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Highlights 1 

 We present a review of optimization techniques for land use allocation problems. 2 

 The review also considers constraint handling for the different methods. 3 

 A structured guideline for selecting appropriate optimization methods is proposed. 4 

 This guideline includes the moment of stakeholder integration and trade-off analysis. 5 

Abstract 6 

Optimal land use allocation with the intention of ecosystem services provision and biodiversity 7 

conservation is one of the key challenges in agricultural management. Optimization techniques have 8 

been especially prevalent for solving land use problems; however, there is no guideline supporting the 9 

selection of an appropriate method. To enhance the applicability of optimization techniques for real-10 

world case studies, this study provides an overview of optimization methods used for targeting land 11 

use decisions in agricultural areas. We explore their relative abilities for the integration of stakeholders 12 

and the identification of ecosystem service trade-offs since these are especially pertinent to land use 13 

planners. Finally, we provide recommendations for the use of the different optimization methods. For 14 

example, scalarization methods (e.g., reference point methods, tabu search) are particularly useful for 15 

a priori or interactive stakeholder integration; whereas Pareto-based approaches (e.g., evolutionary 16 

algorithms) are appropriate for trade-off analyses and a posteriori stakeholder involvement. 17 

Keywords: agricultural land use allocation; multi-criteria decision analysis (MCDA); multi-criteria 18 

optimization; stakeholder integration; trade-off analysis; constraint handling 19 

1. Introduction 20 

Humans have been changing landscapes for millennia by converting natural areas for agricultural 21 

production and settlement (Delcourt and Delcourt, 1988). As a result, “40 to 50% of the world's land 22 

surface had been visibly transformed” for these purposes by the 20th century (Western, 2001). Many 23 

of the different land uses are conflicting: for instance, there is agricultural and timber production on 24 

one side, competing with space for urban settlements or protected areas on the other side. All these 25 

anthropogenic usages impact the provision of ecosystem services (ESS) and therefore directly affect, 26 

for example, soil quality as well as water quantities and quality (Fontana et al., 2013). Meanwhile, 27 

natural areas provide habitats for wildlife and are especially important for the protection of 28 

endangered species (Behrman et al., 2015). Biodiversity loss has been directly linked to land use 29 

changes (Sala et al., 2000), and population growth as well as increases of agricultural land use have 30 

been labelled the biggest threat to biodiversity and ESS (Behrman et al., 2015). 31 

One way to address biodiversity loss is to integrate ESS into systematic conservation planning (Faith, 32 

2015) and re-allocate land uses in order to support the multifunctionality of landscapes. Sustainable 33 

land use allocation therefore seeks to take into account the current and future provision of ESS and 34 

biodiversity in order to determine so-called ‘optimal’ land use allocations. In general, land use 35 

allocation (also sometimes referred to as land use planning (Stewart et al., 2004)) is a type of resource 36 

allocation and can be defined as the process of allocating different activities or uses (e.g., agriculture, 37 

residential land, recreational activities, conservation) to particular areal units within a region (Cao et 38 

al., 2012). Agricultural land use allocation specifically deals with the allocation of species and activities 39 

to areas in agricultural landscapes (Memmah et al., 2015). 40 
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Decision support research within the field of natural resources management has relied heavily on 41 

multi-criteria decision analysis (MCDA) and its corresponding tools (Mendoza and Martins, 2006). In 42 

this paper, we provide a detailed review of MCDA and focus in particular on one branch of MCDA – 43 

optimization techniques – since land use allocation problems have been widely formulated as 44 

mathematical optimization problems. These problems typically consider multiple, mostly conflicting 45 

objectives and aim to minimize the trade-off between them (Liu et al., 2013; Porta et al., 2013). These 46 

can include trade-offs between various ESS such as provisioning and regulating services but also 47 

between ESS and biodiversity. A trade-off describes the amount that has to be given up of one ESS in 48 

order to increase the provision of another (Rodríguez et al., 2006). For example, the intensification of 49 

agricultural production may reduce water quality due to a greater use of fertilizers and pesticides and 50 

the resulting nonpoint emissions of pollutants from the agricultural fields. The main task is thus to find 51 

the right balance between the usage of different ESS. 52 

Solving complex, real-world land use allocation problems remains a key research challenge (Fowler et 53 

al., 2015). Additionally, recent applications underline the need for methods that allow for increased 54 

stakeholder involvement (Eikelboom et al., 2015; Stewart et al., 2004; Uhde et al., 2015). This is 55 

particularly important since “agricultural land use allocation involves many competing actors such as 56 

farmers, farmers associations, environmental agencies, land planners and economists” (Memmah et 57 

al., 2015). Participatory approaches thus help to find solutions that achieve biophysical objectives but 58 

also consider the different perspectives and preferences of various stakeholders (Groot and Rossing, 59 

2011). 60 

Land use allocation problems can greatly differ in their mathematical formulation and therefore 61 

require different optimization techniques (see Section 2.2). However, the choice of a technique is often 62 

not guided by the characteristics of a problem but depends on the experience of the reseacher in 63 

charge or on historical usages (Memmah et al., 2015). While there exist some reviews about MCDA 64 

approaches and their applicability particularly in forest management (Mendoza and Martins, 2006; 65 

Uhde et al., 2015), current literature lacks guidelines for how to choose the best suitable optimization 66 

technique for a particular agricultural land use allocation problem. Therefore, this paper aims to fill 67 

this gap by providing a review of current MCDA optimization techniques and their applicability for land 68 

use allocation problems; we specifically focus on agricultural landscapes and on studies that aimed to 69 

achieve objectives related to ESS and biodiversity. 70 

The following sections provide a review of optimization approaches that have been used in land use 71 

management. For an overview, we first classify multi-objective optimization within the broader field 72 

of decision support techniques giving an introduction to MCDA. Then, we evaluate different multi-73 

criteria optimization methods in terms of their ability to integrate stakeholder opinions and identify 74 

trade-offs between ESS and biodiversity. Furthermore, we mention how constraints can be handled. 75 

The suitability of the optimization approaches for different types of land use allocation problems is 76 

discussed before we provide a short conclusion and give directions for further research. 77 
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2. Solving land use allocation problems with Multi-Criteria Decision 78 

Analysis (MCDA) 79 

2.1 An overview of MCDA 80 

MCDA has been widely used to perform mathematical optimization in order to analyze multi-objective 81 

decisions and incorporate the varying opinions of decision-makers (Collins et al., 2001). MCDA 82 

addresses land allocation problems in a more realistic way than single-objective approaches, since in 83 

practice, these problems consist of multiple, conflicting objectives (Antoine et al., 1997), especially 84 

when multiple ecosystem services are taken into account (Birkhofer et al., 2015). Furthermore, MCDA 85 

methods can combine ecological objectives with social and economic criteria and are able to consider 86 

non-market values of ESS. Therefore, they are very popular and frequently used in ecological 87 

economics (Fontana et al., 2013; Uhde et al., 2015; van Huylenbroeck, 1997). 88 

Most of the literature classifies multi-criteria optimization either within the broader field of decision 89 

support systems (e.g., Myllyviita et al. (2011)) or within MCDA directly (e.g., Aerts et al. (2003)). 90 

Therefore, we first provide an overview of the linkage between the two fields and where multi-criteria 91 

optimization is set amongst these (see Figure 1). 92 

MCDA is one of many decision support techniques, which can be divided into qualitative, quantitative 93 

and hybrid methods. Qualitative methods (e.g., interviews, voting), focus on structuring a problem. 94 

They also help to define initial goals and to evaluate stakeholders’ opinions (Myllyviita et al., 2011; 95 

Uhde et al., 2015). Cost-benefit analysis (CBA) and MCDA – including mathematical optimization 96 

techniques – belong to the group of quantitative methods that use numerical information in order to 97 

evaluate a number of decision alternatives. Finally, hybrid methods are composed by the combination 98 

of different approaches (see Uhde et al. (2015) for an overview of hybrid MCDA methods in forest 99 

management). 100 

Figure 1 Classification of Multi-Criteria Decision Analysis (MCDA) within the family of decision support techniques. 



 

4 

 

MCDA methods can be classified in different ways (Mendoza and Martins, 2006). Belton and Stewart 101 

(2002) suggest distinguishing three categories: (i) value measurement models, (ii) goal, aspiration or 102 

reference level models and (iii) outranking models. Instead, Malczewski (1999) and Zimmermann and 103 

Gutsche (1991) distinguish between multi-attribute decision making (MADM) and multi-objective 104 

decision making (MODM) (see Figure 1). MADM deals with the evaluation of a finite number of 105 

alternatives that are previously known to the decision maker. Therefore, they require discrete MCDA 106 

methods. An example of a hybrid combination of MADM techniques can be found in Fontana et al. 107 

(2013). The authors evaluated three land use alternatives (i.e., larch meadow, spruce forest and 108 

intensive meadow) to determine their ability of providing certain ESS. First, they derived the weights 109 

of six ESS with a stakeholder questionnaire and the analytical hierarchy process (AHP) (Saaty, 1988). 110 

Later, they applied an outranking method in order to evaluate the different alternatives. More 111 

information about MADM techniques like the outranking methods ELECTRE and PROMETHEE, 112 

multiattribute utility theory (MAUT) and AHP can be found in Belton and Stewart (2002) and Figueira 113 

et al. (2005). 114 

Since land use allocation problems usually include a range of competing objectives, it might often be 115 

impossible to create a small set of scenarios that would cover all possible solutions (Bishop, 2013; 116 

Groot and Rossing, 2011). Besides, an optimal solution “of sustainable land management might be 117 

located ‘between’ two distinct scenarios” (Seppelt et al., 2013). In this case, the application of design 118 

techniques can help to avoid this problem (Aerts and Heuvelink, 2002). 119 

Multi-criteria design problems are of a continuous nature and handled within MODM. Here, 120 

alternatives are either not known in advance, or there are so many that the problem cannot be solved 121 

with evaluation methods anymore. These problem types can be solved by applying mathematical 122 

optimization (Aerts and Heuvelink, 2002; Uhde et al., 2015). The focus of this paper, then, is to provide 123 

a detailed review of optimization techniques used in land use allocation which will be given in the 124 

following section. 125 

Multi-criteria decision aid (MCDA*) is yet another perspective from which to solve multi-criteria 126 

problems and further information can be found in Bana e Costa (1990) and Zimmermann and Gutsche 127 

(1991). According to them, the main difference between classical MADM and MODM approaches is 128 

that MCDA* also incorporates vague, incomplete, inconsistent and subjective information; also, 129 

instead of a single ‘optimal’ solution, it provides a set of acceptable alternatives. Fuzzy programming 130 

and outranking methods such as ELECTRE and PROMETHEE (Figueira et al., 2005) are but a few 131 

examples for MCDA* methods. 132 

The classification in Figure 1 must not be seen as strict. There are some approaches that cannot be 133 

assigned fully to any of the categories. For example, some MCDA* methods may simultaneously 134 

contain portions from MADM and MODM (Zimmermann and Gutsche, 1991). A well-structured 135 

overview of MCDA applications in forestry and natural resources management can be found in 136 

Mendoza and Martins (2006). Furthermore, Myllyviita et al. (2011) provide a comparative review of 137 

studies that used MCDA design techniques, optimization, CBA and hybrid methods in sustainable forest 138 

management. 139 

2.2 Optimization methods 140 

The process of land use allocation includes a series of individual steps, which are highlighted in Figure 141 

2 (Belton and Stewart, 2002; Groot and Rossing, 2011; Talbi, 2009). For the optimization, the problem 142 
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needs to be identified and clearly formulated before it can be modelled. In this context, we identified 143 

three important points that should be taken into account: 144 

(i) Mathematical problem formulation: objectives, constraints, decision variables and 145 

problem type (e.g., linear, non-linear, discrete (e.g., binary), combinatorial, 146 

continuous) (Deb, 2001). 147 

(ii) Desired output/required input: problem scale (e.g., local, global) (Seppelt et al., 148 

2013), amount and type of available data (e.g., land use maps, information about 149 

topography, hydrology, soil quality) and if a trade-off analysis is needed. 150 

(iii) Stakeholder involvement: before (a priori), during (interactive) or after (a posteriori) 151 

the optimization process (Memmah et al., 2015). 152 

All of these factors determine the size and complexity of the problem and have an influence on the 153 

choice of a suitable optimization method and on computation time. At this point, it should be 154 

considered that in the end, the quality of the optimization result does not only depend on the 155 

performance of the selected algorithm but also on the conceptual design of the optimization problem, 156 

particularly if there have been simplifications in the model formulation (Moilanen, 2008). Optimal 157 

solutions can then be used by decision makers to inform and support the implementation of new land 158 

use strategies. 159 

The selection of optimization methods presented in this section is mainly based on the fact that spatial 160 

land use allocation problems are mostly multi-objective combinatorial optimization problems (Porta 161 

et al., 2013) that may often be non-linear (Cao et al., 2012; Liu et al., 2016; Memmah et al., 2015). 162 

These problems are usually complex and include a large number of alternative solutions requiring high 163 

computation times (Porta et al., 2013). Combinatorial problems, as a type of discrete optimization 164 

problems, are typically solved by applying local search algorithms such as simulated annealing, tabu 165 

search, genetic algorithms and ant colony optimization (Aarts and Lenstra, 2003; Colorni et al., 1996). 166 

These and other methods will be presented in the following. In the rare case of a continuous problem 167 

formulation, standard methods like the (multi-objective) simplex algorithm (Figueira et al., 2005) can 168 

be used for linear problems (see Sadeghi et al. (2009) for an example). But again, if the problem is non-169 

linear, then heuristic optimization methods are needed. 170 

Multi-objective optimization is a useful tool for the evaluation of trade-offs among conflicting 171 

objectives. Trade-offs are represented by the Pareto frontier – in some studies, this is also called the 172 

efficiency frontier or production possibility frontier (Polasky et al., 2008). The Pareto frontier is a set 173 

of optimal solutions to the respective multi-criteria optimization problem. Assuming maximization, a 174 

feasible solution to the optimization problem is said to be Pareto optimal if there is no other feasible 175 

solution that would increase one of the objective function values without simultaneously decreasing 176 

another (Coello Coello et al., 2007). For trade-off analyses it is sometimes necessary to obtain the 177 

whole Pareto frontier, particularly for visualization purposes. Therefore, along with the presentation 178 

Problem 

identification

Problem 

formulation
Modelling Optimization Implementation

Figure 2 Phases of the land use allocation process. First, the problem itself needs to be identified and clearly 

formulated before it can be modelled. The model forms the basis of the land use optimization which delivers the 

results for a possible implementation (Talbi 2009). The focus of this paper lies on the optimization (orange). 
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of different optimization algorithms, we will also mention how trade-off curves can be identified. Table 179 

A.1 in the Appendix gives a selection of studies from the fields of general and agricultural land use 180 

allocation and a few from other research areas. For each study, it also includes information about the 181 

moment of stakeholder integration, whether trade-offs were determined and which ESS were taken 182 

into account. 183 

One approach for solving multi-objective optimization problems is to define one objective function 184 

and add any additional objectives as constraints (ε-constraint method (Ehrgott, 2005)). Then, single-185 

objective algorithms can be applied. For example, van Butsic and Kuemmerle (2015) aimed to maximize 186 

agricultural production while minimizing species loss, setting agricultural production as the objective 187 

function and target constraints for the species of concern. They determined trade-off curves between 188 

agricultural yield and the species’ population size by solving the problem multiple times with different 189 

targets. Nonetheless, a high variety of multi-objective algorithms is available that can simultaneously 190 

account for multiple conflicting objectives. For an overview of multi-objective optimization methods, 191 

see Chapter 17 of Figueira et al. (2005). Generally, multi-objective optimization techniques follow two 192 

different approaches – scalarization methods and Pareto-based methods (Cao et al., 2012; Madavan, 193 

2002) and these will be outlined below. 194 

2.2.1 Scalarization methods 195 

Scalarization methods combine multiple objective functions into a single-objective scalar function 196 

(Miettinen and Mäkelä, 2002). The optimization problem is then solved with a single-objective 197 

optimization algorithm which creates a single optimal solution to the optimization problem. Here 198 

again, the selection of the algorithm depends on the problem type. For spatial land use allocation 199 

problems, heuristics like the greedy algorithm (Cormen, 2007), simulated annealing, genetic 200 

algorithms, etc. (Bozorg-Haddad et al., 2017) are usually applicable. There are two main methods to 201 

parameterize a problem – either to maximize (or minimize) the weighted sum of all objectives by using 202 

weighting coefficients that specify the relative importance of each objective or by using a reference-203 

point-based method (Wierzbicki, 2000). 204 

Weighted-sum approaches provide Pareto-optimal solutions for convex solution sets. The Pareto 205 

frontier can be obtained by changing the coefficients of the scalar function and re-solving the problem. 206 

Pareto-optimal solutions of non-convex parts, however, cannot be found using this method (for an 207 

example, see Caramia and Dell'Olmo (2008)). Kennedy et al. (2016) used a weighted-sum approach in 208 

combination with a greedy algorithm based on previous work by Polasky et al. (2008). They optimized 209 

three objectives: agricultural production, water quality and biodiversity for a watershed in an 210 

agricultural area in southeastern Brazil. By varying the weights of the individual objectives, they 211 

obtained trade-off curves between agricultural production and either water quality or biodiversity for 212 

different problem settings. 213 

Goal programming (GP) is a reference point method that guides an algorithm, like an evolutionary 214 

(Deb and Sundar, 2006) or genetic algorithm (Deb, 1999), for instance, towards a solution that lies in 215 

the decision maker’s preferred region of the solution space. For this purpose, the decision maker 216 

defines goals (i.e., desired values) for each objective. Then, the distance between the goal vector and 217 

an attainable vector of the solution space is minimized, and the optimum is a feasible solution that is 218 

closest to the goal vector. Defining and striving for a goal seems quite intuitive from a psychological 219 

perspective. However, from a mathematical viewpoint, the minimization of a norm (a distance 220 

measure) cannot guarantee that the GP algorithm will find a Pareto-optimal solution (Romero, 2014). 221 
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Therefore, the more general reference point (RP) method has been developed. Instead of using a 222 

norm, this approach minimizes a so-called achievement function (Miettinen et al., 2008). If norm 223 

minimization is avoided, reference point approaches can obtain the Pareto frontier even for non-224 

convex solution sets when solving the problem multiple times with different reference points 225 

(Wierzbicki, 2000). 226 

Stewart and Janssen (2014) used a reference point method in combination with a genetic algorithm in 227 

order to solve a non-linear combinatorial optimization problem. The key objectives were the 228 

profitability of intensive agriculture, maximization of the visual quality of the landscape (including 229 

landscape perception, cultural historic value and recreational value) and maximization of the natural 230 

value of the area (including meadow birds, species-rich grasslands and marsh birds). As a result, they 231 

generated land use maps that served as a basis for negotiating optimal land use strategies in a case 232 

study area in The Netherlands. This paper extends earlier work by Stewart et al. (2004) and Janssen et 233 

al. (2008) and forms the basis of work by Eikelboom et al. (2015). 234 

Another scalarization approach is tabu search (TS), which is usually used in combination with a local 235 

search algorithm (Boussaïd et al., 2013). TS was initially developed for single-objective combinatorial 236 

optimization problems. The algorithm works on an iterative basis by looking for an improved solution 237 

in the neighbourhood of the current solution. In doing so, TS uses a short-term memory (i.e., the tabu 238 

list) where recently visited solutions or one or more of their attributes are recorded. All potential new 239 

solutions that are on the tabu list cannot be visited again at this stage of the search. This is to avoid 240 

endless cycling and prevents the algorithm from getting stuck at a local optimum (Boussaïd et al., 241 

2013). More information about TS can be found in Glover and Laguna (2013). TS can also be applied 242 

for multi-objective optimization problems. Qi and Altinakar (2011) used TS in order to optimize 243 

agricultural land use with integrated watershed management. They considered three objective 244 

functions and combined them into a single-objective function using weights to reflect the relative 245 

importance of each objective. Also, Behrman et al. (2015) used weighting while solving their 246 

optimization problem with ConsNet (Ciarleglio et al., 2009), which is based on a TS algorithm. In their 247 

study, the overall aim was to identify the trade-offs between converting land to switchgrass for biofuel 248 

production, agriculture and biodiversity. In order to obtain optimal trade-offs among the objectives, 249 

they varied the weights that were applied to each of the three categories. In addition, TS approaches 250 

that are not based on scalarization but search directly for the Pareto-optimal set have been developed 251 

(Jaeggi et al., 2005). However, these methods have yet to be used in land use optimization. 252 

Simulated annealing (SA) (Kirkpatrick et al., 1983) also applies weighting in order to combine multiple 253 

objective functions to a single objective function. Therefore, as with TS methods, trade-offs can be 254 

determined by solving the problem multiple times with different weights. The algorithm itself mimics 255 

the physical process of heating metal and cooling it again. Starting from an initial solution, SA randomly 256 

chooses a new solution in a pre-defined neighbourhood. Temperature is a parameter that is reduced 257 

over time. When this temperature parameter is sufficiently high, even solutions that decrease the 258 

objective function value can be accepted. This prevents the algorithm from getting trapped in local 259 

optima. At lower temperatures, the algorithm accepts only improving new solutions and terminates 260 

once a stopping criterion is met. Aerts and Heuvelink (2002) used SA to minimize development costs 261 

and compactness costs for the restoration of a mining area in Spain. The algorithm has also been 262 

applied for optimizing agricultural land use in Santé-Riveira et al. (2008). Their aim is the optimal 263 

allocation of 13 land uses (all different types of crops) in a study area in Spain. All land uses were 264 

grouped into five use groups: fodder, cereals, intensive agricultural crops, productive forest and 265 
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protective woodland. They set the objective function to be a linear combination of three objectives: 266 

maximize land suitability for the uses allocated to them, maximize compactness of the total area 267 

assigned to a particular use and maximize compactness of the total area assigned to a particular group 268 

of uses. The problem was solved for 11 different sets of weights. 269 

2.2.2 Pareto-based methods 270 

Pareto-based methods generate multiple Pareto-optimal solutions simultaneously and are able to 271 

provide the whole Pareto frontier as a result of the optimization. There is a wide range of evolutionary 272 

algorithms (EA), including genetic algorithms (GA), which have been used in land use optimization. 273 

EAs are inspired by biological evolution. They begin with an initial population of solutions and use 274 

concepts such as selection, crossover and mutation in order to create the next generation of solutions. 275 

The fitness of a solution evaluates how good it fulfills the problem criteria and determines whether or 276 

not it will be selected as a parent for the next generation. The algorithm terminates once a predefined 277 

stopping criterion is met (Memmah et al., 2015). 278 

Lautenbach et al. (2013) coupled a watershed model called the Soil and Water Assessment Tool (SWAT) 279 

(Arnold and Fohrer, 2005) with the non-dominated sorting genetic algorithm II (NSGA-II) (Deb et al., 280 

2002) in order to analyze trade-offs between bioenergy crop production, food crop production, water 281 

quantity and water quality in a case study area in Central Germany. Similarly, Fowler et al. (2015) 282 

coupled a multi-objective genetic algorithm from the DAKOTA optimization suite (Adams et al., 2014) 283 

with the MODFLOW-FMP2 software (Schmid and Hanson R.T., 2009), which simulates the integrated 284 

supply-and-demand components of irrigated agriculture. They optimize the selection of three different 285 

crops based on trade-offs between agricultural revenue, water usage and the deviation from actual 286 

yield and demand yield for each crop in an artificial study area. In addition to maximizing agricultural 287 

profits, Groot et al. (2007) also consider nature conservation and landscape quality by minimizing the 288 

loss of nutrients to the environment, maximizing the nature value of fields and borders (i.e., species 289 

abundance in grass swards and hedgerows) and maximizing the variation of the landscape (i.e., species 290 

presence and hedgerow allocation). They explore the trade-offs between these objectives with an 291 

evolutionary strategy algorithm of differential evolution (Storn and Price, 1997) and provide trade-off 292 

curves of gross margin with either plant species number, landscape value or nitrogen loss. The 293 

underlying data is from a case study area in The Netherlands. 294 

Other EAs that gained much popularity in land use allocation during the last years are artificial immune 295 

systems (Huang et al., 2012) and particularly swarm intelligence (SI) algorithms (see Yang (2014) for 296 

an introduction) such as ant colony optimization (Nguyen et al., 2016), the artificial bee colony 297 

algorithm (Yang et al., 2015) and particle swarm optimization (PSO) (Liu et al., 2016; Ma et al., 2011). 298 

The latter was developed to solve continuous optimization problems. However, Liu et al. (2016) 299 

present a method that uses PSO for a binary multi-objective optimization problem. In general, SI 300 

algorithms mimic the collective behaviour of single agents in a decentralized and self-organized 301 

system. For example, PSO imitates the social behaviour of fish schooling and flocking of birds (Kumar 302 

and Minz, 2014). 303 

2.2.3 Hybrid methods 304 

Hybrid optimization approaches combine two or more optimization methods within a single 305 

framework to facilitate the search for the Pareto frontier. An example of a hybrid optimization 306 

approach applied to the Calapooia River Basin in Oregon, USA can be found in Whittaker et al. (2017). 307 

Their approach couples the SWAT watershed model with Data Envelopment Analysis (DEA) (Cooper et 308 
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al., 2004) – an economic linear optimization model – within a bilevel optimization framework that uses 309 

NSGA-II. Bilevel optimization problems consist of two nested optimization levels, and each level 310 

contains its own set of objectives. In this example, the upper level is a government agency that seeks 311 

to maximize the total farm profit of the entire watershed and minimize the nitrogen loading at the 312 

watershed’s outlet. The lower level consists of farmers that seek to maximize their individual profits 313 

using DEA. The two levels are linked because the upper level sets tax rates for the use of nitrogen 314 

fertilizer by the lower level, and the lower level’s fertilizer use decisions ultimately impact the amount 315 

of nitrogen loading that occurs at the watershed’s outlet. NSGA-II is used to find the optimal set of tax 316 

rates to optimize all objectives at both levels. Whittaker et al. (2017) highlight the Pareto frontier trade-317 

offs for the upper between total accumulated profit of the farmers and nitrogen loading at the 318 

watershed’s outlet. Other studies, like Bostian et al. (2015) and Barnhart et al. (2017), have utilized a 319 

similar methodology to target agri-environmental policy to promote best management practices in 320 

order to achieve environmental benefits. According to Memmah et al. (2015) the application of hybrid 321 

metaheuristics to land use allocation problems is still rare. Nevertheless, some more examples (e.g., a 322 

hybrid PSO) can be found in their study along with general information about the hybridization of 323 

algorithms. 324 

Apart from the methods presented above, fuzzy programming from the field of Multi-Criteria Decision 325 

Aid (see Figure 1) can also be applied to solve land use allocation problems. For an example, we refer 326 

to Wang et al. (2004). 327 

2.2.4 Constraint handling 328 

As indicated at the beginning of this section, constraints are an important part of the mathematical 329 

formulation of land use allocation problems. They limit the space of feasible solutions by reflecting e.g. 330 

environmental, social and political limits, such as the total area that can be allocated to each land use 331 

(Stewart and Janssen, 2014), water quality and water demand/supply constraints (Wang et al., 2004), 332 

restrictions on nutrient input (Groot et al., 2007) or biodiversity targets (Schröter et al., 2014) to name 333 

only a few examples. Handling real-world constraints is one of the most challenging tasks in the 334 

optimization process (Michalewicz and Fogel, 2004), especially, since they can increase the 335 

computational complexity of a problem. All of the methods presented in this paper support constraints 336 

though the way of handling them depends on the algorithm used. The most popular constraint 337 

handling method for heuristics is using a penalty function that degrades the fitness value of an 338 

infeasible solution (Chehouri et al., 2016). Furthermore, the use of feasibility operators which create 339 

feasible-only child solutions (Deb, 2001) and repairing infeasible solutions (Coello Coello et al., 2007) 340 

are common methods, too. Linear and quadratic programming generally apply Lagrange multipliers for 341 

constraint handling and linear continuous problems can be solved by the simplex algorithm which 342 

includes constraint handling (Cavazzuti, 2013). More information about Lagrange multiplier methods 343 

can be found in (Bertsekas and Rheinboldt, 2014) and for constraint handling methods for linear and 344 

non-linear continuous single-objective problems we refer to (Cottle and Thapa, 2017). Furthermore, 345 

Table 1 includes information about constraint handling for the different methods presented in this 346 

paper. References from Table 1 (for Citavi citation)(Coello Coello et al., 2005; Suman and Kumar, 2006; Zeltni and Meshoul, 2016) 347 

3. Stakeholder integration 348 

In order to make land use planning more applicable to real-world problems, stakeholders are 349 

increasingly integrated into the decision-making process (Memmah et al., 2015). They can state their 350 
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interests and ambitions but also provide expert knowledge on current and future developments. This 351 

is especially valuable in agricultural areas, since, for example, trends in cultivation techniques, 352 

consumer demand but also policies need to be taken into account. Furthermore, stakeholders might 353 

provide a deeper insight into the potential of certain areas, which would help to facilitate the decision 354 

on where possible land use changes can be implemented. In all cases, it is important to find 355 

representative stakeholders first (Harrison and Qureshi, 2000). For example, for agricultural land use 356 

allocation problems, there should be a sound combination of people with different backgrounds and 357 

point of views, like farmers, conservationists or employees of state ministries (Hauck et al., 2016). This 358 

should guarantee a dynamic discussion and prevents the optimization from being biased by too narrow 359 

perspectives. However, if the stakeholders cannot agree on “a mutually consistent set of preferences” 360 

(Malczewski, 1999), multiple analyses of the problem might be necessary (Malczewski, 1999). 361 

Furthermore, important technical terms like, for example, ‘trade-offs’, ‘land sharing/sparing’, etc. and 362 

the optimization method applied must be communicated well to the stakeholders in order to create a 363 

mutual understanding. Otherwise, there might be misunderstandings or the optimization might look 364 

like a ‘black box’, which could create mistrust (Bishop, 2013). 365 

The moment stakeholders are involved in the optimization process has an influence on the problem 366 

formulation and affects the choice of a suitable optimization method. Preferences can be included 367 

either before (a priori), during (interactively) or after (a posteriori) the optimization. Initially proposed 368 

by Cohon and Marks (1975), it is nowadays common practice to classify multi-criteria optimization 369 

methods according to these three categories (Coello Coello et al., 2007): 370 

Scalarization is an a priori method where the algorithm finds a solution that best meets the 371 

stakeholder’s preferences. These are represented by the objective function weights or optimization 372 

goals. Examples from the studies presented above are Aerts et al. (2003), Behrman et al. (2015) and 373 

Santé-Riveira et al. (2008). However, if scalarization is used to calculate the Pareto-frontier by changing 374 

weights/goals like in Kennedy et al. (2016), it is considered as an a posteriori approach. Additionally, 375 

Pareto-based methods and with them the majority of evolutionary multi-objective algorithms fall into 376 

this category (Deb and Köksalan, 2010). These algorithms provide a whole set of Pareto-optimal 377 

solutions and, given these alternatives, stakeholders can then select those that fit their preferences 378 

best (see, for example, Fowler et al. (2015), Groot et al. (2007) and Lautenbach et al. (2013)). For the 379 

case of a posteriori involvement, methods from the field of MADM (Figure 1) can be applied in the 380 

selection process. However, a priori and a posteriori approaches do not consider that it might be 381 

difficult for the stakeholders to express their preferences analytically and that values can change over 382 

time and with growing experience and learning (Coello Coello et al., 2007). Therefore, interactive 383 

approaches can be favourable. They allow stakeholders to articulate preferences in a progressive way, 384 

that is, stakeholders are able to adjust them after each iteration of the optimization. This step-by-step 385 

integration of preferences guides the optimization towards the relevant parts of the Pareto-frontier 386 

and may help to reduce computational time (Meignan et al., 2015). Such real-time interaction, 387 

however, requires short computation times of intermediate solutions (Stewart et al., 2004). This can 388 

also be challenging since the computational time to complete a single optimization should preferably 389 

be less than a minute (Bishop, 2013; Stewart et al., 2004). Reference point methods and tabu search 390 

are popular interactive optimization techniques – see, for example, Stewart and Janssen (2014) and 391 

related studies and Qi and Altinakar (2011), but GAs (e.g., Bennett et al. (1999)) can also be used. Wu 392 

et al. (2016) present a generic framework for stakeholder integration in combination with multi-393 
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objective EAs and illustrate its applicability with a real-world integrated urban water management 394 

problem for Adelaide, South Australia. 395 

4. Discussion & Recommendations 396 

In general, most land use allocation problems are very complex and thus hard to solve with 397 

optimization techniques. Therefore, scenario analysis might be a better option in some cases (Seppelt 398 

and Voinov, 2002). However, working with optimization methods allows the decision maker to 399 

evaluate the potential of a landscape by analyzing trade-offs between environmental, social and 400 

economic objectives and to assess the efficiency of current land uses (Kennedy et al., 2016). Uhde et 401 

al. (2015) recommend optimization techniques particularly for the consideration of provisioning and 402 

cultural ESS. For regulating and supporting ESS they suggest a combination of MADM with group 403 

decision making or spatial analysis since in practice, their quantification can be difficult. 404 

The moment of stakeholder integration and the decision on whether or not trade-offs need to be 405 

identified have a major influence on the choice of a suitable optimization technique. The analysis of 406 

biophysical trade-offs requires a high level of objectivity. Certainly, this is not entirely possible in 407 

modelling since most models contain some kind of human opinion or experience but stakeholders 408 

should (at least) be involved a posteriori. However, if the overall aim is only to allocate land according 409 

to the stakeholder’s preferences by taking into account the ecological potential of the landscape, then 410 

the optimization is rather subjective, and it is reasonable to include stakeholders a priori or 411 

interactively and even involve them in the problem formulation. Also, the amount of time that is 412 

available for computing solutions should be considered. While interactive methods require solutions 413 

within seconds or a few minutes, comparatively slower – and thus perhaps more accurate – algorithms 414 

can be used for a priori and a posteriori approaches.For a more detailed discussion of the advantages 415 

and disadvantages of a priori, interactive and a posteriori approaches we refer to Coello Coello et al. 416 

(2007). 417 

Before we provide guidelines for which of the above presented methods are suitable for different types 418 

of land use allocation problems, we need to discuss some of the method’s particular strengths and 419 

weaknesses, especially in terms of trade-off identification and stakeholder integration. We will begin 420 

by comparing scalarization with Pareto-based methods in general; then, we will provide detailed 421 

discussion of the methods that fall into these categories. 422 

The advantages and disadvantages of scalarization versus Pareto-based methods first depend on the 423 

decision maker’s expectation towards the number of optimal solutions that should be determined. 424 

Scalarization methods are comparatively easy to implement and efficient if it is sufficient to find only 425 

one or a limited number of Pareto-optimal solutions in the preferred regions of the solution space. 426 

However, to complete a trade-off analysis, the Pareto frontier needs to be determined by solving the 427 

optimization problem multiple times and this can be computationally expensive and time consuming 428 

(Janssen et al., 2008). Additionally, scalarization approaches can serve to rapidly find tentative 429 

solutions for first discussions (Stewart and Janssen, 2014). Another important factor is the number of 430 

objectives within the problem: for more than two objectives, it may be difficult for the stakeholders to 431 

interpret visualizations of the Pareto frontier (Deb and Köksalan, 2010). For more than four objectives, 432 

even the visualization itself becomes difficult. Therefore, single-solution approaches seem to be more 433 

practical. However, representing the whole Pareto frontier can also be advantageous. The whole range 434 

of equally optimal solutions comprises much more information than single solutions. This can be, for 435 
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example, trade-offs and alternative land use options that could have been missed if preferences had 436 

been stated in advance. Furthermore, the points of view of multiple stakeholders are reflected better 437 

by multiple solutions (Memmah et al., 2015). 438 

4.1 Using scalarization methods 439 

Of the presented methods above, weighted sum is one of the most common and easy-to-use 440 

approaches (Bishop, 2013). Nevertheless, it has some major drawbacks: generally, preferences follow 441 

a non-linear relationship, but the weighted sum is only a linear approximation of this function. 442 

Therefore, it favours unbalanced (i.e., extreme) solutions, although decision makers typically prefer 443 

balanced ones (Marler and Arora, 2010). If a weighted sum is used in order to obtain the Pareto 444 

frontier, it also has to be considered that most of the land use allocation problems are non-convex 445 

problems. This means that the method may not find all Pareto-optimal solutions. Additionally, the 446 

weights have to be changed with every optimization run, but here, one has to consider that a uniformly 447 

distributed set of weights does not necessarily lead to a uniformly distributed set of Pareto-optimal 448 

solutions (Deb, 2001). Furthermore, it should be taken into account that highly correlated objective 449 

functions may distort the weighted objective function value and might even hamper convergence 450 

(Salmasnia et al., 2013; Steuer, 1989). Marler and Arora (2010) discuss some more aspects that must 451 

be taken into account when using the weighted-sum approach for multi-objective optimization 452 

problems (e.g., weight-setting). They conclude that alternative methods should be applied if the aim 453 

is to depict the Pareto frontier with low computational effort, particularly for non-convex problems, 454 

and if complex preferences must be accurately articulated. 455 

If the initial solution is already sufficiently good, simulated annealing can find optimal solutions with 456 

comparatively low computational expenses even for non-linear objective functions (Santé-Riveira et 457 

al., 2008). SA is therefore a fast and simple method that is more recommendable at an early stage of 458 

the land use allocation process (Aerts and Heuvelink, 2002). According to Memmah et al. (2015), SA as 459 

well as tabu search perform well for problems with many constraints. Thus, different views of all 460 

stakeholders can be taken into account (Qi and Altinakar, 2011). But like SA, TS requires a good initial 461 

solution. Otherwise, it may take more iterations and thus more time to achieve an optimal solution. 462 

TS and reference point methods are a priori techniques, but, as mentioned before, they are also well-463 

known for interactive stakeholder integration (Meignan et al., 2015; Miettinen et al., 2008). 464 

The benefit of RP methods is that the optimization is guided towards relevant solutions for 465 

stakeholders. In contrast to weighted-sum methods, they even promote balanced solutions if 466 

achievement functions are applied. The whole approach may seem too subjective for trade-off 467 

analyses, but the Pareto frontier can be obtained by varying the aspiration levels, though this can lead 468 

to long computation times. Therefore, a Pareto-based method can be more practical for trade-off 469 

comparisons. 470 

4.2 Using Pareto-based methods 471 

Methaheuristics (e.g., evolutionary or genetic algorithms) are widely applied in land use allocation. 472 

They form the most popular group of algorithms that are able to solve hard combinatorial and non-473 

linear problems (Memmah et al., 2015). Nevertheless, Memmah et al. (2015) also state that the more 474 

sophisticated algorithms “have not propagated to the land use optimization community” since the 475 

newer methods are not as straightforward as their basic versions. 476 

 477 
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Population-based algorithms have three main advantages: (i) they are gradient-free, which means that 478 

they can deal with complex, non-linear and discontinuous problems; (ii) they are highly explorative, 479 

which increases the probability of finding global optima (though there is no  guarantee that they 480 

actually will be found) and (iii) they can be implemented in a parallel way, which decreases 481 

computation time (Yang, 2014). The latter is helpful for problems that consider a high number of 482 

generations of a large population, which usually leads to long convergence times. One drawback of 483 

population-based algorithms is that parameter tuning is often done by trial-and-error. However, in the 484 

context of land use allocation, the main flaw is probably that Pareto dominance is inappropriate for 485 

many-objective problems (i.e., problems with more than four objectives (Lautenbach et al., 2013)). The 486 

reason for this is that with an increasing number of objectives, the amount of non-dominated solutions 487 

increases exponentially, making it more difficult for the algorithm to converge towards the Pareto 488 

frontier (Memmah et al., 2015). 489 

 490 

For Pareto-based methods, stakeholder integration usually occurs a posteriori. However, there are 491 

some exceptions, for example, Porta et al. (2013) maximize a weighted fitness function with a GA, 492 

which requires prior weight-setting, and Liu et al. (2016) use PSO with knowledge-informed rules that 493 

are partly based on a priori information about stakeholder’s preferences. Also, an interactive GA has 494 

been applied by Bennett et al. (1999). A summary of the different optimization methods, their 495 

particular timing of stakeholder integration and how trade-offs can be identified are all given in Table 496 

1. 497 

 498 

In summary, all optimization methods have their individual advantages and disadvantages regarding 499 

technical aspects (e.g., complexity of the algorithm and computation time), trade-off identification and 500 

stakeholder integration. In some cases, a combination of different approaches (e.g., an EA with local 501 

search) or an optimization method with MADM can compensate for the drawbacks of one method and 502 

add useful features of another. Thus, hybrid approaches can lead to a more effective and efficient 503 

search (Uhde et al., 2015). For example, the bilevel optimization approach used by Whittaker et al. 504 

(2017) was able to find better solutions compared to single level or sequential optimization 505 

approaches. However, the authors argue that the optimization method is challenging in terms of 506 

mathematical requirements (e.g. convexity, continuity, linearity) and computationally expensive, 507 

though it is relatively simple to set up for parallel execution. 508 
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4.3 Recommendations for the method selection 509 

In light of the methods presented and discussed above, a few questions turned out to be essential 510 

when selecting an appropriate approach for a land use allocation problem (see Figure 3): (i) What type 511 

of optimization problem is it? (That is, is it multi-objective, non-linear or combinatorial?) To answer 512 

this question, the problem formulation must be clear. In general, one can say that the more objective 513 

functions a problem has and the more details are considered, the more complex it will be to solve. This 514 

will result in longer run-times, and found solutions might be not as close to optimal as expected.  This 515 

is because non-convex complex optimization problems can only be solved by (meta-)heuristics which 516 

cannot guarantee the finding of the optimal solution(s). 517 

 518 
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Given a multi-objective optimization problem, it should first be considered whether a trade-off analysis 519 

is required (ii) that is, is it necessary to depict the whole Pareto frontier? If yes, then (iii) How many 520 

objective functions does the problem have? If it is many, then (iv) Can their number be reduced, for 521 

example, by combining them or converting some of them to constraints? Because some population-522 

based algorithms cannot handle many-objective (>4) problems (Lautenbach et al., 2013). If the number 523 

of objectives is manageable, then Pareto-based algorithms (e.g., EAs/GAs, SI) with a posteriori 524 

stakeholder integration are recommendable. If it is not possible to reduce the number of objectives or 525 

no trade-off analysis is required anyway, then the land use planner should choose from the group of a 526 

priori and interactive approaches that include all of the scalarization methods. At this point, reference 527 

point methods like goal programming but also tabu search are recommendable for interactive 528 

stakeholder integration. Scalarization methods also allow the identification of the Pareto frontier, 529 

though it may be computationally more expensive than a Pareto-based approach. 530 

 531 

Of course, Figure 3 should only serve as a first orientation to the available methods for land use 532 

planners. There are methods like hybrid algorithms or the application of knowledge-informed rules 533 

that would not fit into this scheme. After all, the suitability of an algorithm is highly dependent on the 534 

structure of the optimization problem itself, and since every problem is unique, it is impossible to give 535 

a general recommendation that would hold for any kind of optimization problem. 536 

 537 

Although decision-support techniques, including optimization, are promising tools for allocating land 538 

use, their application is still limited (McIntosh et al., 2011). There are several reasons for this, amongst 539 

them a lack of skills and knowledge on the usage of these methods in practice (Volk et al., 2010). 540 

Therefore, a strong collaboration between experts (e.g., scientists) and stakeholders/decision makers 541 

is needed and even promoted (Hauck et al., 2016). For this, one of the key issues but also challenges 542 

is the proper communication of the land use optimization approach and the results to all parties 543 

involved in the decision making process (Parker et al., 2002). 544 
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 545 

5. Conclusion 546 

We presented a review of available optimization techniques that can be useful for agricultural land use 547 

allocation. We first classified them within the broader field of decision-support techniques before we 548 

presented the methods themselves. We distinguished between scalarization (e.g., weighted sum, RP, 549 

TS and SA) and Pareto-based optimization methods (e.g., EAs/GAs, SI algorithms) and illustrated each 550 

of them with examples from existing studies. We also highlighted how trade-offs can be identified 551 

either, by changing weights/goals and solving the problem iteratively (scalarization approaches) or by 552 

determining and analysing the Pareto frontier directly (Pareto-based approaches). Furthermore, we 553 

mentioned how constraints can be handled for the different optimization methods and addressed the 554 

topic of stakeholder integration (a priori, interactive, a posteriori). In cases where no trade-off analysis 555 

is required and the main focus lies on finding optimal land use patterns that best fulfil the stakeholders’ 556 

preferences, we recommend a priori and particularly interactive approaches. If the identification of 557 

trade-offs is of high priority, stakeholders should be involved a posteriori. Also, for problems where it 558 

is impossible or not necessary to include stakeholders, a posteriori (i.e., Pareto-based) methods are 559 

most suitable. 560 

Figure 3 Flowchart of a structured search for suitable optimization 

methods. The flowchart helps finding an appropriate method for solving 

a particular multi-objective land use allocation problem. It only serves as 

a first orientation since there are methods (e.g., hybrids, knowledge-

informed rules) that would not fit into this scheme. In case the no. of 

objectives is >4, trade-offs can still be determined by scalarization 

methods, though with more computational effort. 
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Furthermore, land use allocation usually occurs at a regional or local scale where ESS should be 561 

addressed (Uhde et al., 2015). Nevertheless, optimal solutions might look different if linkages to other 562 

regions were considered (e.g., trade or animal migration) (van Butsic and Kuemmerle, 2015). Also, 563 

optimal solutions will depend on scale – for example, the allocation of certain crops could look 564 

completely different at a local scale compared to a national or even global level. However, large-scale 565 

studies are difficult to conduct and cannot capture the details of small-scale studies. Ultimately, 566 

implementations of global solutions are likely to fail since there is no world institution for land 567 

management. 568 

To date, most of the agricultural land use allocation studies have focused on economic trade-offs 569 

between ESS use (e.g., crop production) and ESS provision (e.g., water provisioning, water quality, soil 570 

erosion) (Fowler et al., 2015; Groot et al., 2012; Sadeghi et al., 2009). Only few studies explicitly 571 

included biodiversity trade-offs, like Groot et al. (2007), Groot et al. (2018) or Kennedy et al. (2016) 572 

(see also Table A.1 in the Appendix). On the other hand, systematic conservation planning creates 573 

areas that protect species and habitats, but it does not consider biodiversity protection on ‘working 574 

lands’ (Polasky et al., 2008). This substantiates the impression that there is optimal land use allocation 575 

as a distinct objective and biodiversity protection as another. Also, Macfadyen et al. (2012) argue that 576 

from focusing only on either biodiversity conservation or ESS management, “it does not follow that… 577 

[this] will provide reciprocal benefits of the kind we should be seeking in land-use decision-making”. 578 

Therefore, a stronger collaboration between both research areas is needed to determine economically 579 

efficient land use patterns that are ecologically sustainable and protect biodiversity at the same time. 580 

A first step has been done by including the ESS concept in conservation planning, though this is still “a 581 

fairly new practice” (Schröter and Remme, 2015). 582 

In this context, mathematical optimization offers powerful and flexible methods that allow for the 583 

integration of biophysical and biodiversity models. Here, a clear (mathematical) formulation and 584 

specification of the optimization problem is necessary and forms a mutual basis for decision makers 585 

and stakeholders for discussing land use solutions. At the same time, it makes problem understanding 586 

and repeatability for other case studies much easier. This is particularly important since some methods 587 

from related fields like spatial conservation prioritization or spatial forest planning could also be used 588 

in agricultural land use allocation and vice versa. After all, conservation prioritization as well as forest 589 

planning handle similar optimization problems (Kurttila, 2001, 2001; Mendoza and Martins, 2006; 590 

Moilanen and Wilson, 2009). 591 

However, in the end it should be clear that mathematical land use optimization as well as any other 592 

MCDA technique is only a tool to support decision making (Stewart et al., 2004), and none of them 593 

provides a completely objective analysis that always leads to the ’right answer’ (Belton and Stewart, 594 

2002). For future research, the development of hybrid methods that combine different optimization 595 

algorithms or integrate other MCDA techniques along with the use of parallelization techniques and 596 

participatory approaches are seen as most relevant (Memmah et al., 2015; Uhde et al., 2015). 597 

Particularly for a priori stakeholder integration, the application of knowledge-informed rules can 598 

improve the finding of efficient and effective land use solutions (Liu et al., 2016). Future research 599 

should aim at the integration of changing climatic conditions (Klein et al., 2013) and uncertainties 600 

(Malczewski and Rinner, 2015) into optimization frameworks. 601 
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Appendix  943 

Table A.1 A selection of studies from the research fields of general and agricultural land use allocation and examples 944 
from other related areas. All studies used mathematical optimization. The table indicates the optimization method used, 945 
when stakeholders were included, whether trade-offs were determined and which ecosystem services (including 946 
biodiversity) were considered. For studies where ES were not mentioned explicitly we translated considered land use 947 
types into the respective ES (e.g., “forest” to “forest-related ES”). 948 

Reference Stakeholder Optimization Method 
Trade-

offs 
Ecosystem Services 

  a
 p

ri
o

ri
 

in
te

ra
ct

iv
e

 

a
 p

o
st

e
ri

o
ri

 

R
e

fe
re

n
ce

 p
o

in
t 

E
v
o

lu
ti

o
n

a
ry

/G
e

n
e

ti
c 

A
lg

o
ri

th
m

 

P
a

rt
ic

le
 S

w
a

rm
 O

p
ti

m
iz

a
ti

o
n

 

A
n

t 
C

o
lo

n
y
 O

p
ti

m
iz

a
ti

o
n

 

S
im

u
la

te
d

 A
n

n
e

a
li
n

g
 

T
a

b
u

 S
e

a
rc

h
 

O
th

e
r 

  

A
g

ri
cu

lt
u

ra
l 
p

ro
d

u
ct

io
n

 

W
a

te
r 

S
o

il
/e

ro
si

o
n

 

F
o

re
st

-r
e

la
te

d
 E

S
 

W
il
d

li
fe

/n
a

tu
re

 

C
a

rb
o

n
 s

e
q

u
e

st
ra

ti
o

n
/s

to
ra

g
e

 

R
e

cr
e

a
ti

o
n

/c
u

lt
u

ra
l 

v
a

lu
e

 

O
th

e
r 

B
io

d
iv

e
rs

it
y

 

Land use in general 

Cao et al. (2012)  ●   ● ●              ●  

Eikelboom et al. (2015)   ●  ● ●       ● ● ●  ●     

Huang et al. (2012)    ●       ● ● ●         

Janssen et al. (2008)   ●  ● ●       ● ●   ●  ●   

Liu et al. (2013)    ●   ●      ● ●   ●   ●  

Liu et al. (2016)  ●     ●      ●   ●      

Ma et al. (2011)    ●   ●      ● ●  ●      

Porta et al. (2013)  ●    ●       ●   ● ●     

Stewart et al. (2004)   ●  ● ●       ● ●   ●  ●   

Stewart and Janssen 

(2014)  
 ●  ● ●       ●      ●  ● 

Wang et al. (2004)   ●        ● ● ● ● ● ●   ● ●  

Yang et al. (2015)  ●         ●  ● ●  ●      

Agriculture 

Antoine et al. (1997)   ●  ●        ●  ●       

Behrman et al. (2015)  ●        ●   ●        ● 

Bekele and Nicklow 

(2005)  
  ●  ●      ● ● ●        

Bennett et al. (1999)   ●   ●       ●  ●  ●     

Bostian et al. (2015)    ●  ●      ● ● ●        

Chikumbo et al. (2012)  ●  ● ● ●      ● ● ● ● ●  ●    
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Fowler et al. (2015)    ●  ●      ● ● ●        

Groot et al. (2007)    ●  ●      ● ●  ●      ● 

Groot et al. (2012)    ●  ●      ● ●  ●       

Groot et al. (2018)   ●  ●      ● ● ●      ● ● 

Kennedy et al. (2016)    ●       ● ● ● ●       ● 

Klein et al. (2013)    ●  ●      ● ● ● ●       

Lautenbach et al. (2013)    ●  ●      ● ● ●        

Lu and van Ittersum 

(2004)  
  ●       ● ● ●  ●       

Mishra et al. (2014)  ●   ●      ●  ● ●        

Nguyen et al. (2016)    ●    ●     ● ●        

Polasky et al. (2008)    ●       ● ● ●   ●     ● 

Qi and Altinakar (2011)   ●       ●   ● ● ●       

Sadeghi et al. (2009)    ●       ● ● ●  ●       

Santé-Riveira et al. 

(2008)  
●       ●    ●   ●      

Seppelt and Voinov 

(2002)  
  ●  ●       ● ● ●       

Shaygan et al. (2014)    ●  ●       ●  ●       

van Butsic and 

Kuemmerle (2015)  
         ● ● ●        ● 

Whittaker et al. (2017)    ●  ●     ● ● ● ●        

Other (e.g. conservation planning, forestry, restoration, watershed management) 

Aerts and Heuvelink 

(2002)  
●       ●     ●  ●    ●  

Arabi et al. (2006)    ●  ●      ●  ● ●       

Keller et al. (2015)  ●         ●    ●   ●  ● ● 

Rabotyagov et al. (2010)    ●  ●      ● ● ●        

Randhir and Shriver 

(2009)  
●         ● ●  ●        

Schröter et al. (2014)    ●     ●   ●    ● ● ● ●  ● 
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