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Arrhythmia Classification of 12-Lead and Reduced-Lead
Electrocardiograms via Recurrent Networks, Scattering, and
Phase Harmonic Correlation
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Abstract. We describe an automatic classifier of arrhythmias based on 12-lead and reduced-lead electrocar-
diograms. Our classifier comprises four modules: scattering transform (ST), phase harmonic correlation (PHC),
depthwise separable convolutions (DSC), and a long short-term memory (LSTM) network. It is trained on Phy-
sioNet/Computing in Cardiology Challenge 2021 data. The ST captures short-term temporal ECG modulations
while the PHC characterizes the phase dependence of coherent ECG components. Both reduce the sampling rate
to a few samples per typical heart beat. We pass the output of the ST and PHC to a depthwise-separable convo-
lution layer (DSC) which combines lead responses separately for each ST or PHC coefficient and then combines
resulting values across all coefficients. At a deeper level, two LSTM layers integrate local variations of the input
over long time scales. We train in an end-to-end fashion as a multilabel classification problem with a normal and
25 arrhythmia classes. Lastly, we use canonical correlation analysis (CCA) for transfer learning from 12-lead ST
and PHC representations to reduced-lead ones. After local cross-validation on the public data from the challenge,
our team “BitScattered” achieved the following results: 0.682± 0.0095 for 12-lead; 0.666± 0.0257 for 6-lead;
0.674± 0.0185 for 4-lead; 0.661± 0.0098 for 3-lead; and 0.662± 0.0151 for 2-lead.

Keywords: electrocardiography, scattering transform, phase harmonic correlation, canonical
correlation analysis, convolutional neural networks, long short-term memory networks
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1. Introduction

The World Health Organization estimates that cardiovascular diseases (CVDs) caused 17.9
million deaths worldwide in 2016, and may reach 23.6 million in the year 2030. In this context,
electrocardiography (ECG) plays a vital role in CVD prevention, diagnosis, and treatment.
This is because each electrode in an ECG can reveal cardiac abnormalities, which are risk
factors for CVDs. The main advantage of ECG is that its acquisition is inexpensive and non-
invasive. However, the visual interpretation of ECG is tedious, time-consuming, and requires
expert knowledge. To address this, the PhysioNet/Computing in Cardiology Challenge 2021
offers a benchmark for automatic classification of cardiac abnormalities from 12-lead and
reduced-lead ECGs.

Prior literature on ECG classification exhibits a methodological divide: signal processing
versus machine learning. On one hand, digital signal processing methods include low-pass
filters, fast Fourier Transform, and wavelet transform. On the other hand, machine learning
methods include approaches such as random forests, support vector machines, convolutional
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neural networks (CNNs) and long short-term memory (LSTM) networks. While feature
engineering lacks flexibility to represent fine-grain class boundaries, a purely learned pipeline
may lead to uninterpretable overfitting.

The 40 ranked contributors to the PhysioNet/CinC Challenge 2021 emphasize these
methodological aspects in varying degrees, and well represent the state of the art in
ECG classification. There have been numerous other formulations of the automated ECG
interpretation problem, such as single-lead detection of atrial fibrillation (Clifford et al. 2017).
Yet the uniqueness of the Physionet/CinC Challenge 2021 is the range of 29 arrhythmias
considered for multi-label classification, and the availability of a large, full 12-lead ECG
database with approximately 88,000 public records. Therefore we mainly restrict the scope
of our methodological comparison to approaches used by other participants of the Challenge.
The scores we report below refer to the all-lead Challenge metric on the hidden test set.

Team ISIBrno-AIMT Nejedly et al. (2021) (with winning score 0.58) developed a residual
CNN network with an attention mechanism and a mixture of loss functions, including the
differentiable Challenge metric approximation developed by Vicar et al. (2020). Preprocessing
included a third-order Butterworth bandpass filter (1Hz–47Hz), z-score normalization and
16.4 s batch time span. They created a common model for all lead configurations and
randomized lead selection during training, zeroing unused leads. An evolutionary optimization
estimated probability thresholds for each class. The final step was majority voting on an
ensemble of three such models.

Team CeZIS Bugata et al. (2021) (score 0.52) proposed a two-phase method. In the first
phase, a 1-D variant of the ResNet50 was trained using data from different sources to first
extract quality latent features. To address presumed label inconsistency, they relaxed the label
semantics to include “unknown” in addition to positive and negative. In the second phase,
the trained model was tuned using a loss function that approximated the Challenge metric.
Separate models were trained for specific databases (CPSC2018, Georgia or “other”) and a
trained predictor of database was used at inference time to choose the most appropriate model.

The approach proposed by team snu_adsl Jangwon et al. (2021) (score 0.55) used an
EfficientNet-B3 neural network as a base classifier with threshold optimization and label
masking using auxiliary data sources. Team ami_kagoshima Hiroshi et al. (2021) (score
0.49) presented a CNN based EfficientNet model that incorporated DivideMix and stochastic
weight averaging (SWA) to address label inconsistency. The network architecture introduced
by team SMS+1 Gallego Vázquez et al. (2021) (score 0.52) combined hand-crafted features
(demographic, morphological, and heart-rate-variability metrics) with ECG features extracted
via CNNs. The network was trained with Asymmetric Loss (ASL) for multi-label classification
to address class imbalance, along with a self-learning label correction method to further
mitigate noisy labels in the dataset.

Transfer learning exploits knowledge from past tasks to better learn how to perform a new
task. Its goal is to reuse previous learning to learn novel (but related) tasks more efficiently
or solve new problems Yang et al. (2013). In this paper, we adopted this paradigm with
the use of canonical correlation analysis (CCA), which maximizes the correlation between
two sets of multidimensional signals. CCA has been applied elsewhere in automatic signal
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classification. Noh & De Sa (2013) used CCA to discriminate electroencephalogram (EEG)
patterns, while Lin et al. (2018) used it to mitigate the impact of electromyography electrode
shift on classification accuracy. Fan et al. (2016) used CCA for EEG feature extraction and
realtime artifact detection. Kuzilek et al. (2014) showed that CCA could be used to estimate
unstructured ECG noise although it was sensitive to (structured) 50Hz power line interference.

Our contribution to this research area aims to overcome the methodological divide
by combining insights from signal processing and machine learning. At a first stage, we
extract time scattering transform (ST) and phase-harmonic correlation (PHC) coefficients for
each ECG channel. Although this stage is not trainable, ST offers time-frequency analysis
with numerical guarantees of stability to time warps. The PHC describes the signal with
numerically stable estimates localized in time, frequency and phase that characterize the phase
dependence of coherent ECG components Mallat et al. (2019). At a second stage, we train a
depthwise separable convolution (DSC) network, followed by a bidirectional long short-term
memory (BiLSTM) network. While DSC combines scattering and phase coefficients from
multiple leads simultaneously, the BiLSTM can also capture longer-term trends in cardiac
activity. We also investigated transfer learning to the reduced-lead models using canonical
correlation analysis (CCA). This novel use of CCA transfers 12-lead information in the learning
phase of the reduced-lead models. The work is inspired from our previous publications,
which aimed at detecting sleep arousals from polysomnographic recordings Warrick et al.
(2019). Our system extends previous Challenge work Warrick et al. (2020, 2021) with more
robust preprocessing using all datasets; consideration of recordings with arbitrary duration
and sampling rate; inclusion of PHC, to our knowledge the first such application to biomedical
signals; and the use of an asymmetrical loss function (ASL) that is more appropriate to
imbalanced multi-label data.

2. Methods

This section describes the datasets used to construct the ECG classifier and explains the role
of each of the system components in isolation. Figure 1 summarizes our proposed system.

2.1. Data

The PhysioNet/CinC Challenge 2021 data, described in detail in (Reyna et al. 2021), includes
approximately 88,000 public and 26,000 private ECG records. Each record is assigned one or
more arrhythmia diagnoses (or normal sinus rhythm) by experts and a subset of thirty of these
were considered for the Challenge scoring. Four pairs of these diagnoses were merged, giving a
total of twenty-six diagnosis labels. A complete list of the scored diagnoses is shown in Table 1.
The ECG records vary in their duration and sampling rates; their relative contributions to the
public and hidden datasets; and their distribution of arrhythmia diagnoses. Table 2 shows some
key characteristics of the seven data sources.
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Figure 1. System overview for k-lead ECG. Top: channel-wise scattering transform (ST) and phase harmonic
correlations (PHC). Arrow colors denote ST paths and PHC coefficients (shown for two channels only). Middle
left: depthwise and pointwise convolution layers of the depthwise separable convolutional (DSC) neural network.
For brevity, only two ST paths, two PHC coefficients and two feature maps are shown as pointwise convolution
inputs. Middle (optionally, in violet): CCA projection of k-lead ST and PHC uses coefficients precalculated
from 12-lead data before training. Bottom: bidirectional long short-term memory network (BiLSTM) followed
by classification. Arrow styles denote output units. Only three hidden units and two arrhythmia classes are shown.

2.2. Preprocessing

In a preprocessing step in this study, we resampled the data to a common sampling rate
of fs = 500Hz and split the recordings into multiple segments when required to support
arbitrary acquisition duration. Thus we were able to include subsets that we had omitted in
our PhysioNet/CinC Challenge 2021 submission due to the presence of recordings with long
durations or non-uniform acquisition rates fac (in the St. Petersburg and PTB data). This also
enabled us to process the non-uniform fac of the University of Michigan and Undisclosed data,
which likely failed in our final official-phase Challenge submission because our processing
assumed a fixed fac of 500Hz.

We resampled the data using the Python function scipy.signal.resample. Although some
ECG recording durations in the training set were as long as 30min, the vast majority (78,181 of
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Diagnosis Abbreviation Merged
atrial fibrillation AF
atrial flutter AFL
bundle branch block BBB
bradycardia Brady
complete left bundle branch block CLBBB LBBB
complete right bundle branch block CRBBB RBBB
first-degree AV block IAVB
incomplete right bundle branch block IRBBB
left axis deviation LAD
left anterior fascicular block LAnFB
left bundle branch block LBBB CLBBB
low QRS voltages LQRSV
nonspecific intraventricular conduction disorder NSIVCB
normal sinus rhythm NSR
premature atrial contraction PAC SVPB
pacing rhythm PR
poor R-wave progression PRWP
premature ventricular contractions PVC VPB
prolonged PR interval LPR
prolonged QT interval LQT
Q wave abnormal QAb
right axis deviation RAD
right bundle branch block RBBB CRBBB
sinus arrhythmia SA
sinus bradycardia SB
sinus tachycardia STach
supraventricular premature beats SVPB PAC
T-wave abnormal TAb
T-wave inversion TInv
ventricular premature beats VPB PVC

Table 1. PhysioNet/CinC Challenge 2021 scored arrhythmias, with indicated abbreviations and label merging.

87,663≈89%) were 10 s or less. Therefore to reduce computational requirements, we reduced
the time span of the learning batches to 10 s. Longer recordings were truncated at 10 s or split
into multiple sub-sequences of 10 s. We also split the final two sub-sequences into two equal
lengths when necessary to avoid very short sub-sequences less than one-third of the 10 s batch
time span. For all sub-sequences < 10 s we padded the input by reflection to reduce filtering
artifacts; we excluded output samples corresponding to these padded inputs from contributing
to the training loss function. We excluded 24 Georgia and 388 Ningbo records from training
due to the presence of invalid (NaN) values in the ECG recordings.
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Source Train Valid Test Dur fac (Hz)
1. China Physiological Signal

Challenge 2018
10,330 1,463 1,463 6-144 s 500

2. Chapman University, Shaoxing
and Ningbo hospitals (China)

45,152 - - 10 500

3. St. Petersburg Institute of
Cardiological Technics (Russia)

74 - - 30 min 257

4. Physikalisch-Technische
Bundesanstalt (PTB, Germany)

22,353 - - 10-
120 s

500 or 1000

5. Georgia (United States) 10,344 5,167 5,161 5-10 s 500
6. Undisclosed (United States) - - 10,000 ? ?
7. University of Michigan (United

States)
- - 19,642 10 s 250 or 500

Table 2. Characteristics of the PhysioNet/CinC Challenge 2021 data, showing number of records for training,
hidden validation and hidden test sets, acquisition durations (“Dur") and sampling rates fac. Dashes indicate no
records and question marks indicate that the values were not provided.

2.3. Scattering transform

The scattering transform is a deep convolutional network whose filters are defined a priori
instead of being learned from data. The earliest application of the scattering transform to
cardiology is due to Chudáček et al. (2014), in the context of fetal heart rate classification. We
refer to Mallat (2016) for a mathematical introduction and to Warrick et al. (2019) for a recent
review of the state of the art. Specifically, every layer in the scattering network contains filters
of the form

ψj : t 7→ 2−j/Qψ(2−j/Qt), (1)

where ψ is a wavelet, Q is a constant number of filters per octave, and the scale variable j is
an integer ranging between 0 and J . Hereafter, we take the “mother wavelet” ψ to be a Morlet
wavelet with a quality factor of Q = 1, center frequency of ξ = 186.4Hz and frequential
width σ = 19.4Hz. This choice of ξ and σ ensures a frequency support below the Nyquist
frequency for fs = 500Hz. The Morlet wavelet is a complex-valued function with a Gaussian
envelope while being approximately analytic, i.e., with negligible Fourier coefficients outside
of the half-line of positive frequencies (ω > 0) . Furthermore, we set the maximum wavelet
scale to J = 11 after a process of trial and error.

Let ϕT be a Gaussian filter of cutoff frequency equal to 1/T . The first two orders of the
scattering transform are

S1x(t , j1 ) = |x ∗ψj1| ∗ ϕT (t) and

S2x(t , j1 , j2 ) =
∣∣∣|x ∗ψj1| ∗ψj2

∣∣∣ ∗ ϕT (t), (2)

where the vertical bars and the asterisk denote complex modulus and convolution product
respectively.
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Figure 2. Scattering transform and phase harmonic correlation of ECG lead I 10 s recordings for (left) normal
sinus rhythm (record A0002) and (right) atrial fibrillation (record A0023). Top to bottom: input ECG, 12 first-
order and 63 second-order ST paths (log scale), 12 auto-correlation and 63 cross-correlation phase harmonic
coefficients (linear scale).

For every discretized value of time t, we concatenate first-order coefficientsS1x(t , j1 ) and
second-order coefficients S1x(t , j1 , j2 ) to produce a multidimensional time series Sx(t , p);
where the multiindex p, known as scattering path, either denotes an singleton (j1) or a pair
(j1, j2). With J = 11, this results in 12 first-order and 63 second-order paths for a total number
of P = 75 paths.

To control the degree of time invariance, we modified the Python scattering package
Kymatio‡ to set the time scale of Gaussian averaging to T = 62.5ms. Note that this T
is less than the customary 2J/ξ. Rather, the filterbank {ψj}j covers the frequency range
[2−Jξ; ξ] = [0.091Hz; 186Hz] whereas the scattering transform is discretized at a Nyquist
rate of 2/T = 32Hz. This rate is chosen to be higher than typical patient heart rates yet
considerably lower than fs.

We apply a pointwise compressive nonlinearity to the output of the ST, namely, an offset
log function: x 7→ log(x + ε) where ε = 10−4. We “standardize” the result by subtracting
its empirical mean and dividing it by its empirical standard deviation. Previous literature has
shown that such transformations can bring the empirical histogram of scattering transform
magnitudes closer to a standard normal distribution and thus improve classification accuracy
Lostanlen et al. (2018).

‡ Official website of Kymatio: https://www.kymat.io

https://www.kymat.io
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2.4. Phase harmonic correlation

Originally introduced in Mallat et al. (2019) to theoretically analyze the behavior of linear
filtering followed by rectification in convolutional neural networks, wavelet phase harmonic
descriptors have since led to impressive performance in applied fields, such as cosmological
parameter estimation Allys et al. (2020). Here we use the explicit definition of wavelet phase
harmonic descriptors from Allys et al. (2020), and adapt them to compute temporally local
phase correlations (instead of fully time-invariant descriptors). The phase harmonics of a
complex number z ∈ C is a sequence defined for all k ∈ Z by

[z]k = |z|ejkφ(z), (3)

whereφ(z) is the complex phase of z. Note that in general, [z]k ̸= zk, because phase harmonics
preserve the magnitude, whereas the simple power does not. We see that the phase derivative
of the phase harmonics increases by a factor of k. The phase derivative is also referred to as
the analytic instantaneous frequency; scaling frequency without affecting the time distribution
is called frequency transposition, analogous to the same musical term.

The outputs of the Morlet filters across scales ji for i ∈ {1, . . . , J} are

Ψj1(x) =x ∗ψj1 . (4)

In Mallat et al. (2019) it is shown that Ψj1(x) is not correlated to Ψj2(x) unless the frequency
supports of Fourier transforms Ψ̂j1(ω) and Ψ̂j2(ω) overlap. Furthermore, since the correlation
of w ∈ C and z ∈ C is

C = Re(wz∗)

= Re(|w|ejφ(w)|z|e−jφ(z))

= |w||z|Re(ej[φ(w)−φ(z)])

= |w||z|cos[φ(w)− φ(z)]. (5)

C is maximized for given |w| and |z| when φ(w) ≈ φ(z). Therefore, for each filter output
pair (Ψj1(x),Ψj2(x)) we need to ensure that their phases move at roughly the same velocity to
stay in alignment. Since the wavelet instantaneous frequencies differ by a factor related to the
difference in scales, we correlate phase harmonics of Ψj1(x) with Ψj2(x) using transposition
factor k′ = xj2/xj1 ∈ R, where xj1 and xj2 are the center frequencies of corresponding filters
ψj1 and ψj2 as

Cx(t, j1, j2) = Re
{
[Ψj1(x)]

xj2
/xj1 · [Ψ∗

j2
(x)]

}
. (6)

As a final step, we applied the Gaussian averaging filterϕT (t) and discretized at a Nyquist rate
of 2/T = 32Hz:

CxT (t, j1, j2) = Cx(t, j1, j2) ∗ ϕT (t). (7)
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This local averaging provides robustness while preserving the temporal variations of the phase
harmonics. For j1 = j2 we refer to the resulting phase harmonic correlation coefficients CxT

as autocorrelations; for j1 ̸= j2 they are cross correlations.
We modified the Kymatio scattering package to support the phase harmonic correlation

calculations for one-dimensional time-series. We computed these correlations independently
per ECG lead. Figure 2 illustrates the first two orders of the ST and corresponding PHC for
a single lead of two ECG recordings, one labelled with normal sinus rhythm and the other
labelled as atrial fibrillation.

2.5. Depthwise separable convolution

A depthwise separable convolution (DSC) splits the computation into two operations:
depthwise convolution X linearly combines the leads for each ST path or PHC coefficient
while the pointwise convolution Y linearly combines these transformed paths, as in (8a) and
(8b)

X [p] =
L∑
l=1

S [l, p]F [p, l] (8a)

Y [n] = β

[
B [n] +

P∑
p=1

X [p]G [p, n]

]
(8b)

where L ∈ {12, 6, 4, 3, 2} is the the number of leads and P represents the number of ST
paths and/or PHC coefficients. F and G refer to the filter maps, N is the number of pointwise
mixes, B is the bias and β represents the activation function. The total number of convolution
coefficients including the bias weights is therefore P × L + (P + 1) × N . This is often a
reduction in parameters compared to regular convolution. We used a DSC layer with ReLU
activation and N ∈ {66, 150}, chosen to be on the order of P .

2.6. Long-short term memory (LSTM)

An LSTM is a type of recurrent neural network that can model temporal sequences Hochreiter
& Schmidhuber (1997). It preserves information from inputs that have already passed through
it using a hidden state. Bidirectional LSTMs (BiLSTM) process data in forward and reverse
directions to capture both past and future contexts with two separate hidden layers.

2.7. Transfer learning for reduced-lead models

For reduced-lead models, we apply transfer learning from the 12-lead data using canonical
correlation analysis (CCA). CCA finds a pair of linear transformations for two sets of
multidimensional variables (views Vi), such that the linear projections of the two views,
(V1w1, V2w2) are maximally correlated Hardoon et al. (2004). In our case, view Vi is the
ST and/or PHC coefficients of lead sets: V1 corresponds to the lead set used for prediction (2,
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3, 4 or 6 leads) and V2 corresponds to the respective complement from 12-lead data (10, 9, 8
and 6 leads). This is done by maximizing the following equation:

ρ = max
w1,w2

corr (V1w1, V2w2)

= max
w1,w2

wT
1 Σ12w2√

wT
1 Σ11w1wT

2 Σ22w2

(9)

where Σ11, Σ22 and Σ12 are the covariances and cross-covariance of V1 and V2; and w1 and w2

are determined by singular-value decomposition.
We calculate w1 and w2 from fold training data prior to network training. CCA uses V1

and V2 to find the projection vectors corresponding to the k highest left- and right- singular
values, and k = P × L was chosen to include all the singular values.

During training and prediction, V1 is projected with fixed w1. This projection is intended
to transfer information from (possibly unavailable) V2, correlated with the complementary lead
set, such that classification of reduced-lead ECG records is improved.

2.8. Asymmetric Loss Function

In multilabel classification problems, there are typically a few positive and many negative
labels per instance. This is also the case for this ECG classification study. In the Chapman-
Shaoxing-Ningbo dataset, for example, there were 45,152 recordings and a total of 68,852
(scored and unscored) labels. Thus the average number of labels per recording was 1.52,
and this rate was similar for the other datasets. Such label sparsity coupled with the large
range of label incidence in the training data (see Figure 3) leads to under-emphasizing the
gradients from the positive labels during training. Accordingly, numerous loss functions have
been proposed to treat positive and negative labels differently in the the loss calculation.

One such approach, called the asymmetrical loss function (ASL) (Ridnik et al. 2021),
reduces the loss contribution of the easiest-to-classify negative instances and can potentially
discard instances that are mislabeled as negative. The mathematical description of the ASL
begins with the general form of a binary loss function L:

L = −yL+ − (1− y)L− (10)

where y is the ground-truth of a label and L+ and L− are the loss contributions for positive
and negative instances, respectively. In the typical one-hot network output architecture, the
total loss is the sum of such losses over theK possible labels. The ASL extends focal loss Lin
et al. (2017) which applies the focusing parameter γ to the loss contributions of negative and
positive instances having network output probability p:

{
L+ = (1− p)γ+ log(p)

L− = pγ− log(1− p)
(11)

where γ = γ+ = γ− for focal loss and γ = 0 gives the binary cross-entropy (BCE) loss. This
reduces the loss contribution of negative instances presumably easiest to classify, that is, those
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with low probability p≪ 0.5. However, it may also reduce the contribution of the rare positive
instances. To address this, ASL uses asymmetric focusing that sets larger values to γ+ than
γ−.

Finally, the label imbalance may be such that the effect of γ− is not sufficient to reduce the
influence of negative instances, including those that are mislabelled as such. For this reason,
ASL introduces hard threshold pm = max(p − m, 0) to further remove the easiest negative
samples, modifying L− in (11) to

L− = (pm)
γ− log(1− pm). (12)

2.9. Decision Rule

Although our Challenge approach used all sub-sequences during training, inference was
limited to the first sub-sequence. In this study, we removed this limitation to consider
predictions over the entire recording by averaging probabilities over all sub-sequence time
outputs. Our decision rule chose any predicted class that exceeded probability threshold
p = 0.5; otherwise the maximum probability class was chosen.

2.10. Implementation

Keras with TensorFlow as backend was used for building the neural network, with a Kymatio
Keras layer for the scattering and phase harmonic correlations. We used a machine with 200
GB of available system memory and a GPU with 32 GB of memory.

We used two BiLSTM layers of 100 hidden units. Performance degraded for fewer layers
and did not improve with more layers, so we retained this BiLSTM architecture. The number
of hidden units was chosen arbitrarily and was not tuned. For the final dense layer we compared
the use of BCE and ASL losses to support multilabel classification. The batch size was 35 10 s

blocks, chosen to be within memory limits using a 12 GB GPU.
The 10-fold cross-validation data partitions were 90% training and 10% testing for each

fold. All subsequences for a recording belonged to only one of these partitions for each fold.
The validation set, 10% of training, was used for as the loss criteria for early stopping (20
epochs) after completing a minimum of 50 epochs.

2.11. Evaluation

The Challenge metric described in (Perez Alday et al. 2020, Reyna et al. 2021) was used to
assess performance. Differences between experimental results were often subtle, so we chose a
principled comparison of experiment pairs: we performed a 2-sided t-test of the test Challenge
metrics over all 10 folds to reject the null hypothesis that the metrics were equal. We considered
rejection of the null hypothesis at level p < 0.05 to be statistically significant.

We compared the effectiveness of the ST/PHC layers to a set of reference CNN
architectures and to no filtering (see Table 3). The architectures included CNN, a single
convolutional layer; FCN, a fully connected three-layer CNN network (Wang et al. 2016);
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MCDCNN, a multi-channel deep CNN with convolutions applied to individual channels (Cui
et al. 2016); and 1-D Resnet18, one of the first very deep yet trainable networks (He et al. 2015).
All comparisons included the final BiLSTM and Dense layers. We used the default parameter
settings of the public implementations listed in Table 3. We adapted the three Resnet18 block
outputs to the first BiLSTM layer by maxpool operations to obtain a common rate of fs/32.

3. Results

We found that normalizing the ST coefficients improved training convergence and marginally
improved classification performance, but had a negative impact on results that used CCA. For
this reason, we report CCA results without ST normalization. For PHC coefficients, we found
that the distribution was highly skewed towards very low absolute values and normalization
mappings such as offset log or the ±1 range did not lead to training convergence. However,
simply scaling the PHC coefficients by a factor of 1, 000 led to convergence and classification
performance with only PHC coefficients that was on par with ST coefficients alone. We did
not attempt to further tune this scaling factor.

We used the default ASL parameters pm = 0.05 and γ+ = 1 and tuned γ−. We found that
for all front-end configurations of ST and PHC coefficients, γ− = 4 gave the best Challenge
scores for the validation partition on cross-validation validation for γ− ∈ {2, 3, 4, 5}. We used
these ASL settings for our subsequent comparisons.

Table 4 shows cross-validation Challenge metric results for several 12-lead architectures.
Model (2) compared to Model (1) shows the beneficial effect of ASL (0.671 ± 0.0167)
compared to BCE (0.586 ± 0.0125) for a classifier with ST coefficients at the front end
(statistically significant at level p=2.42E-06). Model (3) indicates that a model using only
PHC coefficients performed almost as well (0.657 ± 0.0094) as Model (2) that used only ST
coefficients. Models (4) and (5) combined both ST and PHC coefficients, improving the score
over Model (2). However only Model (5), which increased the capacity of the DSC pointwise
filter from 66 to 150, had a score increase (to 0.682± 0.0095) that was statistically significant
(p=3.61E-02).

Table 4 also shows cross-validation results for the CNN architectures. All architectures
performed better than no filtering (RawECG). Note that the RawECG training at full sampling
rate fs had long training times and high memory usage, so we truncated cross-validation after
4 folds. The best ST-PHC Model (5) performed better than all these networks except for
MCDCNN (0.698± 0.0093 vs. 0.682± 0.0095).

Table 5 compares cross-validation Challenge metric results for the reduced-lead models
with and without CCA using ST coefficients at the front end. These results were only slightly
inferior to the 12-lead results. The use of CCA increased scores in all models, and the increases
from 0.645±0.0156 to 0.662±0.0151, p=2.45E-02 and from 0.661±0.0098 to 0.651±0.0119,
p=3.63E-02 for the lead 2- and 3- lead models, respectively, were statistically significant.

Figure 3 compares the per-class cross-validation test F-measure performance for Model
(2) for 12-lead and 2-lead and the 2-lead model with CCA, ST-DSC66-CCA-ASLγ−=4.
Generally, the 12-lead model performed best (for 14 of 26 labels), followed by the 2-lead
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Model Description Implementation Filters #Filters ↓
(6) RawECG No filtering - - -
(7) CNN Single-layer 1×7 150 MP16
(8) FCN Fully Connected

Network
(Ismail Fawaz et al.
2019)

1×8 128
1×5 256
1×3 256 MP16

(9) MCDCNN Multi-channel
Deep CNN

(Ismail Fawaz et al.
2019)

1×5 8/lead MP2
1×5 8/lead MP2

(10) Resnet18 Residual NN (Goodman 2019)
1×7 64 Str2,MP2
1×3 64 ×2
1×3 64 ×2
1×3 128 ×2 Str2
1×3 128 ×2
1×3 256 ×2 Str2
1×3 256 ×2
1×3 512 ×2 Str2
1×3 512 ×2

Table 3. Reference architectures. “RawECG" indicates no filtering. Layers are described by row. ↓ indicates
downsampling by maxpool (MP) or stride (STR) operations.

model with CCA, followed by the 2-lead model without CCA, which had the lowest score for
19 of 26 labels.

Figure 4 compares the per-class cross-validation test F-measure performance for the 12-
lead ST model ST-DSC66-ASLγ−=4 and the 12-lead PHC model, PHC-DSC66-ASLγ−=4. The
two model performed similarly although the ST model performed better for 18 of the 26 labels.

Accordingly, for our revised post-Challenge entry, we used the architecture of Model (5)
and included CCA in the reduced-lead models. Unfortunately, this submission failed due to
memory depletion on the Challenge server after just over 10 hours of processing. Therefore
we were unable to report a score on the hidden test set.

4. Discussion

We observe slight performance degradation for models with decreasing numbers of leads,
as observed by many other Challenge participants, suggesting that the correlation between
leads is considerable. With such similar test Challenge metrics, Figure 3 indicates that the
2-lead model without CCA follows the general trend of the 12-lead model in terms of per-
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Model1 #Leads Cross-validation Model2 p-value
(1) ST-DSC66-BCE 12 0.586± 0.0125

(2) ST-DSC66-ASLγ−=4 12 0.671± 0.0167 (1) 2.42E-06*
(3) PHC-DSC66-ASLγ−=4 12 0.657± 0.0094

(4) ST-PHC-DSC66-ASLγ−=4 12 0.679± 0.0091

(5) ST-PHC-DSC150-ASLγ−=4 12 0.682±0.0095 (2) 3.61E-02*
(6) RawECG-ASLγ−=4 12 0.561± 0.0439 (5) 4 folds only
(7) CNN-ASLγ−=4 12 0.648± 0.0425 (5) 4.77E-02*
(8) FCN-ASLγ−=4 12 0.642± 0.0464 (5) 2.50E-02*
(9) MCDCNN-ASLγ−=4 12 0.698± 0.0093 (5) 1.42E-03*
(10) Resnet18-ASLγ−=4 12 0.636± 0.0609 (5) 3.57E-02*

Table 4. Cross-validation test Challenge metric for 12-lead models. ST and PHC indicate the use of scattering
and phase harmonic correlations, respectively. The DSC subscript indicates the number of pointwise filters in the
depth-separable convolution filter. BCE and ASL indicates the use of the binary cross entropy and asymmetric
loss functions, respectively. An asterisk (*) indicates two-sided t-test p < 0.05 for Model1 compared to Model2.

Model #Leads Cross-validation p-value
ST-DSC66-ASLγ−=4 6 0.653± 0.0145

ST-DSC66-CCA-ASLγ−=4 6 0.666± 0.0257 2.28E-01
ST-DSC66-ASLγ−=4 4 0.662± 0.0125

ST-DSC66-CCA-ASLγ−=4 4 0.674± 0.0185 1.18E-01
ST-DSC66-ASLγ−=4 3 0.651± 0.0119

ST-DSC66-CCA-ASLγ−=4 3 0.661± 0.0098 3.63E-02*
ST-DSC66-ASLγ−=4 2 0.645± 0.0156

ST-DSC66-CCA-ASLγ−=4 2 0.662± 0.0151 2.45E-02*

Table 5. Effect of CCA on Challenge metric for reduced-lead models in test partition of cross-validation. An
asterisk (*) indicates two-sided t-test p < 0.05 compared to previous row.

class performance. However for several classes in particular, the 2-lead performance was
significantly lower (e.g., CRBBB|RBBB), suggesting that the increased information provided
by the 12-lead configuration may be especially important for these arrhythmias.

Thus the potential for transfer learning from the 12-lead data to the reduced-lead models
was limited given this similar performance across lead models. Nevertheless we observed
modest and, in the case of the 2- and 3-lead models, statistically significant improvement
applying CCA to the reduced-lead models. Indeed, these two models with the fewest leads
have the most to gain from transferring 12-lead information. We see this in the trend in Table 5
towards statistical significance of the improved performance using CCA with decreasing
numbers of leads. Figure 3 shows that for the majority of labels, the 2-lead CCA model
performance was slightly inferior to the 12-lead model, but better than the 2-lead model
without CCA. This also suggests that the 12-lead information transferred via CCA helped to
improve the 2-lead model.
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Figure 3. Per-class cross-validation test F-measure (mean± 1 standard deviation error bars) for 12- (red solid)
and 2-lead (blue dashed) models ST-DSC66-ASLγ−=4 as well as 2-lead with CCA (blue solid) model ST-DSC66-
CCA-ASLγ−=4. The bar graph indicates arrhythmia label proportions. Label pairs separated by a bar (“|”)
indicate that the two labels were merged (an “OR” operation) in the official scoring and in the classifier.

ST and PHC considerably reduce the network sampling rate by a factor of fs/(2/T ) = 16.
Because this front-end filtering uses fixed coefficients, it can be directly computed, cached
and serves to ease the data training load. This is especially important for LSTMs where the
dependency of computational complexity on sequence length is worse than linear, evidenced
by the excessive resources required for our RawECG experiment conducted at rate fs.

The results show that ST and PHC gave comparable results in isolation, suggesting that
they have correlated information. Combining the two gave slightly improved results with
statistical significance, showing some complementarity in the two measures. This is suggested
in Figure 4 where the PHC classifier outperformed the ST classifier for certain labels.

(Mallat et al. 2019) points out that the first layers of convolutional neural networks (CNNs)
often learn filters similar in frequency but with different phases. Furthermore, the rectified
linear unit (ReLU) acts as a phase filter on the coefficients of this linear filtering when used
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Figure 4. 12-lead per-class cross-validation test F-measure (mean± 1 standard deviation error bars) for Model
(2) ST-DSC66-ASLγ−=4 (red) and Model (3) PHC-DSC66-ASLγ−=4 (black).

as the CNN pointwise non-linearity. This is analogous to our first network layers since PHC
applies phase filtering to wavelet coefficients.

In our official-phase Challenge model (Warrick et al. 2021) which used only BCE loss,
we observed that label performance was strongly dependent on label incidence, presumably
because per-label loss function contribution is directly proportional to incidence. Replacing
BCE with ASL significantly improved the Challenge score and Figure 3 shows a weaker
association of incidence and F-measure performance. This is especially true for the highest
incidence label NSR, whose performance was near the top with BCE but shifted significantly
lower with the ASL, ranking 15th of 26 labels. This indicates that the use of ASL helped to
adapt the learning to the wide range of incidence across labels, and as noted in Section 2.8,
doing so despite high sparsity in the 26 labels.

To summarize, the best model in this study improved on the official-phase Challenge entry
in the following ways: 1) the use of PTB and St. Petersburg datasets during training; 2) the
addition of the ASL; 3) the use of CCA for reduced lead models; and 4) the addition of PHC
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coefficients. Our successful official-phase Challenge entry (Warrick et al. 2021) completed
training of the baseline models in just over 18 h and prediction of the hidden validation set in
18min, within the maximum allowable times of 48 h and 24 h, respectively. We would expect
that the architecturally similar model of this paper would modestly increase processing time.
The Challenge entry obtained an all-lead Challenge score of 0.43 on the hidden validation set,
but a very low score of 0.10 on the hidden test set. As mentioned in Section 2.2, this is likely
due to the fact that our official-phase Challenge submission assumed a fixed fac of 500Hz, but
the University of Michigan and Undisclosed cohorts of the hidden test data had non-uniform
fac. Including the two final datasets in training reduced cross-validation score for the 12-lead
model from 0.601 ± 0.015 to 0.586 ± 0.0125. Thus our official-phase Challenge entry was
roughly equivalent to BCE-based Model (1) apart from its inability to process non-uniform
fac. Therefore we would expect that the model additions of this paper would generalize with
improved hidden test set Challenge scores and to other cohorts of carefully curated ECG data
with similar labelling. However, we were not able to verify this with our post-Challenge entry.

A limitation of the current system is that it cannot make a prediction from an ECG
recording having missing samples or with entirely completely missing channels for a particular
lead model. This could be addressed, for example, by within-lead interpolation, training
augmentation with artificially removed data (“cropping”) as in Nejedly et al. (2021), and the
addition of dropout layers. Other extensions to our approach to explore include: applying PHC
across channels to better capture the trajectory of the cardiac vector; using the demographic
data of sex and age, recognized risk factors for cardiac pathology; improving the decision rule
to better calibrate the class probabilities, and further searching of hyperparameters.

5. Conclusions

Our approach achieved experimental success without need for feature engineering, with few
parameters to select. The fixed-coefficient ST/PHC layers required no learning yet generated
results competitive with a range of trained CNN layers. The use of ASL was a very important
contribution to address the label sparsity and imbalance of this multi-label problem. The use
of CCA successfully transferred information to the reduced-lead models, especially those with
the most to gain, the 2- and 3- lead models. The phase information of the PHC coefficients had
similar performance to ST, and using both provided complementary information and improved
the model.
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