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 
Abstract—As cities grow and develop, more natural landscapes 

are transformed into heat-absorbing surfaces, further 
exacerbating urban heat island (UHI) effect. To seek efficient 
strategies for UHI mitigation, it requires a good knowledge on 
the driving mechanisms of heat. Based on surface energy balance, 
this study decomposed surface UHI (SUHI) in terms of five 
biophysical drivers (radiation, anthropogenic heat, convection, 
evapotranspiration and heat storage), and applied the approach 
in Beijing using remote sensing images on Google Earth Engine. 
The SUHI intensity, calculated by combining the contribution 
terms, and the observed SUHI through Landsat 8 land surface 
temperature product, are in good agreement, with the root-mean 
square error 0.776 K and the coefficient of determination 0.947. 
Besides building morphological blocks, it’s the changes of the 
evapotranspiration term (a function to Bowen ratio, which 
describes the capacity of urban and rural surface to evaporate 
water), that controls the spatial variations of SUHI intensity 
during summer. For instance, in low-rise and high-density 
regions which exhibit a strong SUHI effect, the above five 
contribution terms were 0.03 K, 0.44 K, -0.74 K, 1.35 K, and -0.08 
K on average, respectively. In comparison to building height, 
building density stronger affects the SUHI contribution terms. 
Based on the results, strategies of reducing the Bowen ratio, such 
as green spaces, cool roofs, and open building layouts, are 
recommended. The findings and suggestions refer to a particular 
city and season. Further experiments and research should be 
carried out for a deeper understanding of the driving mechanism 
of SUHI. 
 
Index Terms— Remote sensing, Surface energy balance, Urban 
heat island, Evapotranspiration, Google Earth Engine, Urban 
adaptation  
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I. INTRODUCTION 

RBAN heat island (UHI) is a common phenomenon, 
that urban areas experience higher temperatures than 
surrounding rural areas [1], [2]. Since 2003, surface 

temperature in pronounced UHI regions rise by about 1.04 K 
on average around the world [3]. Elevated urban temperatures 
contribute to extreme heat events, air pollution, posing threats 
to the health of urban dwellers and the living conditions of 
flora and fauna [4]-[6]. Therefore, seeking an approach for 
UHI mitigation is necessary and urgent. 

UHI studies include the analysis of air temperature and 
satellites-based land surface temperature (LST) [7]-[15]. The 
former considers UHI effect in the canopy or boundary layers, 
typically measured at varying heights above the ground [12], 
[13]. The latter is primarily concerned with temperature 
variations at the ground level or within a few centimeters 
above the surface, which highlights the physical changes in 
land cover and land use (LULC) associated with urban 
development [9]-[15]. This study focused on the surface UHI 
(SUHI) defined by LST. Besides the advantages of 
spatiotemporal consistency and spatial coverage, LST is 
independent on convectional meteorological variables, which 
directly affect the surface heat budget in urban region [15]-
[17]. Both the air and surface UHIs are controlled by multiple 
factors: absorbed solar radiation, released anthropogenic heat, 
heat storage and release at surface, geometrical features to 
urban ventilation, and higher Bowen ratio (defined as the ratio 
from sensible to latent heat flux) caused by reduced 
vegetation/water coverage [7], [18], [19]. Identifying 
vulnerable sites (often affected by heat) and developing 
efficient local mitigation strategies requires a comprehensive 
understanding of these drivers of heat. Urban heat and its 
biophysical drivers depend on the urban structure that can be 
characterized by different types of urban morphology. These 
relationships are essential for optimizing the urban design, 
minimizing cost and efforts, and preventing the adverse effects 
of heat on urban ecosystems. 

The quantification of contribution terms to UHI intensity is 
the key to develop targeted measures for UHI mitigation. This 
can be achieved through the application of surface energy 
balance (SEB) model [7], [18]. The SEB describes the 
partitioning of energy fluxes available at the surface, which 
forms the basis for understanding the thermodynamic behavior 
of air and surface temperature, humidity, local airflow 
dynamics and boundary layer depth [20]-[23]. In the absence 
of horizontal heat advection, the net radiation ( 𝑅௡ ) and 
anthropogenic heat flux (𝑄஺ு ) is balanced by sensible heat 
flux (𝑄ு), latent heat flux (𝑄ா), and soil heat flux (𝑄ௌ) for an 
urban area (Fig. 1):  

U
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 𝑅௡ + 𝑄஺ு = 𝑄ு + 𝑄ா + 𝑄ௌ (1) 

 
Fig. 1. Schematic depiction of terms involved in the SEB. The 
arrow orientation represents positive fluxes. 

To decompose UHI intensity, Reference [7] applied the 
Intrinsic Biophysical Mechanism (IBM) method in North 
America using SEB fluxes extracted from a global climate 
model (CESM) and compared the modelled UHI result with a 
remote sensing-based UHI. They found that the dominant 
contribution term of UHI intensity is different between 
daytime and night.  During the daytime, the UHI intensity is 
primarily controlled by the efficiency of heat convection from 
the surface to the atmosphere, which in turn is dependent on 
climate zones. In northeastern cities of USA, the dominant 
term shifts to the capacity of the urban surface to evaporate 
water. Later, Reference [19] suggested a Two-Double 
Resistance Mechanism (TRM), which specifies a surface 
resistance to replace the Bowen ratio term in IBM. The results 
showed some similarity to [7], but emphasize 
evapotranspiration as the most dominant contribution. 
However, these studies only discussed the UHI formation at a 
city scale, without addressing their spatial variations within a 
city. This limitation complicates the understanding of UHI 
driving mechanisms and the identification of vulnerable 
regions. To decompose UHI at the neighborhood scale, 
Reference [18] employed the IBM method using SEB fluxes 
obtained from micrometeorological simulations (ENVI-met) 
in Leipzig, Germany, but the input variables were not easy to 
access and the simulation takes significant time (few days), 
even for a modeling area of 1125 by 1125 m. This limits its 
further application, especially in metropolitan cities. 

 Closing these gaps, this study applied the IBM method to 
decompose SUHI intensity in Beijing, China, and 
implemented the entire process on Google Earth Engine 
(GEE) for a potential application in various scenarios. 
Compared with traditional LULC-based analysis of SUHI, the 
suggested method is advantageous for quantifying local heat 
transfer process, and further converting them into 
corresponding temperature changes. This would provide new 
insights for future efforts to attribute UHI at a fine spatial 
scale, and scientific guides to future urban transformation. Our 
specific objectives include: 

● mapping the contribution terms of SUHI intensity to 
facilitate the identification of vulnerable regions 
within Beijing; 

● investigating which contribution term exerts the 
greatest influence on SUHI intensity; 

● analyzing the association between each contribution 
term and urban morphology (urban morphological 
blocks - UMBs), in order to provide scientific 
recommendations for UHI mitigation in Beijing. 

II. STUDY AREA AND DATA  

A. Study area  

Beijing (39°54′N, 116°23′E) is a world-class city that is 
undergoing rapid urbanization and substantial population 
growth, covering approximately 16,000 km2 with more than 
20 million urban populations. Situated in north temperate 
climate zone, the city features a humid continental monsoon 
climate characterized by harsh, dry winters and hot summers 
[24]. Beijing encounters a significant UHI effect, particularly 
during the summer months, with the urban region often being 
approximately 3.5 ℃ warmer than its outskirts [25]. In this 
study, the urban region is defined as the area enclosed by the 
Fifth Ring Road (Fig. 2), while the suburban region 
encompasses all non-urban pixels within a 10 km buffer 
outside the urban boundary. 

B. Data  

In this study, Landsat 8 OLI/TIRS data from August 6, 2021 
and December 4, 2018, were utilized to retrieve LST and 
estimate SEB fluxes. The former image was further employed 
to calculate SUHI contribution terms during summer in 
Beijing, while the latter was employed to analyze the accuracy 
of estimated SEB fluxes by comparison to Reference [26]. 
Most of Landsat 8 bands have a spatial resolution of 30 m 
except thermal infrared bands (100 m) and panchromatic band 
(15 m). The thermal infrared bands on Landsat 8 has a spatial 
resolution of 100 m, but after resampling (cubic convolution 
method is applied on GEE), it can supply LST products using 
atmosphere correction method with a spatial resolution of 30 
m and an overall accuracy of 1 K [27].  

NASA's Shuttle Radar Topography Mission (SRTM) data 
has a spatial resolution of 30 m, and were applied to obtain the 
elevation, and further calibrate LST by transferring the 
difference of extraterrestrial solar radiation between fluctuated 
and flat terrains to the changes in temperature [23], [28]. 

In terms of the meteorological data, we used the ERA5 
hourly atmospheric reanalysis dataset to estimate the SEB 
fluxes from Landsat images. This dataset was chosen due to its 
global coverage and accessibility on GEE. It provides hourly, 
spatially continuous data for parameters such as air 
temperature at 2 m, dew-point temperature at 2 m, wind speed 
at 10 m and surface solar radiation at a resolution of 0.1° since 
1980 [29]. 

The UMBs dataset was sourced from Beijing City Lab, 
which provides block-scale 3D attributes for 63 Chinese cities 
[30], [31]. This study collected the block data of urban region 
in Beijing, with nine UMB types (Table. 1), serving as the 
fundamental spatial units for an analysis of the associations 
with SEB fluxes and SUHI contribution terms (Fig. 2). The 
land cover data, employed to identify vegetation and water 
regions, comes from the China Land Cover Dataset (CLCD), 
offering a spatial resolution of 30 m and an accuracy 
exceeding 79.31% [32].  
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Fig. 2. Study area (top-left: the map of China; bottom-left: the location of main Ring Road in Beijing; right: the distribution of 
UMBs and vegetation zone within Fifth Ring Road in Beijing).  

TABLE  1 DESCRIPTION OF UMBs CATEGORIES 
UMB type Abb. Descriptions 
Low-rise point LRP Low-rise and low-density region  

(ABF < 3 & ABD < 0.25)  
Low-rise stripe LRS Low-rise and middle-density 

region (ABF < 3 & 0.25 <= ABD 
< 0.35) 

Low-rise block LRB Low-rise and high-density region 
(ABF < 3 & 0.35 <= ABD < 0.45) 

Middle-rise point MRP Middle-rise and low-density 
region (3 <= ABF <= 7 & ABD < 
0.25) 

Middle-rise stripe MRS Middle-rise and middle-density 
region (3 <= ABF <= 7 & 0.25 <= 
ABD < 0.35) 

Middle-rise block MRB Middle-rise and high-density 
region (3 <= ABF <= 7 & 0.35 <= 
ABD < 0.45) 

High-rise point HRP High-rise and low-density region  
(ABF > 7 & ABD < 0.25) 

High-rise stripe HRS High-rise and low-density region  
(ABF > 7 & 0.25 <= ABD < 0.35) 

High-rise block HRB High-rise and low-density region  
(ABF > 7 & 0.35 <= ABD < 0.45) 

Notes: ABF means the average building floor in the region, and ABD 
means the average building density in the region. 

III. METHODS 

A. Estimation of various heat fluxes 

1) Net radiation  

Net radiation (𝑊/𝑚ଶ) refers to the balance of radiation at 
land surface that can be calculated using incoming shortwave 
radiation ( 𝑆↓ ), incoming longwave radiation from the 

atmosphere (𝐿↓ ), emitted/outgoing longwave radiation from 
the surface (𝐿↑), which is described by the following equation 
[23]: 

 𝑅௡ = (1 − 𝛼)𝑆↓ + 𝐿↓ − (1 − 𝜀଴)𝐿↓ − 𝐿↑ (2) 
where 𝛼 and 𝜀଴ represent surface albedo (dimension less) and 
surface emissivity (dimension less), respectively. The surface 
albedo can be calculated as [33]:  

 𝛼 = (𝛼௧௢௔ − 𝛼௣௔௧௛ି௥௔ௗ௜௔௡௖௘)/𝜏௦௪
ଶ (3) 

where 𝛼௣௔௧௛ି௥௔ௗ௜௔௡௖௘  represents the average of the part of 
solar incident radiance for all bands, 𝛼௧௢௔ represents the top-
of-atmosphere albedo. The atmospheric transmissivity 𝜏௦௪  is 
determined using (4) [22]: 

 𝜏௦௪ = 0.75 + 2 ∗ 10ିହ𝑍  (4) 
where 𝑍 is the height of an area from the mean sea level.  

The incoming shortwave radiation is processed by (5) 
 𝑆↓ = 𝐺௦௖ ∗ 𝑐𝑜𝑠𝜃 ∗ 𝑑௥ ∗ 𝜏௦௪ (5) 

where 𝐺௦௖  is the solar constant (1367𝑊/𝑚ଶ ), 𝜃  is the sun 
elevation angle, and 𝑑௥ is the inverse square relative distance 
between earth and sun [22]. 

The incoming longwave radiation from the atmosphere (𝐿↓) 
at every pixel is calculated using the Stefan-Boltzmann 
equation: 

 𝐿↓ = 𝜀௔ ∗ 𝜎 ∗ 𝑇௔
ସ 

𝜀௔ = 0.85 × (−𝑙𝑛𝜏௦௪)଴.଴ଽ 
(6) 

where 𝜀௔ is atmospheric emissivity (dimension less),  𝜎 is the 
Stefan-Boltzmann constant (5.67 × 10ି଼𝑊/𝑚ଶ/𝐾ସ) and 𝑇௔ is 
the air temperature (K).  

The emitted/outgoing longwave radiation from the surface 
(𝐿↑) is calculated using (7) 

 𝐿↑ = 𝜀଴ ∗ 𝜎 ∗ 𝑇௦
ସ 

𝜀଴ = 1.009 + 0.047 × ln (𝑁𝐷𝑉𝐼) 
(7) 

where 𝑇௦ is the surface temperature (K). 

2) Sensible heat flux 
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Sensible heat flux (𝑊/𝑚ଶ) refers to the heat transfer to the 
atmosphere by molecular convection due to temperature 
differences. When the surface temperature exceeds air 
temperature, the heat transfer is upward from the surface to the 
atmosphere [18], [34]. The sensible heat flux is calculated 
using (8): 
 𝑄ு = 𝜌 ∗ 𝐶௣ ∗ (𝑇௦ − 𝑇௔)/𝑟௔ (8) 
where 𝜌 is the air density (𝑘𝑔/𝑚ଷ), 𝐶௣ is the specific heat of 
air at constant pressure (1004 𝐽/𝑘𝑔/𝐾 ), and  𝑟௔  means the 
aerodynamics resistance to turbulent heat transfer from surface 
at the reference height to the air (𝑠/𝑚). Since the temperature 
gradient 𝑑𝑇 (𝑇௦ − 𝑇௔) and 𝑟௔ are two unknowns, sensible heat 
flux (𝑄ு) was estimated through an iterative process using (9) 
according to [35]. To determine the 𝑑𝑇 , it’s necessary to 
assume a linear relationship between 𝑑𝑇 and 𝑇௦: 
 𝑑𝑇 = 𝑎𝑇௦ + 𝑏 (9) 
where 𝑎 and 𝑏  are the calibration coefficients, calculated by 
selecting hot and cold endmembers. For hot pixels, 𝑄ு  is 
assumed to the maximum, while latent heat flux 𝑄ா  is 
assumed as zero. For cold pixels, 𝑄ு  is assumed to zero, while 
𝑄ா  is related to all available energy.  

In the iteration process, the first estimation 𝑟௔ is determined 
by (10), 
 𝑟௔ = 𝑙𝑛 (𝑧ଶ/𝑧ଵ)/𝑘𝜇∗ (10) 
where 𝑘  is von Karman constant (0.41), 𝑧ଶ  and 𝑧ଵ  are the 
heights to calculate 𝑑𝑇 (usually 2 m and 0.1 m), and 𝜇∗ is the 
friction velocity estimated using wind speed at a blending 
height of 200 m and the surface roughness. For later each 
iteration process, 𝑟௔ is corrected using an atmospheric stability 
correction based on the Monin-Obukhov similarity [36], until 
the final result reached to be stable. 

3) Latent heat flux 

Latent heat flux (𝑄ா) refers to the heat exchange between 
land surface and atmosphere due to evaporation of water and 
transpiration of vegetation, which does not cause a change in 
temperature [20]. 𝑄ா  is estimated using (11) according to [37]. 
 𝑄ா = 𝜌𝐶௣(𝑒௦ − 𝑒௔)/𝜆(𝑟௔ + 𝑟௦) (11) 
where 𝜆  is the psychrometric constant ( ℎ𝑃𝑎/𝐾 ),  𝑟௦  is the 
stomatal resistance ( 𝑠/𝑚 ) depending on the vegetation, 
meteorological and atmospheric conditions. 𝑒௦ and 𝑒௔ refers to 
saturation and atmospheric water vapor pressure (ℎ𝑃𝑎) at the 
surface temperature, respectively. 

4) Soil heat flux 

Soil heat flux (𝑄ௌ) is the heat transfer in and out of the soil 
by molecular convection, which can be estimated using 
vegetation index, and net radiation [38]: 
 

𝑄ௌ = ൤
(𝑇௦ − 273.15)

𝛼
(0.0038𝛼 + 0.0074𝛼ଶ)(1

− 0.98𝑁𝐷𝑉𝐼ସ)൨ 𝑅௡ 
(12) 

where NDVI is the normalized differential vegetation index. 

5) Anthropogenic heat flux 

Here, anthropogenic heat flux (𝑄஺ு) was estimated by (1) as 
a residual. 𝑄஺ு  is the heat energy released into the 
environment due to human activities. The potential heat 
sources include energy consumption (e.g., industrial process 

and combustion engine), building energy use (e.g., eating, 
cooling, and electrical systems in buildings), and 
transportation (e.g., combustion of fossil fuels in vehicles) 
[39]-[41].  

B. SUHI decomposition  

In order to quantify the contribution of various heat fluxes to 
SUHI intensity, we formulated SEB following the method of 
[7] and [42], and decomposed SUHI intensity into different 
biophysical terms. We additionally calculated the contribution 
of anthropogenic heat term from remote sensing image. 
 (1 − 𝛼)𝑆↓ + 𝐿↓ − 𝐿↑ + 𝑄஺ு

= ൬1 +
1

𝛽
൰

𝜌𝐶௣

𝑟௔

(𝑇௦ − 𝑇௔) + 𝑄௦ 
(13) 

where 𝛽  is the Bowen ratio, defined by 𝑄ு/𝑄ா . After 
linearizing the outgoing longwave radiation using Taylor 
series, equation. 13 can be described as:  
(1 − 𝛼)𝑆↓ + 𝐿↓ − 𝜎𝜀଴𝑇௔

ସ
ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ

ோ೙
∗

− 4𝜎𝜀଴𝑇௔
ଷ(𝑇௦ − 𝑇௔) + 𝑄஺ு

= ൬1 +
1

𝛽
൰

𝜌𝐶௣

𝑟௔

(𝑇௦ − 𝑇௔) + 𝑄௦ 
(14) 

Following [7], we define 𝑓 = ቀ1 +
ଵ

ఉ
ቁ

ఘ஼೛

௥ೌ
 𝜆଴,  𝜆଴ =

ଵ

ସఌబఙ்ೌ య . 

The former is an energy redistribution factor and the latter 
coincide with the definition of the local climate sensitivity 
parameter [18], [43]. A solution for 𝑇௦ is obtained from (14) 
[19]:  
 𝑇௦ − 𝑇௔= 

ఒబ

ଵା௙
(𝑅௡

∗ + 𝑄஺ு − 𝑄ௌ) (15) 

The urban and rural regions belonging to one city share the 
same background climate feature, and receive the same 
incoming shortwave radiation. At a blending height of 200 m, 
the air is well blended, therefore, 𝑇௔  is the same among 
locations in a city [42]. We defined urban LST as 𝑇௦,௨ = 𝑇௦,௥ +

∆𝑇௦ , where 𝑢  and 𝑟  represent urban and rural status, 
respectively. The parameters 𝑅௡,௨

∗, 𝑄஺ு,௨ , 𝑄௦,௨ , 𝛽௨ , 𝑟௔,௨ , and 
𝑓௨, have the analogue definition and replacement. Equation. 15 
applied to the urban and rural regions yields: 
 𝑇௦,௨ − 𝑇௔= 

ఒబ

ଵା௙ೠ
(𝑅௡,௨

∗ + 𝑄஺ு,௨ − 𝑄ௌ,௨) 

𝑇௦,௥ − 𝑇௔= 
ఒబ

ଵା௙ೝ
(𝑅௡,௥

∗ + 𝑄஺ு,௥ − 𝑄ௌ,௥) 
(16) 

Assuming small perturbations (∆) generated by the urban 
structure, we can calculate the derivatives of all variables that 
are connected with ∆ [18]. Finally, ∆𝑇௦ can be taken as SUHI 
intensity at different urban sites, as shown in (17).  
𝑆𝑈𝐻𝐼 = 𝑇௦,௨ − 𝑇௦,௥ 

= ൬
𝜆଴

1 + 𝑓௥

−
𝜆଴

(1 + 𝑓௥)ଶ
∆𝑓൰ ൫𝑅௡,௥

∗ + ∆𝑅௡
∗ + 𝑄஺ு,௥

+ ∆𝑄஺ு − 𝑄ௌ,௥ − ∆𝑄௦൯

−
𝜆଴

1 + 𝑓௥

൫𝑅௡,௥
∗ + 𝑄஺ு,௥ − 𝑄ௌ,௥൯ 

=
𝜆଴

1 + 𝑓௥

(∆𝑅௡
∗ + ∆𝑄஺ு − ∆𝑄௦) 

−
𝜆଴

(1 + 𝑓௥)ଶ
∆𝑓൫𝑅௡,௥

∗ + ∆𝑅௡
∗ + 𝑄஺ு,௥ + ∆𝑄஺ு − 𝑄ௌ,௥

− ∆𝑄௦൯ 

(17)

Neglecting the higher order terms 𝜊(∆ଶ) ≈ 0 [18], [19], we 
obtain 
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𝑆𝑈𝐻𝐼 =
𝜆଴

1 + 𝑓௥
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∆𝑓(𝑅௡,௥

∗
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(18) 

 where 
 

∆𝑓 = 𝑓௨ − 𝑓௥ = ൬1 +
1

𝛽௥

൰
−𝜆଴𝜌𝐶௣
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ଶ 

(19) 

with  
 

∆𝑓ଵ = ൬1 +
1

𝛽௥

൰
−𝜆଴𝜌𝐶௣

𝑟௔,௥
ଶ

∆𝑟௔ 

∆𝑓ଶ =
−𝜆଴𝜌𝐶௣

𝑟௔,௥

∆𝛽

𝛽௥
ଶ 

(20) 

So, the expanded form of (18) is given as 

𝑆𝑈𝐻𝐼 =
𝜆଴

1 + 𝑓௥

∆𝑅௡
∗

ᇣᇧᇧᇤᇧᇧᇥ
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+
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+
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(1 + 𝑓௥)ଶ
(𝑅௡,௥
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+
−𝜆଴
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∗ − 𝑄௦,௥ + 𝑄஺ு)∆𝑓ଶ
ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
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ᇣᇧᇧᇤᇧᇧᇥ

௛௘௔௧ ௦௧௢௥௔௚௘ ௧௘௥௠

 

(21)

Final, the SUHI intensity is decomposed into five 
contribution parts: radiation term (∆𝑇_𝑅௡), anthropogenic heat 
term (∆𝑇_𝐴𝐻), convection term (∆𝑇_𝐶𝑜𝑛), evapotranspiration 
term (∆𝑇_𝐸𝑣𝑎), and heat storage term (∆𝑇_𝐻𝑆).  

C. Accuracy estimation  

The accuracy estimation of this study compares (1) SEB 
fluxes with (2) simulated SUHI intensity by adding all five 
SUHI contribution terms together. For (1), we only validated 
the anthropogenic heat flux (𝑄஺ு), without others due to lack 
of in-situ measurements from a flux tower. This study took the 
𝑄஺ு product published by [26] as reference data, and made a 
comparison with our result using the same Landsat image (at 
December 4, 2018). To estimate the accuracy of simulated 
SUHI intensity, we calculated the SUHI intensity directly 
from Landsat 8 LST product, which was taken as the reference 
data. 

IV. RESULTS 

A. Validation of anthropogenic heat flux and SUHI 
contribution terms  

The residual map illustrated a strong consistency between 
the extracted 𝑄஺ு in this study and the reference data, with the 
majority of residuals centered around 0 and an RMSE of 
61.369 𝑊/𝑚ଶ  (Fig. 3a). The simulated and observed SUHI 
intensity predominantly align along the 1:1 line (Fig. 3b) and 
𝑅𝑀𝑆𝐸 (0.776 K) and 𝑅ଶ (0.947) suggest a high quality of the 
estimated SUHI. Note that when SUHI intensity exceeds 5 K, 
the observed values are obviously higher than the simulated 
values, suggesting an underestimate of simulated SUHI 
intensity in very hot regions. This is in accordance with the 
findings of other authors using the same method [7], [44]. The 
error may come from the IBM method itself, which assume 
that the aerodynamics resistance was independent to Bowen 
ratio. This assumption is likely to causing an overestimate of 
convection term, and an underestimate of radiation and heat 
storage term [19].  

 
Fig. 3. Accuracy estimation. a): comparison between AH 
estimated in this study and [26]. b): comparison between 
observed and simulated SUHI at August 6, 2021. 

B. SUHI contribution terms and the relationship with UMBs  

The SUHI intensity during the daytime within Second Ring 
Road is much higher than that in outside regions, which 
suggested a gradual decrease in SUHI intensity with 
increasing distance from the urban core (Fig. 4). In Fig. 5a, 
UMBs exhibit distinct SUHI phenomena, while areas with 
vegetation serve as urban cool islands. Fig. 5a also showed 
that SUHI intensity increased much more significantly with 
building density than with building height, suggesting that the 
influence of building density may surpass that of building 
height. Among UMBs, the SUHI intensity at the low-rise and 
high-density region (LRB) was the strongest, with a median 
value around 3 K , followed by the middle-rise and high-
density region (MRB) and the high-rise and high-density 
region (HRB). 
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Fig. 4. Calculated SUHI intensity from Landsat 8 and decomposed SUHI contribution terms. The black line in each subfigure 
means the Ring Road. 

The radiation term (∆𝑇_𝑅௡ ) exhibited a similar tendency 
with SUHI, that higher values observed in the core urban 
region compared to the urban periphery (Fig. 4). Among 
UMBs, ∆𝑇_𝑅௡ showed an increase with both building density 
and building height (Fig. 5b). Notably, when focusing on the 
boxplot, it becomes evident that the high-rise region (HRP, 
HRS and HRB) has larger contribution on the SUHI intensity 
than the middle-rise and low-rise region. Although the median 
values ∆𝑇_𝑅௡  are positive, their magnitude remained quite 
small, nearly approaching zero. 

The anthropogenic heat term ( ∆𝑇_𝐴𝐻 ) is prominently 
concentrated within the core urban region (especially within 

Second Ring Road), and tended to be scattered in the outside 
region (Fig 4). In addition, several locations in the southern 
part exhibit stronger ∆𝑇_𝐴𝐻 . Within most UMBs, ∆𝑇_𝐴𝐻 
consistently registers values above 0, indicating a positive 
contribution to high urban temperatures (Fig. 5c). The 
relationships between UMBs and ∆𝑇_𝐴𝐻 are quite similar to 
observed SUHI. The impacts of building density on ∆𝑇_𝐴𝐻 
exceed that of building height. The most substantial 
contribution from ∆𝑇_𝐴𝐻 to SUHI intensity, was observed in 
the LRB, and then MRB and HRB, with all median values 
exceeding 0.5 K. The middle-density region (LRS, MRS and 
HRS) also displayed a relatively high contribution. 
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Fig. 5. SUHI intensity (a) and each SUHI contribution term (b-f) in different UMBs and vegetation zone. (g) represents the 
average median values of each SUHI contribution term among various UMBs and vegetation zone.  

The convection term ( ∆𝑇_𝐶𝑜𝑛 ) plays a converse role in 
SUHI by comparison to ∆𝑇_𝐴𝐻 , as it tends to be more 
prominent in regions distant from the core urban regions (Fig. 
4). ∆𝑇_𝐶𝑜𝑛 is directly influenced by aerodynamic resistance 
(𝑟௔ ), as shown in (20). A higher 𝑟௔  indicates more efficient 
heat transfer from the surface to atmosphere in an upward 
direction, which reduces local LST at the time of image 
acquisition. This effect is particularly obvious in regions with 
higher LST, where more sensible heat flux may be generated. 
Among UMBs, ∆𝑇_𝐶𝑜𝑛 appeared to be more sensitive to the 
changes of building density as compared to building height, 
because building density controls the roughness in cities. The 
negative contribution to SUHI followed the pattern: high-
density regions > middle-density regions > low-density 
regions (Fig. 5d). In particular, LPB exhibited the strongest 
contribution to weaken SUHI from the aspect of ∆𝑇_𝐶𝑜𝑛, with 
a median value approximately -0.9 K. This can be attributed to 
its lower resistance, allowing for more heat transfer from 

urban surface into near-surface air. Conversely, in the 
vegetation zone, the boxplot consistently registers values 
above 0, indicating a positive contribution of ∆𝑇_𝐶𝑜𝑛  to 
SUHI. In this region, LST is much lower than that in UMBs, 
which means a lower temperature gradient over surface. 
Coupled with higher 𝑟௔ due to denser vegetation foliage, less 
heat is released, contributing to the stabilization of LST.     

The evapotranspiration term (∆𝑇_𝐸𝑣𝑎) is highly aggregated 
in the core urban with dense low-rise buildings, which bears a 
close resemblance to spatial distribution of ∆𝑇_𝐴𝐻  (Fig. 4). 
∆𝑇_𝐸𝑣𝑎  is a function of the Bowen ratio ( 𝛽 ), which is 
particularly sensitive to land surface properties (e.g., land 
cover type and vegetation density). The urban regions, 
characterized by buildings and pavement, tend to have higher 
sensible heat fluxes and lower latent heat fluxes when 
compared to natural vegetation areas (Appendix Fig. A1). This 
is primarily due to their lower rates of evapotranspiration. 
Among UMBs, high-density regions contribute most 
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significantly to SUHI intensity through ∆𝑇_𝐸𝑣𝑎 , with LPB 
being particularly notable (nearly 5.5 K ), followed by the 
middle-density and low-density regions (Fig. 5e). The impacts 
of building height on this contribution is relatively less 
pronounced. In the vegetation zone, ∆𝑇_𝐸𝑣𝑎  contributes 
negatively to SUHI, as expected. This is attributed to 
increased shading, transpiration, and moisture availability in 
vegetation areas, resulting in a lower Bowen ratio when 
compared to impervious surfaces. 

The spatial distribution of heat storage term ( ∆𝑇_𝐻𝑆 ) 
illustrated a tendency to increase from the core urban region 
towards the outskirts (Fig. 4). At the time of image 
acquisition, the surface temperature is higher than the 
subsurface soil temperature, resulting in downward heat 
transfer. This can contribute to a decrease in LST. The urban 
region displayed a larger heat storage capacity, than the bare 
surface areas outside the urban region and the vegetation 
regions. This pattern explains why UMBs have negative but 
vegetation regions had positive ∆𝑇_𝐻𝑆 values. As seen in Fig. 
5f, building density impacts the contribution of ∆𝑇_𝐻𝑆  on 
SUHI more than the building height, however, the variations 
were relatively weak with median values among UMBs 
hovering around -0.1 K. 

Fig. 5g illustrated that it is the variations in ∆𝑇_𝐸𝑣𝑎 
(associated with Bowen ratio or land surface type), rather than 
other terms, that control the SUHI intensity within UMBs and 
vegetation zone. This tendency is strongly correlated with 
building density, especially in the LPB. In the high-density 
regions, the contribution of  ∆𝑇_𝐸𝑣𝑎  exceeds 1 K when 
compared to that in the low-density regions. For low-density 
regions, building height affects the contribution terms of SUHI 
intensity significantly, especially ∆𝑇_𝐸𝑣𝑎  and ∆𝑇_𝐶𝑜𝑛 . 
Furthermore, ∆𝑇_𝐸𝑣𝑎 , ∆𝑇_𝐴𝐻  and ∆𝑇_𝑅௡  have positive 
contributions on SUHI intensity, whereas ∆𝑇_𝐸𝑣𝑎 and ∆𝑇_𝐻𝑆 
play a negative role. 

V. DISCUSSION 

A. Implications for SUHI mitigation  

In the urban region of Beijing characterized by numerous 
buildings and impervious surface, it was observed that the 
evapotranspiration term (∆𝑇_𝐸𝑣𝑎) had the largest contribution 
on the variations of SUHIs, supporting findings of [19] in part 
cities of North America. This highlights the importance of the 
capacity of urban surface to evaporate water in controlling 
SUHI intensity, rather than others like the convection 
efficiency of heat transfer from surface to atmosphere, 
anthropogenic heat release and heat storage. Among UMBs, 
building density notably influenced the variations in ∆𝑇_𝐸𝑣𝑎 
and ∆𝑇_𝐴𝐻, with high-density regions contributing the most. 
Therefore, we recommend strategies aimed at reducing the 
Bowen ratio for SUHI mitigation. These strategies encompass 
two aspects: first, increasing latent heat flux through measures 
such as implementing green roofs, green walls, and permeable 
materials; and second, decreasing sensible heat flux through 
practices like open building arrangements and reduced 
building density over urban surfaces. The former is conducive 
to heat loss by evapotranspiration, while the latter can reduce 

heat retention. It should be noted that for an effective 
implementation of each strategy one needs to balance all UHI 
contributions. For instance, open building arrangements can 
decrease the sensible heat flux but may increase net radiation. 
UHI decomposition algorithms provide a framework that 
allows to assess which effect is superior and, subsequently, 
which strategy is best suitable at the respective location. 

The convection term ( ∆𝑇_𝐶𝑜𝑛 ) and heat storage term 
( ∆𝑇_𝐻𝑆 ) both illustrated negative contribution to SUHI 
intensity, particularly within the UMBs. This is mainly caused 
by a higher LST than the lower temperatures in the 
atmosphere and soil, resulting in upward and downward heat 
transfer, ultimately leading to a reduction of LST. However, in 
urban regions, continuous solar radiation supplies the energy 
and heats the land surface, maintaining a relatively higher LST 
due to lower albedo [45]. In this case, strategies that aim to 
increase soil moisture such as irrigation and urban rivers are 
recommended. These measures serve a dual purpose: 1) they 
reduce soil temperature, thereby mitigating heat transfer into 
the subsurface, and 2) they facilitate the removal of absorbed 
heat, preventing excess heat release at night.  

B. Potential applications of UHI decomposition method  

The relative importance of five contribution terms to SUHI, 
as indicated in this study, is specific to a particular city and 
time. Indeed, these contributions vary with day/night, seasons 
and regions [7], [19], [44]. The urban heat environment at 
night has a significant impact on human health (e.g., sleep 
disturbances, and heat-related illnesses), energy consumption 
(e.g., heating/cooling of air conditioning) and air pollutants 
(e.g., greenhouse gas emissions) [9], [46], [47]. More 
important, the UHI contribution terms and their sensitivities to 
influencing factors, particularly urban morphological features, 
change within a 24-hour cycle due to variations in solar 
radiation intensity [48], [49]. Another point is that UHI 
contribution terms and their relative importance vary across 
cities in different climate zones. UHI mitigation and 
adaptation strategies need to be tailored to the specific 
characteristics of each climate zone [7], [19], [45]. For 
instance, strategies to reduce UHI effects in a humid tropical 
climate may differ from those in an arid climate. In addition, 
traditional LULC-based analysis is advantageous for 
analyzing the heating and cooling effects of specific surface 
coverages, but it hardly quantifies the local heat transfer 
process. The suggested IBM method can deal with this 
insufficiency, by estimating SEB fluxes and converting them 
into corresponding temperature changes. This provides a 
platform to balance all contributions for policymakers and 
urban planners, allowing them to devise more efficient 
measures (e.g., urban management, and green infrastructure). 

The application of this method is not limited to urban 
settings but extends to other fields, such as forests and 
wetlands. Taking forests as example, the suggested method 
can be valuable to quantify the heating/cooling effects caused 
by forest fragmentation and deforestation, by assuming ‘urban 
region’ as forest fragmented/deforested area and ‘rural region’ 
as forest area. Such an application is crucial to estimate carbon 
storage, feedback loops and biodiversity conservation [42]. 
Additionally, remote sensing-based method can significantly 
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reduce the computational time, and achieve good performance, 
compared to climate models and micrometeorological 
simulations. This offers a possible solution for analyzing the 
climate response and its driving mechanisms on a global scale, 
especially when combined with the application of GEE. 

C. Limitations  

Resolution issue. We used ERA5 dataset for supplying key 
meteorological parameters due to its global coverage and 
long-time data accessibility, but the resolution of this dataset 
is much coarser than Landsat 8. This means that ERA5 data 
cannot capture fine-scale variations in surface features that can 
affect aerodynamic resistance and heat fluxes, such as 
variations in land cover type, topography, and surface 
roughness. These uncertainties can affect the accuracy of 
models and simulations relying on these parameters, 
particularly in studies requiring high spatial and temporal 
resolution data for localized analysis. In the future, when using 
ERA5 data at a coarser resolution, there might be a need to 
interpolate the data to match the resolution of Landsat 8. In 
addition, although we resampled the Landsat 8 LST product to 
achieve a spatial resolution of 30 meters for the calculated 
SEB fluxes and SUHI contribution terms, the resolution is still 
not enough for much more detailed analysis in highly 
heterogenous regions. For example, the building shadow 
cannot be well displayed, which directly affect the estimate of 
radiation term (∆𝑇_𝑅௡). For future work, we plan to explore 
the use of higher-resolution remote sensing images (e.g., 
Sentinel and Gaofen satellites) or unmanned aerial vehicle. 

Accuracy issue. We evaluated the accuracy of anthropogenic 
heat flux, while others were not considered, due to the absence 
of meteorological stations data. Even our result showed a well 
consistency with existing products, it is imperative to conduct 
additional experiments, particularly in conjunction with flux 
towers, to further refine our assessments. The estimated 𝑄஺ு is 
a little lower than that of Reference [26], because the remote 
sensing and SEB-based method to estimate 𝑄஺ு assumed that 
𝑄஺ு contributes only to sensible heat flux, and neglected the 
influence of other SEB terms. Another point is related to the 
definition of urban and rural boundary. This study selected a 
10 km buffer outside the urban boundary as rural area. 
Different setups of buffer zones can lead to variations in UHI 
intensity [10], and the background information used for 
extracting SUHI contribution terms can also differ. For future 
work, we would compare two commonly employed methods 
for distinguishing urban and suburban areas: the buffer zone 
method and LULC-based method [25]. 

Method issue. The convection and evapotranspiration term 
obtained using IBM method is function to aerodynamic 
resistance and Bowen ratio, respectively. This assumes that 
aerodynamic resistance is independent not only of Bowen 
ratio, but also of the other three terms. However, existing 
literature has highlighted certain shortcomings in this method, 
including an overestimate of convection term, and an 
underestimate of radiation and heat storage term [19]. These 
discrepancies together lead to an underestimate of simulated 
SUHI intensity when compared to reference values. In future, 
we would consider two-resistance mechanism to replace 
Bowen ratio by surface resistance for comparison with IBM.  

VI. CONCLUSION  

UHI is among the most pronounced human impacts on 
Earth, and a comprehensive understanding of the influencing 
mechanisms of UHI is necessary to formulate efficient 
adaptation and mitigation strategies. This study suggests a 
SEB-based approach to attribute SUHI intensity into various 
biophysical terms using remote sensing images and applies it 
in Beijing, one of the largest cities in the world. The results 
demonstrate good performance in comparison to SUHI 
intensity calculated from Landsat 8 LST product. 
Additionally, the results highlight the importance of surface 
evaporating water, with the evapotranspiration term 
contributing the most to SUHI changes during summer. This 
phenomenon is particularly significant in low-rise, high-
density blocks. The convection and heat storage term play a 
positive role in reducing SUHI intensity. The method 
suggested provides valuable insights into the driving 
mechanism of SUHI from heat formation and analyzes how 
they vary with different UMBs, which are crucial for 
developing locally adapted strategies of urban transformation, 
with a focus on heat management.  

APPENDIX 

List of symbols 
𝑅௡ net radiation (𝑊/𝑚ଶ) 𝑇௔ air temperature(𝐾) 
𝑅௡

∗ apparent net radiation (𝑊/

𝑚ଶ) 
𝑇௦,௥ rural 𝑇௦ (𝐾) 

𝑄஺ு anthropogenic heat flux 
(𝑊/𝑚ଶ) 

𝑇௦,௨ urban 𝑇௦ (𝐾) 

𝑄ு  sensible heat flux (𝑊/𝑚ଶ) 𝜇∗  friction velocity 
𝑄ா  latent heat flux (𝑊/𝑚ଶ) ∆𝑇_𝑅௡ radiation term (𝐾) 
𝑄ௌ soil heat flux (𝑊/𝑚ଶ) ∆𝑇_𝐴𝐻anthropogenic heat 

term (𝐾) 
𝑆↓ incoming solar radiation 

(𝑊/𝑚ଶ) 
∆𝑇_𝐶𝑜𝑛convection term 

(𝐾) 
𝐿↓ downward blackbody 

radiation (𝑊/𝑚ଶ) 
∆𝑇_𝐸𝑣𝑎evapotranspiration 

term (𝐾) 
𝐿↑ upward blackbody radiation 

(𝑊/𝑚ଶ) 
∆𝑇_𝐻𝑆heat storage term 

(𝐾) 
𝜀଴ surface emissivity  𝑉𝐸𝐺 vegetation zone 
𝜀௔ atmospheric emissivity  LRP Low-rise point 
𝜎 Stefan Boltzmann constant 

(𝑊/𝑚ଶ/𝐾ସ) 
LRS Low-rise stripe 

𝛼 surface albedo LRB Low-rise block 
𝑒௦ saturated vapor pressure of air 

(ℎ𝑃𝑎) 
MRP Middle-rise point 

𝑒௔ vapor pressure of air (ℎ𝑃𝑎) MRS Middle-rise stripe 
𝜌 air density (𝑘𝑔/𝑚ଷ) MRB Middle-rise block 
𝐶௣ specific heat (𝐽 ∙ 𝑘𝑔ିଵ ∙ 𝐾ିଵ) HRP High-rise point 
𝑟௔ aerodynamic resistance (s/𝑚) HRS High-rise stripe 
𝜆 psychrometric constant 

(ℎ𝑃𝑎/𝐾) 
HRB High-rise block 

𝛽 Bowen ratio ABF average building 
floor 

𝑇௦ land surface temperature (𝐾) ABD average building 
density 
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Fig. A1. How each SEB flux changes with different UMBs and vegetation zone (a-e). (f) represent the average median value of 
each SEB flux among various UMBs and vegetation zone.  

Data Availability Statement: 
The ERA5 hourly atmospheric reanalysis dataset, Landsat 8 
data, and SRTM elevation data are openly available in 
https://developers.google.com/earth-engine/datasets/, using 
codes:ee.ImageCollection("ECMWF/ERA5_LAND/HOURL
Y"),  ee.ImageCollection("LANDSAT/LC08/C02/T1"), and 
ee.Image("USGS/SRTMGL1_003"), respectively. The CLCD 
product is available in the public domain at 
https://doi.org/10.5281/zenodo.4417810. The urban UMBs 
dataset is available from Beijing City Lab (http://www.bei 
jingcitylab.com). 
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