This is the preprint version of the contribution published as:

Soofi, M., Ghoddousi, A., Zeppenfeld, T., Shokri, S., Soufi, M., Jafari, A., Ahmadpour, M., Qashqaei, A.T., **Egli, L.**, Ghadirian, T., Chahartaghi, N.R., Zehzad, B., Kiabi, B.H., Khorozyan, I., Balkenhol, N., Waltert, M. (2018): Livestock grazing in protected areas and its effects on large mammals in the Hyrcanian forest, Iran *Biol. Conserv.* **217**, 377 – 382

The publisher's version is available at:

http://dx.doi.org/10.1016/j.biocon.2017.11.020

1	Livestock grazing in protected areas and its effects on large mammals in the Hyrcanian
2	101881, 11811 Mahmaad Saafi ^{1*} Arash Chaddausi ² Thereten Zannanfald ³ Shirka Shakri ⁴ Mahin Saufi ⁵
3	Abbas Jafari ⁶ Mahaan Ahmadnaur ⁷ Ali T. Oashaaci ⁸ Jukas Eali ⁹ Tahar Chadirian ¹⁰
4	Abbas Jalah , Monsen Annaupour , An I. Qashqaei , Lukas Egii , Tahei Ghadinan , Niloufar Dacasi Chahartash ¹⁰ Dahram Zahzad ¹¹ Dahram H Kiahi ¹² Jaar Kharazuan ¹ Nilo
5	Niloutal Racesi Chanaltagin, Bainan Zenzau, Bainan H. Kiaoi, Igoi Kiloiozyan, Niko Balkonhal ¹³ Matthiag Waltart ¹
6 7	¹ Workgroup on Endengered Species, J.F. Diumenhash Institute of Zeelegy and
/	Anthronology University of Cättingon Cättingon Cormony E mail address
ð	multer@gudg de: E meil address: jger khorezuen@biologio.uni goettingen de
9	² Conservation Piegoography Lab. Goography Department, Humboldt
10	- Conservation Biogeography Lab, Geography Department, Humbold
11	oniversität zu Bernin, Onter den Linden 6, 10099, Gernany. E-man address.
12	³ Department of Physical Geography University of Göttingen, Goldschmidtetr 5, 27077
13	Göttingen Germany E-mail address: thorsten zennenfeld@geo.uni-goettingen de
14	⁴ Department of Environmental Sciences, Faculty of Natural Resources, University of Tehran
16	PO Box 4111 Karai Iran E-mail address: shirkoshokri89@gmail.com
17	⁵ Department of the Environment Eaculty of Fishery and Environment Gorgan University of
18	Agriculture and Natural Resources P.O. Box 4918943464 Gorgan Iran Gorgan Iran F-
19	mail address: mobin s1367@yahoo com
20	⁶ Faculty of Natural Resources Department of Environment Malayer University Arak
20	highway P.O. Box 6571995863 Malayer Iran E-mail address: jafary ab@gmail.com
22	⁷ Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of
23	Mazandaran, CP: 47416-95447, Babolsar, Iran, E-mail address:
24	m ahmadpour en@vahoo.com
25	⁸ Plan for the Land Society, Str. Sarmad, Sohrevardi North Ave, PO. 1689733767 Tehran,
26	Iran. E-mail address: a.t.gashgaei@gmail.com
27	⁹ Helmholtz Centre for Environmental Research - UFZ, Department of Ecological Modelling,
28	Permoserstr. 15, 04318 Leipzig, Germany E-mail address: lukas egli@gmx.ch
29	¹⁰ Persian Wildlife Heritage Foundation, Haft-e Tir Square, Karimkhan Ave, No. 99, Tehran,
30	Iran. E-mail address: <u>t.ghadirian@gmail.com</u> ; E-mail address: <u>n.raeesi.ch@gmail.com</u>
31	¹¹ Department of Environment, Pardisan Park, Hemmat Highway, Tehran, Iran. E-mail
32	address: <u>bzehzad@gmail.com</u>
33	¹² Faculty of Biological Sciences and Technology, Shahid Beheshti University, G.C, Daneshjo
34	St, PO. Box 1983969411 Tehran, Iran. E-mail address: <u>b.h.kiabi@gmail.com</u>
35	¹³ Department of Wildlife Sciences, University of Göttingen, Buesgenweg 3, 37077
36	Göttingen, Germany. E-mail address: <u>niko.balkenhol@forst.uni-goettingen.de</u>
37	Corresponding author: Workgroup on Endangered Species, J.F. Blumenbach Institute of *
38	Zoology and Anthropology, University of Göttingen, Bürgerstrasse 50, Göttingen 37073,
39	Germany. E-mail address: <u>mahmood.soofi(a)stud.uni-goettingen.de</u>
40	tel.: +49551395633, fax: +49551399234
41	
42	
43	
44 15	
46	
47	
48	
49	Abstract

Abstract

50	Protected areas are the most important tool to safeguard large mammals from
51	overexploitation, but their effectiveness is insufficiently studied in temperate ecosystems. The
52	Hyrcanian forest is one of the oldest and most threatened temperate forests globally.
53	Anthropogenic activities are widespread and negatively affect wildlife species in the
54	Hyrcanian forest. We conducted surveys in ~22% of the Hyrcanian forest by walking 1204
55	km in 93 16-km ² cells distributed randomly in 18 protected and non-protected study sites. We
56	used Bayesian occupancy modeling to measure the effects of livestock grazing, logging and
57	poaching on distribution of six large mammal species. Our results explicitly show that
58	grazing had negative and significant impact ($\beta = -1.65$, Credibility Interval - 2.85 to -0.65) on
59	the occupancy of very patchily distributed Persian leopard, Caspian red deer
60	$\beta = -1.36$, CI -2.34 to -0.45) and roe deer ($\beta = -1.61$, CI -2.96 to -0.58) while logging did so)
61	for red deer (β = -0.82, CI -1.69 to -0.03). Poaching could not be determined due to low
62	detectability of poaching signs. Grazing intensity was high in protected areas (IUCN category
63	V), no-hunting and non-protected areas and much lower in national parks (II) and wildlife
64	refuges (IV). Representing 66% of total reserves in the Hyrcanian forest, category V
65	protected areas urgently require priority actions in assessment of grazing capacities,
66	allocation and enforcement of grazing quotas, and better coordination between governmental
67	conservation and natural resource management organizations to avoid further depletion of the
68	large mammal community in the Hyrcanian Forest.
69	Keywords: Bayesian occupancy, Caspian, law enforcement, logging, poaching, protected
70	areas
71	
72	
73	
74	Introduction .1
75	Protected areas are the cornerstone of conservation, but many of them lose rare and
76	ecologically sensitive large mammals at alarming rates due to insufficient size and poor
77	protection from overexploitation and other threats (Watson et al., 2014; Maxwell et al.,
78	2016). Albeit many studies reporting local species extirpations from logging, grazing and
79	poaching in tropical regions, the effects of these threats on temperate ecosystems remain
80	understudied (Brodie et al., 2015) since most temperate forests have already lost many large
81	.species
82	Livestock grazing, logging and poaching are among the main drivers of biodiversity
83	loss but their effects can be both synergistic and contrasting across different species (Brodie
84	et al., 2015; Maxwell et al., 2016). For example, logging and grazing may improve food
85	supply for predators but also provoke human-predator conflicts and poaching (Laurance et
86	.(al., 2008
87	Livestock grazing inflicts intense landscape degradation and has multiple effects on
88	large mammal distributions (Karanth et al., 2011; Ripple et al., 2014, 2015). Livestock causes
89	large-scale changes in vegetation structure and adversely affects native herbivores via trophic
90	competition (Maxwell et al., 2016; Gordon et al., 2017). Logging simplifies the complexity of
91	forest ecosystems and reduces habitat quality (Müller et al., 2016). In addition, logging and
92	grazing contribute to road development which increases habitat accessibility to poachers, thus
93	exerting substantial effects on the survival of large mammals (Laurance et al. 2008; Brodie et
94	.(al., 2015; Maxwell et al., 2016
95	The Hyrcanian forest (hereafter, HF) located in Iran and Azerbaijan is a Tertiary relict
96	temperate forest and of high conservation value due to the exceptional diversity of
97	landscapes and species converging between Asia, Europe and Africa (Fig. 1). It is part of the
98	Caucasus Biodiversity Hotspot and harbors a diverse community of large mammals, such as
00	the Persian leopard (<i>Panthera pardus saxicolor</i> Pocock, 1927), brown bear (<i>Ursus arctos</i>

Linnaeus, 1758), grey wolf (Canis lupus Linnaeus, 1758), Caspian red deer (Cervus elaphus 100 maral Ogilby, 1840), roe deer (Capreolus capreolus Linnaeus, 1758) and wild boar (Sus 101 scrofa Linnaeus, 1758) (Olson & Dinerstein 1998; Firouz 2005). The last Caspian tiger 102 (Panthera tigris virgata) was killed in 1953 in the Hyrcanian forest (Firouz, 2005). Sixty 103 percent of the HF is under legal protection and natural resource use is managed by the 104 government (Zehzad et al., 2002; Firouz, 2005; Makhdoum, 2008; Dabiri et al., 2010; Müller 105 .(et al., 2017 106 Several laws to protect plant biodiversity in Iran's forests have been implemented, such 107 as the forest nationalization law (1963), the law banning livestock grazing inside core zones 108 of protected areas and wildlife refuges (1982) and the law on livestock exclusion from all HF 109 (1989). Since 1956, hunting inside protected areas is permitted only under special licenses 110 (Firouz, 2005). Despite these legislative acts, human activities such as grazing, logging, 111 poaching and wood collection are widespread and unorganized in the HF (Firouz, 2005; 112 Makhdoum, 2008; Sagheb-Talebi et al., 2014; Ghoddousi et al., 2017a; Müller et al., 2017). 113 Due to overexploitation, the forest cover of Iran has halved during the past five decades 114 (Ghoddousi et al., 2017a). Nowadays, about 4 million livestock are roaming across the HF, 115 leading to overgrazing (Sagheb-Talebi et al., 2014), deterioration of forest regeneration and 116 forest recessions, especially in lowlands (Akhani et al., 2010). The Hyrcanian forest cannot 117 supply sufficient fodder for livestock and its current economic use is unsustainable (Noack et 118 al., 2010). In Golestan National Park, Iran's oldest reserve, the red deer population has 119 declined by 89% since the 1970s due to poaching motivated by subsistence, leisure and 120 .(hostility toward park staff and conservation laws (Ghoddousi et al., 2017b 121 Whilst understanding of the effects of human threats on the distribution of large 122 mammals is among the top conservation priorities in this region, it largely remains 123 overlooked by scientists and conservationists. The paucity of information and conservation 124 guidance is particularly evident at large scales, which is critical considering the spatial 125 requirements of populations of these species (Ripple et al., 2015). In this study, we combined 126 intensive field surveys and Bayesian occupancy modeling to document the effects of 127 overgrazing, logging and poaching on the distribution of six large mammal species 128 throughout the HF. We also assessed the efficiency of protected area categories in 129 preservation of large mammals. Further, we discuss the management actions required to 130 .address declines of large mammals in the Hyrcanian forest 131 132 Material and Methods .2 133 Study area .2.1 134 The Hyrcanian forest forms a green arc along the Caspian Sea. It expands from the 135 Talysh Mountains in Azerbaijan through the northern slopes of the Alborz Mountains to 136 Gollidagh in eastern Iran with elevations ranging from -28 to 2800 m. The mean annual 137 precipitation ranges from 530 to 1350 mm, occasionally reaching up to 2000 mm in the 138 western parts. The mean air temperature of the warmest and coldest months varies from 28-139 35°C to 1.5-4°C, respectively. The lowland forests are dominated by Zelcova carpinifolia, 140 Gleditsia caspica and Pterocarya fraxinifolia with regular presence of Parrotia persica. In 141 montane areas, tree dominance shifts to Quercus castaneifolia, Carpinus betulus, Fagus 142 orientalis and Quercus macranthera depending on temperature regimes. The forest 143 understory is covered mainly by Ruscus hyrcanus, Ilex spinigera, Buxus hyrcana and ferns 144 .((Sagheb-Talebi et al., 2014 145 146 147

148

Study design .2.2

149	We assessed the impact of anthropogenic threats on the Persian leopard, brown bear.
150	grey wolf. Caspian red deer, roe deer, and wild boar. We selected 18 study areas, covering
151	4015.60 km ² and including three national parks (NP), eight protected areas (PA), one wildlife
152	refuge (WR), two no-hunting areas (NHA) and four non-protected areas (NPA) throughout
153	the HF (Fig. 1). We placed a regular grid of 4x4 km cells over the study areas using the
154	Hawth's Tools in ArcGIS 10.2 (ESRI Co., USA). Cell size was based on an approximate
155	average home range size of all target species (Yackulic et al., 2011: Kiffner et al., 2013). For
156	surveys, we randomly selected ~45% of the total number of cells in each study area
157	The single-season occupancy framework assumes that the occupancy state of the
158	species does not change in a site within a season (MacKenzie et al., 2006) and we assumed
159	that our survey periods were short enough to comply with this assumption. We considered
160	surveyed cells as sites and the entire period of surveys as a season. During three survey
161	periods (August-October 2015, February-April 2016 and August-October 2016), we surveyed
162	most cells by a team of 2-3 people led by an experienced ranger or a local guide who could
163	unambiguously identify signs of target species and anthropogenic threats. We walked along
164	random trails of 2-13 km inside each selected cell and recorded the presence of fresh signs
165	(tracks, scratches, scrapes, feeding and resting places, and wallows) and direct observations
166	(sightings and sounds) of species at 200 m intervals (Karanth et al., 2011). Concurrently, we
167	recorded the occurrence of anthropogenic threats such as the signs of poaching (encounters
168	with poachers, gun shells, gunshots), logging (cut trees, logging activities), and livestock
169	grazing (cattle, sheep, goats and domestic dogs). Each survey team took photographs of
170	animal and threat signs for final identification. To minimize the observer bias, we rotated
171	(team members between study areas and sites (MacKenzie et al., 2006).
172	.(
173	Analysis .2.3
174	
175	We used the presence (1) and absence (0) data on each species across cells as the
176	
170	response variables. The intensities of logging, poaching and livestock grazing represented the
177	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail
170 177 178	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey).
177 178 179	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey). Additionally, we considered sampling effort as a predictor of detection probability
177 178 179 180	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey). Additionally, we considered sampling effort as a predictor of detection probability (MacKenzie et al., 2006). We calculated Spearman's <i>rho</i> for rank correlation among
177 178 179 180 181	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey). Additionally, we considered sampling effort as a predictor of detection probability (MacKenzie et al., 2006). We calculated Spearman's <i>rho</i> for rank correlation among predictors and used posthoc tests in R packages 'nparcomp' to compare grazing intensities
177 178 179 180 181 182	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey). Additionally, we considered sampling effort as a predictor of detection probability (MacKenzie et al., 2006). We calculated Spearman's <i>rho</i> for rank correlation among predictors and used posthoc tests in R packages 'nparcomp' to compare grazing intensities among the study areas with different protection levels. We took the IUCN categories of study
177 178 179 180 181 182 183	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey). Additionally, we considered sampling effort as a predictor of detection probability (MacKenzie et al., 2006). We calculated Spearman's <i>rho</i> for rank correlation among predictors and used posthoc tests in R packages 'nparcomp' to compare grazing intensities among the study areas with different protection levels. We took the IUCN categories of study areas from Protected Planet (www.protectedplanet.net). For each species, we quantified the
177 178 179 180 181 182 183 184	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey). Additionally, we considered sampling effort as a predictor of detection probability (MacKenzie et al., 2006). We calculated Spearman's <i>rho</i> for rank correlation among predictors and used posthoc tests in R packages 'nparcomp' to compare grazing intensities among the study areas with different protection levels. We took the IUCN categories of study areas from Protected Planet (www.protectedplanet.net). For each species, we quantified the effects of threats on their occupancy probability ψ while simultaneously accounting for
177 178 179 180 181 182 183 184 185	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey). Additionally, we considered sampling effort as a predictor of detection probability (MacKenzie et al., 2006). We calculated Spearman's <i>rho</i> for rank correlation among predictors and used posthoc tests in R packages 'nparcomp' to compare grazing intensities among the study areas with different protection levels. We took the IUCN categories of study areas from Protected Planet (www.protectedplanet.net). For each species, we quantified the effects of threats on their occupancy probability ψ while simultaneously accounting for imperfect detection and sampling efforts. Specifically, ψ of each species in cell <i>i</i> was
177 178 179 180 181 182 183 184 185 186	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey). Additionally, we considered sampling effort as a predictor of detection probability (MacKenzie et al., 2006). We calculated Spearman's <i>rho</i> for rank correlation among predictors and used posthoc tests in R packages 'nparcomp' to compare grazing intensities among the study areas with different protection levels. We took the IUCN categories of study areas from Protected Planet (www.protectedplanet.net). For each species, we quantified the effects of threats on their occupancy probability ψ while simultaneously accounting for imperfect detection and sampling efforts. Specifically, ψ of each species in cell <i>i</i> was :described as
177 178 179 180 181 182 183 184 185 186 187	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey). Additionally, we considered sampling effort as a predictor of detection probability (MacKenzie et al., 2006). We calculated Spearman's <i>rho</i> for rank correlation among predictors and used posthoc tests in R packages 'nparcomp' to compare grazing intensities among the study areas with different protection levels. We took the IUCN categories of study areas from Protected Planet (www.protectedplanet.net). For each species, we quantified the effects of threats on their occupancy probability ψ while simultaneously accounting for imperfect detection and sampling efforts. Specifically, ψ of each species in cell <i>i</i> was :described as
177 178 179 180 181 182 183 184 185 186 187 188	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey). Additionally, we considered sampling effort as a predictor of detection probability (MacKenzie et al., 2006). We calculated Spearman's <i>rho</i> for rank correlation among predictors and used posthoc tests in R packages 'nparcomp' to compare grazing intensities among the study areas with different protection levels. We took the IUCN categories of study areas from Protected Planet (www.protectedplanet.net). For each species, we quantified the effects of threats on their occupancy probability ψ while simultaneously accounting for imperfect detection and sampling efforts. Specifically, ψ of each species in cell <i>i</i> was :described as $logit(\psi_i) = \alpha_{\psi} + \beta_{livestock} x_{livestock,i} + \beta_{logging} x_{logging,i} + \beta_{poaching} x_{poaching,i}$
177 178 179 180 181 182 183 184 185 186 187 188 189	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey). Additionally, we considered sampling effort as a predictor of detection probability (MacKenzie et al., 2006). We calculated Spearman's <i>rho</i> for rank correlation among predictors and used posthoc tests in R packages 'nparcomp' to compare grazing intensities among the study areas with different protection levels. We took the IUCN categories of study areas from Protected Planet (www.protectedplanet.net). For each species, we quantified the effects of threats on their occupancy probability ψ while simultaneously accounting for imperfect detection and sampling efforts. Specifically, ψ of each species in cell <i>i</i> was :described as $logit(\psi_i) = \alpha_{\psi} + \beta_{livestock} x_{livestock,i} + \beta_{logging} x_{logging,i} + \beta_{poaching} x_{poaching,i}$
177 178 179 180 181 182 183 184 185 186 187 188 189 190	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey). Additionally, we considered sampling effort as a predictor of detection probability (MacKenzie et al., 2006). We calculated Spearman's <i>rho</i> for rank correlation among predictors and used posthoc tests in R packages 'nparcomp' to compare grazing intensities among the study areas with different protection levels. We took the IUCN categories of study areas from Protected Planet (www.protectedplanet.net). For each species, we quantified the effects of threats on their occupancy probability ψ while simultaneously accounting for imperfect detection and sampling efforts. Specifically, ψ of each species in cell <i>i</i> was :described as $\log it(\psi_i) = \alpha_{\psi} + \beta_{livestock} x_{livestock,i} + \beta_{logging} x_{logging,i} + \beta_{poaching} x_{poaching,i}$
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey). Additionally, we considered sampling effort as a predictor of detection probability (MacKenzie et al., 2006). We calculated Spearman's <i>rho</i> for rank correlation among predictors and used posthoc tests in R packages 'nparcomp' to compare grazing intensities among the study areas with different protection levels. We took the IUCN categories of study areas from Protected Planet (www.protectedplanet.net). For each species, we quantified the effects of threats on their occupancy probability ψ while simultaneously accounting for imperfect detection and sampling efforts. Specifically, ψ of each species in cell <i>i</i> was :described as $\log it(\psi_i) = \alpha_{\psi} + \beta_{livestock} x_{livestock,i} + \beta_{logging} x_{logging,i} + \beta_{poaching} x_{poaching,i}$. To assess ψ by the observed presence-absence data for each species, we modeled the probability of true occurrence <i>z</i> of each species in cell <i>i</i> as a random variable derived from the
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey). Additionally, we considered sampling effort as a predictor of detection probability (MacKenzie et al., 2006). We calculated Spearman's <i>rho</i> for rank correlation among predictors and used posthoc tests in R packages 'nparcomp' to compare grazing intensities among the study areas with different protection levels. We took the IUCN categories of study areas from Protected Planet (www.protectedplanet.net). For each species, we quantified the effects of threats on their occupancy probability ψ while simultaneously accounting for imperfect detection and sampling efforts. Specifically, ψ of each species in cell <i>i</i> was :described as $\log it(\psi_i) = \alpha_{\psi} + \beta_{livestock,i} + \beta_{logging} x_{logging,i} + \beta_{poaching} x_{poaching,i}$. To assess ψ by the observed presence-absence data for each species, we modeled the probability of true occurrence <i>z</i> of each species in cell <i>i</i> as a random variable derived from the :Bernoulli distribution with probability ψ
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey). Additionally, we considered sampling effort as a predictor of detection probability (MacKenzie et al., 2006). We calculated Spearman's <i>rho</i> for rank correlation among predictors and used posthoc tests in R packages 'nparcomp' to compare grazing intensities among the study areas with different protection levels. We took the IUCN categories of study areas from Protected Planet (www.protectedplanet.net). For each species, we quantified the effects of threats on their occupancy probability ψ while simultaneously accounting for imperfect detection and sampling efforts. Specifically, ψ of each species in cell <i>i</i> was :described as $\log it(\psi_i) = \alpha_{\psi} + \beta_{livestock} x_{livestock,i} + \beta_{logging} x_{logging.i} + \beta_{poaching} x_{poaching.i}$. To assess ψ by the observed presence-absence data for each species, we modeled the probability of true occurrence <i>z</i> of each species in cell <i>i</i> as a random variable derived from the :Bernoulli distribution with probability ψ
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey). Additionally, we considered sampling effort as a predictor of detection probability (MacKenzie et al., 2006). We calculated Spearman's <i>rho</i> for rank correlation among predictors and used posthoc tests in R packages 'nparcomp' to compare grazing intensities among the study areas with different protection levels. We took the IUCN categories of study areas from Protected Planet (www.protectedplanet.net). For each species, we quantified the effects of threats on their occupancy probability ψ while simultaneously accounting for imperfect detection and sampling efforts. Specifically, ψ of each species in cell <i>i</i> was :described as $\log it(\psi_i) = \alpha_{\psi} + \beta_{iivestock} x_{iivestock,i} + \beta_{logging} x_{logging,i} + \beta_{poaching} x_{poaching,i}$. To assess ψ by the observed presence-absence data for each species, we modeled the probability of true occurrence <i>z</i> of each species in cell <i>i</i> as a random variable derived from the :Bernoulli distribution with probability ψ
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey). Additionally, we considered sampling effort as a predictor of detection probability (MacKenzie et al., 2006). We calculated Spearman's <i>rho</i> for rank correlation among predictors and used posthoc tests in R packages 'nparcomp' to compare grazing intensities among the study areas with different protection levels. We took the IUCN categories of study areas from Protected Planet (www.protectedplanet.net). For each species, we quantified the effects of threats on their occupancy probability ψ while simultaneously accounting for imperfect detection and sampling efforts. Specifically, ψ of each species in cell <i>i</i> wasdescribed as $\log it(\psi_i) = \alpha_{\psi} + \beta_{livestock} x_{livestock,i} + \beta_{logging} x_{logging,i} + \beta_{poaching,i}$. To assess ψ by the observed presence-absence data for each species, we modeled the probability of true occurrence <i>z</i> of each species in cell <i>i</i> as a random variable derived from theBernoulli distribution with probability ψ
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey). Additionally, we considered sampling effort as a predictor of detection probability (MacKenzie et al., 2006). We calculated Spearman's <i>rho</i> for rank correlation among predictors and used posthoc tests in R packages 'nparcomp' to compare grazing intensities among the study areas with different protection levels. We took the IUCN categories of study areas from Protected Planet (www.protectedplanet.net). For each species, we quantified the effects of threats on their occupancy probability ψ while simultaneously accounting for imperfect detection and sampling efforts. Specifically, ψ of each species in cell <i>i</i> was :described as $\log it(\psi_i) = \alpha_{\psi} + \beta_{iivestock} x_{iivestock,i} + \beta_{logging} x_{logging,i} + \beta_{poaching,i}$. To assess ψ by the observed presence-absence data for each species, we modeled the probability of true occurrence <i>z</i> of each species in cell <i>i</i> as a random variable derived from the :Bernoulli distribution with probability ψ . Occupancy models treat the observed presence (or absence) of a species at survey <i>j</i> as
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197	response variables. The intensities of logging, poaching and livestock grazing represented the predictors. These intensities were quantified as the proportions of the number of 200-m trail segments with signs to sampling effort (km of trails walked per cell and survey). Additionally, we considered sampling effort as a predictor of detection probability (MacKenzie et al., 2006). We calculated Spearman's <i>rho</i> for rank correlation among predictors and used posthoc tests in R packages 'nparcomp' to compare grazing intensities among the study areas with different protection levels. We took the IUCN categories of study areas from Protected Planet (www.protectedplanet.net). For each species, we quantified the effects of threats on their occupancy probability ψ while simultaneously accounting for imperfect detection and sampling efforts. Specifically, ψ of each species in cell <i>i</i> was :described as $\log it(\psi_i) = \alpha_{\psi} + \beta_{livestock} x_{livestock,i} + \beta_{logging} x_{logging,i} + \beta_{poaching} x_{poaching,i}$. To assess ψ by the observed presence-absence data for each species, we modeled the probability of true occurrence <i>z</i> of each species in cell <i>i</i> as a random variable derived from the :Bernoulli distribution with probability ψ . Occupancy models treat the observed presence (or absence) of a species at survey <i>j</i> as an outcome of a detection process, i.e. a random Bernoulli variable defined by <i>z</i> and the sign

199	
200 201	$(y_{ij} \sim Bernoulli(z_i imes p_{ij}$
202 203 204 205	The quantification of detection probability p allows including possible impacts of bias arising from variability in sampling effort $logit(p_{ij}) = \alpha_p + \beta_{effort} y_{ij}$
205	We are 141. Deres in a construction of 11 in its DOLACAS as the set of D (Discussion
206	2003; Su and Yajima, 2015; R Core Team 2016; see models in Appendix 1). Apart from
208 209	missing observations (Kéry, 2010; Dorazio and Rodríguez., 2012). Threat effects on species
210 211	occupancy were assessed from the posterior distributions of the intercept α and slope β . The direction of threat effects was determined from positive or negative estimates of β . The
212	significance of difference of threat effects from 0 (no effect) was assessed from the overlap of
213	the credibility interval (CI) with 0. The CI ranges between 2.5 and 97.5 percentile of the
214	posterior distribution. We ran three chains with 100 000 iterations to assess the posterior
215	distribution of the coefficients from the estimation of their prior distribution. We chose a
216	vague prior from the uniform distribution with the boundary estimates of α and β from -10 to
217	10 (Kéry, 2010). The first 20000 iterations were discarded. Chains were thinned to every 40 th
218	value of the iteration to avoid autocorrelation. Convergence of three chains was assured by
219	Gelman-Rubin statistics (Gelman et al., 2014) and achieving a minimum effective posterior
220	.(sample size of 100 (Kery, 2010
222	Results .3
223	
224	We walked 1204 km of trails during 147 field days and recorded 2876 signs of six
225	mammal species (Appendix 1). Overall, we surveyed 93 cells, of which 45 cells were
226	surveyed three times, 21 twice and 27 once for logistical reasons (Table 1). The intensities of
227	grazing and logging were most correlated ($r = 0.59$), followed by logging and poaching
228	.((0.39), and grazing and poaching (0.37)
229	Signs of both roe deer and red deer were absent in Zav PA, Lisar PA and Lafoor NHA
230	(Fig. 1). The roe deer was absent in Alasht. The Persian leopard was absent in Paband NP and
231	Lisar PA. The grey wolf and red deer were absent in Absnar-e-Snirgan PA. wild boar and
232	brown bear were present in all sites. Grazing had the nightst intensity (0.92, CI 0.78 to 1.05),
255 221	$(t_0, 0.18)$
234	The leopard had a moderate detection probability $(p = 0.70)$ CI 0.61 to 0.77) but
236	fragmented distribution ($\psi = 0.88$, CI 0.27 to 0.99). Leopard occupancy was negatively
237	affected by grazing ($\beta = -1.65$, CI - 2.85 to -0.65) (Fig. 2). The gray wolf had the lowest
238	detection probability regardless of effort ($p = 0.25$, CI 0.18 to 0.34), but it was present in all
239	study areas ($\psi = 1$, CI 0.81 to 1). The brown bear was present in all study areas ($\psi = 0.99$, CI
240	0.51 to 1) and had a moderate detection probability ($p = 0.62$, CI 0.54 to 0.71), which
241	increased with effort ($\beta = 0.38$, CI 0.04 to 0.75; Fig. 2). The red deer had very fragmented
242	distribution ($\psi = 0.71$, CI 0.13 to 0.97), but a moderate detection probability ($p = 0.78$, CI
243	0.70 to 0.86). Red deer occupancy strongly decreased with grazing ($\beta = -1.36$, CI -2.34 to
244	-0.45) and logging (β = -0.82, CI -1.69 to -0.03) (Fig. 2). Compared to other studied species,
245	roe deer had the most limited and highly tragmented distribution ($\psi = 0.6^{7}$, Cl 0.10 to 0.97),
246	with low detection probability ($p = 0.55$, CI 0.43 to 0.67). Kee deer occupancy was
247	negatively affected by grazing ($p = -1.01$, CI -2.96 to -0.58). Wild boar was the most wideenrood and highly detectable gracies ($w = 1$, CI 0.80 to $1.5 = 0.05$, CI 0.01 to 0.02) and
248	where sphere and might y detectable species ($\psi = 1, C10.80$ to 1; $p = 0.93, C10.91$ to 0.98) and

its detection probability significantly increased with effort ($\beta = 1.47$, CI 0.55 to 2.55 (for detailed models and data see Appendix 2). Grazing intensity was significantly higher in PA vs. NP (F-value = 6.18, p < 0.001), NPA vs. NP (F-value = 5.70, p < 0.0018), and NHA vs.

251 252

249

250

253 254

Discussion .4

(NP (F-value = -2.99, p = 0.04) (Fig. 3)

Our results show that livestock grazing strongly and negatively affects the distribution 255 of the Persian leopard, Caspian red deer and roe deer in the HF. These species are threatened 256 either globally or nationally, and have very patchy distributions in this region. The two deer 257 species and the leopard appear to be locally extinct in some study areas. The fact that most of 258 these areas are officially protected and located within the distribution areas of these species 259 raises a serious concern regarding the effectiveness of conservation efforts in the HF. Our 260 study region is believed to be the stronghold for survival of the globally endangered Persian 261 leopard in the Middle East (Kiabi et al., 2002; Farhadinia et al., 2015), but our results suggest 262 a high degree of fragmentation of its population. Additionally, our results suggest that the red 263 deer is under persistent pressure from logging which may facilitate access of poachers to core 264 zones and lead to increased poaching (Laurance et al., 2008; Brodie et al., 2015). We did not 265 find significant effects of poaching on red deer or other species, possibly due to low 266 detectability of poaching signs (Brodie et al., 2015; Rauset et al., 2016). In contrast, fine-267 scale studies demonstrate drastic declines of red deer due to poaching, e.g. in Golestan 268 National Park by 89% from 2096 individuals in 1976-1977 to 194-257 individuals in 2015-269 2016 (Kiabi et al., 2004; Ghoddousi et al., 2017b; Soofi et al., 2017). Possibly, the count of 270 poaching signs is an inappropriate metric of poaching pressure because poachers tend to act 271 in areas where animals are available, resulting in a positive correlation between poaching and 272 prey populations (Brodie et al., 2015). Moreover, poaching can go undetected in forests due 273 .(to dense vegetation, litter and secretive trails (Laurance et al., 2008 274 We demonstrate that livestock grazing is the main threat affecting large mammal 275

distribution in the HF. Therefore, it should be effectively managed through the assessment of 276 the carrying capacity of pastures, allocation of grazing quotas and their enforcement. Local 277 people still strongly depend on forest for pastures during the snow-free seasons. Since 1982, 278 grazing has been permitted in 80% of the territories of protected areas (IUCN category V) 279 and wildlife refuges (IUCN category IV), putting these reserves under serious pressure of 280 overgrazing. We confirmed high levels of grazing in protected areas, but not in the wildlife 281 refuge. Category V protected areas represent about 66% of the total coverage of reserves in 282 the HF compared to only 0.01% of wildlife refuges and 0.10% of national parks. Herders 283 hold official permits with specified sizes of pastures and grazing periods, but often overuse 284 pasture lands and penetrate deep into the core zones under non-existing land allotments and 285 inefficient governmental control. Such large-scale encroachment makes large mammals 286 retreat into non-protected lands and clash with rural people (Farhadinia et al., 2015; 287 .(Khorozyan et al., 2015 288

Grazing control is impossible without the enforcement of better coordination between 289 the Iranian governmental organizations responsible for conservation (Department of 290 Environment, DoE) and natural resource management (Forest, Rangeland and Watersheds 291 Organization, FRWO). Traditionally, DoE is responsible for the control of non-compliance 292 activities inside reserves, but the enforcement of logging and grazing control inside and 293 outside reserves is under the credentials of FRWO (Makhdoum, 2008; Dabiri et al., 2010; 294 Kolahi et al., 2012). However, interests and management strategies of the two agencies often 295 collide in protected areas and wildlife refuges. There is no clear separation of responsibilities 296 of DoE and FRWO in these areas, where grazing is occurring on 80% of lands and prohibited 297 in core zones covering only 20% (Makhdoum, 2008). The same situation is in national parks 298

where DoE and FRWO lack cooperation and coordination in managing illegal grazing and 299 logging. Poaching control is the responsibility of DoE alone. Thus, there is much uncertainty 300 in mechanisms of cooperation between these two organizations and the development of inter-301 agency policy is a priority need. Inadequate cooperation between DoE and FRWO can be 302 illustrated by the example of adverse effects of logging on red deer. Red deer is the only 303 studied large mammal strongly preferring mixed forests with dense shrubs (Kiabi et al., 304 2004), but its populations suffer from habitat deterioration caused by the even-aged tree 305 management system and removal of fallen or dead woods (Sagheb-Talebi et al., 2014; Müller 306 .(et al., 2017 307 Conclusions .5 308 We conclude that the existing governmental actions are insufficient to alleviate the 309 pressure of human activities on large mammals in the Hyrcanian Forest. Fragmented 310 distribution of such sensitive species as the leopard, red deer and roe deer may reflect 311 systemic failures of management, law enforcement and budget constraints (Watson et al., 312 2014; Rauset et al., 2016) while the satisfactory status of grey wolf, brown bear and wild boar 313 is achievable due to their high tolerance to humans. However, even these common species 314 may need stronger conservation action as wolves and wild boars have been intensively 315 persecuted for livestock and crop damage, respectively (Ripple et al., 2014). We emphasize 316 the need for stricter law enforcement regarding overgrazing and poaching under the 317 consideration of improvements of rural livelihoods. Furthermore, clear land use zoning of 318 reserves should be developed and stringently managed (Kolahi et al., 2012). All these efforts 319 should be participatory to minimize conflicts with local communities (Rauset et al., 2016) 320 .and coordinated by DoE and FRWO 321 322 Acknowledgements 323 This project would not have been possible without the support of local rangers and staff of 324 three provincial offices of Department of Environment. We thank the deputy head of DoE F. 325 .Dabiri for the permit No. 94/25664 326 327 Funding 328 This study was funded by Erasmus Mundus SALAM2 (scholarship no: 2013-2437/001-001; 329 M.S) and the fieldwork expenses was funded by Rufford Small Grant Program (grant 17489-330 .(1; M.S 331 332 References 333 334 Akhani, H., Djamali, M., Ghorbanalizadeh, A., Ramezani, E.R., 2010. Plant .1 335 biodiversity of Hyrcanian relict forests, N Iran: an overview of the flora, vegetation, 336 .palaeoecology and conservation. Pak. J. Bot. 42, 231-258 337 Brodie, J.F., Giordano, A.J., Zipkin, E.F., Bernard, H., Mohd-Azlan, J., Ambu, L., .2 338 2015. Correlation and persistence of hunting and logging impacts on tropical 339 .rainforest mammals. Conserv. Biol. 29, 110-121 340 Dabiri, F., Riazi, B., Khorasani, N., Homayouni, M., 2010. Assessment of some legal .3 341 challenges in protected areas under management of Department of Environment, 342 (Gilan province. J. Sci. Tech. Nat. Res. 3, 101-114. (in Persian 343 Dorazio, R.M., Rodríguez, D.T., 2012. A Gibbs sampler for Bayesian analysis of site-.4 344 .occupancy data. Meth. Ecol. Evol. 3, 1093-1098 345 Farhadinia, M.S., Ahmadi M., Sharbafi, E., Khosravi, S., Alinezhad, H., Macdonald, .5 346 D.W., 2015. Leveraging trans-boundary conservation partnerships: persistence of 347

.6 .7 .8 .9
.6 .7 .8 .9
.7 .8 .9 .10
.8 .9 .10
.8 .9 .10
.9 .10
.9 .10
.9 .10
.10
.10
.10
.10
.11
.12
.13
.14
.15
.16
.17
.17
.17 .18
.17 .18
.17 .18
.17 .18 .19
.17 .18 .19
.17 .18 .19
.17 .18 .19 .20
.17 .18 .19 .20
.17 .18 .19 .20 .21
.17 .18 .19 .20 .21
.17 .18 .19 .20 .21
.17 .18 .19 .20 .21 .22
.17 .18 .19 .20 .21 .22 .23
.17 .18 .19 .20 .21 .22 .23
.17 .18 .19 .20 .21 .22 .23

398 399 400	Noack, F.A.W., Manthey, M., Ruitenbeek, J.H., Mohadjer, M.R.M., 2010. Separate or mixed production of timber, livestock and biodiversity in the Caspian Forest. Ecol. Econ. 70, 67–76	.24
401	Olson, D.M., Dinerstein, E., 1998. The Global 200: a representation approach to	.25
402	conserving the Earth's most biologically valuable ecoregions. Conserv. Biol. 12, 502–	.20
403	.515	
404	Plummer M. 2003. JAGS: a program for analysis of Bayesian graphical models using	.26
405	Gibbs sampling. Proceeding 3 rd International Workshop on Distributed Statistical	
406	.Computing (DSC). 20–22	
407	R, Core Team., 2016. R: a language and environment for statistical computing. R	.27
408	.Foundation for Statistical Computing, Vienna	
409	Rauset, G.R., Andren, H., Swenson, J.E., Samelius, G., Segerström, P., Zedrosser, A.,	.28
410	Persson, J., 2016. National parks in northern Sweden as refuges for illegal killing of	
411	.large carnivores. Conserv Lett. 9, 334–341	
412	Ripple, W.J., Estes, J.A., Bieschta, R.L, Wilmers, C.C., Ritchie, E.G., Hebblewhite,	.29
413	M., Berger, J., Elmhagen, B., Lentic, M., Nelson, M.P., Schmitz O.J., Smith, W.D.,	
414	Wallach, A.d., Wirsing, A.J., 2014. Status and ecological effects of the world's largest	
415	.carnivores. Science. 343, 1241484	
416	Ripple, W.J., Newsome, T.M., Wolf, C., Dirzo, R., Everatt, K.T., Galetti, M.,	.30
417	Hayward, M.W., Kerley, G.H., Levi, T., Lindsey, P.A., Macdonald, D.M., Malhi, Y.,	
418	Painter, L.E., Sandom, Ch.J., Terborgh, J., Valkenburgh, B.V., 2015. Collapse of the	
419	.world's largest herbivores. Science Advances. doi: 10.1126/sciadv.1400103	
420	Sagheb-Talebi, K., Sajedi, T., Pourhashemi, M., 2014. Forests of Iran: a treasure from	.31
421	the past, a hope for the future. Springer, Dordrecht	22
422	Soofi, M., Ghoddousi, A., Kh Hamidi, A., Ghasemi, B., Egli, E., Voinopol-Sassu,	.32
423	A.J., Kiabi, B.H., Balkennol, N., Khorozyan, N., Waltert, M., 2017. Precision and	
424	reliability of indirect population assessments for the Caspian red deer Cervus elaphus	
425	.maral. Wildl. Biol. doi:10.2981/Wib.00250	22
426	.Su, 1.S., 1 ajinia, M., 2015. K2jags: using K to run JAOS. K package V. 0.5-7 Watson LEM Dudlay N. Sagan D.S. Haakings M. 2014. The performance and	.33
427	notential of protected areas. Nature, 515, 67, 73	.54
420	Vackulic C B Sanderson F W Uriarte M 2011 Anthronogenic and	35
429	environmental drivers of modern range loss in large mammals Proc Nat Acad Sci	.55
431	USA 108 4024–4029	
432	Zehzad, B., Kjabi, B.H., Madioonian, H., 2002. The natural areas and landscape of	.36
433	Iran: an overview. Zool. Middle East. 26, 7–10	2.5

Area	Size	No.	IUCN	Proportion of grid cells with							
	((km2	cells	categor	presence of anthropogenic							
			У	threats							
			-	Grazing	Logging	Poaching					
Golestan NP	874.02	14	II	0.37	0	0.12					
Zav (A & B) PA	143.23	8	NR	1	0.57	0.70					
Loveh PA	33.49	3	NR	0.89	0.78	0.33					
Aliabad (Dahane Zarringol) NPA	121.67	5	-	0.89	0.78	0.11					
Aliabad (Dahaneh Mohamm Adabad) NPA	82.94	5	-	1	0.80	0.20					

	JahanNama PA	317.47	3	V	0.89	0.22	0
	Paband NP	181.45	2	NR	1	0.50	0.50
	Kiasar NP	92.65	2	-	1	0.50	0.50
	Dodangeh WR	169.04	5	IV	0.60	0.53	0.53
	Asas PA	29.97	2	V	1	1	1
	Sheshroudbar PA	79.22	2	NR	1	0	0.50
	Abshar-e-Shirgah PA	36.39	1	V	1	0.50	0.50
	Lafoor NHA	363.52	3	-	1	1	1
	Alasht NPA	129.11	3	-	1	0	0.33
	Baliran NPA	206	10	-	0.96	0.93	0.52
	Deilaman-e-Dorfak NHA	448.86	10	-	0.64	0.64	0.57
	Gashteroudkhan-Siahmazgy	395.14	8	V	1	0.17	0.50
	PA Lisar PA	311.42	7	V	1	0.79	0.63
-	Total	4015.60	93	-	0.90	0.54	0.47
l'able 1	, i i i i i i i i i i i i i i i i i i i						

 forest. Abbreviations: IUCN – International Union for Nature Conservation, NHA – nohunting area, NP – national park, NPA – non-protected area, NR – not reported, PA – .protected area, WR – wildlife refuge

Table 1. The distribution of anthropogenic threats in study areas throughout the Hyrcanian

.Fig. 1. The map of the study areas across the Hyrcanian forest, northern Iran

Fig. 2. The alpha (intercept) and beta (slope) coefficients of Bayesian single-season occupancy models and their 95% credibility intervals estimated for six large mammal species in the Hyrcanian forest. The credibility intervals intersecting with zero are shaded

Fig. 3. Comparison of livestock grazing intensities across 18 study areas in the Hyrcanian forest. The numbers of grid cells surveyed in study areas are indicated in the parentheses. .Circles indicate the outliers of the grazing intensity from individual field surveys

Appendix Table 1

454	The number of signs recorded for six large mammal species in protected and non-protected areas in
455	.the Hyrcanian forest, Irar

Area	Leopard	Brown bear	Red deer	Roe deer	Wild boar	Wolf
Golestan NP	78	156	150	70	442	6
(Zav PA (A & B	20	25	0	2	78	4
Loveh PA	10	26	40	12	93	4
(Aliabad (Z & M	23	9	19	21	34	5
JahanNama PA	30	10	126	3	26	3
Paband NP	0	4	9	0	23	6
Kiasar NP	11	23	40	12	37	5
Dodangeh WR	58	32	147	24	112	7
Asas PA	6	4	5	3	8	2
Sheshroudbar PA	1	1	2	1	1	0
Abshar-e-Shirgah PA	6	6	0	1	1	1
Lafoor NHA	7	2	0	0	17	4
Alasht	20	10	2	0	7	11
Baliran	63	29	26	22	155	8
Deilaman-e-Dorfak NHA	47	15	41	21	97	6
Gashteroudkhan Siahmazgy PA	7	9	3	1	12	5
Lisar PA	0	8	0	0	82	9
Total	387	369	610	193	1231	86

-00

The parameter estimates and quality measures of Bayesian single-season occupancy models for large mammal species in the Hyrcanian forest. Rhat and n.eff provide information on model .(convergence (Rhat = 1) and the effective size of the posterior distribution (n.eff

Species	Parameters	(Mean (SD	Ì						
			% 2.50	% 25	% 50	% 75	97.50	Rhat	n.eff
Persian leopard	$lpha$ $_{\psi}$	(1.73) 1.95	1.02-	0.50	1.95	3.38	4.91	1.00	6000
Panthera pardus	α _p	(0.20) 0.85	0.46	0.71	0.85	0.98	1.25	1.00	6000
saxicolor	$eta_{livestock}$	(0.57) 1.65-	2.85-	1.98-	1.61-	1.27-	0.65-	1.00	6000
	$eta_{logging}$	(0.42) 0.18-	1.05-	0.44-	0.17-	0.10	0.62	1.00	6000
	$eta_{poaching}\ eta_{effort}$	(5.83) 0.05- (0.18) 0.13-	9.49- 0.48-	5.19- 0.25-	0.07- 0.13-	5.01 0.02-	9.54 0.22	1.00 1.00	6000 6000
Grey wolf Canis lupus	α_{ψ} α_{p}	(2.23) 6.81 (0.21) 1.08-	1.44 1.48-	5.35 1.22-	7.27 1.08-	8.69 0.94-	9.87 0.66-	1.00 1.00	3300 4000
	$eta_{livestock}$	(3.39) 4.34	4.57-	2.73	4.81	6.71	9.38	1.00	6000
	$eta_{logging}$	(2.60) 0.16-	4.99-	1.89-	0.26-	1.41	5.35	1.00	6000
	$eta_{poaching}$	(5.54) 1.72-	9.68-	6.53-	2.41-	2.57	9.03	1.00	5100
Brown bear	α_{ψ}	(0.18) 0.11	0.25-	0.01-	0.11	0.23	0.45	1.00	2600
Ursus arctos	α_p	(2.84) 5.23	0.04	3.00	5.17	7.73	9.79	1.00	3800
	$eta_{livestock}$	(0.20) 0.50	0.15	0.37	0.49	0.63	0.90	1.00	1200
	$eta_{logging}$	(2.53) 3.37-	8.13-	5.13-	2.98-	1.77-	1.49	1.00	4100
	$eta_{poaching}\ eta_{e\!f\!fort}$	(1.26) 0.08 (5.77) 1.15-	3.05- 9.66-	0.32- 6.22-	0.17 1.72-	0.65 3.59	2.00 9.34	1.01 1.00	2700 3400
	\mathcal{O}_{ψ}	(0.18) 0.38	0.04	0.25	0.37	0.49	0.75	1.00	4800

.Appendix Table 2 continued

	Percent	iles of po	sterior d	istributio	(Median (SD	Parameters	Species		
Rhat	% 97.50	75%	%	50	% 25	% 2.50 n.eff	-		
6000	1.00	9.93	9.21	8.18	6.68	3.27	(1.82) 7.73	<i>α</i> _ψ	Wild boar
3900	1.00	3.90	3.26	2.96	2.70	2.28	(0.42) 3.00	α_p	Sus scrofa
6000	1.00	7.97	4.30	1.80	0.15-	3.03-	(2.96) 2.10	$eta_{livestock}$	
6000	1.00	5.31	1.16	0.72-	2.53-	5.19-	(2.70) 0.54-	$eta_{logging}$	
6000 4000	1.00 1.00	8.27 2.55	0.56 1.80	4.22- 1.44	7.54- 1.11	9.79- 0.55	(5.20) 3.11- (0.51) 1.47	$eta_{poaching} \ eta_{e\!f\!ort}$	
6000	1.00	3.63	2.26	0.92	0.49-	1.88-	(1.63) 0.89	α_{ψ}	Red deer
3700	1.00	1.82	1.48	1.31	1.14	0.84	(0.25) 1.31	α_p	Cervus elaphus maral
4800	1.00	0.45-	1.04-	1.35-	1.67-	2.34-	(0.48) 1.36-	$eta_{livestock}$	
6000	1.00	0.03-	0.55-	0.81-	1.09-	1.69-	(0.42) 0.82 -	$eta_{logging}$	
5100 6000	1.00 1.00	9.54 0.97	5.02 0.59	0.22 0.40	4.89- 0.24	9.53- 0.06-	(5.77) 0.11 (0.26) 0.42	$eta_{poaching}\ eta_{e\!f\!fort}$	
4400	1.00	3.60	2.06	0.74	0.68-	2.20-	(1.68) 0.70	α_{ψ}	Roe deer
6000	1.00	0.69	0.38	0.21	0.04	0.29-	(0.25) 0.21	α_p	Capreolus capreolus
5500	1.00	0.58-	1.19-	1.54-	1.95-	2.96-	(0.63) 1.61-	$eta_{\mathit{livestock}}$	
6000	1.00	1.40	0.66	0.33	0.02	0.62 -	(0.52) 0.35	$eta_{logging}$	
3700 6000	1.00 1.00	9.45 0.75	4.90 0.46	0.21 0.32	4.91- 0.19	9.48- 0.05-	(5.73) 0.04 (0.20) 0.33	$eta_{poaching}\ eta_{effort}$	

483

484 Abbreviations: for each parameter Rhat is the potential scale reduction factor (at convergence, Rhat 485 = 1) and n.eff is a crude measure of the effective sample size. α_{ψ} is the intercept of occupancy 486 .models, α_{p} is the intercept of detection probability models and β is the slope of predictors in all models

Appendix 2 Statistical outputs and data	488
Modelling of Bayesian single-season occupancy applied for assessing effect sizes of	489
anthropogenic threats (i.e. livestock grazing, logging, poaching) on six large mammals	490
species in Hyrcanian forest	491
₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	492
("source("fitJags_occ.R	493
("spec <- c("Leopard","Brown.bear","Red.deer","Roe.deer","Wild.boar","Wolf	494
("(pritab <- c("dunif(-10,10	495
$xp \le c(1) \#$ No Covariates for p	496
xpsi <- c("all")#,"logg","poach","live") # Covariates for occupancy	497
	498
(vartab <- expand.grid(species=spec,prior=pritab,xp=xp,xpsi=xpsi,stringsAsFactors = F	499
vartab\$ini.a <5	500
vartab\$ini.b <- 5	501
vartab[vartab\$prior==pritab[2],"ini.a"] <- 0#	502
vartab[vartab\$prior==pritab[2],"ini.b"] <- 5#	503
()erg <- list	504
{((for (i in 1:nrow(vartab	505
(set.seed(1234	506
("cat(i " Processing" vartab\$species[i] "\n	507
(tmn <_ dat %>% select(FID visit species=matches(vartab(species[i])) %>% arrange(FID	507
(turp < turp %) select(1 iD, visit, species inatches(variab@species[1])) /0 /0 analge(1 iD	508
(unp <- unp %> % spread(visit, species	509
([y <- as.matrix(tmp[,2:4	510
(rm(tmp	511
(xp <- matrix(0,ncol=3,nrow=93,byrow=T	512
} (([if (!is.na(vartab\$xp[i	513
(tmp <- dat %>% select(FID,visit,effort) %>% arrange(FID	514
(tmp <- tmp %>% spread(visit,effort	515

(rm(tmp (xp <- apply(xp,2,scale xp[is.na(xp)] <- 0 { ((xpsi <- rep(0,nrow(y [i]) & vartab\$xpsi[i] != "all
<pre>(xp <- apply(xp,2,scale xp[is.na(xp)] <- 0 { ((xpsi <- rep(0,nrow(y [i]) & vartab\$xpsi[i] != "all</pre>
xp[is.na(xp)] <- 0 { ((xpsi <- rep(0,nrow(y [i]) & vartab\$xpsi[i] != "all
{ ((xpsi <- rep(0,nrow(y [i]) & vartab\$xpsi[i] != "all
((xpsi <- rep(0,nrow(y [i]) & vartab\$xpsi[i] != "all
[i]) & vartab\$xpsi[i] != "all
psi[i])) %>% arrange(FID
p %>% spread(visit,threat
xpsi <- as.matrix(tmp[,2:4
(rm(tmp
oulate threat-intensity here
psi <- as.vector(scale(xpsi
{
}("if (vartab\$xpsi[i] == "all
matrix(rep(xpsi,3),ncol=3
it,live) %>% arrange(FID
mp %>% spread(visit,live
oulate threat-intensity here
t,logg) %>% arrange(FID
np %>% spread(visit,logg
oulate threat-intensity here
poach) %>% arrange(FID
p %>% spread(visit,poach
oulate threat-intensity here
xpsi <- apply(xpsi,2,scale
{

(zst <- apply(y,1,max,na.rm=T	
n <- 1	I.
if(vartab\$xpsi[i] == "all") n <- 3	ı
}("if (substring(vartab\$prior[i],1,5) == "dnorm	
,inits <- function(){list(z=zst	
,([alpha.occ=rnorm(1,vartab\$ini.a[i],vartab\$ini.b[i	I
,([alpha.p=rnorm(1,vartab\$ini.a[i],vartab\$ini.b[i	I
,([beta.occ=rnorm(n,vartab\$ini.a[i],vartab\$ini.b[i	
{(([beta.p=rnorm(1,vartab\$ini.a[i],vartab\$ini.b[i	
{	i -
}("if (substring(vartab\$prior[i],1,5) == "dunif	
,inits <- function(){list(z=zst	ı.
,([alpha.occ=runif(1,vartab\$ini.a[i],vartab\$ini.b[i	ı
,([alpha.p=runif(1,vartab\$ini.a[i],vartab\$ini.b[i	
,([beta.occ=runif(n,vartab\$ini.a[i],vartab\$ini.b[i	i
{(([beta.p=runif(1,vartab\$ini.a[i],vartab\$ini.b[i	I
{	I
}("if(vartab\$xpsi[i] != "all	
,erg[[i]] <- try(fitJags(y = y, xp = xp	
,xpsi = xpsi	1
,[prior = vartab\$prior[i	
(()ini=list(inits(),inits(),inits	I.
((ı
}else{	
,erg[[i]] <- try(fitJagsAll(y = y, xp = xp	i
,xpsi = xpsi	I

570	,[prior = vartab\$prior[i
571	(()ini=list(inits(),inits(),inits
572	
573	{
574	{
575	(((lapply(erg,function(x) gelman.diag(as.mcmc(x
576	***************************************
577	Model formulation codes
578	,fitJags <- function(y
579	,xp
580	,xpsi
581	,"(prior="dnorm(0,0.000001
582	,ini
583	}("filename="model.txt
584	Write model text file ###
585	(sink(filename
586	")cat
587	}model
588	Priors #
589	",alpha.occ \sim ", prior
590	",alpha.p \sim ", prior
591	",beta.occ \sim ", prior
592	",beta.p \sim ", prior
593	Likelihood#
594	} (for (i in 1:R
595	true occup. state #
596	$([z[i] \sim dbern(psi[i$

597	[logit(psi[i]) <- alpha.occ + beta.occ * xpsi[i
598	
599	} (for (j in 1:T
600	$([y[i,j] \sim dbern(eff.p[i,j$
601	[eff.p[i,j] <- z[i] * p[i,j
602	[logit(p[i,j]) <- alpha.p + beta.p * xp[i,j
603	
604	([Presi[i,j] <- abs(y[i,j] - p[i,j
605	$([y.new[i,j] \sim dbern(eff.p[i,j$
606	([Presi.new[i,j] <- abs(y.new[i,j]-p[i,j
607	{
608	{
609	([,]fit <- sum(Presi
610	([,]fit.new <- sum(Presi.new
611	
612	([]occ.fs <- sum(z
613	{
614	(fill=TRUE ,"
615	()sink
616	$(data \le list(y=y, R = dim(y)[1], T = dim(y)[2], xp = xp, xpsi=xpsi$
617	("params <- c("alpha.occ","alpha.p","beta.occ","beta.p","occ.fs","fit","fit.new
618	nc <- 3
619	nb <- 20000
620	ni <- 100000
621	nt <- 40
622	
623	(require(R2jags

624 625	out <- jags(data = data, inits = ini, params, model.file=filename,n.chains=nc, n.iter=ni, ,n.burn=nb
626	(n.thin=nt
627	{
628	#######################################
629	
630	,fitJagsAll <- function(y
631	,xp
632	,xpsi
633	,"(prior="dnorm(0,0.000001
634	,ini
635	}("filename="model.txt
636	Write model text file ###
637	(sink(filename
638	")cat
639	}model
640	Priors #
641	",alpha.occ \sim ", prior
642	",alpha.p \sim ", prior
643	}(for (i in 1:3
644	",beta.occ[i] \sim ", prior
645	{
646	",beta.p \sim ", prior
647	
648	Likelihood#
649	} (for (i in 1:R
650	true occup. state #

651	([z[i] ~ dbern(psi[i
652 653	logit(psi[i]) <- alpha.occ + beta.occ[1] * xpsi[i,1] +beta.occ[2] * xpsi[i,2] + beta.occ[3] [* xpsi[2,1]
654	
655	} (for (j in 1:T
656	$([y[i,j] \sim dbern(eff.p[i,j$
657	[eff.p[i,j] <- z[i] * p[i,j
658	[logit(p[i,j]) <- alpha.p + beta.p * xp[i,j
659	
660	$([Presi[i,j] \le abs(y[i,j] - p[i,j]))$
661	$([y.new[i,j] \sim dbern(eff.p[i,j$
662	([Presi.new[i,j] <- abs(y.new[i,j]-p[i,j
663	{
664	{
665	([,]fit <- sum(Presi
666	([,]fit.new <- sum(Presi.new
667	
668	([]occ.fs <- sum(z
669	{
670	(fill=TRUE ,"
671	()sink
672	
673	(data <- list(y=y, R = dim(y)[1], T =dim(y)[2], xp = xp, xpsi=xpsi
674	
675	("params <- c("alpha.occ","alpha.p","beta.occ","beta.p","occ.fs","fit","fit.new
676	nc <- 3
677	nb <- 20000

ni <- 100000 nt <- 40 (require(R2jags out <- jags(data = data, inits = ini, params, model.file=filename,n.chains=nc, n.iter=ni, n.burn=nb

TT 1 1 D	1 0 1	1 • •	1 11'
I ahle I Dat	a liced for th	a analvere in	our modelling
	a useu ioi ili	e anaiysis m	
		1	

		Brown.		Red.	Wild.	Roe.					
Ν	visit	bear	Leopard	deer	boar	deer	Wolf	effort	logg	live	poach
1	1	0	0	0	0	0	0	2	1.50	3.00	1.00
2	1	1	0	0	1	0	1	6	1.00	0.83	0.17
3	2	0	0	0	1	0	0	7	0.43	0.43	0.57
4	3	1	1	0	1	0	1	9	0.00	1.00	0.11
5	1	1	0	0	1	0	1	3	0.67	1.00	0.33
6	2	0	0	0	1	0	0	3	3.67	3.33	1.00
7	3	1	0	0	1	0	0	6	0.00	0.00	0.17
8	1	0	0	0	1	0	0	6	0.50	0.33	0.00
9	2	0	0	0	1	0	0	3	1.67	1.67	0.00
10	3	0	0	0	1	0	1	5	1.20	1.40	0.40
11	1	0	0	0	1	0	0	9	0.56	0.67	0.00
12	2	0	0	0	1	0	0	3	0.67	0.33	0.00
13	3	0	1	0	0	0	0	2	1.00	2.50	0.00
14	1	1	0	0	1	0	0	10	1.20	1.20	0.00
15	2	0	0	0	1	0	0	3	2.00	2.33	0.67
16	3	0	0	0	1	0	0	6	0.00	2.67	0.00
17	1	0	0	0	1	0	0	4	1.25	2.50	0.50
18	2	0	0	0	0	0	0	3	2.00	1.33	1.33
19	3	0	0	0	1	0	0	6	0.00	1.00	0.17
20	3	1	1	1	1	0	1	3	0.00	0.67	0.00
21	3	1	1	1	1	0	1	3	0.00	0.67	0.00

22	3	1	1	1	1	1	1	4	0.00	1.50	0.00
23	3	1	1	0	1	0	1	4	0.00	1.25	0.50
24	3	0	0	0	1	0	0	4	0.00	2.75	0.25
25	3	0	0	0	1	0	0	3	0.00	3.33	0.67
26	2	1	0	0	1	0	0	7	0.14	2.00	0.00
27	2	1	0	0	1	0	1	5	2.60	3.20	0.60
28	2	1	0	0	1	1	1	8	0.38	0.38	0.00
29	2	0	0	0	1	0	0	4	2.00	1.25	0.00
30	2	0	0	0	1	1	0	4	1.00	2.00	0.25
31	2	1	0	1	1	1	0	5	0.00	0.60	0.20
32	2	0	1	1	0	1	0	4	0.25	0.00	0.25
33	2	1	1	1	1	0	0	6	1.67	1.83	0.17
34	2	0	1	1	0	1	0	4	0.00	0.00	0.00
35	3	1	1	1	1	1	0	14	0.00	0.07	0.07
36	2	0	1	1	1	0	0	3	1.33	0.00	0.67
37	3	0	1	1	1	0	1	4	0.00	0.50	0.25
38	2	1	1	1	1	1	0	13	0.08	0.00	0.00
39	3	1	1	1	1	1	1	8	0.00	0.00	0.00
40	1	0	0	0	1	0	0	8	0.38	0.75	0.00
41	2	0	0	0	1	0	0	3	0.67	1.67	0.00
42	3	0	0	0	1	0	0	3	1.33	3.00	0.00
43	2	0	1	1	1	1	0	5	0.40	0.00	0.20
44	3	1	1	1	1	1	0	9	0.22	0.22	0.00
45	1	1	0	0	1	1	0	4	2.00	1.25	0.00
46	2	0	1	0	1	0	0	8	0.38	0.75	0.38
47	3	0	0	0	1	0	0	7	0.00	1.14	0.14
48	1	0	0	0	1	1	0	4	0.50	1.00	0.00
49	2	1	1	0	1	0	0	3	1.00	2.67	0.33
50	3	1	1	1	1	1	1	10	0.50	0.70	0.20
51	2	1	1	1	1	1	0	5	0.80	0.40	0.20
52	3	0	1	1	1	0	1	6	0.83	0.50	0.17

53	1	0	1	1	1	1	0	5	0.80	0.60	0.00
54	2	1	1	0	1	0	0	7	0.29	0.00	0.14
55	3	1	1	1	1	1	0	6	0.83	0.33	0.00
56	2	1	1	1	1	1	0	4	1.50	1.75	0.50
57	3	1	1	0	0	0	1	6	0.00	1.67	0.33
58	1	0	0	0	1	0	0	7	0.29	1.86	0.00
59	2	0	0	0	1	0	0	3	3.00	3.00	0.67
60	3	1	1	1	0	1	0	4	1.25	1.50	0.00
61	1	0	0	0	1	0	0	11	0.55	1.73	0.00
62	2	0	0	0	1	0	0	3	1.00	4.33	0.33
63	3	0	0	0	0	0	0	5	0.80	2.00	0.00
64	1	0	0	0	1	0	0	3	0.33	1.33	0.00
65	2	0	0	0	1	0	0	3	0.67	1.33	0.33
66	3	0	0	0	1	0	0	4	0.75	2.25	0.25
67	2	0	1	0	1	0	0	4	1.50	2.75	0.50
68	3	0	0	0	1	0	0	5	2.40	1.80	0.80
69	3	1	1	1	1	0	1	5	0.00	0.40	0.00
70	3	1	1	0	1	0	1	7	0.00	0.57	0.00
71	3	0	0	0	1	0	1	4	1.00	3.50	0.50
72	2	0	1	0	1	0	1	4	0.50	2.50	0.25
73	3	1	1	0	1	0	1	4	2.50	3.50	0.25
74	3	1	1	1	0	0	1	3	0.00	1.00	0.00
75	3	0	1	1	1	0	1	4	0.00	0.75	0.25
76	2	1	1	0	1	1	0	4	4.25	5.50	0.75
77	3	1	1	0	1	0	0	5	0.40	2.60	0.00
78	3	0	0	1	1	1	0	4	0.00	1.00	0.00
79	2	0	0	0	1	0	0	4	0.75	1.00	0.25
80	3	0	0	0	1	0	0	3	2.67	2.33	0.67
81	2	1	1	1	1	0	0	4	1.00	1.50	0.25
82	3	1	1	1	1	1	1	5	0.20	0.40	0.20

83	1	1	1	1	1	0	0	8	0.00	0.00	0.00
84	2	1	0	1	1	1	0	15	0.47	0.40	0.07
85	3	1	1	1	1	1	0	8	0.00	0.00	0.00
86	1	1	1	1	1	0	0	6	0.17	0.33	0.00
87	2	0	1	1	1	1	0	7	0.00	0.00	0.14
88	3	0	1	1	1	0	0	8	0.00	0.00	0.00
89	1	1	1	1	1	1	0	3	1.00	2.67	0.33
90	2	1	1	1	1	1	0	5	0.00	0.00	0.20
91	3	0	0	1	1	0	0	9	0.00	0.67	0.00
92	1	1	1	1	1	1	0	5	1.80	1.20	0.20
93	2	1	1	1	1	1	1	8	0.00	0.25	0.13
94	3	1	1	1	1	1	1	6	0.33	2.83	0.50
95	1	1	1	1	1	0	1	6	0.67	0.50	0.00
96	2	0	1	1	1	1	1	12	0.17	0.17	0.33
97	3	1	1	1	1	1	0	16	0.19	0.31	0.00
98	1	1	0	1	1	0	1	4	1.25	1.75	0.00
99	2	1	1	1	1	1	1	10	0.50	1.10	0.10
100	3	1	0	1	1	1	0	14	0.00	0.79	0.07
101	3	0	1	0	1	0	0	4	0.00	1.50	0.00
102	3	0	0	1	1	0	1	8	0.00	0.75	0.00
103	3	1	0	1	1	0	1	19	0.37	0.68	0.11
104	1	1	1	1	1	0	0	10	0.20	0.30	0.00
105	2	1	1	1	1	1	1	6	0.33	0.17	0.00
106	3	0	1	1	1	0	0	5	0.00	0.80	0.00
107	1	1	1	1	1	0	0	5	0.00	0.20	0.00
108	2	1	1	1	1	0	0	5	0.00	0.00	0.00
109	3	0	1	1	0	0	0	4	0.00	0.00	0.00
110	1	1	1	1	1	0	0	5	0.00	0.20	0.00
111	2	1	1	1	1	0	0	6	0.00	0.00	0.00
112	3	0	0	1	1	0	1	3	0.00	0.67	0.00

113	2	1	1	0	0	1	0	2	1.50	1.50	0.00
114	3	1	1	1	0	1	1	5	0.20	0.20	0.00
115	2	0	1	1	1	0	1	5	0.40	0.80	0.00
116	3	0	1	1	1	0	1	4	0.00	0.25	0.00
117	2	0	1	1	1	0	0	6	0.67	0.83	0.00
118	3	0	1	0	1	0	0	6	0.00	0.83	0.00
119	2	1	1	0	0	0	0	2	1.00	0.50	0.00
120	3	0	0	1	0	0	0	5	0.00	1.00	0.00
121	2	0	0	1	1	0	1	4	0.25	0.25	0.25
122	3	1	0	0	1	0	1	3	0.67	1.67	0.33
123	2	0	0	0	1	0	0	4	0.50	0.25	0.00
124	3	1	1	1	1	1	0	6	0.00	0.33	0.00
125	2	0	1	0	1	0	0	2	0.50	1.00	0.00
126	3	1	1	0	1	1	0	3	0.33	0.33	0.00
127	2	0	1	0	1	1	0	4	0.50	0.75	0.00
128	3	0	1	0	1	1	0	5	1.60	0.60	0.20
129	2	0	0	0	1	1	0	3	0.67	0.67	0.00
130	3	1	1	1	1	1	0	4	0.50	0.00	0.00
131	3	0	1	1	1	1	0	4	0.00	0.25	0.00
132	1	1	1	0	1	0	0	2	0.50	3.00	0.00
133	2	1	1	0	1	0	0	3	0.67	0.67	0.33
134	3	1	1	0	1	1	0	9	0.33	0.44	0.11
135	1	1	1	0	1	0	1	10	0.50	0.90	0.20
136	2	1	0	0	1	0	0	7	0.43	0.14	0.29
137	1	1	1	0	1	0	0	9	0.44	0.56	0.00
138	2	0	0	0	1	0	0	5	0.60	1.40	0.00
139	3	0	0	0	1	0	0	5	0.00	1.20	0.00
140	1	0	0	0	1	0	0	4	1.00	1.50	0.75
141	2	1	0	0	1	0	0	5	0.40	0.20	0.20
142	3	1	0	0	1	0	0	5	0.00	0.40	0.40

143	1	1	0	0	1	0	1	4	2.25	2.00	0.00
144	2	1	0	1	1	0	0	4	0.25	0.00	0.00
145	3	1	1	1	1	0	0	6	0.83	0.50	0.00
146	1	0	0	0	1	0	0	10	0.60	1.70	0.10
147	2	1	0	0	1	0	0	5	0.40	0.20	0.40
148	3	0	0	0	0	0	0	5	0.00	1.60	0.20
149	1	0	0	0	1	0	0	11	0.45	0.55	0.00
150	2	1	1	1	1	1	0	11	0.36	0.45	0.09
151	3	1	1	1	1	1	1	7	0.14	0.29	0.14
152	1	0	0	0	1	1	0	12	0.17	0.75	0.00
153	2	1	1	1	1	1	1	8	1.13	0.75	0.38
154	3	0	0	0	1	0	0	10	0.60	0.20	0.00
155	1	1	0	0	1	0	0	7	0.43	1.29	0.57
156	2	1	0	0	0	0	1	5	0.40	0.20	0.20
157	3	0	0	0	0	0	0	8	0.00	0.63	0.00
158	1	1	1	1	1	1	0	9	0.33	0.67	0.00
159	2	1	1	1	1	1	0	6	0.67	0.67	0.00
160	3	0	0	0	1	0	0	7	0.00	0.43	0.00
161	1	0	0	0	1	0	0	4	0.25	1.25	0.00
162	2	0	1	1	1	1	0	11	0.36	0.36	0.00
163	3	0	0	0	1	0	0	9	0.00	0.33	0.00
164	1	1	0	0	1	0	0	4	0.75	0.75	0.00
165	2	0	0	0	1	0	0	6	1.17	1.00	0.33
166	3	1	0	0	1	0	0	9	0.00	0.78	0.11
167	1	1	0	1	1	0	0	8	0.00	0.00	0.00
168	2	1	1	0	1	0	1	8	0.00	0.63	0.00
169	3	0	1	1	1	0	0	6	0.00	0.00	0.00
170	1	1	0	1	1	0	0	8	0.00	0.00	0.00
171	2	1	1	1	1	0	0	8	0.13	0.13	0.00
172	3	1	0	1	1	1	0	8	0.00	0.00	0.00

173	1	1	1	0	1	0	0	6	0.33	0.50	0.00
174	2	1	0	0	1	0	0	3	0.00	0.00	0.00
175	3	1	0	0	1	0	0	5	0.00	0.00	0.00
176	1	0	0	0	1	0	0	4	1.00	2.00	1.00
177	2	0	0	0	1	0	0	8	1.50	1.00	0.50
178	3	1	0	0	0	0	0	5	0.00	1.60	0.00
179	1	1	1	1	1	0	0	4	0.00	0.00	0.00
180	2	1	1	0	1	1	0	4	0.00	0.00	0.00
181	3	1	1	1	1	1	0	12	0.00	0.00	0.00
182	1	0	0	1	1	1	0	3	0.00	0.00	0.00
183	2	1	1	1	1	1	0	5	0.00	0.20	0.20
184	3	1	1	1	1	1	0	7	0.00	0.00	0.00
185	1	1	1	1	1	0	0	3	1.00	1.67	0.00
186	2	1	0	0	1	0	0	4	0.00	0.50	0.00
187	3	1	1	1	1	1	1	9	0.00	0.00	0.33
188	1	1	1	0	1	1	0	3	0.33	0.67	0.00
189	2	1	1	1	1	1	0	6	1.50	1.50	0.17
190	3	1	0	1	1	0	0	6	0.00	0.00	0.17
191	1	1	0	1	1	1	0	7	0.00	0.00	0.00
192	2	1	1	1	1	1	0	4	0.00	0.00	0.00
193	3	0	1	1	1	1	0	6	0.00	0.00	0.00
194	1	0	0	1	1	1	0	6	0.00	0.00	0.00
195	2	0	1	1	1	1	0	3	0.00	0.00	0.00
196	3	1	1	1	1	1	0	4	0.00	0.00	0.00
197	1	1	1	1	1	1	0	4	0.00	0.00	0.00
198	2	1	1	1	1	0	0	5	0.00	0.00	0.00
199	3	1	0	1	1	1	0	11	0.00	0.00	0.00
200	1	1	1	1	1	0	0	6	0.00	0.00	0.00
201	2	1	1	1	1	1	0	7	0.00	0.00	0.00
202	3	1	1	1	1	0	0	15	0.00	0.00	0.00

203	2	1	1	1	1	1	1	8	0.00	0.00	0.13
204	3	0	1	1	1	1	0	5	0.00	0.00	0.00