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1. Abstract

Lake ecosystems are sensitive recorders of environmental changes that provide continuous archives at annual

to decadal resolution over thousands of years. The systematic investigation of land use changes and emission of

pollutants  archived  in  Holocene lake  sediments  as well  as the  reconstruction of contamination,  background

conditions,  and sensitivity  of  lake systems  offer  an ideal  opportunity  to  study environmental  dynamics  and

consequences of anthropogenic impact that increasingly pose risks to human well-being. This paper discusses

the use of sediment and other lines of evidence in providing a record of historical and current contamination in

lake ecosystems.  We present a novel approach to investigate  impacts from human activities using chemical-

analytical,  bioanalytical,  ecological,  paleolimnological,  paleoecotoxicological,  archaeological  as  well  as

modeling techniques.  This multi-time slice weight-of-evidence (WOE) approach will  generate  knowledge on

conditions prior to anthropogenic influence and provide knowledge to (i) create a better understanding of the

effects  of anthropogenic disturbances on biodiversity,  (ii)  assess water  quality by using quantitative data  on

historical pollution and persistence of pollutants archived over thousands of years in sediments, and (iii) define

environmental threshold values using modeling methods. This technique may be applied in order to gain insights

into reference conditions of surface and ground waters in catchments with a long history of land use and human

impact, which is still a major need that is currently not yet addressed within the context of the European Water

Framework Directive. 

Keywords:  EU WFD ∙ Lakes ∙  Weight-of-evidence approach ∙  Reference conditions ∙  Dioxin-like activity ∙

Sediment quality triad approach
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2. 1 Introduction 

Lake ecosystems are particularly sensitive to anthropogenic changes in the hydrological cycle and by

large-scale  water  pollution  because  they  act  as  terminal  sinks  for  all  matter  that  affects  water  quality.  In

particular, a large number of lakes exist in formerly glaciated regions of Europe (e.g., Scandinavia, northern

Germany,  Poland, perialpine regions),  which archive environmental changes from the end of the Pleistocene

(i.e., postglacial, calibrated 15 kiloannum before present) to the Holocene (11.7 kiloannum before present) over

various temporal scales (Downing et al. 2006; Wessels 1995). Valuable information about the historical, present

and potentially future anthropogenic impacts (e.g., land use change, contamination, etc.) can be gained from

signals continuously archived in lake sediments, with annual to decadal resolution (Cohen 2003).

Lake systems respond to short-term and long-term changes that affect the fluxes in energy, water and

matter, such as modifications to topography, vegetation and soils, climate change, and the input of wastewaters

into the system (i.e., signal generation; Smol 2009). Many of these fluxes (i.e., signals) are coupled with each

other  in  a  complex  manner  and  can  result  in  gradual  or  immediate  changes  in  the  lake  system  (e.g.,

eutrophication caused by nutrient and chemical inputs archived in sediment; signal recording; Fig. 1). These

sudden or gradual changes in lake sediment composition and respective signal generations are mostly related to

changes in  (1) climate  parameters such as precipitation,  temperature,  wind,  and frequencies  of singular  and

secular  hydrological  events;  (2)  human  activities  including  land  use,  agricultural  techniques,  drainage  of

swamps, settlements and infrastructure, wastewater, industrial activities, and diffuse and point source pollution;

and (3) nutrient inputs within the catchment area. In most central European systems, the impacts from human

activities on aquatic environments began with the establishment of first settlements approximately 6000 years

ago (e.g., Kalis et al. 2003; Litt 2003; Zolitschka et al. 2003). Early human settlements can create measurable

signals  (e.g.,  pollen  record,  nutrient  and  pollution  profile,  etc.)  in  the  lake  sediment  by  direct  or  indirect

alteration of matter  fluxes such as those due to deforestation,  burning,  and inflow of wastewater.  However,

intensities of such anthropogenic influences varied over time and are intercalated by periods of recovery from

disturbance  (e.g.,  migration periods, 30 years’  war  in the 17th century,  etc.;  Mainberger  et al.  2015; Rösch

1992). Therefore, long-term records and cross-correlation of different lakes will allow for better identification

and separation of human-induced signals from natural variability. 

Signals of long-term environmental change may also be recorded within the catchment (e.g., degraded

soils, colluvial and alluvial sediments), however, these records are generally much more incomplete compared to

lake  sediments,  which  act  as  a  final  trap  of  particulate  material  from a  catchment  area  over  hundreds  and

thousands of years (depending on the lifetime of the lake; Dale 2009; Grimalt et al. 2004; Renberg et al. 2000;
3
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Yang and Rose 2005). Lake sediments are generated by direct sedimentation of particulate matter derived from

river input and/or eolian transport (detrital),r by settling of precipitated particles from the lake water (authigenic,

e.g.,  shells,  organic  matter,  calcite),  or   as  a  result  of biological  productivity  (biogenic).  The transport  and

deposition  of  detrital  material  in  lakes  mostly  depend  on  land  use,  soil  erosion,  weathering  processes  and

engineering measures of waterways. The occurrence of authigenic and biogenic material depends on nutrient

supply, which increases with agriculture and discharge of sewage water from settlements, and biogeochemical

cycling (Meyers and Ishiwatari 1993). After deposition, most particulate matter is transported and transformed at

the lake bottom by processes such as decomposition, resuspension by waves and/or bioturbation (Carper and

Bachmann 1984; Huettel et al. 2003). These post-depositional processes may amplify, modify, attenuate, shift or

erase original signals generated by environmental changes. Thus, it can be difficult to obtain an ideal undisturbed

lake sediment core for high-resolution paleolimnological  studies with  annual  stratification (“varves”)  for the

entire lifetime of a lake. Best chances are provided by sediment records from low energy profundal sections in

the center of the lake.

In order to reduce risks and manage the impacts of environmental contamination, land use, and climate

change on lake systems, we need to gain a better understanding of the sensitivity of our environment and the

background conditions prevailing prior to impacts caused by human settlements.  Laboratory experiments and

thorough monitoring of recent changes alone are not sufficient to understand or validate predictions of the long-

term behaviour of complex landscape mosaics of terrestrial,  semi-terrestrial and aquatic systems,  such as the

ones typical for Central Europe. This paper discusses some of the tools and knowledge currently available to

assess signals from human activities in lake systems (sections 2-4). We present a multi-time slice weight-of-

evidence (WOE) approach (Fig. 2) with multiple lines of evidence (cf. Chapman and Hollert 2006), including

paleolimnology and paleoecotoxicological tools, to elucidate historical pollution, identify reference conditions,

and improve process understanding of human activities (detailed discussion in section 5). This discussion paper

aims  at  directing  terrestrial-aquatic  ecosystem  research  toward  a  holistic  approach  and  recommends  the

investigation of modern systems from a historical perspective. This approach considers historical land use and

industrial practices since the Neolithic age that have moved the system from natural background conditions to

modern human-affected  conditions.  Such an integrated  analysis  allows  for  the evaluation of  the  extent  and

duration of disturbances in respective lake ecosystems. In particular, it will (i) create a better understanding of

the effects of anthropogenic disturbances on biodiversity, (ii) assess water quality by using quantitative data on

pre-historical  and  historical  pollution  and  persistence  of  pollutants  archived  over  thousands  of  years  in
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sediments,  and (iii) define environmental threshold values using modeling methods, thus offering a means to

refine land use management strategies by defining pre-impact conditions, sensitivities, and recovery rates. Such

knowledge can also closely support and assist in fulfilling future water quality goals, especially originating from

the European Water Framework Directive (EU WFD, 2000/60/EC). The WFD declares water pollution as a key

issue of European Environmental  Policy and demands that all  European water  bodies should be returned to

“good ecological status” by the years 2015-2027. “Good Ecological Status”, however,  deviates only slightly

from “undisturbed conditions”,  which may be derived from paleo-data.  Thus, by combining paleoecological,

bioanalytical-ecotoxicological,  chemical-analytical,  geochemical,  archaeological,  and  modeling  techniques,  it

may be possible to establish the link between legacy and current anthropogenic impacts, as well as assist in

predicting future impacts on lake systems. It is therefore a promising approach to comprehensively reconstruct

and eventually understand the complexity of environmental changes caused by human activities. The individual

research foci and tasks are described in the following sections, leading to the overall description of the multi-

time slice WOE approach.

3. 2 Paleolimnological and paleoecotoxicological tools and records 

4. 2.1 Past human activities 

The development of agriculture across many parts of Europe, generally between the 8th and the 4th

millennium  cal.  B.P.,  led  to  massive  population  growth.  Since  this  time,  people  have  altered  the  natural

landscapes on a large scale through deforestation,  modifications of the woodland structure and composition,

introduction of new species,  and through impacts on geomorphology and soils (Berglund 1991; Dotterweich

2008). Additional impacts from agriculture include soil erosion from tillage, as well as soil deterioration and

acidification by nutrient loss with the harvest (Heathcote et al. 2013). In many agricultural systems, extensive

burning of biomass and animal husbandry also played an important role in landscape alteration and management.

Each of these past human activities contributes to distinct patterns that can be viewed in the paleolimnological

records of lake sediments (Battarbee and Bennion 2011). Vegetation changes as well as burning processes from

deforestation and agriculture can be evaluated by the pollen record and the amount of charred micro-particles

archived in chronological order in the sediment (Clark et al. 1989). The pollen production within lakes is often

weak and restricted to some limnic macrophytes, which allows for a direct reflection of the vegetation, landscape

and land use of the terrestrial surroundings of lakes.  Since the beginning of the extensive plough agriculture

during the Bronze Age, the strength of human impact and land use change is correlated directly to the degree of

deforestation, which is expressed by the percentage of terrestrial non-arboreal pollen (Kalis et al. 2003; Rösch

2012). Soil erosion is recorded in sediments by an increasing amount of minerogenic material and by changes in
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the chemical  composition (e.g.,  by an increase  of Ti;  Berglund  1987;  Cohen 2003;  Lehmkuhl  et  al.  2014).

Within the last decade the development, application and discussion of compositional statistics (compositional

data analysis; CoDA; cf. Egozcue et al. 2003; Filzmoser et al. 2009; Van den Boogaart, K Gerald and Tolosana-

Delgado  2013)  and  transformation  of  multivariate  geochemical  datasets  has  advanced  paleoclimatic  and

paleoenvironmental reconstruction (cf. Dietze et al. 2012; Hartmann and Wünnemann 2009; Stauch et al. 2017;

Yu et al. 2016). Recently developed multivariate and statistical methods also allow for precise calibration of the

pollen record in terms of land cover (Broström et al. 2008; Gaillard et al. 2008; Sugita 2007a; Sugita 2007b). All

these reconstructions must be based on a sound chronology and an age model of lake sediments. Here, various

techniques  are  available  which  are  usually  combined:  radiocarbon  dating  (14C),  lead  dating  (210Pb),  marker

horizons (137Cs from bomb tests and Chernobyl),  and varve counting (Aitken 2014; Bonk et al. 2015).  The

application of mass spectrometry in radiocarbon dating has significantly reduced the amount of carbon required.

Thus, the selection of organic material of terrestrial origin from the sediment enables reliable spatiotemporal

models. As a result of the abovementioned analytical techniques and paleo-records, major environmental shifts

archived  in  lake  sediments  (i.e.,  signal  generation)  based  on  dated  sediment  slices  can  be  correlated  with

historical events dated by well-documented historical, meteorological or archaeological data (e.g. agricultural

records,  history  of  local  industrial  activity,  artefacts  and  materials,  flooding  events  reported  in  historical

accounts)  to gain insight into the influence of human impacts.

5. 2.2 Records of pollutants  

As human populations continued to grow and advance, industrialization including mining and burning

of  fossil  fuels  began  to  develop.  The  now  “civilized”  humans  also  contributed  to  effects  on  the  aquatic

environments through pollution, ranging from local pollution by lakeside dwellings (e.g., sewage) to the global

distribution of mining emissions, each archived in the sediment layer. Imprints of human activities are recorded

by  abiotic  and  biotic  proxies,  serving  as  indicators  of  past  environmental  conditions.  Histories  of  mining

activities and burning of fossil fuels can, for example, be derived from 206Pb/207Pb isotope ratios, providing the

ability to identify (i.e., fingerprint) sources and release of pollution in lake sediments (Abbott and Wolfe 2003;

Bränvall et al. 2001; Engstrom et al. 2007) or from fly-ash particles (e.g., spheroidal carbonaceous particles,

SCP; Rose et al. 2002). Mercury (Hg) has been used as a proxy for domestic sewage, however, controversy

persists  to whether  Hg levels in sediments archive an accurate record of past accumulation rates due to the

potential influence by microbial and diagenetic processes; i.e., chemical, physical and biological changes that

occur within the sediment, that can enrich Hg in surface layers of sediment cores and be mistaken as a signal of

anthropogenic  pollution (Muir  et  al.  2009; Rasmussen  1994;  Rydberg et  al.  2008; Smol  2009).  In  contrast,
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polycyclic aromatic hydrocarbons (PAHs) were introduced early in history through open burning and natural

wildfires,  however,  industrialization  has  significantly  increased  the  concentrations  of  PAHs  in  ecosystems

through  the  combustion  of  organic  material  resulting  in  good  correlation  between  PAH  concentrations  in

sediment cores and industrial energy consumption (Lima et al. 2005). The combustion of organic material has

lead  to  the  production  of  a  wealth  of  organic  compounds  that  previously  had  little  or  no  presence  in  the

environment,  with  many  of them persistent  and bioaccumulative  in  the  environment,  i.e.,  persistent  organic

pollutants, such as polychlorinated biphenyls and PAHs. Thus, sedimentary pollutant profiles potentially allow

us to track the trajectories and patterns of deposition of many pollutants.

6. 2.3 Ecological effects of pollutants

Aquatic organisms can provide information about the vulnerability of ecosystems, the critical loads of

pollutants,  and  they  can  document  ecosystem  degradation  (Hübener  et  al.  2009).  In  the  1980s,  many

paleolimnological  studies addressed acidification by using diatom assemblages (Battarbee and Charles 1987;

Hinderer  et  al.  1998).  Nutrient  loading  and  eutrophication  became  another  popular  topic  (Cohen  2003;

Meriläinen et al. 2000), and thus the quantitative assessment of eutrophication trends with diatoms developed

rapidly during the last few decades (Smol and Stoermer 2010). However, the ecotoxicological effects of well-

characterized pollutants on organisms used in paleolimnology have only recently been investigated (Doig et al.

2015; Harris et al. 2006; Lucas et al. 2015). Metals and herbicides, for example, although well-studied from a

toxicological perspective, have only recently begun to be examined from a paleolimnological perspective using

diatoms (Larras et al. 2013; Marcel et al. 2013). Specifically, Cattaneo et al. (2004) reported that Cu pollution

led to a taxonomic shift in diatom species, deformation of diatom frustules, and a reduction in size, even though

there was no decline in the number of species due to Cu pollution. It was also suggested that teratological forms

of diatom cell walls may act as indicators of ecosystem health because their presence is related to the magnitude

of environmental stress (Falasco et al. 2009). The quantitative total phosphorous (TP) reconstruction approach

has also been established as TP is often the most important factor influencing diatom communities within  a

calibration data set (Anderson 2000; Hall and Smol 1992). Additionally, paleo-ecotoxicological information can

be obtained from cladoceran diapausing eggs (ephippia), which have been shown to preferentially accumulate

some maternally derived metals such as cadmium, chromium and molybdenum from urban or industrial sources

(e.g., smelting and fossil fuel combustion; Wyn et al. 2007). Both the geochemical and the isotopic composition

of  calcitic  ostracod  shells  also  have  been  observed  to  provide  an  indication  of  metal  pollution  and  paleo-

environmental reconstruction (Holmes 2001; Schwalb 2003). Thus, diatoms and other bioindicators have a great
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potential to monitor the quality of lake water and efficiency of ecosystem management measures, such as liming,

decrease in acidification, and speed of re-oligotrophication in lake systems. 

By  using  different  types  of  bioindicators  from  a  variety  of  habitats,  for  example  benthonic  and

planktonic diatoms or infaunal and epifaunal ostracods, processes in different components of a lake system can

be analysed. Transfer functions can be established that consequently can be applied to fossil species assemblages

archived in sediments by relating modern species assemblages, including diatoms, chironomids and ostracods to

environmental parameters (e.g., water chemical composition, water depth, etc.) of their habitats (Hall and Smol

1992;  Pérez  et  al.  2013).  Additionally,  species  assemblages  themselves  may  also  be  a  direct  and  useful

bioindicator of pollution and environmental stressors. These environmental reconstruction approaches serve for

deriving quantitative parameters including trophic level, pH, conductivity, temperature and water depth, and it

provides a tool to assess current water quality by establishing background conditions or a reference state from a

time  when  humans  did  not  yet  affect  their  environment.  Therefore,  ecologically  and  statistically  sound

environmental reconstructions are required (Juggins 2013), and their reliability needs to be improved with new

approaches (e.g., dynamic adjustment of training sets (Hübener et al. 2008), compositional data approaches (Van

den  Boogaart,  K  Gerald  and  Tolosana-Delgado  2013).  Regardless,  new advances  in  paleolimnological  and

paleoecotoxicological research, including morphological studies,  may offer crucial insight into the ecological

consequences of pollutants over time.

7. 2.4 Bioanalytical tools and paleoecotoxicology

As  an  interdisciplinary  field  of  research,  ecotoxicology  deals  with  the  interactions  between

environmental  chemicals  and  biota,  thereby  focusing  on  adverse  effects  at  different  levels  of  biological

organization (Fent 2004). Toxic effects of anthropogenic compounds in biota and ecosystems are investigated in

close connection to their environmental chemistry and fate in the environment (Fent 2003; Fent 2004). Aquatic

sediments act as a sink of anthropogenic pollutants, but they can also act as a source via remobilization (e.g.,

during resuspension and flood events) and can thus cause adverse effects  in the environment,  as well as for

human health (Brinkmann et al. 2013; Hollert et al. 2007; Schüttrumpf et al. 2011; Wölz et al. 2008; Wölz et al.

2009).  Consequently,  sediments  can  be  used  to  assess  hazardous  impacts  and  underlying  toxicants  using

different analytical techniques, such as biological or chemical analyses, or the combination of both (e.g., effect-

directed analyses; EDA). Bioanalytical tools include in vitro and in vivo bioassays as well as biomarkers, which

provide  information  about  the  toxicity  or  biological  response  of  environmental  samples  or  contaminants.

Wernersson et al.  (2015) discusses  some of the common bioanalytical  tools that  could be used in  different
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monitoring programmes to link the chemical and ecological status required for assessments of waterbodies by

the EU WFD. Furthermore, ecotoxicological investigations of historical sediments provide the opportunity to

characterize, assess and compare the burden caused by human activity before and during certain time periods of

intensive anthropogenic impact on lake-catchment areas. Biomarkers such as the lipid biomarker fraction of the

organic matter in lake sediments can be used to reconstruct historical changes in a lake system including changes

in  primary  productivity,  sedimentary  sources,  climate,  anthropogenic  influences,  diagenetic  alterations  and

recovery rates (Brandenberger et al. 2008; Lu and Meyers 2009; Meyers and Ishiwatari 1993; Zhou et al. 2005).

This helps to define at which time natural and undisturbed conditions occurred in a lake system and when the

system  became  impacted.  By  combining  bio-  and  chemical-analytical,  ecotoxicological,  geochemical  and

archaeological data, it might also be possible to narrow down or even identify the source of contamination. 

A proof-of-concept study was carried out by our group to demonstrate that the use of multiple lines of

evidence  with  sediment  layers  across  different  time  periods  (i.e.,  multi-time  slice)  can  be  used  to  identify

pollution signatures in lake systems. Multiple slices of sediment were examined from different sediment cores

collected from a lake, Stadtsee, in Bad Waldsee, Germany, a key area of human settlement for the past 6000

years (e.g., region was settled since the Late Neolithic according to archaeological data). Comprehensive data

regarding archeology and pollen spectra was available for the sediment cores and the dating of the sediment

cores was performed through comparison of the pollen record with other, absolutely dated pollen profiles of the

same  region   (Fischer  et  al.  2010).  The  activity  of  the  enzyme  ethoxyresorufin-O-deethylase  (EROD)  was

analyzed from different sediment slices according to the protocols provided elsewhere (Heger et al. 2012; Seiler

et al. 2006). The rainbow trout liver cell line (RTL-W1) EROD bioassay is an approved biomarker for dioxin-

like contamination and Ah receptor agonists (so called dioxin-like activity) that provides a sensitive indication of

cellular  changes at the enzyme level.  The investigation demonstrated that  bioanalytical  approaches could be

adapted for minute quantities of sample, in the mg quantity range. Furthermore,  the resulting activity of the

EROD enzyme (Fig. 3) showed large differences among the different limnic archives expressed as biological

(i.e., bioassay-derived) toxicity equivalent quotient (BEQ or TEQ) values (Eichbaum et al.  2016). The BEQ

values  represent  the strength of effect  expressed  relative to  the concentration of a  reference  substance.  The

greater the BEQ value, the stronger the contamination of the sediment layer. Segments from the High Middle

Ages (10th - 12th century AD) revealed dioxin-like activities six times greater than found for uncontaminated

horizons.  The  resulting  BEQ  values  from  the  sediment  cores  represent  a  toxicity  equivalent  to  2,3,7,8-

Tetrachlorodibenzo-p-dioxin (TCDD), a highly potent environmental contaminant. The determined BEQs of 200
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to 700 pg TCDD/g sediment already exceeds the 100 pg/g threshold for playing grounds from the German

Federal  Soil  Protection  Act  (BBodSchG  1998)  and  approaches  the  threshold  of  1000  pg/g  for

residential/recreational areas. The BEQ values correspond well with maxima of charcoal and pollen of culture

indicators  from  within  the  analyzed  sediment  core  samples  (Fischer  et  al.  2010).  This  proof-of-concept

demonstrates that biomarkers such as the EROD induction can also be suitable for small quantities of samples

(as available in some lake sediment cores) with low or medium load of pollutants. As a result, bioanalytical tools

such as biomarkers should be considered as a useful tool as part of paleoecotoxicological studies. By combining

charcoal  concentrations,  changes  in  the  diversity  of  trapped  pollen,  and  bioassays,  pollution  profiles  were

identified in different sediment layers ranging from the Middle Ages to pre-industrial activities. Our findings

provide initial support that multiple lines of evidence from different time slices are suitable for the investigation

of environmental dynamics and consequences of anthropogenic impacts.

8. 2.5 Fate of pollutants

Long-term  persistence  and  availability  of  environmental  contaminants  associated  with  soils  and

sediments under global change conditions is a key issue in environmental risk assessment. Multiple processes on

different  temporal  and  spatial  scales  influence  particle  and  contaminant  patterns,  as  well  as  sorption  and

desorption processes and, thus,  the availability of potential  toxicants for organisms in ecosystems,  including

humans.  Rising  temperatures  have  a  direct  influence  on  all  chemical  reactions,  as  well  as  transport  and

partitioning phenomena, such as diffusion and sorption processes (Schwarzenbach et al., 2003). Other direct and

indirect impacts of climate change, including change of the carbon cycle, amount of precipitation and related

extreme events,  as well as land-use changes and modification of human activities, may have an even greater

influence on the availability of pollutants. These types of direct and indirect impacts can modify the quantity and

quality  of  amorphous  organic  matter  (e.g.,  lignins,  polysaccharides,  lipoproteins,  amino  acids,  lipids,

humic/fulvic  acids)  and  carbonaceous  organic  matter  (e.g.,  black  carbon,  kerogen,  and  coal)  in  sediments,

thereby influencing concentrations and availability of contaminants in the sediment (Cornelissen et al. 2005;

Lamon et al. 2009; Lehmann et al. 2002; Lücke et al. 2003). To unravel the complex processes associated with

climate change and pollution, analyses of lake sediments that have accumulated over centuries and millennia will

help us to understand the availability of sediment-associated compounds and to assist in the assessment of future

contaminant behaviour. Combined, these analyses will assist in predicting environmental risks to the biosphere. 

While  some  pollutants  have  been  emitted  since  pre-historic  times,  such  as  pyrogenic  polycyclic

aromatic  hydrocarbons  and  polar  derivatives  thereof,  as  well  as  human  faecal  sterols,  synthetic  organic
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chemicals have only been produced since industrialization and emitted over the last century. Considering the

different time frames, the analysis of both the historical and recent pollutants archived in sediment may be used

to understand their bioavailability and fate under different environmental and climatic conditions. It has been

shown that the aging of contaminated sediment particles over years and decades reduces bioavailability (Harkey

et al. 1995), although there is not yet information available for longer periods of time. It may be hypothesized

that  bioavailability  and  toxicity  of  historical  pollution  is  reduced  by  the  diffusion  and  binding  of  organic

compounds  to  the  matrix  of  organic  and  carbonaceous  particles  and  coating,  as  well  as  the  increase  of

carbonaceous carbon relative to degradable organic carbon. However, this hypothesis still must be tested and

confirmed  because  the  decay  of  organic  material  carrying  persistent  organic  pollutants  may  also  have  the

opposite effect and increase the bioavailability and toxicity of contaminants. Additional studies are also required

on factors that may influence the bioavailability of pollutants archived in sediment, such as physical-chemical

properties, aging and conditions of aging. In-depth analysis of lake sediment cores integrating proper dating,

carrier  particle  identification  and  characterization  together  with  pollutant  pattern  analysis  and  desorption

experiments may help to address these issues and relate them to knowledge on climate conditions and historic

land-use.

9. 3 Integrating dynamic lake models into paleolimnology

As paleolimnology is based on linking biogeochemical signals in sediments to the ecological state of the

lake and its catchment,  existing modeling approaches for paleolimnological  data are dominated by statistical

techniques. While the relationships between the large number of variables in paleolimnological studies may be

effectively analysed by such static modeling approaches, the dynamic processes mediating these signals often

remain  undetectable.  Those  paleolimnological  signals  related  to  fluxes  of  carbon,  nutrients,  and  bioactive

substances are, however, formed by ecosystem dynamics that, in turn, are driven by climatic, hydrological, and

ecological  processes.  In that  sense,  the lake is not  only a passive sampler  that  is archiving signals  from its

environment, but it is also a reactor that is dynamically transforming energy and matter in a variety of ways (see

Fig. 1). We therefore recommend the introduction of dynamic ecosystem models (e.g., Mooij et al. 2010) as a

new tool into paleolimnology in order to establish a mechanistic framework for studying the dynamic processing

of  matter  and  energy  within  lakes.  By  such  a  framework,  external  forcings  and  the  biogeochemical

transformation processes can be mechanistically linked to paleolimnological signal formation. 

Dynamic lake ecosystem models simulate nutrient and carbon cycling in lakes by accounting for the

major processes involved in sediment-water interactions, water and gas exchange, population dynamics, and the

ecological food web. Since major driving variables of these models are time-series of meteorological data and
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hydrological inputs from the catchment (mainly water, nutrients and carbon components), these models provide

interfaces to climatic conditions and catchment characteristics. Prominent examples of lake ecosystem models

include  papers  on  Lake  Zürich  (Omlin  et  al.  2001),  Lake  Kinneret  (Bruce  et  al.  2006),  Lake  Washington

(Arhonditsis and Brett 2005), and Lake Constance (Rinke et al. 2010). There models are practically used, for

example, in water quality management of lakes, such as the evaluation of effects from anthropogenic stressors,

including climate change or eutrophication (Gal et al. 2009; Mooij et al. 2010). Lake models usually consist of

two interacting submodels: first, a physical lake model simulating thermodynamics and hydrodynamics of the

waterbody,  and second,  a physical  model  is  coupled to an ecological  model  simulating biogeochemical  and

community dynamics within the ecosystem. 

To demonstrate the contributions that ecosystem models can deliver to paleolimnological studies, the

ecosystem changes during the warming phase after the last glaciation is an excellent example. The warming is

expected to induce discontinuous changes in the mixing of a given lake (e.g., mixis type of lake from cold-

monomictic over dimictic to warm-monomictic or even oligomictic; Boehrer and Schultze 2008). The changes in

mixis  type  correspond with  major  shifts  in plankton succession and primary productivity.  Lake  models  can

predict the critical warming intensities necessary to induce these shifts in a given lake system and the timing of

these  critical  warming  intensities  in  climatological  temperature  reconstructions  can  be  compared  to

corresponding shifts in paleolimnological records in that lake. 

10. 4 A holistic framework to model lake ecosystems in a social-ecological context

Since the connection between human activity and climate change became evident, it has become clear

that  social-ecological  systems  are  complex  adaptive  entities  which  are  tightly  connected  to  human  society

(Leuteritz and Ekbia 2008; Muradian 2001; Walker et al. 2004). The awareness of interactions between ecology

and society resulted in the development of the concept of social-ecological systems (e.g., Stockholm Resilience

Centre),  which  has  recently  been  integrated  in  numerous  research  programs  (see  e.g.,  UFO-Project  at

www.humtec.rwth-aachen.de, Schlüter  et al.  2014).  In brief,  the concept of social-ecological  systems  is  that

humans both influence and are influenced by ecosystem processes in dynamic feedback loops (Cumming et al.

2006).  Thus,  catchment  conditions  in  lake  ecosystems,  determined  by  sociological  development,  have  an

influence on lake ecology and the subsequent signal formation in the sediments (Angeler et al. 2011). Causal

feedback loops from lake systems to the catchment and society often exist due to the influence of lake-use on

social conditions (e.g., by the provision of fish).  In light of such interacting influences, lake ecosystems and

catchment areas are considered as self-organized social-ecological systems (Dearing and Zolitschka 1999). Due
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to industrial development and the resulting land use changes since the beginning of the industrial revolution,

society has become more and more independent from lake systems and the feedback loop from lake to society

has become weaker. Such a scale mismatch (Cumming et al. 2006) can have disastrous consequences for lake

systems such as mismanagement of natural resources and eutrophication. Thus, in terms of systems theory, the

information flow from society to lake ecosystems persisted or was even increased while the information flow

from lake systems to society was  reduced (the term information flow can be exchanged  with  entropy flow,

energy flow,  flow of matter etc.). The importance of such information and energy-related flows for the self-

organization of complex systems has long been recognized (Prokopenko et al. 2009).

In population ecology the reduction of resilience due to human impacts has been shown previously, e.g.,

this effect is strongly connected to the destabilization of feedback loops (Ottermanns et al. 2014) in systems with

strong non-linear dynamics. Destabilizing feedbacks can also result in a decrease in social-ecological resilience

(Cumming  et  al.  2006).  This  feedback  loop  can  be  reconstructed  for  some  systems,  since  currently  lake

ecosystems are assigned a specific value for society, called ecosystem services (e.g., recreation, etc.; Bergstrom

et al. 1996; Bingham et al. 2000; Postel 1997).  The process of adaptive co-management (Folke et al. 2002;

Olsson et al.  2004) provides a possibility to react  to such environmental  feedback and direct these coupled

social-ecological  systems into  sustainable trajectories thereby enhancing their  resilience  (Berkes et al.  2008;

Gunderson  2003).  The  question of  how strongly  such  changes  took place  in  the  history  of lake  ecosystem

dynamics (Arrayás et al. 2000), in extreme cases resulting in discrete phase transitions (e.g., plankton or fish

population dynamics; Medvinsky et al. 2002), should be integrated into an assessment of human impact on lake

systems. This integration would allow for a better understanding of how dependent lake ecosystems were in the

past on catchment conditions in order to derive reference conditions, which will aid in the determination and

prediction of future scenarios of human impact on lake systems (Croke et al. 2007; Rotmans and van Asselt

1999). Thus, we propose an integrative modeling approach to enable an integrated assessment based on a more

holistic  principle  in  order  to  predict  the  future  development  of lake  ecosystems  within  their  catchment  and

sociological context. 

In  an integrative  assessment  approach,  mechanistic  modules  can be used  to  elucidate  questions  for

which we already have theoretical  knowledge about  the processes (e.g.,  nutrient  cycling in lake sediments),

whereas statistical modules can be used to answer questions for which we must rely on empirical evidence (e.g.,

complex  food  web  interactions  in  lake-catchment  systems)  (Kendall  et  al.  1999).  In  large-scale  modeling

approaches, it is important to address challenges to integrate variables from the different scientific disciplines
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(ecology, ecotoxicology, hydrology, geomorphology, archeology, paleolimnology, sociology, chemical analysis

etc.), from different domains (spatial and temporal), on different scales (short-term processes such as population

growth, as well as long term processes including climate change), of different nature (metric, ordinal or nominal)

and of different uncertainty (objective quasi-experimental and subjective domain knowledge). A wide range of

techniques are needed to tackle such challenges, including multivariate statistics (ordination, structural equation

models), time series analysis  (frequency-domain, time-domain),  pattern recognition (support vector machines,

neural networks) and dynamical systems theory (attractor reconstruction). Additionally, special attention must be

given to the integration of different  methods and types of evidence (quantities from empirical  evidence and

qualities from expert evidence). As such, Bayesian approaches are promising tools to incorporate probabilistic

knowledge (Croke et al. 2007; Ticehurst et al. 2007), which is indispensable when predicting future development

under uncertainty.

The complexity  of catchment-related processes within  transformation of climate and human impact

signals (Fig. 1) must consider spatial and temporal variations of archived attributes. Integrative data modeling

with multivariate time series statistics use these spatial and temporal variations in order to obtain qualitative and

quantitative  information  about  transformation  processes  from catchment  characteristics  to  paleolimnological

records (e.g., Hartmann and Wünnemann 2009). Given a sufficiently large dataset, the development of testable

causal hypotheses regarding spatial and temporal interactions of processes is possible by integrating knowledge

gained from paleoecology, ecotoxicology, chemical analysis,  geochemistry and archeology. On the one hand,

resulting  hypotheses  can be tested against  observational  data in a  statistical  manner  (e.g.,  Ottermanns  et  al.

2011). On the other hand, dynamic simulation models can be used to test the hypotheses against the theoretical

appraisal regarding biogeochemical transformation processes and the driving mechanisms of paleolimnological

signal formation. If expectations do not meet the simulation results, hypotheses have to be rejected or the model

structure must be improved. In this way, results from statistical evaluation feed back into dynamical lake models

(e.g., in form of time-series models or model validation). 

This integrated approach tends to combine theory-based models with data-based models in a hybrid

manner,  interrelating  theories  and  data.  The  application  of  this  idea  of  integrated  approach  has  been

demonstrated in  recent  research to  large-scale  aquatic  ecosystems,  such as the  Yangtze  Three Gorges  Dam

reservoir (e.g., Yangtze-Project at www.yangtze-project.de; Scholz-Starke et al. 2013). It was concluded that the

combination of theoretical models, empirical data, and expert knowledge is in accordance with the concept of

Integrated Environmental Modelling (IEM; Argent 2004). This is an important methodology of environmental
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management and decision-making (Jopp et al. 2011) which allows for the extrapolation and transfer of results to

other locations, to different scenarios, and into the future.

11. 5 A multi-time slice weight-of-evidence approach

For the evaluation of the ecological  status,  the EU WFD requires the identification of type-specific

reference conditions for surface water bodies (Bennion and Battarbee 2007). However, according to results of

various research projects carried out all over Europe, it is nearly impossible to find sampling sites that represent

uncontaminated reference conditions. To overcome this shortcoming, the WFD requests to establish reference

conditions on modeling or expert judgment using data from historical, paleoecological and other investigations

(EC 2006). It has also been recognized that paleolimnology is a pivotal approach for defining pre-anthropogenic

reference  conditions  (Bennion  and  Battarbee  2007;  Hübener  et  al.  2009;  Smol  2009).  For  example,

paleolimnological studies of 14 dimictic calcareous lakes located in the northern German lowlands (Hübener et

al. 2015) demonstrated that the temporal onset of anthropogenic impact is lake-specific and, therefore, the timing

for reference conditions is variable and depends on catchment to lake volume ratios.  Thus,  impacts on lake

systems are complex and need to consider not only temporal and spatial variables, but also additional lines of

evidence in order to gain comprehensive insight into historical and present environmental shifts. Complementary

tools and procedures are needed to translate paleoenvironmental and paleolimnological records (i.e., combination

of  the  biological,  chemical  and  physical  state  of  the  environment/waterbodies  at  the  time  of  deposition,

established by the sedimentary record) into quantitative dimensions of the respective long-term environmental

change  and  to  identify  the  driving  forces  of such  impacts  (e.g.,  climate  change,  intensity  of  land  use,  soil

treatment, emission rates and sources of pollutants, density and type of settlements). Knowledge of long-term

environmental changes as well as frequencies of extreme events and their impacts on aquatic ecosystems have

the potential to help define options for lake management and restoration. 

In the context of recent ecology and ecotoxicology, the Sediment Quality Triad (SQT) approach is one

of the most successfully applied conceptual frameworks to acquire comprehensive knowledge and ecological

relevance  regarding  sediment  contamination.  The  SQT is  a  weight-of-evidence  (WOE)  approach  originally

consisting  of  three  lines  of  evidence  (Chapman  1990):  (i)  sediment  chemistry  to  determine  chemical

contamination; (ii) sediment bioassays to determine toxicity; and (iii) benthic community structure to determine

the status of resident fauna arguably most exposed to any sediment contaminants. To date, these three original

components  serve  as the  primary  basis  for  the  SQT, providing a  screening-level  ecological  risk  assessment

(ERA) of contaminated sediments (Chapman and McDonald 2005). Nevertheless, the SQT was never intended

to be limited to only three specific lines of evidence. Shortly after its development, Chapman (1986) conducted a
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SQT  study  in  which  he  substituted  bottom  fish  histopathology  for  benthic  infaunal  community  structure.

Recently, Chapman and Hollert (2006) addressed whether the SQT could become a tetrad, a pentad, or possibly

even a hexad based WOE approach, proposing additional lines of evidence, such as in situ assays, mechanism-

specific  endpoints and whole sediment  assays  in order to achieve a more complete  overview of the state of

aquatic ecosystems. Hecker and Hollert (2009) also suggested the inclusion of EDA as an additional line of

evidence in WOE studies in order to identify the pollutants responsible for the effects in the laboratory and the

field.  Gerbersdorf  et  al.  (2011)  proposed  a  “triad  plus  x”  approach  combining  advanced  methods  of

ecotoxicology, environmental microbiology and engineering science.

Based on the tools and knowledge available to assess historical, current and future impacts, we propose

the use of a multi-time slice WOE approach (Fig. 2) that utilizes the previously discussed lines of evidence from

many interdisciplinary fields. The goal of the multi-time slice WOE approach is to provide a comprehensive

overview of how the environment was altered by human activities over the last millennia as a basis for future

predictions.  Within  this  new conceptual  framework,  the  classical  SQT approach will  be applied in order  to

investigate the toxicological effects of well-defined time slices of sediment samples, but expanded further using

interdisciplinary  methods  from the  areas  of  archaeology,  paleolimnology  and  paleoecotoxicology.  Sediment

geochemistry  will  provide  knowledge  of  the  type  of past  human  activities  (Section 2.1),  paleolimnological

records  of  pollutants  (Section  2.2)  and  the  fate  of  pollutants  (Section  2.5).  Investigation  of  the  benthic

community  structure  will  also  be  supported  by  data  on  ecological  effects  of  pollutants  (Section  2.3).

Additionally,  bioassays  and  other  bioanalytical  tools  (Section  2.4)  will  support  paleoecotoxicological

investigations into the effects of pollutants from the cellular to ecosystem level. Statistical modeling will then be

used to (i) integrate data from paleoecology, ecotoxicology, chemical analysis, geochemistry and archeology, (ii)

connect  results  to all  integrated research tasks,  (iii)  help  identify  reference  conditions,  (iv)  improve  process

understanding, (v) elucidate patterns of contaminations on spatial and temporal scales, and (vi) extrapolate the

findings  to  multiple  conditions.  The  multi-time  slice  WOE  approach  therefore  goes  far  beyond  pure

paleolimnological investigations within the WFD as proposed previously (Bennion and Battarbee 2007; Bennion

et al. 2011). We aim to identify and define key methods to describe lake system changes and their impact on the

environment,  rather  than  only producing  additional  data  for  statistical  evaluation in  terms  of  a  multi-proxy

analysis. The multi-time slice WOE approach will allow for a better understanding of the impact of humans on

lake ecosystems, and may be used in future studies in order to gain insights into reference conditions in the same

catchment area – a so far not solved but urgent need in the context of the European WFD.
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17. Figure captions

Fig. 1 Theoretical framework illustrating the history of signals in catchment-lake systems.

Fig. 2 Schematic of the proposed multi-time slice weight-of-evidence approach. The classical sediment quality

triad approach (encompassed in triangle) is amended with archaeological, paleolimnological and limnological

methods. This provides valuable insight into human impact, defines reference conditions and eventually allows

for derivation of environmental  quality standards (EQS) as required by the EU WFD. The cylindrical  slices

represent a stratified sediment core sample. 

Fig.  3  Results  of  a  proof-of-concept  study from the  Hollert  lab  (ecotoxicology)  and  Rösch lab (vegetation

history,  archeology)  investigating  dioxin-like  activities  (bioassay-derived  toxicity  equivalent  quotient;  BEQ)

using a modified cell-based EROD assay with sediment extracts from lake sediment core slices, Bad Waldsee

Stadtsee (BWS, Germany). The age of the sediment, dated from the pollen record, from left to right is Modern

Age (most probably older than 18th century AD), High Middle Ages (10th to 12th century AD), and Iron Age

(ca. 1050 BC – 1 BC).
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