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Abstract—It is well documented that soil moisture can be 

retrieved from passive microwave observations. A basic 

assumption of most passive microwave-based soil moisture 

retrieval algorithms is that vegetation temperatures (Tv) and soil 

temperatures (Ts) are equal (i.e., Tv=Ts), which however is not 

well satisfied in some cases, especially during daytime. In this 

study, we proposed a soil-vegetation temperature decomposition 

(SVTD) approach to avoid such an assumption, which can improve 

the accuracy of soil moisture retrievals from the Advanced 

Microwave Scanning Radiometer 2 (AMSR2) data. First, the 

SVTD was used to decompose the vegetation and soil temperatures 

of the soil-vegetation mixed pixels in the Tibetan Plateau (TP). 

Subsequently, the decomposed temperature was integrated into 

the soil moisture retrieval algorithm to correct the effects of soil 

and vegetation temperatures, and soil moisture is then retrieved 

following the same strategy adopted in the land parameter 

retrieval model (LPRM). Finally, the algorithm was validated 

against densely-instrumented soil moisture networks (Maqu, 

Naqu, and Ngari) built in the Tibetan Plateau, and was also 

compared with the LPRM AMSR2 soil moisture product. Results 

indicate the proposed algorithm performs much better than the 

original LPRM in soil-vegetation mixed areas. The proposed 

SVTD method is promising for soil moisture retrieval from passive 

microwave satellites, especially in the daytime when the difference 

between soil and vegetation temperatures is relatively large. 

Index Terms—Soil moisture, Temperature decomposition, 

AMSR2, Passive microwave, LPRM 

I. INTRODUCTION 

OIL moisture (SM) is an important state variable in the 

water, energy, and carbon cycles [1]. Passive microwave 

(PMW) remote sensing (RS) has been recognized as an 

indispensable avenue to detect SM at global and continent 

scales [2]. The primary advantage of PMW sensors for SM 

mapping is that they are capable of working under cloudy 

weather and nighttime, and are less sensitive to surface 

roughness and vegetation cover [3]. The physical basis of SM 
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estimated from PMW observations is that brightness 

temperature (TB) acquired from PMW is closely related to soil 

permittivity, which is mainly determined by SM [4]-[6]. In 

addition, the TB consists of signal contributions from the soil 

and the overlying vegetation temperatures, surface roughness, 

and vegetation canopy, which need to be eliminated when using 

TB to obtain SM information [5].  

Theoretically, lower frequencies are less attenuated by 

vegetation and atmosphere, hence the L-band missions such as 

Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture 

Active Passive (SMAP) that operate at 1.4 GHz are considered 

the optimal choice for SM monitoring [3]. However, the spatial 

resolution is also lower at lower frequencies [7]. The higher 

multi-frequency passive microwave sensors, such as the 

Advanced Microwave Scanning Radiometer-Earth Observing 

System (AMSR-E), and AMSR2, providing a longer sequence 

of SM observations, which enriched the long-term soil moisture 

products [2], [6]. The PMV SM retrieval algorithms include the 

L-band Microwave Emission of the Biosphere (L-MEB) based 

retrieval algorithm for SMOS [7], the single-channel algorithm 

(SCA) [8], and the dual channel algorithm (DCA) [9] of SMAP, 

the Japan Aerospace Exploration Agency (JAXA) algorithm 

[10], the normalized polarization difference (NPD) algorithm 

and a LPRM [11] for AMSR-E/2. These algorithms are based 

on a well-known approximation to the radiative transfer 

equation, i.e., the τ-ω model [12]. The effective temperature is 

a crucial parameter in the τ-ω model which needs to be 

corrected before obtaining reliable SM retrievals [5]. In most 

studies (including the forward modeling and inversion), it is 

assumed that the Tv and Ts are approximately equal to a single 

surface effective composite temperature (i.e., Tg ≈ Tv ≈ Ts) 

[12]-[14]. This assumption is based on the premise that soil, 

vegetation canopy, and near-surface air temperature are in 

relative thermal equilibrium. Generally, most PMW SM 

retrieval algorithms only use a single effective temperature 

value to reduce unknown parameters to alleviate the ill-posed 

problems, ignoring the difference of vegetation and soil 

temperatures [6], [8]-[11], [13]- [14], even when the difference 

of soil and vegetation physical temperatures is large, e.g., at 

AMSR2 ascending overpass (1:30 p.m. local solar time) [15]-

[16]. In other words, especially for daytime, most existing 

AMSR-E/2 SM retrieval algorithms (such as LPRM, JAXA, 

SCA, NPD, etc.) have neglected the large difference of soil and 

vegetation physical temperatures over heterogeneity areas, 

which can bring some uncertainties in the SM estimates [13]. 

Combined with AMSR-E, the AMSR2 product will facilitate 

long-term SM monitoring, however, before this can be done, it 

is necessary to develop a model for temperature decomposition 
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to obtain more reliable SM retrievals in high heterogeneity 

areas. Among the AMSR-E/2 SM retrieval algorithms, LPRM 

attempts to solve for SM and vegetation optical depth (VOD) at 

10.7 GHz (X band), 6.9 GHz (C1 band), and 7.3 GHz (C2 band) 

[11]. JAXA retrieves SM and VOD based on a look-up table 

(LUT) approach [10]. NPD uses the microwave polarization 

difference (MPD) and a combined vegetation/ roughness factor, 

and SCA uses normalized difference vegetation index (NDVI) 

climatology for vegetation correction [17]. Unlike other 

algorithms, LPRM achieves both retrieval of SM and physical 

temperature with the least dependence on auxiliary data [18]. 

Therefore, it is necessary to investigate the inversion 

uncertainty caused by differences in vegetation and soil 

temperature in LPRM to improve its applicability. 

The purpose of this study is to develop a soil and vegetation 

temperature decomposition method to improve the original 

LPRM algorithm, which is expected to improve the accuracy of 

SM estimations. We tested this new algorithm by using AMSR2 

observations and validated it by in-situ data collected from three 

dense soil moisture networks in the TP. The accuracy of soil 

moisture retrieved from the new algorithm and from the original 

LPRM was also compared. 

II. STUDY AREA AND DATA 

A.  Study area 

In this study, the TP was selected as the study area (Fig. 1). 

As the highest plateau in the world, TP is located in the 

hinterland of Asia, and its mean elevation is more than 4000 m. 

The TP area has a large diurnal temperature difference, mildly 

cool and rainy summers, cold and dry winters, and strong winds 

[19]. SM plays a key role in the energy and water cycles of this 

area, affecting the Asian monsoon. Three soil moisture 

networks (Maqu, Naqu, and Ngari) built in the TP were used 

[20], shown in Fig.1, and their information is listed in Table I.  

B. Data  

Datasets used in this study include AMSR2 C/Ka-band TB, 

MODIS NDVI, and SM observation from three densely-

instrumented networks (i.e., Maqu, Naqu, and Ngari). The 

AMSR2 sensor is onboard the GCOM-W1 satellite launched in 

May 2012. As the successor of AMSR-E, AMSR2 provides an 

improved calibration system with an additional 7.3 GHz 

channel and a larger reflector compared to its predecessor for 

radio frequency interference (RFI) mitigation [21]. Furthermore, 

previous studies have demonstrated that the TB at C-band (6.9 

GHz) was nearly unaffected by RFI over the TP [6], and thus 

the effects of RFI at the C-band on SM retrieval from AMSR2 

are almost negligible in this region. The MODIS/Terra NDVI 

16-day/0.05° product (MOD13C2 v006) was used to calculate 

fractional vegetation cover (FVC). Refer to [22] for the 

calculation method of FVC, which is one of the most 

recognized FVC calculation methods. The FVC was further 

aggregated to a resolution of 0.1° that matches AMSR2 pixels 

in this study. The MODIS/Aqua land surface temperature (LST) 

daily/0.05° product (MYD11C3 v006) was also used to 

evaluate the temperature of Ts and Tv based on SVTD. 

Validating microwave-derived temperatures with MODIS LST 

reference has been adopted by many previous studies (e.g., 

[23]). In this study, the specific operation is as follows, 

assuming that in the AMSR2 coarse grid (0.1°), the fine grid 

(0.05°) with MODIS NDVI value less than 0.2 is regarded as 

pure bare soil pixels, and the ones greater than 0.6 is regarded 

as pure vegetation pixels. By doing so, the corresponding 

temperatures can represent the soil surface temperature (SST) 

and the vegetation canopy temperature (VCT), respectively. 

The average temperature of all MODIS pure bare soil 

temperature (called MODIS Tv) or vegetated temperature 

(called MODIS Tv) grids in the AMSR2 grid can correspond to 

the Ts and Tv of SVTD respectively. The aggregated average 

value of all MODIS grids of effective surface temperature (e.g., 

MODIS LST) in the AMSR2 grid corresponds to the AMSR2 

temperature (LPRM-based LST). According to this criterion, a 

series of valid verification pixels in the study area can be 

selected after removing the invalid cloud pollution pixels. 

Additionally, measurements from three dense networks (i.e., 

Maqu, Naqu, and Ngari) from the International Soil Moisture 

Network (ISMN) [24] were used to assess the accuracy of SM 

retrievals. The mean SM was adopted when multiple sites are 

in one AMSR2 pixel, which can reduce the uncertainty 

resulting from the spatial mismatch between the in-situ point 

and satellite pixel [25]. Using the newly proposed retrieval 

algorithm, SM was retrieved from 0.1° daily ascending (13:30., 

daytime) and descending (01:30, nighttime) AMSR2 PMW 

level 3 TB data. Note the frozen period was not considered in 

this study due to the large uncertainty of soil moisture retrievals 

during this time. The frozen period is defined as the site soil 

temperature below 0 ℃, and therefore the frozen period is not 

the same for each site area. Normally, the frozen period is from 

November to April of the following year in the study area.  

 
Fig.1. The study area and distribution of in-situ sties (red stars) from 

three networks (Maqu, Naqu, and Ngari). The land cover is derived 

from the MODIS IGBP land cover classes. 

TABLE I 

MAIN INFORMATION OF THE THREE SOIL MOISTURE 

NETWORKS USED IN THE STUDY 

Networks Sites 
Depth 
used 

(cm) 

Mean 

NDVI* 
Land cover 

Acquisition 

time range 

Maqu 7 5 0.516 
Grasslands 2017.04.01-

2019.08.31 
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Naqu 9 0-5 0.329 
Grasslands 2017.04.01- 

2019.08.31 

Ngari 12 0-5 0.118 
Barren and 

grasslands 

2017.04.01- 

2019.06.31 

* Annual average NDVI in unfrozen season during the study period. 

III. METHODOLOGY 

A. Soil-Vegetation Temperature Decomposition (SVTD) 

Model 

Given the actual temperature distribution in the weighted 

area with respect to the land cover, the mixed canopy 

temperature measured by the satellite can be computed as 

follows:  

𝑇𝑎(𝑖, 𝑗) = ∑ 𝑃𝑥(𝑖, 𝑗)𝑇𝑥(𝑖, 𝑗)𝑋
𝑥=1                    (1) 

where 𝑇𝑎  represents the mixed temperature value; 𝑃𝑥 and 

𝑇𝑥 represent the proportion and temperature of the x-th type of 

land surface cover, respectively; X is the number of all land 

types in the pixel; 𝑖, 𝑗 are the row and column where the pixel is 

located. 

The LPRM surface temperature (ST) was estimated by 

Holmes et al. (2009) [26] using an empirical model established 

by Ka-band (37 GHz) V-pol TB and ground-based observations 

from the United States and several European countries. 

According to the actual situation of SM inversion, the effective 

pixel temperature can be simplified as the linear sum of the 

vegetation component and soil component temperature (water 

body and urban have been masked), as follows: 

𝑇𝑔(𝑖, 𝑗) = 𝑃𝑣(𝑖, 𝑗)𝑇𝑣(𝑖, 𝑗) + 𝑃𝑠(𝑖, 𝑗)𝑇𝑠(𝑖, 𝑗) + 𝜀         (2) 

where 𝑇𝑔represents the effective temperature of the mixed pixel; 

𝑇𝑣and 𝑇𝑣represent vegetation component temperature and soil 

component temperature, respectively; 𝑃𝑣 and 𝑃𝑠 represent the 

proportion of vegetation component and soil component, 

respectively, and 𝜀 represents the model errors.  

Here, 𝑃𝑣 is defined by FVC, according to [22] using MODIS 

NDVI, and subject to:  

𝑃𝑣(𝑖, 𝑗) + 𝑃𝑠(𝑖, 𝑗) = 1                              (3) 

Mathematically, equation (2) has infinite solutions, realistic 

or not. Considering the spatial correlation of temperature pixels, 

the 𝑇𝑣 within neighboring areas can be reasonably assumed to 

have approximately the same temperature (the same is true for 

𝑇𝑠) [27]. Furthermore, the m×n mixed pixels were selected as a 

sliding window. Therefore, we can get an equation set 

consisting of m×n equation (2) if it is assumed that the m×n 

neighboring pixels’ component temperatures are consistent, 

which can be considered as a constrained overdetermined 

system of linear equations. Considering the size of the 

microwave pixel, the window should not be too large, and we 

set m=3 and n=3. The least-square minimizers �̌�  were 

considered to be constrained as follows:  

�̆� = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝑌 − 𝑃𝑇‖                                (4) 

where 𝒀 = [𝑇𝑔] represents the mixed pixel effective temperature 

vector; 𝑻 = [𝑇𝑣 𝑇𝑠] , 𝑇𝑣 and  𝑇𝑠  represent the vegetation 

component effective temperature and soil component effective 

temperature vectors, respectively; and 𝑷 = [𝑃𝑠 𝑃𝑣] represent the 

proportion of vegetation component and soil component vectors, 

respectively. 

The temperature (including vegetation and soil) should vary 

to a certain extent. According to [28], within a certain range of 

study area, a scatterplot of the temperature and vegetation index 

(e.g., NDVI) often results in a triangular or trapezoid shape, that 

is to say, all the points corresponding to vegetation and 

temperature are triangles or trapezoids on two-dimensional 

coordinates (FVC of the x-axis data were calculated from 

vegetation index, y-axis data were directly obtained from a 

local-scale LPRM temperature). Following this concept, the 

temperatures range corresponding to high and low FVC values 

can be easily obtained in the scatter triangle (trapezoid). We 

intercept the interval according to the FVC values statistical 

histogram. It is regarded as “pure soil” when FVC values is less 

than 5%, and the corresponding temperature is the soil 

temperature. Conversely, when the FVC value is greater than 

95%, the point (pixel) is regarded as “pure vegetation”, and the 

corresponding temperature is the vegetation temperature. 

Otherwise, the point (pixel) is regarded as a “soil-vegetation 

mixture”. The average value 𝑇𝑀𝑒𝑎𝑛 , maximum value 𝑇𝑀𝑎𝑥 , 

minimum value 𝑇𝑀𝑖𝑛, and standard deviation (STD) value 𝑇𝑆𝑡𝑑 

are calculated for the pixels of vegetation and soil range. The 

optimal solution, namely �̌�, the temperature of vegetation and 

soil should satisfy the following conditions:  

𝑇𝑀𝑖𝑛(𝑣) − 𝑇𝑆𝑡𝑑(𝑣) < 𝑇𝑣 < 𝑇𝑀𝑎𝑥(𝑣)𝑇𝑆𝑡𝑑(𝑣)               (5) 

𝑇𝑀𝑖𝑛(𝑠) − 𝑇𝑆𝑡𝑑(𝑠) < 𝑇𝑠 < 𝑇𝑀𝑎𝑥(𝑠)𝑇𝑆𝑡𝑑(𝑠)                (6) 

and  

�̆� ∈ 𝑇                                         (7) 

The optimal solution is required to satisfy both (5), (6) and 

(7) constraints. To ensure the accuracy of the solution, it is also 

necessary to design an objective function as a criterion for 

judging the pros and cons of possible solutions. Select F as the 

objective function, ξ is a given threshold, and the value depends 

on the requirements for the expected accuracy. Previous studies 

have shown that a temperature error of less than 2K has little 

effect on the accuracy of soil moisture inversion [4], therefore, 

ξ is set as 2K in this study. The objective function F is defined 

as: 

F=∑
𝑚

𝑖
∑
𝑛

𝑗
√(𝑇𝑔(𝑖, 𝑗) − 𝑃𝑣(𝑖, 𝑗)𝑇𝑣(𝑖, 𝑗) − 𝑃𝑠(𝑖, 𝑗)𝑇𝑠(𝑖, 𝑗))2 <  𝜉  (8) 

where 𝑇𝑔(𝑖, 𝑗), 𝑇𝑣(𝑖, 𝑗), 𝑃𝑠(𝑖, 𝑗), 𝑃𝑣(𝑖, 𝑗) are as defined in equation 

(2). Only the decomposition results that satisfy the F test are 

considered to reduce the illegal error that may be caused by 

numerical calculation. 

B. Soil Moisture Retrieval Model 

The SM retrieval algorithm is based on a zero-order radiative 

transfer model, usually called the τ–ω mode [12], which can be 

written as follows:  

𝑇𝑏(𝑝) = (1 − 𝑅𝑠(𝑝))𝑇𝑠 𝑒𝑥𝑝(
−𝜏𝑝

𝑐𝑜𝑠 𝑢
) + 𝑅𝑠(𝑝) 𝑒𝑥𝑝(

−𝜏𝑝

𝑐𝑜𝑠 𝑢
) 

                     𝑇𝑣(1 − 𝜔𝑝)(1 − 𝑒𝑥𝑝(
−𝜏𝑝

𝑐𝑜𝑠 𝑢
))                                 (9) 

where 𝑇𝑏  represents the TB, the subscript 𝑝 denotes vertical (V) 

or horizontal (H) polarization, 𝑇𝑣  and 𝑇𝑠  are the same as in 

equation (2), τ is the VOD, 𝜔𝑝 is the single scattering albedo of 

vegetation, 𝑢 is the satellite incidence angle, 𝑅𝑠 represents the 

soil effective reflectivity as:  
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𝑅𝑠(𝑝1) = (𝑄𝑟𝑠(𝑝2) + (1 − 𝑄)𝑟𝑠(𝑝2)) 𝑒𝑥𝑝( − ℎ 𝑐𝑜𝑠 𝑢)    (10) 

where Q represents the polarization mixing factors, ℎ  is the 

effective roughness parameter, 𝑟𝑠  is the smooth surface 

reflectivity calculated from the Fresnel equations, 𝑝1 and 𝑝2 

are the opposite polarization (V or H). Hence, the 𝑟𝑠  is 

determined only by the dielectric constant when 𝑢 is fixed. 

Several dielectric mixing models have been developed to 

describe the relationship between the dielectric constant and 

SM. Following the LPRM, Wang and Schmugge model [29] 

was used. LPRM uses an internal analytical method to solve for 

the VOD and makes use of the Microwave Polarization 

Difference Index (MPDI) to obtain VOD. In this study, we 

obtained SM following the same strategy adopted in the LPRM 

algorithm. The main difference between the proposed SM 

algorithm and the LPRM algorithm is that an SVTD method 

was used to isolate the thermal contributions from soil and 

vegetation.  

Ⅳ. RESULTS AND DISCUSSION 

By using the proposed SVTD method, the mixed LPRM 

temperature was decomposed into the soil and vegetation 

component temperature. We apply three statistical indicators, 

namely root mean square error (RMSE), bias, and Pearson 

correlation coefficient (R) to examine the performance of the 

SVTD result. The corresponding cross-validation statistics 

from both the LPRM and SVTD, against MODIS temperature, 

are reported in Table II. Before decomposition, the agreement 

between LPRM ST and MODIS LST was high, with stronger 

agreement at nighttime compared to that at daytime. After 

decomposition, our proposed method works well in vegetation 

and bare soil areas during both daytime and nighttime. The 

performance of SVTD in both vegetation areas and bare soil 

areas is improved by taking MODIS Tv and MODIS Ts as the 

references, respectively. Firstly, taking MODIS Tv as the 

reference, the R-value of SVTD improved by 0.13 and 0.11, and 

RMSEs of SVTD reduced by 4.39 K and 3.96 K compared with 

the original LPRM ST in vegetation areas at the daytime and 

nighttime, respectively (R in SVTD Tv and original LPRM ST 

at daytime/nighttime are: 0.94/0.96 and 0.81/0.85 respectively; 

RMSEs in SVTD Tv and original LPRM ST at 

daytime/nighttime are: 3.11 K/2.70 K and 7.50 K/6.66 K 

respectively). Secondly, taking the MODIS Ts as the reference, 

the R-value of SVTD improved by 0.13 and 0.09, and RMSEs 

of SVTD were reduced by 5.02 K and 3.33 K in bare soil areas 

compared with LPRM at daytime and nighttime, respectively 

(R in SVTD Ts and original LPRM ST at daytime/nighttime are: 

0.95/0.96 and 0.82/0.87 respectively; RMSEs in SVTD Ts and 

original LPRM ST at daytime/nighttime are: 4.01 K/2.18 K and 

9.03 K/5.51 K respectively). 

TABLE II 

ERROR STATISTICS ON THE CROSS-COMPARISON VALIDATION 

OF THE AMSR2 LPRM AND STVD TEMPERATURE WITH 

MODIS LST (THE R ARE ALL SIGNIFICANT AT p-value < 0.01, 

THE UNIT OF BIAS AND RMSE ARE IN K) 

Parameters 
Day Night 

R Bias RMSE R Bias RMSE 

MODIS LST vs. LPRM ST 0.92 4.04 5.51 0.96 -1.07 2.69 

MODIS Tv vs. LPRM ST 0.81 6.31 7.50 0.85 3.49 6.66 
MODIS Tv vs. SVTD Tv 0.94 2.77 3.11 0.96 0.96 2.70 

MODIS Ts vs. LPRM ST 0.82 6.69 9.03 0.87 2.32 5.51 
MODIS Ts vs. SVTD Ts 0.95 2.28 4.01 0.96 0.62 2.18 

N 1118 972 

To evaluate the performance of the proposed algorithm, the 

three in-situ SM networks were used. Fig. 2 (a) and (b) illustrate 

the comparison of in-situ SM and SM retrievals using the 

proposed algorithm (SVTD SM) and original LPRM in three 

SM networks at daytime and nighttime, respectively. Both the 

LPRM SM and SVTD SM have significant overestimation 

compared to in situ measurements in the study area, which is 

consistent with previous studies [25]. However, the new SVTD 

SM is closer to the 1:1 line and presents a much better fit to in 

situ data than the original LPRM SM. The SVTD SM also 

shows more significant improvement compared to LPRM SM 

in the daytime than in the nighttime. This is in line with 

expectations since the difference between soil and vegetation is 

larger in the daytime than at nighttime. 

The detailed error statistics of the LPRM and SVTD results 

are listed in Table III, which demonstrates that the SVTD 

algorithm has better performance than LPRM by showing a 

higher R, and smaller bias and unbiased RMSE (ubRMSE). 

Generally, the accuracy of both LPRM SM and SVTD SM is 

poor in the Maqu network with an ubRMSE larger than 0.09 m3 

m-3. The larger error in the Maqu region may be due to the 

limited penetration of the C-band TB since previous studies 

reported that the vegetation coverage is the highest in Maqu 

compared to Naqu and Ngari [20], [25] (this can be also 

observed in Table I).  

 
Fig.2. Scatterplots of station-averaged SM and SM retrievals using the 

proposed algorithm and LPRM algorithm at (a) daytime, and (b) 

nighttime. The red-dotted diagonal is the 1:1 line. 

TABLE III 

PERFORMANCE METRICS OF THE LPRM SM AND SVTD SM FOR THE 

UNFROZEN SEASONS IN THE THREE NETWORKS (R ARE ALL 

SIGNIFICANT AT 0.01) 

Statistic metrics 
Maqu Naqu Ngari 

D N D N D N 

R 
LPRM SM 0.306 0.398 0.628 0.696 0.218 0.446 
SVTD SM 0.516 0.584 0.832 0.824 0.423 0.501 

Bias 

(m3m-3) 

LPRM SM 0.177 0.114 0.150 0.127 0.168 0.116 
SVTD SM 0.163 0.128 0.121 0.108 0.155 0.104 

ubRMSE 

(m3m-3) 

LPRM SM 0.111 0.113 0.061 0.078 0.054 0.085 
SVTD SM 0.091 0.095 0.030 0.066 0.047 0.079 

N 
LPRM SM 

406 326 336 356 235 184 
SVTD SM 

Note: D means daytime and N means nighttime 

The best performance of both SVTD SM and LPRM SM is 

obtained in the Naqu network. Generally, the SM estimated 

from the proposed SVTD algorithm performs better than LPRM 

SM in all networks, particularly during the daytime, in line with 

Fig. 2. The most significant improvement appears in the 
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daytime of the Naqu network (ubRMSE reduces from 0.061 to 

0.030 m3m-3, and R increases from 0.628 to 0.832), and the 

Maqu network exhibits a slight improvement in the daytime 

(ubRMSE reduces from 0.111 to 0.091 m3m-3, and R increases 

from 0.306 to 0.516). Compared with the other two networks, 

SVTD SM retrievals have a relatively low improvement in the 

Ngari network both in the daytime (ubRMSE from 0.054 to 

0.047 m3m-3, and R from 0.218 to 0.423,) and nighttime 

(ubRMSE from 0.085 to 0.079 m3m-3, and R from 0.446 to 

0.501). The SVTD method implements based on vegetation 

coverage, and Maqu is covered with relatively dense vegetation, 

Naqu is covered with medium vegetation, and Ngari is covered 

with sparse or even no vegetation (as shown in Table I). From 

the results, it can be observed that compared to LPRM SM, the 

performance of SVTD SM is better in the area with relatively 

moderate vegetation coverage (i.e., Naqu) than in very sparsely 

vegetated regions (Ngari) and densely vegetated areas (Maqu), 

and the improvement is stronger at daytime than at nighttime. 

This also demonstrates the application potential of SVTD in soil 

vegetation-mixed areas. Based on the SVTD proposed in this 

study, it can not only avoid using auxiliary data to the greatest 

extent but also avoids soil moisture inversion errors caused by 

vegetation soil-temperature differences.  

V. CONCLUSION  

In this study, an SVTD method was employed to separate the 

thermal contributions from soil and vegetation to avoid the 

assumption made in the PMW SM retrieval algorithms that 

vegetation and soil temperatures are equal, and thus reduce the 

uncertainties in soil moisture retrievals, particularly in soil-

vegetation mixed regions at daytime. The results indicate that 

the proposed algorithm is superior to the widely used LPRM 

algorithm by using in situ measurements from three dense 

networks (Maqu, Naqu, and Ngari) covering different 

vegetation conditions over TP. Particularly, the proposed 

algorithm displays a substantial improvement compared to 

LPRM in moderately vegetated areas during the daytime. The 

reason is that it employs the new SVTD to decompose 

vegetation and soil temperatures in mixed pixels using 

vegetation cover information. It indicates that the existing 

LPRM temperature model is significantly impacted by the 

surface vegetated condition and that this impact can be lessened 

by adopting the SVTD approach, which can improve the 

accuracy of the SM retrievals.  

It is important to note that this study only examines the 

improvement effect of vegetation differences in various spatial 

locations on the model and that the vegetation in the same area 

may change over time. This suggests that much work needs to 

be done on the evaluation of SVTD suitability during vegetation 

growth, especially in temperate vegetation areas with 

significant seasonal changes. To our knowledge, our study is 

the first attempt to separate the contribution of soil and 

vegetation temperatures in the passive microwave soil 

moisture retrieval algorithms using only remote sensing data 

(that is to say, no model simulations are used in the algorithm 

to form a purely satellite-dependent dataset). Although 

SVTD is just tested for AMSR2 data, it has good potential to 

extend to other multiband PMW satellites such as FY-3C. 
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