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Abstract 

The human gut microbiome represents a complex ecosystem contributing essential functions 

to its host. Recent large-scale metagenomic studies have provided insights into its structure 

and functional potential. However, the functional repertoire which is actually contributed to 

human physiology remains largely unexplored. Here, by leveraging recent omics datasets, we 

challenge current assumptions regarding key attributes of the functional gut microbiome, in 

particular with respect to its variability. We further argue that the closing of existing gaps in 
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functional knowledge should be addressed by a most-wanted gene list, the development and 

application of molecular and cellular high-throughput measurements, the development and 

sensible use of experimental models as well as the direct study of observable molecular 

effects in the human host. 

 

The functional microbiome 

The complex assemblages of microorganisms which populate the human gastrointestinal tract 

are emerging as key players in governing human health and disease. Several essential 

functions conferred by the gut microbiome to the human host testify to its importance. These 

include the fermentation of indigestible food components into absorbable metabolites, the 

synthesis of essential vitamins, the removal of toxic compounds, the outcompetition of 

pathogens, the strengthening of the intestinal barrier as well as the stimulation and regulation 

of the immune system (see recent reviews [1-7]). Most of these functions are interconnected 

and tightly intertwined with human physiology. For example, products of microbial 

fermentation, such as short chain fatty acids, represent essential substrates for intestinal cells 

and play important roles in immunomodulatory processes, such as T-cell differentiation, 

which in turn may affect the gut microbiome. Although much has been learnt about these 

tight interrelationships through carefully conducted mechanistic studies, the extensive 

diversity of microorganisms and molecules in the gut implies that our understanding of this 

expanse requires a comprehensive toolset to enable new discoveries. More specifically, the 

emergent functional complement which is actually contributed to human physiology by the 

gut microbiome requires detailed assessment and systematic study. 

A widely applied strategy to deconvolute the complex of interactions and to provide avenues 

to improve human health is constituted by a triad comprising (i) high-resolution, high-fidelity 
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and high-throughput omics (see Glossary) of microbial biomass and comparative analyses, 

(ii) hypothesis testing in relevant model experimental systems, and (iii) intervention trials 

in humans. Ideally, the first type of study should yield testable hypotheses relating to the 

nature of functions conferred by specific microbiota to human physiology, how and why 

these functions differ between individuals (most notably between diseased and healthy 

individuals) and their impact on human health. In this context, much has been described 

regarding the structural characteristics of the gut microbiota through the application of 16S 

rRNA gene amplicon sequencing and metagenomics [8]. However, to formulate concrete 

hypotheses for mechanistic studies aimed at understanding dependencies between host and 

microbes, observational studies should pinpoint specific functions of the microbiome to 

specific microbial populations conferring these. In addition, these studies should identify 

biologically relevant and informative read-outs of health status. Here, functional omics are 

indispensable. 

 

Variability and information content of the functional microbiome 

The generation and integration of functional omics read-outs derived from 

metatranscriptomic, metaproteomic and metabolomic analyses allow a detailed functional 

assessment of the human gut microbiome [9-18]. It has been observed that the functional 

omes display greater variability and sensitivity to perturbation when compared to the 

information content of the metagenome [9-12,14-16,18,19]. Therefore, functional omics are 

expected to more accurately portray health and disease states [12,13,18,20]. For example, 

changes in gene expression have been detected in response to dietary interventions, such as 

fermented milk products [19], and the oral intake of medication [14], despite only minimal 

changes in observed community structure in both cases. These observations are seemingly in 
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contradiction to the widely accepted [21,22] interpretation of metagenomic data whereby 

metagenomic functional profiles are less variable compared to taxonomic profiles [23] 

(Figure 1A). However, the latter notion may not faithfully reflect reality and may be due to 

several confounding factors. From a methodological point of view, commonly applied 

normalization techniques which do not take into account the taxonomic profiles have been 

shown to underestimate functional variability [24]. In addition, aggregation of genes into 

broad functional categories, such as whole metabolic modules, based primarily on 

homology irrespective of the direction of metabolic flux, contribute to the impression of 

stability. Finally, large proportions of the functional genes in a metagenome are not known 

and their potential variability is not taken into account at all (see also discussion below). 

Besides this, we [18] and others [16] have observed that the functional profiles in 

metatranscriptomes are more variable compared to metagenomic profiles, even when based 

on very broad functional categories [25] (Figure 1B and 1C).  

The central questions that determine if functional omics can reveal important functional 

elements of the microbiome are whether the observed variability is biologically meaningful 

and whether a measured microbial functional state is informative beyond a single snapshot. 

For the metagenome, individual-specific taxonomic profiles have been demonstrated [26,27]. 

It is noteworthy that also for functional profiles, greater inter-individual than intra-individual 

variation is observable, at the metagenomic, metatranscriptomic as well as metaproteomic 

levels (Figure 1D, see also Box 1) [18]. Differences in functional profiles provide direct 

pointers to the functions involved in microbiome-host interactions. Given the differences 

between metagenomic and metatranscriptomic profiles, the discriminatory power of 

metatranscriptomics needs to be assessed. Based on our own datasets [18] and estimation 

methods for sample sizes necessary to reach a targeted power [28,29], metatranscriptomic 
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functional profiles are at least as (if not more) powerful in resolving differences as 

metagenomic profiles (Figure 1 E&F). Therefore, the functional omes can provide insights 

into microbial activity and highlight significant microbiome-conferred traits. Our own 

observations also indicate that the functional omes reflect persistent individual-specific 

physiology, and that this signal is not dominated by non-specific momentary fluctuations. 

Another fundamental question with respect to microbiome research is which gut 

compartment is reflected by meta-omics data obtained from faecal samples. Metagenomic 

data reflect a mixture of different locations along the gastrointestinal tract as well as spores 

[30]. In contrast, the relative abundance of housekeeping transcripts has been found to be 

related to the site of activity of specific microbial taxa, such that oral species have very low 

transcript levels in stool samples while colonic organisms are highly active [16,18]. 

Resolving gene expression to the taxon of origin and relating this to the overall activity of 

that taxon should further help in distinguishing in situ activity from noise in functional 

profiles. Discovery of compartment-specific functional features, which are important in the 

context of health and disease [31], may therefore be facilitated by metatranscriptomics (but 

see also Box 1 for the discussion of other omics technologies). 

The observation that metatranscriptomic functional profiles are more variable than might be 

inferred based solely on metagenomic information suggests that non-housekeeping genes, 

even those with high genomic copy numbers, are not stably expressed in situ [10,11,16,18]. 

We have recently developed an approach which allows taxon-specific resolution of expressed 

genes [18]. When applying this method to link functional genes to the genomes which encode 

them, we observed that functions of interest may be contributed to the community-wide 

phenotype by single or multiple microbial populations in the absence of observable 

differences in the respective populations’ abundances [18]. The identity of these populations 
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may differ in different individuals, as the microbiota may have widely divergent taxonomic 

compositions [18]. The variability observed on the level of gene expression may very well be 

a prerequisite for stable community function. Consequently, resolving functional differences 

at multiple omic levels to the taxa contributing them is necessary in order to understand when 

and how these functions may impact human physiology. 

 

The unknowns 

One challenge for microbiome research in relation to elucidating phenotypic impacts on the 

host is posed by unknown taxa and functions. While the overall proportion of protein-coding 

genes for which a molecular function cannot be predicted in the human microbiome (40 to 

70 %, depending on the prediction method [18,32,33]) is still generally high, this proportion 

is higher the rarer a microbial gene is in the human population (Figure 2A). Furthermore, this 

is especially the case when encoded in taxa which are not well described or even 

uncharacterized (Figure 2B). In many recent studies, genes without known functions or those 

from uncultured taxa have been completely ignored, because metagenomic data was analysed 

by mapping to annotated reference genomes. These approaches often make inefficient use of 

the data [34], are likely to introduce biases in the interpretation [35] and do not have a handle 

on the large proportion of horizontally transferred functions in the microbiome [36] as well as 

on strain-specific functional gene complements [37,38] which make up taxa-specific 

pangenomes. Horizontally transferred and strain-specific genes may be essential [39], in 

particular when they code for medically relevant functions such as antibiotic resistance [40] 

or toxins [41]. In this light, the prediction of functional potential [42,43] or even metabolic 

outcome [44] based on rough (i.e. genus-level) taxonomic profiles must be regarded as 

questionable. 
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Ignoring functional unknowns also limits the potential that metagenomic and 

metatranscriptomic approaches possess in creating new knowledge. For example, approaches 

to compare abundances and genomes of uncultured taxa, which contribute approximately 

40 % of the metagenomic data, are well established [45,46]. Similarly, collections of 

orthologous groups and protein families without known functions have been established 

[32,47,48], allowing for cross-sample comparisons. These approaches facilitate the 

identification of biologically significant entities, for example because they are found to be 

enriched or depleted in individuals with a disease or consistently highly abundant and/or 

expressed. For instance, in our recent multi-omics study, 9 % of the differentially abundant 

transcripts (between families or between individuals with type 1 diabetes and their healthy 

family members) were from genes encoding proteins with domains of unknown function. 

Likewise, in the integrated gene catalogue (IGC) of the human gut microbiome [25], 14 % of 

the genes without predicted known functions can be associated with orthologous groups 

without known function and, importantly, we found 28 % of these genes to be expressed in 

our own data [18] (Figure 2C).  

Several experimental approaches to gain knowledge on “the dark matter” of the human 

microbiome have been proposed, in addition to the proven combination of classical 

microbiological techniques with functional genomics. “Functional metagenomics” involving 

the large-scale in vitro screening of metagenomic sequences have been developed [49-51], 

including use of microfluidics to assay millions of metagenomic variants of apparently 

similar genes [52]. “Culturomics”, the combination of miniaturized cultivation and advanced 

sequencing approaches, e.g. to generate metagenomes from enrichment cultures, allow for the 

detailed characterization of organisms that are not culturable at a traditional laboratory scale 

[53,54]. The elucidation of unknowns that differ in health and disease as well as the specific 
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role they play in microbiome-host interactions are an important challenge for the coming 

years.  

 

Beyond single functions 

Another crucial question regarding the contributions of microbiome-conferred functions to 

human physiology is related to the dynamics that govern community function and to the 

functioning of the microbial ecosystem as a whole [55]: does ecosystem functioning, in 

addition to or independent of specific microbial functions, play a role in human health and 

are generalizable patterns discernable from multi-omics? At a fine scale, the gene content of 

the gastrointestinal microbiome is remarkably different between individuals. For example, 

the majority of the unique genes in the IGC is not found in more than a few percent of the 

samples (Figure 3A) [25]. These unique genes, however, carry common functions. In fact, 

functional annotations in the IGC are usually carried by many unique genes, both with 

respect to the whole catalog as well as the subset present in single samples (Figure 3B). In 

our recent study [18], we also observed that most functions in microbial metabolism are 

encoded (Figure 3C) and expressed (Figure 3D) by a number of different microbial 

populations in any given sample.  In addition, we have observed that the expression of genes 

by the same population can change over time, even when the population’s relative abundance 

does not change. Finally, the relative transcript abundance of a gene function with respect to 

the whole community is independent of the number of different microbial populations that 

carry it (Figure 3D). These results imply that microbiome-conferred services need to 

explored with respect to their structural and spatial dimensions in relation to their effect on 

host physiology. 
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The above observations are likely a reflection of functional redundancy within the healthy 

human microbiome. Functional redundancy can confer resilience [56] and therefore can 

stabilize ecosystem functionality during perturbations [57], which, in the context of the 

human microbiome, is generally assumed to lead to both stability and health [58]. However, 

the actual relationship between functional redundancy and stability has not been studied in 

the human gut microbiome, in contrast to other microbial ecosystems [59,60]. It is not even 

known whether there is true redundancy, as different genomic contexts may determine the 

impact of genes [61] and, within the gut microbiota, the interaction with the host [62,63]. The 

assumption that functional redundancy of the microbiome is related to human health is 

primarily based on an apparent relationship between taxonomic stability and the maintenance 

of taxonomic and functional diversity over time [18,64,65]. However, for the human gut 

microbiome, it is currently unclear whether diversity is a prerequisite for stability [66], which 

has been shown in other contexts [67-69]. Functional richness has also been suggested to 

positively impact human health [70] and decreased functional diversity has been observed in 

several diseases [22], although the observed functional richness may be also be influenced by 

colonic transit time [71]. A higher metabolic diversity ensures digestibility of a wider range 

of nutrients [72] and potentially increases overall energy harvest. Metabolic diversity may 

also offer a protective potential against environmental toxic substances [3]. Despite the likely 

importance of functional diversity, the exact mechanism by which the human host benefits 

from redundant, diverse and/or stable communities has not been systematically studied [73-

75]. In order to resolve any clear relationships, future analyses of the microbiome in the 

context of health and disease will have to assess functional redundancy. While most existing 

studies have examined single time points, the significance of stability of the microbiome will 

have to be addressed by time series studies during health and disease as well as experimental 
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perturbations. These studies are also necessary to infer causal links and determine whether 

and how ecosystem functions of the gut microbiome can be shaped by interventions.  

 

Concluding remarks: A map to bring it all together 

Given the potentials and challenges highlighted above, future functional studies will have to 

integrate and compare reference-based alignments and de novo genome reconstructions, the 

wealth of existing omics datasets, functional knowledge and orthology-based annotations to 

home in on the functions that really matter (Figure 4, Key figure). The functional knowledge 

should also be systematically linked to the taxonomic structure [76-78] of the analysed 

samples at strain-level resolution [26,79-84] to explain microbiome-conferred phenotypic 

traits from a mechanistic point of view [85]. In this context, it will be essential to contrast and 

identify phenotypic traits which are widely distributed across constituent taxa, i.e. those that 

are redundant, to those which are only encoded and expressed by specific taxa. In either case, 

identification of functional genes of interest should be performed first, followed by their 

linking to constituent taxa along the premise of “form follows function” or “function first, 

taxa second”. Analogous to the most-wanted taxa list [86], which was hunted down to a large 

extent within half a decade [87], a functional most-wanted list should also be therefore 

established by the community. Such a functional most-wanted list should explicitly take 

unknowns into account, based on information from omics experiments, such as when or 

where the genes and products are observed. This information, as well as potential interaction 

partners [88], should result in hypotheses for assays to elucidate molecular functions [89]. 

Another needed resource to understand our “second genome” is an Online Mendelian 

Inheritance in Man (OMIM)-like framework that would list observed links between 

(functional) microbial genes and human phentoypes. Such a resource should draw on existing 
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metagenomic or functional meta-omic data [90], in addition to functional reference genome 

databases [48,91]. Finally, this resource should already anticipate the omes and readouts 

which are poised to make an impact in the future, such as growth of different populations 

within the microbiome [92,93], regulatory elements [94,95] and sRNAs [11]. Additionally, 

several recent studies have demonstrated the power of integrating functional [18,96-102] and 

genetic data of the human host [103-105], which should likewise be linked to microbiome 

data in large-scale databases. This knowledge will be essential to understand the interaction 

between the microbiome and the human host.  

A detailed representation and understanding of the functional microbiome is an essential 

prerequisite for future rational interventions leveraging the gut microbiome to alter host 

phenotype (see Outstanding Questions). To assess the impact of specific microbial functions 

on human physiology and explain their mechanism of action, experiments in representative 

models will be critical. To model cellular interactions and reach high throughputs, 

miniaturized in vitro models of the human gut interface [106,107] should therefore be 

employed. Animal models, in spite of notable limitations [108-110], can be used to observe 

systemic impacts. These studies have yielded remarkable insights through detailed analysis 

[111-113]. Finally, once useful and safe candidates to improve human health have been 

established, intervention trials in human cohorts, through diet [114,115] and/or faecal 

transplants [116,117], faecal components [118], such as small molecules, or faeces-derived 

selected microbiota [119] could be performed. End-points of these studies should involve the 

monitoring of health-related physiological markers as well as in detail follow the induced 

changes in the microbiome over time using omics measurements to understand the role of the 

microbiome-borne functional complement in governing human health and disease. 
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Box 1: Which functional omes to look at? 

Metatranscriptomics, by highlighting changes in expression, reveals a more dynamic picture 

of the microbiome than metagenomics. The technology allows high sampling depths and high 

taxonomic resolution of functional processes. Although metatranscriptomic profiles confer 

essential information on functional gene expression within microbiomes, metaproteomic 

profiles may be a better indicator of the actual phenotype. However, metaproteomic analyses 

are not yet able to achieve the information content or sampling depth of sequencing-based 

technologies. Due to this fact, highly abundant, stably expressed conserved proteins make up 

the majority of data points, leading to a higher apparent stability of metaproteomic profiles 

[13]. However, the current limitations may be overcome through improvements in protein 

preparation [17], identification [120,121] and the adaptation of quantitative methods [122]. 

Metabolomics, by directly measuring metabolic outcomes, should be the most sensitive with 

respect to resolving the functional microbiome and quantitative methods such as proton 

nuclear magnetic resonance (NMR) analyses are able to capture some of the most important, 

high abundance microbial metabolites, such as short chain fatty acids. Although advanced 

metabolomic methods allow the resolution of thousands of metabolite features from human 

microbiome samples, current limitations include a very large fraction of “unknown” 

metabolites (well in excess of 90 % of measured features may be unknowns even when 

searching metabolomic data against comprehensive databases[123]) as well as the difficulty 

of linking specific metabolite features to their microbial provenance. Advances in 

computational mass spectrometry as well as in de novo metabolic network reconstruction and 

modelling will allow some of these limitations to be addressed in the future. Given the 

different limitations of the single omic levels as well as their complimentary information 
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content, the integration of multi-omic data can also help to close gaps when assessing gut 

microbial activity in situ by bridging genomic content to final phenotype.   

 

 

Glossary  

Experimental systems that can be employed as a model for the human microbiome and are 

amenable for manipulation range from mixed-species and automated culturing, cell-culture-

based co-culture systems, and, as all animals carry a microbiome, animal models, including 

germ-free or gnotobiotic animals, including those with a ‘humanized’ microbiome.  

Functional diversity is a measure of the number and distribution of different functions within 

the community. It is related to gene richness but also to phylogenetic diversity, as microbial 

communities with phylogenetically diverse members often have a wider functional potential. 

Phylogenetic diversity and functional diversity have been observed as traits of human gut 

microbiota which are relatively stable over time.  

Functional plasticity, the ability of the microbial community or its members to adapt to 

perturbations by changing gene expression, can stabilize the taxonomic community structure 

as well as ecosystem functions. 

Functional redundancy, on the other hand, is a measure of the number of different 

populations within a community that are able to perform the same functions. Functional 

redundancy can increase functional resilience, in case perturbations affect the taxonomic 

community structure, which allows for a return to community function, and therefore can 

increase stability.  

Intervention studies seek to manipulate the human microbiome in situ, by means of nutrition, 

probiotics, antibiotics or faecal transplants. 
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Metagenomics refers to the analysis of genomic DNA for mixtures, often unknown, species. 

Its purpose can be to assess the taxonomic composition of a mixed microbial community or 

to elucidate the functional potential of its members.  

(Meta)metabolomics (also referred to as metabonomics mainly in the context of research on 

single organisms) technologies measure intra- and/or extracellular metabolites in and around 

microbial communities. 

Metaproteomics aims to characterize microbial activity by applying the analysis of proteomes 

to mixed-species assemblages. 

Metatranscriptomics is analogously applied to the analysis of RNA of communities, usually 

with the aim to infer activity.  

Taxonomic and functional profiling form parts of most meta-omic studies of the human 

microbiome. Commonly applied categories to describe the functions encoded or carried out 

by the microbiome (the functional complement) usually group genes into metabolism-

centered frameworks, such as the orthology put forth by the Kyoto Encyclopedia of Genes 

and Genomes (KEGG), or the MetaCyc database, or functionally annotated orthologous 

groups based on sequence similarity, such as eggNOG. Increasingly, taxonomic resolution of 

functions of interest within the microbiome is also achieved.  
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Figure Legends 

 

Figure 1: Community-wide view of the variability of encoded and expressed functions in 

the human gut microbiome. (A) High-level functional profiles of 1,267 human gut 

microbiome metagenomes retrieved from the integrated gene catalogue (IGC) of the human 

gut microbiome [25]. (B) High-level functional profiles from metagenomes of our own 

smaller integrated multi-omics study [18] annotated using the IGC [25] in comparison to the 

(C) profiles from metatranscriptomes of the same samples. (D) Comparison of intra-

individual to inter-individual and intra-family to inter-family distances (Jensen-Shannon 

divergence) based on functional metagenomic (MG), metatranscriptomic (MT) and 

metaproteomic (MP) profiles [18]; * P < 0.05, Wilcoxon rank sum test. (E & F) Estimation 

of power to distinguish functional profiles from members of different families based on 

metagenome and metatranscriptome measurements [18] applying limma/voom assumptions 

and the statistical model of Bi et al. [29] (E) and van Iterson et al. [28] (F). (G) Summarizing 

scheme, illustrating functional potentials with limited variability (middle left) and functional 

expression profiles with greater plasticity (bottom left) within an individual over time (t), 

compared to the variability between different individuals’ (i) microbiomes’ functional 

potentials (middle right) and functional expression profiles (bottom right). 

 

 

Figure 2: Genes of unknown function. (A) Relationship between the fraction of 

functionally annotated genes and the frequency of their occurrence according to the IGC [25]; 

annotations: “KO BLAST”: KEGG orthologous group (KO) annotations included in the IGC 

[25], “KO HMM”: HMM-based annotations using KOs [18], “FOAM”: HMM-based 
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annotations using FOAM [32], “eggNOG”: eggNOG [33]-based annotations included in the 

IGC [25], “MuSt HMM”: HMM-based annotations using KOs, Pfam-A-families, TIGR-

families, Swiss-Prot- or MetaCyc enzymes [18], “all”: all annotations by either of the named 

methods. (B) Relationship between the number of annotated genes (by any of the methods 

displayed in A), their relative frequency of occurrence and the level of taxonomic assignment 

in the IGC [25]. (C) Frequency of occurrence [25] and maximum observed expression [18] of 

genes in the IGC. Pink dots highlight genes annotated with orthologous groups or protein 

domains of unknown functions.  

 

 

Figure 3: Functional redundancy in the human microbiome (A) Relationship between the 

cumulative number of unique genes and the frequency of their occurrence. The graph is based 

on the 1,267 human gut microbiome metagenomes retrieved from the IGC [25]. (B) Numbers 

of genes with the same functional annotation, based on KEGG orthologous groups (KO) and 

eggNOG [33] orthologous groups, as published with the IGC [25]. (C) Relationship between 

the number of population-level genomes (“bins”) containing genes annotated with a function 

in microbial metabolism and the corresponding cumulative metagenomic (MG) depth of 

coverage of the genes. (D) Relationship between the number of population-level genomes 

(“bins”) expressing annotated genes and the corresponding cumulative metatranscriptomic 

(MT) depth of coverage. (C & D) Graphs based on one representative sample from a healthy 

individual [18].  
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Figure 4: Roadmap for using functional omics to create new knowledge. Crucial steps are 

the integration of reference genomes, metagenomic data collections and de novo gene and 

genome reconstructions in genome and gene collections or catalogues.  Genes should be 

linked to functions, taxonomic occurrence and expression in different hosts. Genes without 

predicted functions can be grouped by orthology to enable comparative analyses and derive a 

list of “most wanted” yet to be determined functions. Genes with functions that are likely to 

affect human health and/or display suggestive patterns of expression in different human hosts 

should be validated in targeted experiments in model systems and human intervention 

studies.  

 


