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Abstract

The concept of material or configurational forces, albeit not new, is one of those innovations in theoretical
mechanics that has struggled to reach the success of wide-spread acceptance, or even familiarity. Perhaps,
one reason for this is to be found in the few available introductory examples or in the non-trivial physical-
mathematical approach often taken to establish this concept, although by no means more complex than other
treatments in non-linear continuum mechanics. With this work we aim at contributing to the dissemination
of configurational mechanics concepts by guiding the reader through an introductory analytical example step
by step and comparing it to numerically obtained results. The numerical model is solved with OpenGeoSys
(OGS-6), an open-source, C++-based, object-oriented finite element platform for the thermo-hydro-mechanical
analysis of coupled processes in fractured porous media. In the spirit of the open-source philosophy, and
to enable the readers to reproduce the example themselves, both the source code and the input files are
available online. The example highlights—in a simple and intuitive manner—several insightful aspects related
to configurational mechanics.

Keywords: Material mechanics, configurational forces, bar with defects, interface effects, OpenGeoSys

1. Configurational forces

The theory of configurational or material forces1

has provided valuable analysis concepts in many
branches of material science and engineering, espe-
cially the treatment of defects and inhomogeneities.
In his 2005 paper on self-driven dislocations, Epstein
summarizes this as follows: [2] “That the Eshelby
stress is, at least in part, at the very root of the mo-
tion of material defects and other inhomogeneities is
a thermodynamic truth that few people doubt, al-
though different people arrive at this conclusion in
somewhat different ways”. Maugin [1] states that the
“unifying notion of material force [..] gathers under
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1Known under many synonyms in the context of related
concepts, such as suction force in a cracked body, force on an
elastic singularity, force on an elastic defect, force on a dis-
location, inhomogeneity force, crack extension force, driving
force on a soliton, force on an interface, Γ-invariant integrals,
J-integral of fracture, etc. [1].

one vision all types of driving ’forces’ on defects and
smooth or abrupt inhomogeneities in fracture, de-
fect mechanics, elastodynamics (localized solutions)
and allied theories such as in electroelasticity, magne-
toelasticity, and the propagation of phase transition
fronts”.

Based on these loose definitions it is not surpris-
ing that configurational forces or the Eshelby stress
tensor (also called energy–momentum tensor) have
been used to describe inelastic effects such as elasto-
plasticity [3], damage in engineering materials [4, 5],
remodelling of biological tissues [6, 7], shear-band for-
mation [8], the contribution of plastic or viscous ma-
terial effects to fracture [9], and many others. Other
examples of usage include h- or r-adaptivity in finite
element settings based on configurational forces asso-
ciated with discretization errors [3, 10]. Especially in
finite-strain settings, the occurrence of the Eshelby
stress tensor is strongly linked to the multiplicative
decomposition of the deformation gradient into in-
elastic and elastic parts [3, 6]. This example illus-
trates that considering finite strains in the derivation
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of configurational effects, even if the subsequently
employed theory is limited to linear kinematics, is
generally advised since premature linearization can
obscure physical effects routed in higher-order space-
time derivatives; cf. also Ref. [1].
The existence of configurational forces has recently

been demonstrated by a series of clever experiments
that highlight Eshelby-like forces in elastic structures
[11], demonstrate the possibility of torsional locomo-
tion [12] and show interesting applications related
to serpentine locomotion [13] and mixed equilibrium-
deformation scale [14].
Despite its interpretative value for a wide range of

physical and engineering analyses, the idea of mate-
rial forces remains isolated and access to the topic can
be hampered by the advanced and highly mathemat-
ical nature of many key references. The aim of this
contribution is to provide an introductory example by
analyzing a simple, yet illustrative analytical and nu-
merical application of material forces to an inhomo-
geneous elastic material loaded in a one-dimensional
setting. We have implemented the assembly of ma-
terial force vectors into the open-source FEM code
OpenGeoSys2 [15, 16], which we will use to analyze
the distribution of material forces the heterogeneous
continuum and compare the results to those obtained
from the analytical solution.
The notion of configurational forces can be arrived

at from different angles, such as a pull-back of the
physical momentum balance to the reference configu-
ration [1], invariance considerations and conservation
principles [17], or the introduction of an additional
balance law related to phenomena on the micro-scale
[18].
An intuitive access can be gained by considering

a possible motion of an inhomogeneity in an elas-
tic material. Such a motion relative to the reference
configuration is associated with a change in the elas-
tic energy of the system. Configurational forces are
the work-conjugate drivers of this motion. Extending
this thought experiment by considering that plastic
deformation is strongly linked to the motion of dislo-
cations on the micro-scale which can macroscopically
be thought of as continuously distributed defects, ”it
becomes obvious that the Eshelby stress is work con-
jugate to the rate of the plastic deformation by the
dissipation inequality” [3].
In a dissipative and quasi-static context, we
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choose here the illustrative approach of expanding
the gradient of the free Helmholtz energy density
ψ(F,κ, κ; X), where F is the deformation gradient,
κ and κ represent tensorial and scalar internal vari-
ables, and the dependence on the position vector X
signifies as usual the explicit incorporation of inho-
mogeneities:

Gradψ = ∂ψ

∂F : Grad F + ∂ψ

∂κ
: Grad κ+ (1)

+ ∂ψ

∂κ
Gradκ+ ∂ψ

∂X

∣∣∣∣
expl.

.

In terms of notation, operators with capital letters
such as Grad (•) and Div (•) represent differential
operators with respect to the reference configuration
(material coordinates X) and lower-case operators
such as grad (•) and div (•) operate on the current
configuration (spatial coordinates x).
From the isothermal Clausius-Planck inequality in

a standard setting, one can derive the driving forces of
the internal variables (sometime referred to as associ-
ated thermodynamic forces) Yκ, Yκ as well as find the
standard definition of the first Piola-Kirchhoff stress
tensor P

0 ≤ P : Ḟ− ψ̇, (2)

or, expanded,

0 ≤
(

P− ∂ψ

∂F

)
: Ḟ− ∂ψ

∂κ
: κ̇− ∂ψ

∂κ
κ̇, (3)

where the residual dissipation inequality reads

D = Yκ : κ̇ + Yκκ̇ ≥ 0, (4)

with

Yκ = −∂ψ
∂κ

; Yκ = −∂ψ
∂κ

; P = ∂ψ

∂F
. (5)

With these definitions, Eq. (1) can be rearranged by
virtue of the chain rule and Young’s theorem to

0 = Div (ψI− FTP) + FT Div P+ (6)

+ Yκ : Grad κ + Yκ Gradκ− ∂ψ

∂X

∣∣∣∣
expl.

.

Employing the physical momentum balance in the
form Div P + ρ0b = 0 and defining the energy-
momentum or Eshelby tensor as Σ = ψI−FTP yields
the configurational force balance

0 = Div Σ + g, (7)
2
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with
g = gdiss + gvol + ginh, (8)

and
gdiss = Yκ : Grad κ + Yκ Gradκ
gvol = −ρ0FTb

ginh = − ∂ψ

∂X

∣∣∣∣
expl.

(9)

These contributions make apparent that configura-
tional forces arise as a consequence of inhomogeneous
dissipative effects, of body-forces b in conjunction
with heterogeneous displacement fields, and in the
presence of distinct inhomogeneities.
To arrive at a small-strain setting, spatial differ-

ential operators with respect to the reference coordi-
nates X are replaced by the operators div and grad
with respect to the coordinates x as well as re-defining
the Eshelby stress and the volumetric contribution as

Σ = ψI− grad Tu σ (10)

and
gvol = −% grad Tu b (11)

in terms of the Cauchy stress tensor σ and the dis-
placement gradient. For the finite element imple-
mentation (compare reference [19]), a test function
v ∈ V0 is chosen such that

V0 =
{
v ∈ H1(Ω) : v = 0 ∀ x ∈ ∂Ω

}
. (12)

in order to arrive at the weak form of the configura-
tional force balance∫

Ω

(Σ : grad v− g · v) dΩ = 0. (13)

Now, a nodal material force vector can be assembled
from the discretized Eshelby-stress integral

F conf =
∫
Ω

NTg dΩ =
∫
Ω

GTΣ dΩ. (14)

In the above, N and G are suitably defined shape-
function matrices and gradient matrices, respectively,
while Σ is a vectorial representation of the Eshelby
stress tensor coordinates3. Regarding the imple-
mentation into OpenGeoSys, these definitions follow
those outlined in Nagel et al. [16] for the displace-
ment gradient etc.

3Note that due to Σ , ΣT this is a nine-dimensional vector
in a three-dimensional setting.

2. Heterogeneous bar under tensile loading

2.1. Analytical solution
The example is designed to illustrate some of the

basic concepts of material forces. First, consider a bar
made of a linearly elastic material loaded in uniaxial
tension/compression (no lateral stresses) under con-
stant stress σ0 in the small strain range. The Young’s
modulus of the material is linearly distributed along
the bar around its average mid-point value E0

E (x) = E0

[
1 + α

(
x

l
− 1

2

)]
. (15)

One possible interpretation relates stiffness linearly
to φ̃v (x) as

E (x) =
[
1− φ̃v (x)

]
E0, (16)

where φ̃v (x) could be a volumetric measure of void
or defect density

φ̃v (x) = α

(1
2 −

x

l

)
. (17)

In that sense, φ̃v is not an absolute measure but ex-
presses the void density relative to a base-line value
corresponding to E0 in the centre of the bar. Due to
the linear distribution anchored in the centre of the
bar, the total void density is a conserved quantity, i.e.

Φ̃v =
l∫

0

φ̃v (x) dx = 0 (18)

holds for the total deviation. The physically mean-
ingful interval for the slope is α ∈ (−2, 2), so that
φ̃v (x) ∈ (0, 1).
We recall that the dissipative contribution gdiss is

null for elastic materials and that we do not consider
volumetric forces, so that gvol = 0. Hence,

ginh = −div Σ (19)

holds. The gradient of the displacement field along
the bar reads

gradu = ε = σ0
E0

[
1 + α

(
x

l
− 1

2

)]−1
, (20)

and the free energy per unit volume

ψ = 1
2σε = σ2

0
2E0

[
1 + α

(
x

l
− 1

2

)]−1
. (21)
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Figure 1: Schematic representation of a bi-material bar (different stiffness in this case) under tensile load.

Hence, Σ = −ψ and we can, in conjunction with
Eq. (19), compute the material forces per unit volume
as

ginh = − div Σ =

= − ασ
2
0

2E0l

[
1 + α

(
x

l
− 1

2

)]−2
.

(22)

2.2. Integration of material forces
The vectorial field of the material forces Ginh is

computed as a post-processed variable and is defined
at the nodes of the finite element discretization as a
result of the integration over the adjacent elements’
volumes as expressed in Eq. (14). The computation
is analogous to the calculation of nodal reactions Ri
based on Cauchy’s stresses. As in the standard FEM
procedure, equilibrium of momentum implies vanish-
ing nodal reactions Ri except at traction boundaries.
The physical meaning of the un-balanced component
of the material force vector field at the internal nodes
of the domain is illustrated at the end of this section.
Due to an element-wise assignment of the Young’s
modulus, the comparison with the analytical solution
has to consider the discretization of the problem in
the sense of a sequel of material-domain interfaces.
For illustration, let us first consider an interface be-
tween two solids with different Young’s moduli in a
uniaxial stress field as shown in Fig. 1. The plane
separating the two regions Ω1 and Ω2 of the domain
Ω (bounded by ∂Ω) is an oriented surface with a unit
normal NS pointing into material 2. Allowing a jump
of Eshelby’s stress Σ at the interface we have∫

∂Ω

Σ ·NdΓ =

=
∫

Ω1∪Ω2

Div ΣdΩ +
∫
S

~Σ� ·NSdΓ,
(23)

where
~•� = (•)|2 − (•)|1, (24)

defines a jump in quantity • over the boundary be-
tween the two material domains. The total material

force G at the interface can be computed as

G = −
∫
S

~Σ� ·NSdΓ (25)

whereas the individual domains remain divergence-
free. As we have defined the problem to be uniaxial,
the only non-zero component of Eshelby’s stress Σ at
material domain 1 and 2 is

Σ1 = − σ2

2E1
and Σ2 = − σ2

2E2
, (26)

with E1 and E2 being the Young’s modulus of domain
1 and 2 respectively, so that the material force at the
interface is given as

G = −
∫
S

~Σ�dΓ = −~Σ�A =

= −σ
2 (E2 − E1)

2E1E2
A,

(27)

where A is the cross section area of the bar. The
same result can be arrived at by energetic arguments
in which the total elastic potential equal to the me-
chanical work is defined as

Ψ =
∫
Ω

ψ dΩ = W = 1
2Fu =

= 1
2σA [ε1L1 − ε2 (L− L1)] ,

(28)

from which the material force is obtained via the
variation of energy with respect to the position of the
interface between domain 1 and domain 2

G = −∂W
∂L1

= −1
2F (ε1 − ε2) =

= −σ
2 (E2 − E1)

2E1E2
A.

(29)

From the previous results it can be observed how
the material force acting on the interface depends
on the stiffness difference between the two materi-
als E2−E1. More specifically, the sign and therefore
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Figure 2: Mesh of the finite element model and distribution of Young’s modulus in the bar.

the direction of the forces will be determined by this
difference. This example can be directly extended to
account for a piece-wise constant approximation of a
linear distribution in which many interfaces exist in-
side the solid, each of which is the boundary between
two adjacent elements in an FEM discretization.

2.3. Numerical model
The problem that is solved numerically consists

of a linear elastic bar of unit length and a width
of 0.05m that has a linear distribution of Young’s
modulus as in Eq. (15) with α = 1, E0 = 1GPa
and l = 1m. The mesh is regular and comprised of
bi-linear quadrilateral elements of fixed edge length
of 0.00625m. The mesh and Young’s modulus distri-
bution are illustrated in Fig. 2. The left-hand side is
a fixed end with constrained horizontal displacement,
the right-hand side constitutes a traction boundary
with an applied tensile stress σ = 0.01GPa. Vertical
displacements are fixed at both the bottom right
and left nodes to avoid rigid body movements. The
problem is solved in two-dimensional plane-strain
conditions and the Poisson’s ratio is set to zero to
avoid lateral deformations and stresses. The version
of OpenGeoSys employed is available at4

https://github.com/fparisio/ogs/tree/
SVOSDN_MF_BB
and the input files (bar.vtu, bar.gml and bar.prj)
can be found in the source code in the directory
/src/Tests/Data/Mechanics/Linear/.
To compare analytical and numerical results, let us

now consider a bar with a linear distribution of stiff-
ness as represented in the numerical example. Be-
cause the Young’s modulus in the present finite el-
ement model is defined as an element property, the
distribution is a stepwise function in which the step
size depends on the spatial discretization of the prob-
lem. Fig. 3(a) shows the comparison between analyt-

4As part of the usual development process, the feature will
soon become part of the official main version of the software.

ical distribution of Young’s modulus and the FEM
distribution in OpenGeoSys.
Based on the above considerations, the analytical

solution of the material forces at a cross-section x can
be obtained in two different ways: firstly, by using the
analytical solution of the bimaterial interface from
Eq. (27) with a discretization that corresponds to the
FEM mesh illustrated in Fig. 2, i.e., ∆x = 0.00625m.
At the interface between two consecutive elements, we
can write the total material force Gi using Eq. (27)
as

Gi = −
σ2
[
E|xi+ ∆x

2
− E|xi−∆x

2

]
2E|xi+ ∆x

2
E|xi−∆x

2

A, (30)

where xi is the position of the interface between the
two domains.
Secondly, one can integrate the specific body force

from Eq. (22) over the volume surrounding each dis-
crete interface to obtain

Gi = − ασ
2
0

2E0l

[
1 + α

(
xi
l
− 1

2

)]−2
A∆x. (31)

The integral of Eq. (31) is computed assuming a suffi-
ciently fine discretization that ginh can be considered
to be linear in the proximity of the interface.

3. Results

Fig. 3(b) illustrates the comparison of the two ana-
lytical methods, leading to coinciding curves and thus
showing that the body force-derived solution corre-
sponds to the interface-based one. Fig. 3(c) shows
the comparison between the nodal material forces ob-
tained from the analytical solution and the numerical
computation with OpenGeoSys5 as a function of the
coordinate x. Except for boundary effects, which are
not considered due to δX|∂Ω = 0, the comparison is

5Note, that to obtain the total material force acting on a
given cross section the axial components of all material force
vectors in this cross section need to be summed up.

5

https://github.com/fparisio/ogs/tree/SVOSDN_MF_BB
https://github.com/fparisio/ogs/tree/SVOSDN_MF_BB
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Figure 3: Example for material forces acting in an inhomogeneous bar under tension: the continuous analytical distribution of the
Young’s modulus and the discrete distribution serving as input for OpenGeoSys (a); the discretized material force distribution
obtained as total forces Gi from the material interface equilibrium (Eq. (30)) or as integral of material force density (Eq. (31))
(b); comparison between the analytical solution and the result from the analysis with OpenGeoSys (c).

consistent and verifies the OpenGeoSys implementa-
tion.
In the void interpretation that was previously in-

troduced, the material is denser at the right-hand
side which accordingly elicits a stiffer response. In
the context of this interpretation, and based on the
obtained results, the material or configurational force
field acts as a driving force for the migration of voids
(or, alternatively and reversely, stiffness, i.e., material
points) from left to right in an effort to re-establish
a configuration with smaller overall elastic potential
energy. In other words, the driver for this migration
are configurational changes that aim at minimizing
the energy in the system

Ψ =
l∫

0

ψ(x)Adx = σ2
0Al

2E0α
ln 2 + α

2− α. (32)

To find the configuration with minimal elastic energy
we use

dΨ
dα = 0 = −

(α2 − 4) ln 2+α
2−α + 4α

α2(α2 − 4) , (33)

so that in the physically relevant interval we find

ᾱ = argmin
α∈(−2,2)

Ψ = 0. (34)

We see that a configurational rearrangement towards
homogeneity is energetically beneficial. Additionally,
we can see from Eq. (34) that the material forces tend

to restore a homogeneous configuration in the present
problem which by design conserves the mean stiff-
ness/void density. That is, the stiffness distribution
simply rotates around its middle-point value (which
corresponds to the average throughout the bar) with-
out any translation. If we think about voids or defect
density, such voids can only be redistributed inside
the beam without expulsion through the boundaries.
The boundaries, therefore, can be considered as “adi-
abatic” with respect to inhomogeneities and material
points configuration. The interpretation of a configu-
rational force acting on a single material interface as
indicated in Fig. 1 and expressed by Eq. (27) shows
that the interface has a tendency to move into the
stiffer material, thereby softening the bar and min-
imizing the energy under constant-stress boundary
conditions. We close again by remarking that the con-
figurational forces are not to be confused with phys-
ical forces, but are an illustrative way of looking at
energetic phenomena.

4. Conclusion

We have shown step by step a simple, yet very in-
sightful application of material forces to a mechanical
problem. The comparison between numerical simula-
tions and analytical results also verifies the implemen-
tation of material-force assembly in the open-source
finite element framework OpenGeoSys. The analyt-
ical solution can be derived in different ways, either
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in a continuously varying setting or in its approxi-
mation by a series of discrete material interfaces. In
an inhomogeneous bar under tensile loading, material
forces have shown to drive the problem toward a lower
energetic configuration, acting to restore homogene-
ity under the conditions considered here. Because of
their implied physical meaning, material forces can be
a very powerful tool in the hands of modelers which
can help to solve numerous complex problems related
to the physics of continua. Our goal was to give the
reader a simple application example that turns the
complex mathematical formulation of material forces
into an intuitive physical problem. We have done so
in an effort to illustrate the concept of material forces
toward other scientific communities that might be less
familiar with this non-classical continuum mechanical
topic.
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