangle (Ki) is multiplied by the triangle’s respective 228 

shortest edge distance (Di).  229 

2.4.2 Surface modification 230 

Curvature estimates can also be improved by modifying the surface. A triangle is eliminated 231 

(the surface is clipped) if it is considered too close to the edge (solid surface), by determining if 232 

the shortest edge distance value is less than a chosen threshold (Dmin). As an example, assume a 233 

threshold of 9.5 voxels, and two triangles with vertex distance values as shown in Figure 5. In 234 

this case the triangle on the left meets the requirement and will be preserved, whereas, the 235 

one on the right is eliminated from further consideration. Mean curvature and distance values 236 

for the preserved triangles are then used for generating surface modified mean curvature 237 

histograms (method 4 in Table 1). 238 

, = ( + )/2      >  (3) 239 

Combining the distance weighted and surface modification methods (method 5 in Table 1), 240 

yields Equation 4. 241 
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, =       >    (4) 242 

The surface modification approach was validated using as a model, a numerically generated 243 

interface associated with a synthetic capillary tube, with an internal radius of 50 voxels. The 244 

theoretical mean curvature value of this meniscus is -0.02 voxel-1 (indicated by the red vertical 245 

line in Figure 6a). After testing of a range of threshold values, the shortest edge distance 246 

threshold (Dmin) was set to 20% (in this case 20% of the 50 voxel radius). An example of the 247 

surface modification achieved using this approach is illustrated in Figure 6b, and ultimately, the 248 

successful match with the externally-measured (tranducer) pressures confirms this choice. The 249 

resulting histograms for unmodified and modified interfaces (Figure 6a) illustrates that the 250 

curvature value after “surface-modification” clusters more narrowly around the theoretical 251 

value, but more importantly, the more positive values that are influenced by the solid surface 252 

have been successfully eliminated. For the real (CMT) data discussed later, the threshold was 253 

set to 20 percent of the maximum distance value for each data set, conceptually equivalent to 254 

20% of a pore radii. In a very recent paper, Singh et al. (2017) used a similar approach by 255 

dilating the rock surfaces near the solid surface to eliminate interface voxels affected by the 256 

solid surface, however, they set their cufoff threshold to a fixed value of 4 voxels as they found 257 

that any further dilation affected the curvature values in a negative way. This is likely because 258 

they are working with rock samples with much finer features than the glass bead data used in 259 

this study, which contains larger pores and interfaces relative to the voxel resolution, and 260 

therefore leaves sufficient curvature behind, after a percentage clipping, to facilitate reliable 261 

curvature estimation. Herring et al. (2017) used an approach that follows our algorithm in 262 

terms of eliminating curvature measurements near the solid surface, and assigning higher 263 

weights to curvature measurements farther away from the solid surface. To achieve the desired 264 

accuracy for their more complex geometry (Bentheimer sandstone) with pore sizes approaching 265 

the image resolution, they included sub-voxel precise registration of the (Euclidian distance 266 

map of the) “dry” image to their partially-saturated volumes (both the segmented and grey-267 

scale images). 268 

 269 
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3. Results 270 

3.1 Testing the new curvature estimation method 271 

The synthetic data set (menisci in capillary tubes of different radii) was used to test the 272 

accuracy of the five different methods described earlier and listed in Table 1. Because curvature 273 

estimation becomes tenuous for very small features, we expect to see significant improvement 274 

in the curvature estimates for larger radii tubes. The percentage errors listed in Figure 7 are 275 

calculated as: 276 

 =      (5) 277 

 278 

It should be noted here that for a synthetic image, units do not really make sense, and the units 279 

can be referred to as voxels or microns, interchangeably. The results in Figure 7 show that for 280 

the smallest capillary tube (r = 10 voxels), all methods introduce 9% or more error, however, as 281 

soon as the tube radius increases, we see a decrease in the error with increasing sophistication 282 

of the estimation method. For methods 1 and 2 , i.e., using the entire data set, or negative 283 

values only, respectively, the error remains at 6% or more, regardless of the size of the capillary 284 

tube. Implementing the distance weighted algorithm (method 3) reduces the maximum error to 285 

below 5% for a radius of 25 m, and approaches 1.5% for the largest tube. The surface 286 

modification (method 4) generates curvature estimates that are below 5% error at a capillary 287 

tube radius of 20 m, and improves considerably, to only 3% error for the maximum radius 288 

tested. And finally, by combining distance weighting with surface modification (method 5), the 289 

decrease in error with increasing tube size is further enhanced, ending up at only 0.02% for the 290 

55 m tube. Clearly, combining these two new curvature estimation methods results in vast 291 

improvement over existing methods.  292 

While the error calculated for a specific pore size decreases with increasing radii, natural 293 

porous media will present to the fluid a distribution of pore sizes. Therefore, a characteristic 294 

accuracy for each method, when applied to a media consisting of variously sized pores, is here 295 

calculated by the slope of the linear correlation between theoretical and measured curvatures 296 
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across all pore sizes tested (Figure 8). Note that a slope less than 1 signifies that all methods 297 

tend towards underestimating the curvature. As the methods march from #1 through #5, the 298 

slope approaches unity, thereby indicating improvement in accuracy with increasing 299 

sophistication of the estimation method.  300 

 301 

Having successfully completed this method validation, we used the improved curvature 302 

estimation approach (method 5, Table 1) to analyze curvatures for the real (CMT) data set 303 

described earlier (Porter et al., 2010), converting curvature estimates to capillary pressure (Pc) 304 

via the Young-Laplace equation, then comparing this image-based Pc, to Pc measured using 305 

external pressure transducers. 306 

In a previous study, Armstrong et al. (2012a) analyzed the data set from Porter et al. (2010) and 307 

demonstrated that by considering only connected fluid interfaces, and eliminating positive 308 

curvature values from consideration, transducer-based capillary pressure and curvature-based 309 

capillary pressure agreed surprisingly well for imbibition. However, the image-based 310 

measurement underestimated Pc relative to the transducer measurements for drainage. 311 

Armstrong et al. proposed two different reasons for this discrepancy; (1) short equilibration 312 

time and (2) inaccurate curvature measurement. In the following, we recalculate the curvatures 313 

for the same dataset using our new method (method 5 in Table 1), convert these to Pc values 314 

(Eq. 1,  = 0.0378 N/m  as in Porter et al., 2010) and compare the outcome with the results of 315 

Armstrong et al. (2012a).  316 

The improved curvature-based capillary pressure estimates show very favorable agreement 317 

with the transducer-based capillary pressures, much improved over the data of Armstrong et al. 318 

(2012) (Figure 9).  319 

 320 

The new data set was also used to investigate the evolution of menisci curvatures for the 321 

connected (water) phase as saturation changed.  322 
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During imbibition, as more water enters the sample through the bottom port and oil is pushed 323 

out of the system through the top port, menisci curvatures shift towards more positive values, 324 

corresponding to lower Pc, whereas for drainage the exact opposite behavior is observed (see 325 

supporting information, SI-1 and SI-2). Thus, there are no surprises in terms of interpretation 326 

of the connected phase behavior. 327 

 328 

3.2 Capillary pressures of disconnected phases 329 

The accuracy gained in predicting fluid capillary pressures from curvatures facilitates the 330 

computation of liquid pressure of disconnected fluid components (disconnected oil blobs). This 331 

has not been achieved before as there has been no mechanism available for measuring the 332 

pressure state of disconnected blobs inside a three-dimensional porous medium. During main 333 

imbibition (MI), as water imbibes into the oil-filled media, blobs of oil remain that become 334 

disconnected from the bulk oil phase. Figure 10 shows how capillary pressure and curvature 335 

evolves for the interface between disconnected oil blobs and connected water phase for a 336 

select number of points on the imbibition curve (the full imbibition cycle for disconnected 337 

phase is presented in SI-3). A number of interesting features are evident in the data. During 338 

imbibition the average pressure of the disconnected phase (calculated via interfacial 339 

curvatures) is consistently higher than the bulk connected phase (measured by transducer). 340 

Moving from left to right in Figure 10, as water saturation increases, more interface is 341 

established between connected water and disconnected oil (more oil is of course disconnected 342 

as we keep imbibing water into the sample). The full data set identifies data point by its number 343 

along the Main Imbibition path (MI01, MI02, and so on), however, for simplicity, only select 344 

data points are discussed here). From MI06 to MI07 a new blob is established with a curvature 345 

that is significantly different from the previous blob, corresponding to a lower capillary pressure 346 

than the previous blob, but still higher than the connected phase bulk pressure. At MI08 347 

additional interface falls generally into two groups, one with curvature (closer to zero) 348 

corresponding to lower pressure, and a second group with smaller curvature corresponding to 349 

higher capillary pressures, and similar to the initial blob seen in MI06 (Figure 10, middle row). 350 
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The bottom row of images identifies the location of these various curvature values by color 351 

coding of the interfaces. Blue interfaces are associated with the peak at more negative 352 

curvatures (higher pressures), green interfaces have curvatures closer to zero. Although the 353 

average curvature keeps marching to the right, as we progress to MI09, we see that new 354 

interface is generated (as indicated by the arrows in the 3D surface plots) that has a lower 355 

curvature, i.e., a feature is added with a peak to the left of the preceding features (see red 356 

arrow in curvature histogram). As more interface is added, the average interfacial pressure of 357 

the disconnected blobs approaches the bulk tensiometer pressure. This suggests that while the 358 

pressure state of these newly developed blobs is influenced by the bulk fluid pressure, it 359 

deviates from the bulk pressure when the local pore morphology forces a different 360 

arrangement of contact lines. Larger volume disconnected blobs would be expected to have 361 

mean curvatures closer to the bulk pressure because there is greater capacity for adjusting the 362 

fluid volume to match the bulk pressure. Note that the smaller blobs in Figure 10, bottom row, 363 

all have curvatures that strongly deviate from the bulk pressure (noted by blue color), while the 364 

larger blob is mostly green in color indicating curvatures comparable to the bulk pressure, with 365 

small portions of the blob interface in blue. This domination of the curvature by the pore 366 

geometry forces a pressure gradient within the disconnected blob.   367 

Figure 11 shows how capillary pressure and menisci curvature evolves for the interface 368 

between disconnected oil and connected water phase, for a select number of points on the 369 

drainage curve (the full drainage cycle for disconnected phase is presented in SI-4). We 370 

immediately observe that for drainage, the average pressure of disconnected phase is 371 

consistently lower than the connected bulk phase (and transducer-based) pressure. Keeping in 372 

mind the results for imbibition, it appears that the disconnected blobs exhibit a muted 373 

reflection of the wetting phase hysteresis; the pressure state of the disconnected phase is 374 

bounded by the pressures of the connected fluid phase (Figure 12). This intuitively makes sense 375 

if we consider the earlier suggestion that pressures of disconnected blobs are dominated by 376 

pore morphology, and influenced, but not entirely governed, by the pressure of the connected 377 

fluid.  These results are in good agreement with the recent work of Singh et al. (2017) who 378 

analyzed in detail three representative snap-off events for a 3.8 mm diameter and 10 mm long 379 
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Ketton limestone rock sample. The authors found that “trapped phase re-arranges itself in the 380 

pore space to minimize the oil pressure” (or energy), which agrees well with our findings 381 

presented above, despite that our data concerns trapped phase across the entire sample. It 382 

should be noted here that the pressure differences between connected and disconnected 383 

phases are significant. Pressure differences in the middle of the hysteresis loop are on the order 384 

of 20-30 Pa, or about 10% of the magnitude of the connected phase pressures, which is 385 

significantly beyond the error (< 0.02%) expected for image-based curvatures, see Figure 7.  386 

The pressure within different disconnected phases can vary significantly. This can be seen by 387 

the sudden change in the curvature histogram between MD02 and MD05 in Figure 11. During 388 

drainage, as higher capillary pressures are imposed on the wetting phase, oil invades and 389 

reconnects some of the previously disconnected blobs. This reconnection of oil ganglia was also 390 

observed by Andrew et al. (2015). In this sequence of images, the rather large multi-pore 391 

ganglion of disconnected nonwetting phase that exists through MD02 (see red arrow in surface 392 

plot) is not sustained at higher wetting-phase capillary pressures as we progress to MD05 393 

(intermediate points between MD02 and MD05 did not capture any changes in the fluid 394 

configurations and are therefore omitted). As a result of this substantial change in fluid 395 

configuration, the curvature histogram for MD05 displays a corresponding rather large shift to 396 

the left, i.e., to higher average curvature and thus lower disconnected phase Pc values. By 397 

removing the large ganglion, the interfacial Pc is now dominated by the remaining disconnected 398 

blobs. Their contribution could always be seen in the histogram as a smaller peak to the left of 399 

the main peak, but it is the removal of the large ganglion that clarifies the identification of the 400 

contribution by these smaller disconnected blobs.  401 

Discussion 402 

X-ray tomography-based imaging is the only tool presently available for non-invasively 403 

exploring multiphase dynamics within porous media at the resolution needed to study 404 

interfaces and disconnected blobs. In the past, when quantifying the pressure-saturation 405 

relationship, the study was limited to the pressure distribution of connected phases that could 406 

be verified by tensiometers. The new algorithm for estimating curvatures that is presented 407 
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herein has permitted for the first time sufficient confidence to investigate the capillary pressure 408 

dynamics of disconnected phases during drainage and imbibition. In doing so, it became evident 409 

that the pore architecture plays a strong role in the capillary pressure of disconnected phases. 410 

The discrepancy between bulk (connected phase) pressure and capillary pressure of trapped 411 

blobs is especially notable for the smaller blobs. It is suggested here that for a trapped blob to 412 

equilibrate to the bulk pressure requires a sufficient minimum volume and overcoming contact 413 

angle hysteresis. The concept of a sufficient minimum volume is interesting. Small blob volume 414 

will constrain the options for location of its interfaces. The resulting capillary pressure will be 415 

determined by an energetic competition between the pore radii, the contact angle, and contact 416 

line adherence (Figure 13). Contact line adherence and its associated contact angle hysteresis 417 

can impose pressure gradients across a blob, as seen by the variation in color for different 418 

interfaces of the same blob in Figures 10 and 11), and illustrated in greater detail in Figure 14 419 

for two select interfaces (one for imbibition and one for drainage). Insight on the surface 420 

properties of the porous medium could be gained by investigating the width of the distribution 421 

of curvatures (the second moment) associated with disconnected blobs. It is expected that the 422 

impact of pore geometry would be less for larger disconnected blobs, where the volume can 423 

explore more pore space. This might be the case for the glass bead data presented by Garing et 424 

al. (2017). Their data analysis included only a single saturation point where the disconnected 425 

phase consisted of a fairly large ganglion. We hypothesize that disconnected phase for lower 426 

saturations, where the ganglia become smaller, is more affected by the surrounding pore 427 

geometry, and therefore each ganglia may consist of a wider distribution of curvatures as we 428 

see in this study. Also, we expect that the resulting non-wetting configuration from water 429 

flowing down a rock and trapping air would be very different than that resulting from water 430 

and oil that is pumped under pressure back and forth as we do in our experiments. In the case 431 

of Garing et al., capillary pressures are quite close to the air entry pressures and completely 432 

controlled by pore size. In their brine gravity filling there is little potential for development of 433 

contact angle hysteresis. As brine moves into the system, the wetting interface will move into 434 

the air-filled pores until the pressure of the air-phase is sufficient to stop the interface advance. 435 

By contrast, in our system, as isolated blobs try to equilibrate to changes in pressure, hysteresis 436 
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effects may come into play as curvature and contact lines try to adjust. For  larger blobs that 437 

expand into many pores, the pressure gradients across the blob and the second moment of the 438 

distribution of curvatures could be used to investigate the degree of hysteresis that is 439 

associated with solid-surface properties, providing valuable analytical tools as this technique is 440 

applied to real porous media.  441 

Conclusions 442 

This work presents novel measurements of the internal pressure of a disconnected oil blob. This 443 

was facilitated by a new method we developed for estimating, from CMT images, the curvature 444 

of liquid-liquid interfaces within porous media. The new method raises the accuracy overall 445 

from 91.4 to 94.5%, and for pores with radii in excess of 50 voxels, the accuracy is increased to 446 

99.8%. Since to date, quantifying pressure-saturation relationships for multiphase fluids in 447 

porous media was limited to measuring the connected fluid phase with tensiometers, this new 448 

tool significantly expands the potential for understanding the physics of multiphase flow. The 449 

improvement was achieved by reducing the contribution associated with the interfacial zone 450 

near the contact line, where liquid-solid phase interactions and image innacuracies add artifacts 451 

to the data. The new curvature estimation method included the elimination of data within a 452 

distance threshold of the solid surface (surface modification) and a distance weighting 453 

approach. It should be noted that this study was conducted on CMT data that is 10 years old 454 

with a voxel resolution of 13 microns. With the improvements in the CMT technique, we now 455 

regulalrly collect CMT data at 2-4 micron resolution, and would expect even better 456 

performance of the curvature estimation algorithm.  457 

However, there are of course also limitations to the approach, and we expect that as the 458 

porous medium becomes increasingly complex, and pore sizes approach the limit of image 459 

resolution, it becomes more difficult to estimate the curvatures with this level of accuracy. It is 460 

worth mentioning that Singh et al. (2017) define the (Euclidean) dilation distance in three 461 

dimensions normal to the solid surface, whereas we define our non-Euclidean contact line 462 

distance on a curved surface. The triangle can be more than 10 units away from the contact 463 

line, but still be within the much shorter dilation distance from the solid surface, especially on 464 
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water-wet surface with acute contact angles. Thus, we hypothesize that the approach 465 

presented here could potentially be more flexible or robust, especially at relatively coarse 466 

resolution where a three-dimensional dilation by 2-3 voxels would eliminate a large part of the 467 

“good” triangles. In favor of this hypothesis, Herring et al. (2017) presented very convincing 468 

data for multi-phase flow in a Bentheimer sandstone using an algorithm similar to ours.  469 

Using this method, we explored the pressure state of disconnected nonwetting phase during 470 

drainage and imbibition. We made a number of unprecedented observations that sheds light on 471 

the fundamentals of multi-phase flow in porous media. First, during wetting phase drainage, 472 

multi-pore ganglia of disconnected nonwetting phase are not sustained; as saturation 473 

decreases, they reconnect to the main non-wetting phase. During wetting phase imbibition, the 474 

pressure state of individual blobs appears to be more strongly controlled by pore morphology 475 

than by bulk fluid pressure (blobs are established at pressures above the bulk fluid pressure, 476 

out of sequence). The pressure-saturation curve for the disconected (non-wetting) phase forms 477 

a hysteretic envelope that exists well inside of the main hysterisis loop of the connected 478 

wetting phase.  479 

This new and significantly more accurate method for estimating interfacial curvature in CMT 480 

images provides a novel tool to advance investigations of multiphase flow in porous media by 481 

permitting the accurate analysis of connected and disconnected phases.  482 
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TABLES 
 

 

Table 1. Mean curvature estimation methods.  

Approaches: Details: Formula: 

1. Original Mean curvature calculated based 
on the original histogram. = ( + )/2   

2. Negative values 
only 

Mean curvature calculated based 
on all the negative values in the 
original histogram (yellow area 
under the curve) as in Armstrong et 
al. (2012a) 
(Armstrong et al. 2012b) 

=      < 0

 

3. Distance 
weighting only 

Curvature weighted as a function of 
distance values for each triangle. , =  

4. Surface 
modification only 

Mean curvature calculated based 
on the remaining interface; 
removal of triangles closer than a 
set threshold.  

, = ( + )/2      >  

5. Distance 
weighting combined 
with surface 
modification  

Curvature weighted as a function of 
distance values for each triangle for 
the remaining interface (after 
removal of trianges below 
threshold value). 

, =       >    
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Figure 1. Example images of the original greyscale (a) and non-local means filtered (b) and corresponding 

intensity histograms (c). The three distinct peaks emerging after NLM filtering represent, from left to right, oil, 

beads, and water (KI-solution). 
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Figure 2. Small segment of an interface S. Curvature is measured at point C. As the plane is rotated about the 
normal, N, a tangent vector, T, is formed and a curvature is defined via the two principal curvatures, K1 and K2.  



Figure 3. (a) surface rendering of the synthetic capillary tube fluid-fluid interface (red) between non-wetting 
(grey) and wetting phase (white) in a synthetically generated capillary tube (r =50 voxels), and (b) illustration 
of the rough edge that exists close to the solid surface. Note that any grey-scale image (i.e., a discretized 
surface), regardless of resolution, is a pixelated version of reality and as such application of a threshold will 
result in a somewhat rough contact-line. 
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Figure 4. (a) triangulated interface with vertex view, and (b) shortest edge distance calculation. 

Figure 5. Single triangle showing vertex shortest distance values. The triangle on the left has an average 
distance of (10+10+9)/3 = 9.67, which is above a chosen threshold of 9.5. The triangle on the right is 
eliminated as the distance to the solid surface (10+9+9)/3 = 9.33 is shorter than the chosen threshold. 

(a) 



Figure 6. (a) Mean curvature histogram for synthetic capillary tube with 50 voxel radius before and after the 

surface has been modified to eliminate effects of the solid surface. The red vertical line represents the 

theoretical curvature. (b) Example surface modification resulting from clipping the triangles near the solid 

surface using an edge distance threshold (Dmin) of 20%. 
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Figure 7. Percentage error of mean curvature estimates, corresponding to each curvature estimation method.   
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Figure 8. Table showing the slope of the linear fit for each of the five approaches. Plot of theoretical vs. 

measured curvatures for the first approach (Original) and the resulting linear fit.   

 

 

 

 

 

 

 

 

 

 

 

 

Method Slope  

1. Original 0.914 

2. Negative values only 0.9142 

3. Distance weighting only 0.9314 

4. Surface modification only 0.9397 

5. Distance weighting combined 
with surface modification 

0.9451 
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Figure 9. Comparison of Pc-S relationship obtained from transducer data and image-based curvature 
estimates for connected fluid-fluid interfaces: main imbibition (a) and main drainage (b). 
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Figure 10. Sequence of images depicting the evolution of interfacial curvature (voxel-1) during imbibition (left to right) of the wetting phase for interfaces between disconnected 
oil and connected water. The top row shows the Pc-S curves for transducer-based and curvature-based capillary pressures. The middle row illustrates how the curvature 
distributions evolve during imbibition (each histogram represents the distribution of curvatures at each saturation point), and the bottom row shows 3D surface visualizations of 
the evolving interfaces, color-coded according to their mean curvature values. The yellow highlights around the data points in the top (Pc-S) plots indicate the saturation state of 
the middle and bottom row illustrations. 



 

Figure 11. Sequence of images depicting the evolution of interfacial curvature (voxel-1) during drainage (left to right) of the wetting phase for interfaces between disconnected 
oil and connected water. The top row shows the Pc-S curves for transducer-based and curvature-based capillary pressures. The middle row illustrates how the curvature 
distributions evolve during imbibition (each histogram represents the distribution of curvatures at each saturation point), and the bottom row shows 3D surface visualizations of 
the evolving interfaces, color-coded according to their mean curvature values. The yellow highlights around the data points in the top (Pc-S) plots indicate the saturation state of 
the middle and bottom row illustrations.



Figure 12. Comparison of Pc-S relationship for connected and disconnected fluids for main imbibition 
(MI) and main drainage (MD). All data points represent image-based curvature estimates (average of all 
blobs at each saturation). No data points are available for the disconnected phase at low wetting-phase 
saturations, since disconnected blobs have not formed yet.  



 

Figure 13. The figure demonstrates different potential configurations for a disconnected blob depending 
on whether the blob is required to have the same curvature at all interfaces, or same contact angle at all 
triple lines. Left blob exhibits the same contact angle and curvature at all interfaces and thereby there 
are no pressure gradients across the blob. The middle and right blobs exhibit the same contact angle at 
all triple points but not the same curvatures, generating pressure gradients across the blob. Green is oil, 
clear is water, brown are glass beads. Curvatures in the sketch, normalized to the radius of the beads: A, 
B, C and D are 2.4, 2.3, 1.8 and 0.3, respectively. 

  

Figure 14. Enlarged images showing significant variation in interfacial curvature values (voxel-1), as indicated 
by the color spectrum, across two different disconnected blobs, suggesting pressure gradients exist 
across each blob. (a) Main imbibition step 7, (b) Main drainage step 1. 

(a) (b) 
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