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ABSTRACT 27 

Henry’s law constant is important for assessing the environmental fate of organic 28 

compounds, including polar accumulation, indoor contamination and the impact of 29 

airborne predominance on persistence. Moreover, it can be used in the context of 30 

alternative 3R bioassays to inform about the compound loss through volatilization as 31 

confounding factor. For 2636 compounds, curated experimental log Kaw (air/water 32 

partition coefficient) data at 25° covering 23.6 orders of magnitude (from –18.6 to 5.0) 33 

have been collected from literature. Subsequently, a new fragment model for 34 

predicting log Kaw from molecular structure has been developed. According to the 35 

root-mean-squared error RMS and the maximum negative and positive errors MNE and 36 

MPE, this general-purpose model outperforms COSMOtherm, EPISuite HENRYWIN, 37 

OPERA and LSER with calculated input parameters significantly (RMS 0.50 vs 0.92 vs 38 

1.25 vs 1.28 vs 1.38, MNE –2.74 vs –6.78 vs –9.11 vs –6.24 vs –6.27, MPE 2.25 vs 39 

6.22 vs 8.27 vs 11.5 vs 7.69 log units). Initial separation into a training and prediction 40 

set (80%:20%), mutual leave-50%-out validation and target value scrambling 41 

(temporarily wrong compound-Kaw allocations) demonstrate the prediction capability, 42 

statistical robustness and mechanistically sound basis of the fragment scheme. The 43 

new model is available to the public in fully computerized form through the ChemProp 44 

software, and can be combined with a separate existing model to extend the log Kaw 45 

prediction to temperatures different from 25° C. 46 

 47 

Key Words: 48 

Henry’s law constant, air/water partition coefficient, QSAR, fragment model, 49 
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 51 
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SYNOPSIS 53 

Henry’s law constant is important for assessing the environmental and bioassay fate 54 

of organic compounds. This study introduces a new respective fragment model, out-55 

performing existing alternatives significantly. 56 

 57 

 58 

INTRODUCTION 59 

Henry’s law constant H is one of the key physicochemical parameters governing the 60 

environmental fate of organic compounds.1 Examples include the global distribution, 61 

deposition and bioaccumulation in polar regions,2-4 the screening for environmental 62 

persistence in line with the precautionary principle,5 profiling volatility-dependent dif-63 

ferences in environmental compound partitioning between water-rich and water-poor 64 

regions,6 and indoor contamination by xenobiotic vapors.7-9 65 

 Besides environmental fate assessment and modelling, H or its dimensionless 66 

form as air/water partition coefficient 67 

 𝐾𝐾aw = 𝐻𝐻
𝑅𝑅𝑅𝑅

         (1) 68 

(R gas constant, T temperature) are required for controlling the compound loss through 69 

volatilization from in vitro bioassays,10-12 and also serve as link between gas-phase 70 

and solution-phase reaction thermodynamics.13 71 

 The current gold standard of fragment models for predicting log Kaw is the EPI-72 

Suite HENRYWIN program from Meylan and Howard,14 including significant exten-73 

sions to their original bond contribution model published in 1991.15 Following the des-74 

cription of the latest EPISuite version from 2015,14 this widely used method covers 245 75 

bond fragments and 43 correction factors. Of these 298 model parameters, 62 bond 76 

fragments and 33 correction factors had been calibrated through a training set of 442 77 
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compounds (squared correlation coefficient r2 = 0.977, root-mean-squared error RMS = 78 

0.40; experimental log Kaw from –11.6 to 2.9, molecular weight from 26 to 451.5 D), 79 

whereas the additional 203 parameters had been defined subsequently with a final 80 

performance check for further 1376 compounds (r2 = 0.79, RMS = 1.54). 81 

 For the present study, we have extended the data base to 2636 organic com-82 

pounds with curated experimental values, going significantly beyond the HENRYWIN 83 

database and earlier compilations.14,16-18 The newly developed UFZ fragment scheme 84 

for predicting log Kaw from chemical structure comprises 209 parameters, outperform-85 

ing HENRYWIN,14 COSMOtherm,19 OPERA,20 and LSER21,22 (linear solvation energy 86 

relationship) employing Platts-calculated23 input parameters significantly; it is available 87 

to the public through our ChemProp software.24 88 

 89 

 90 

MATERIAL AND METHODS 91 

Dataset. For 2636 organic compounds, experimental H or Kaw at 25°C have been col-92 

lected and curated from originally 2647 raw data. Molecular weight MW ranges from 93 

16 to 959 D, and experimental log Kaw from –18.6 to 5.0. 94 

Data curation has been carried out through individual expert judgement, pro-95 

ceeding along the following considerations: The most important criterion was 96 

qualitative consistency among structurally related compounds as expected from 97 

physical organic chemistry (e.g. homolog series, effect of halogenation and of aromatic 98 

substitution, alkane vs alkene vs alkyne, branched vs linear). In case of doubts or 99 

conflicting multiple data, COSMOtherm19 has been used to cross-check expectation 100 

regarding relative (linear or non-linear) trends among compounds or compound series. 101 

Besides considering previous datasets,14,16-18 original sources have been consulted for 102 

ca. 1000 compounds. In case of multiple data for single compounds, the most 103 



6 
 

reasonable individual value according to these criteria has been taken. This approach 104 

applied also to H determined indirectly from other experimental properties (see eqs. 2 105 

and 3 below). For very low Kaw, the associated data quality is expected to be lower, 106 

which has been tolerated to some extent (except removing unplausible cases) in order 107 

to increase the chemical domain as much as reasonably possible. 108 

Besides 1234 directly measured values, H was obtained for 1402 solutes from 109 

experimental vapor pressure Pv and water solubility Sw through 110 

 𝐻𝐻 ≈ 𝑃𝑃v
𝑆𝑆w

         (2) 111 

as approximate relationship. 112 

Instead of Sw, the mole fraction solubility 𝑥𝑥ws  defined through the activity 113 

coefficient at saturation in aqueous solution, 𝛾𝛾ws , 114 

 𝑥𝑥ws = 1
𝛾𝛾𝑤𝑤s

      (3) 115 

can be used (where γw →1 when the solution becomes the pure solute according to 116 

Raoult’s law convention). With Mw = 55.56 mol/L as molarity of water and the common 117 

replacement of 𝛾𝛾ws  by the infinite-dilution activity coefficient 𝛾𝛾w∞ (that is similar to 𝛾𝛾ws  for 118 

low-soluble compounds), experimental Pv and 𝛾𝛾w∞ yield 119 

 𝐻𝐻 ≈ 𝑃𝑃v  ∙ 𝛾𝛾w∞

 𝑀𝑀w
         (4) 120 

that has been applied for five compounds. In eq. 4, it is assumed that the volume of 121 

the aqueous solution is 1 L as of pure water. 122 

 Finally, Kaw was obtained from the experimental Kow (octanol/water partition 123 

coefficient) and Koa (octanol/air partition coefficient) through 124 

 𝐾𝐾aw ≈ 𝐾𝐾ow
𝐾𝐾oa

         (5) 125 
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for 46 compounds. Eq. 5 neglects that Kow refers to octanol and water saturated by 126 

each other, whereas the water phase of Kaw contains the solute as only non-water 127 

chemical. 128 

 As will be shown below, the model performance is slightly inferior for the subset 129 

of 1402 compounds with indirectly measured Henry’s law constants. Nevertheless, 130 

inclusion of the latter expands the chemical domain significantly, outweighing the fact 131 

that their error tends to be a bit larger than from direct measurement. Typically, com-132 

pilations of experimental Henry’s law constants include also indirectly measured H. 133 

 Model Development. Initially, the total compound set was subdivided into a 134 

training set and a prediction set, comprising 80% and 20% of the 2636 compounds, 135 

respectively. To this end, the following stratified selection procedure was used: All 136 

compounds were allocated to structural classes with increasing complexity (see 137 

below), and within each class ordered by increasing MW. Subsequently, from each 138 

structural class 20% of the compounds were randomly selected for the prediction set, 139 

thus leading to 527 prediction set and 2109 training set compounds, respectively. The 140 

stratified compound ordering regarding structural class and MW ensures that both 141 

training and prediction set obtain similar portions of more complex compounds (and in 142 

fact of all compound types), enabling to seriously test the prediction performance of 143 

the training-set-derived model. 144 

 For the new model, we developed the following modular fragmentation scheme, 145 

designed to efficiently limit the number of fragment parameters and thus to avoid over-146 

fitting. First, basis fragments were identified that represent atom types in a specific 147 

hybridization (e.g. sp3 carbon, sp2 nitrogen) and simple functional groups (e.g. –OH,  148 

–NH2; see SI). If a given compound cannot be decomposed completely into basis frag-149 

ments of the UFZ model, it is outside the model domain. Second, adjacent basis frag-150 
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ments resulting in specific structural situations (e.g. π-electron conjugation) and com-151 

posite functional groups (e.g. –COOH) are addressed by associated correction factors 152 

(see SI) in those cases where the basis fragment increments alone would lead to 153 

significant prediction errors. In this way, correction factors necessarily refer to 154 

substructures containing more than one basis fragment. For example, –COOH is built 155 

from the basis fragments C=O (fragment #17, see SI) and –OH (#14), augmented by 156 

correction factor #127 to account for the adjacent interaction C(=O)–OH. Multiple oc-157 

currences of fragments or corrections factors are addressed additively. If chemically 158 

different basis fragments or corrections factors resulted in sufficiently similar increment 159 

values, they were grouped together and thus allocated to joint increment values (see 160 

SI). 161 

Development of this fragmentation scheme was confined to the training set 162 

through manual selection of substructural features as model parameters and respecti-163 

ve stepwise multilinear regressions. Overall, this comprised the following five major 164 

steps in terms of sequentially trained subsets: (i) Hydrocarbons and simple monofunct-165 

ional derivatives, including calibration of the model regression constant; (ii) monofunct-166 

ional compounds with complex functional groups; (iii) compounds with multiple occur-167 

rence(s) of one type of functional group; (iv) compounds with two types of functional 168 

groups; (v) compounds with more than two types of functional groups. 169 

In this way of sequential subgroup-specific calibration in the order of increasing 170 

structural complexity, increments of simple(r) functional groups are not contaminated 171 

by additional intramolecular effects and/or by additional solute-water interactions dri-172 

ven by more complex functional groups. Accordingly, the resultant total model error is 173 

slightly larger than with global (as opposed to sequential) least-squared error minimi-174 

zation. This, however, is more than outweighed by mechanistically sound (contamina-175 

tion-free) fragment values that are likely superior for true predictive applications. 176 
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Upon completion of the basis fragment and correction factor identification and 177 

calibration through using the training set, the model was applied to the untrained pred-178 

iction set to inform about its prediction capability. Subsequently, only the increments of 179 

all basis fragments and correction factors were re-calibrated in the same sequential 180 

order as described above for the total set of 2636 compounds, leading to the final 181 

model (see statistics for n = 2636 in Table 1 below, and the SI for all final model 182 

parameters). 183 

Overall, the sequential calibration yielded 38 basis fragments associated with 184 

additive increment values, 170 correction factors accounting for substructural features 185 

containing already defined fragments, and a regression constant (see the SI for de-186 

tails). As such, the resultant increment model can be termed an additive-constitutive 187 

calculation scheme. 188 

Application domain. The structural applicability of the fragmentation scheme 189 

is addressed through our atom-centered fragment (ACF) approach25 as implemented 190 

in the ChemProp software.24 For a given target compound, its first-order ACFs (unique 191 

atom-centered fragment confined to one non-hydrogen atom and its first bonding 192 

neighbors)25 and second-order ACFs (confined to first and second neighbors along 193 

each bonding direction)25 are checked for respective occurrences in the total set of 194 

2636 compounds. Within each ACF order, two ACFs are considered different in case 195 

of differences regarding atom type, exact number of attached hydrogen atoms, aroma-196 

ticity (yes or no), ring atom (yes or no), total number of bonded neighbors including H 197 

atoms, bond type (nonaromatic: single, double, triple; aromatic), and ring closure (ei-198 

ther inside the ACF or including up to second-order neighbors outside the ACF). 199 

Mutual Leave-50%-Out Validation. Originally termed simulated external vali-200 

dation,26 this approach can be viewed as an extended version of a leave-50%-out 201 
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cross-validation, focusing on 50%-subset-specific training and prediction performan-202 

ces and their differences rather than on respective statistical averages. More specifi-203 

cally, two 50%-subsets are used for separate calibrations and mutual predictive appli-204 

cations, respectively. As such, it informs about the model robustness and prediction 205 

capability when reducing the training set significantly. 206 

The two complementary subsets were generated as follows: First, starting from 207 

the top entry of the stratified compound ordering as described above, every 2nd com-208 

pound was allocated to a 50%-subgroup (group2, 1318 compounds), with the remain-209 

ing 1318 compounds forming a complementary 50%-subgroup (group1). Second, the 210 

fragment model parameters were re-calibrated separately for group1 and group2 in the 211 

above-described 5-step sequential manner. Third, the resultant subgroup-specific re-212 

gression models were used for quasi-external predictions of log Kaw of the complemen-213 

tary subgroup compounds. 214 

This way of constructing group1 and group2 assures that the associated chemi-215 

cal domains are (almost) as similar as possible. Note, however, that the derivation of 216 

two subgroup-specific fragment schemes with newly identified basis fragments and 217 

correction factors would not have been possible adequately, because restriction to 218 

50% of the compounds would imply to reduce the number of fragment model parame-219 

ters correspondingly. 220 

 Permutation Test. Target value scrambling informs about whether a given mo-221 

del is overfitted and thus memorizes individual cases rather than mapping a mechan-222 

istically sound relationship between model parameters and target value. To this end, 223 

the target value (here: log Kaw) is allocated randomly to compounds while keeping their 224 

correct model parameter values. In our variant with systematically varying the degree 225 

of permutation,27 the degree of target value scrambling ranges from 0% (original = true 226 

relationship between compounds and their target values) to 100% permutation (all 227 
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compounds with wrong target values but correct model parameter values) in steps of 228 

10%. 229 

 Target value scrambling can be combined with cross-validation such as leave-230 

10%-out (model calibrated with 90% applied to randomly selected 10% of the com-231 

pounds), expecting an increasing difference between calibration and cross-validation 232 

performance with increasing degree of permutation.27 233 

 Performance Statistics. The conventional calibration r2 (squared correlation 234 

coefficient) quantifies the goodness of fit. It ranges from 0 to 1, and automatically cor-235 

rects for systematic errors. By contrast, the prediction performance is quantified by the 236 

predictive squared correlation coefficient q2.28 Here, untrained experimental data are 237 

confronted with the original model output without post-model scaling (through Y = a • 238 

[model output] + b as built in r2), with q2 ranging from –∞ (completely useless model) 239 

over 0 (model output as good as taking the experimental mean as predictor throughout) 240 

to 1 (perfect model).28 In particular, differences between q2 and r2 inform about the 241 

extent of bias associated with a given model when used for external prediction. 242 

The root-mean-squared error RMS provides a quantification of the scatter, and 243 

the bias represents the systematic error obtained through adding up all individual pred-244 

iction errors (including their signs). Note further that full least-squares error regression 245 

yields q2 identical to r2 when applied for the same set, and in this case q2 does not add 246 

information beyond r2. 247 

 248 

 249 

RESULTS AND DISCUSSION 250 

 Global Model Performance. For the total compound set of 2636 compounds, 251 

the UFZ model statistics (RMS 0.499, MNE –2.74, MPE 2.25) is significantly superior to 252 

the ones of COSMOtherm19 (RMS 0.915, MNE –6.78, MPE 6.22), HENRYWIN14 (RMS 253 
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1.25, MNE –9.11, MPE 8.27), OPERA20 (not applicable to inorganics: n=2602, RMS 1.28, 254 

MNE –6.24, MPE 11.5), and LSER21,22 with Platts-calculated23 input parameters. Multi-255 

linear regression of the latter (obtainable for 2587 compounds) yields RMS 1.38, MNE  256 

–6.27, MPE 7.69 (LSER parameters S, A, B, V, L) and RMS 1.43, MNE –5.74, MPE 7.61 257 

(LSER parameters E, S, A, B, V), respectively. 258 

 On the one hand, the new UFZ model had been developed with 80% of the 259 

present dataset, whereas the respective dataset fractions used for training OPERA 260 

and LSER are unknown (COSMOtherm has not been trained for predicting log Kaw). 261 

On the other hand, the present dataset exceeds previous collections significantly re-262 

garding both the number of compounds and the chemical domain, and thus represents 263 

a true challenge for the prediction performance of any model meeting a reasonable 264 

compound-to-parameter ratio. More details regarding COSMOtherm and LSER pred-265 

ictions including analyses for the structurally simpler and much smaller subsets with 266 

experimental LSER parameters will be reported elsewhere. 267 

Table 1 compares the performances of the UFZ and HENRYWIN fragment 268 

schemes in more detail. For all 2636 compounds, the UFZ model RMS is only 40% of 269 

the HENRYWIN counterpart, which holds similarly for the various subsets analyzed. 270 

Moreover, largest outliers reduce from HENRYWIN –9.11 (fipronil) to UFZ model –2.74 271 

(brofluthrinate) and from HENRYWIN 8.27 (hexamethylenetetramine) to UFZ model 272 

2.25 (sedaxane), respectively. 273 

As indicated above, the 1402 compounds with indirectly measured Kaw yield a 274 

larger RMS than the 1234 directly measured Kaw data (UFZ: RMS 0.60 vs 0.35; HENRY-275 

WIN: RMS 1.49 vs 0.88), but without unusually large UFZ model outliers and a negligible 276 

UFZ model bias (–0.05). Regarding physical condition, the predictions are best for 277 

liquids (UFZ model RMS 0.41) followed by gases (0.47) and solids (0.58). The latter 278 

might also be affected by a possibly lower experimental accuracy with solids (direct 279 
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measurement: nominal vs actual Sw possibly affecting cw and thus Kaw; indirect meas-280 

urement: low Pv, and again nominal vs actual Sw that both affect Pv/Sw). 281 

 282 

Table 1. Performance Statistics of the UFZ and HENRYWIN14 Models for Predicting  283 

log Kaw From Molecular Structure.a 284 

 285 

 286 
 287 

 288 

 289 
a The statistical parameters are: n = number of compounds, r2 = squared correlation coefficient, q2 = 290 

predictive squared correlation coefficient,28 RMS = root-mean-squared error, bias = systematic prediction 291 

error, MNE = maximum negative error (maximum underestimation), MPE = maximum positive error (ma-292 

ximum overestimation). Direct vs direct data: directly vs indirectly measured (see text). 293 
b The statistics refer to the application of HENRYWIN to the UFZ datasets, partly with reduced numbers 294 

of compounds due to respective restrictions of the HENRYWIN applicability. 295 

 296 

Similar trends are observed for HENRYWIN, but with lower statistical perform-297 

ances (Table 1). For the total set, however, the HENRYWIN bias is pleasingly small  298 

(–0.15) despite large individual outliers. This shows that the main current challenge for 299 

Model and data set n r² q² RMS bias MNE MPE 

UFZ        
   Training set 2109 0.973 0.973 0.503 -0.034 -2.79 2.11 
   Prediction set 527 0.972 0.971 0.525 -0.006 -2.29 2.26 
   Total set 2636 0.974 0.974 0.499 -0.040 -2.74 2.25 

   Direct data 1234 0.978 0.977 0.354 -0.029 -2.63 2.03 
   Indirect data 1402 0.969 0.968 0.599 -0.050 -2.74 2.25 

   Solid 1279 0.963 0.963 0.578 -0.052 -2.46 2.25 
   Liquid 1272 0.971 0.970 0.409 -0.026 -2.74 1.78 
   Gas 85 0.930 0.928 0.466 -0.073 -2.63 0.87 

HENRYWINb        
   Training set 2106 0.851 0.828 1.271 -0.176 -9.11 8.27 
   Prediction set 527 0.870 0.863 1.141 -0.052 -5.87 7.82 
   Total set 2633 0.855 0.835 1.250 -0.151 -9.11 8.27 

   Direct data 1231 0.872 0.859 0.883 -0.028 -6.70 6.76 
   Indirect data 1402 0.829 0.804 1.490 -0.259 -9.11 8.27 

   Solid 1279 0.763 0.727 1.570 -0.291 -9.11 8.27 
   Liquid 1272 0.894 0.881 0.809 -0.022 -4.45 7.98 
   Gas 82 0.533 0.499 1.220 0.044 -5.50 1.70 
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HENRYWIN are compounds with structural complexity beyond its original data set, 300 

thus leading to possibly large individual prediction errors without introducing a signifi-301 

cant global bias. 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 

 310 

 311 

Figure 1. Calculated vs experimental log Kaw (left) and prediction error vs. experimental log Kaw (right) 312 

for the UFZ model applied on all 2636 compounds (see Table 1 for the statistics). The color-coded filled 313 

circles denote the following atomic composition of the compounds, where in each class beyond hydro-314 

carbons heteroatom addition refers to at least one of the lower-class subsets.  Black = hydrocarbon 315 

(HC, 265 compounds); magenta = halogenated HC (Hal-HC, 430); red = HC and Hal-HC augmented 316 

by O (867); green = HC, Hal-HC, O-HC and Hal-O-HC augmented by N (726); blue = all previous 317 

groups augmented by S and/or P and/or any other type of heteroatom (348). 318 

 319 

Figure 1 shows the plot of predicted vs experimental log Kaw (left) and prediction 320 

error vs predicted value (right), color-coded according to atomic composition (hetero-321 

atoms halogen, O, N, S, P, and “other” covering the elements Si, As, Se, Hg, Sn, and 322 

Pb). Note that for analyzing a possible dependence of prediction error on target value 323 

(here: log Kaw), plotting prediction error vs predicted value is preferred over plotting 324 

prediction error vs experimental value. This holds because (multi)linear regression 325 

implies a correlation between prediction error and experimental value, with a squared 326 
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correlation coefficient of 1–r2 for r2 as respective model calibration value.29 Overall, 327 

Figure 1 (right) shows that the absolute prediction error increases with predicted log 328 

Kaw decreasing from ca. 5 to –10, and then – surprisingly – becomes smaller again. 329 

 Model Performance vs Structural Complexity. Due to the nature of fragment 330 

models, the prediction error is expected to increase with increasing molecular size and 331 

structural complexity. The reason is that except for fortuitous error compensations, 332 

small errors associated with fragment parameters typically add up with increasing num-333 

bers of fragments, and also with increasingly complex fragments due to their generally 334 

lower occurrence and accordingly lower level of model training. 335 

Table S1 in the SI shows the impact of the number of heteroatoms (top), of 336 

functional groups (middle), and of molecular polarity (bottom; see explanation below) 337 

on the model performance. As expected, for both the UFZ model and HENRYWIN the 338 

prediction error generally increases with increasing structural complexity. More 339 

specifically, the UFZ model RMS in log Kaw units ranges from 0.19 (0 heteroatoms and 340 

0 functional groups, 265 compounds) to 0.79 (≥ 9 heteroatoms, 151 compounds) and 341 

0.97 (≥ 4 types of functional groups), with corresponding HENRYWIN RMS values 342 

increasing from 0.44 to 2.23 (≥ 9 heteroatoms) and 2.41 (≥ 4 types of functional 343 

groups), respectively. 344 

Regarding polarity, our 4-group classification is as follows: Nonpolar and weakly 345 

polar compounds (NWP) comprise hydrocarbons and halogenated hydrocarbons (with 346 

Abraham H-bond parameters < 0.15).30 The other three polarity groups considered 347 

are: H-bond donors (HBD that are also H-bond acceptors), H-bond acceptors (HBA) 348 

without H-bond donor capability, and silanes and other metalorganics without H-bond-349 

ing. Now, the polarity-specific RMS ranges are: 0.25 (NWP, 697 compounds), 0.56 (1 350 

HBD, 597 compounds), 0.59 (≥ 2 HBD, 146 compounds), 0.39 (1 HBA, 402 com-351 

pounds, 0.48 (2 HBA, 269 compounds), 0.66 (3-5 HBA, 390 compounds), 0.78 (≥ 6 352 
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HBA, 119 compounds), and 0.76 (16 metalorganics), with again throughout larger 353 

HENRYWIN RMS values (see Table S1). 354 

Indeed, the log Kaw prediction error depends also on MW. For our new model, 355 

the range-specific RMS errors are 0.36 (MW ≤ 200 D, 1371 compounds) and 0.62 (MW 356 

> 200 D, 1255 compounds), respectively. 357 

Mutual Leave-50%-out Validation. According to our atom-centered fragment 358 

(ACF) analysis,25 the total compound set of 2636 compounds is structurally quite div-359 

erse. It covers 1864 first-order and 7408 second-order ACFs. 360 

On the one hand, this suggests a substantial chemical domain and an accord-361 

ingly broad application domain of the model. On the other hand, the two 50%-subsets 362 

group1 and group2 (see above) contain only 1387 vs 1378 first-order and 4782 vs 363 

4725 second-order ACFs, respectively. The latter implies that log Kaw prediction for the 364 

group2 compounds by the group1-calibrated model is confronted with quite some 365 

group2 ACF features outside the group1 ACF domain, and vice versa. Since ignoring 366 

chemical domain violation is clearly not recommended, we apply the mutual leave-367 

50%-out validation both without and with exclusion of compounds outside the sub-368 

group-specific (ACF-defined)25 chemical domains. 369 

Table 2 summarizes the performance of this simulated external validation. For 370 

group1 and group2 that each contain 1318 compounds, the calibration RMS is 0.50 and 371 

0.47 log Kaw units, respectively. Application of the group1 model for predicting log Kaw 372 

of all or only the ACF-domain-inside25 group2 compounds yields RMS values of 0.61 vs 373 

0.50 (916 compounds), and when applying the group2 model for predicting group1  374 

log Kaw the corresponding RMS values are 0.62 and 0.47 (906 compounds), respect-375 

ively. Note that upon excluding outside-domain compounds, RMS comes close to its 376 

training set (calibration) value. This confirms that within ACF-defined model domains 377 

external prediction can be expected to be similar to the training set calibration quality.25 378 
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Moreover, bias, MNE and MPE remain sufficiently small (Table 2), providing further sup-379 

port for the statistical robustness and true prediction capability of the presently intro-380 

duced log Kaw model. 381 

 382 

Table 2. Mutual Leave-50%-Out Cross-Validation Statistics.a 383 

Model activity and subset n r² q² RMS bias MNE MPE 

Calibration group1 1318 0.973 0.973 0.502 -0.048 -2.83 2.40 
Prediction group2 1318  0.960 0.612 -0.021 -3.52 3.09 
   Only inside ACF domain 916  0.968 0.495 -0.037 -2.46 2.68 

Calibration group2 1318 0.977 0.977 0.469 -0.031 -2.03 2.17 
Prediction group1 1318  0.959 0.620 -0.057 -3.84 3.09 
   Only inside ACF domain 906  0.970 0.471 -0.021 -2.88 2.74 

a See Table 1 for the statistical parameters. For the 50%-subsets group1 and group2, the log Kaw frag-384 

ment scheme was calibrated separately, and applied to externally predict log Kaw of the complementary 385 

subset (group1 model on group2 compounds and vice versa), without and with exclusion of prediction-386 

set compounds outside the ACF domain25 of the respective calibration set (see text). 387 

 388 

Permutation Test. Target value scrambling was performed in a step-wise man-389 

ner, controlling the degree of permutation from 0% (no permutation = correct com-390 

pound-Kaw allocation throughout) to 100% (each compound randomly allocated to a 391 

Kaw from a different compound) in intervals of 10%. Here, q2 is used to quantify the 392 

degree of agreement between true and (partly) permuted log Kaw for all 2636 com-393 

pounds. 394 

The results are shown in Table S2 (SI) and summarized in Figure 2. Calibration 395 

r2 decreases with increasing degree of permutation (from 0.974 without scrambling to 396 

0.010-0.030 with 100% scrambling), where for 100% permutation five different ran-397 

domly (but completely) wrong compound-Kaw allocations have been generated with 398 

resultant q2 (true vs permuted log Kaw) from –0.961 to –1.040. This result confirms that 399 
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the fragment scheme reflects a mechanistically sound relationship between molecular 400 

structure and log Kaw, and in particular is not affected by memorizing individual cases 401 

through overfitting. 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

Figure 2. Permutation test statistics of the UFZ log Kaw model (see text and Table S2 for details). For 413 

varying degrees of target value scrambling (permutation) from 0% to 100% (x axis), the following 414 

statistical results are shown (y axis): q2 quantifying the degree of agreement between original (true) and 415 

permuted log Kaw (green bars, left), regression r2 with (not, partially and fully) permuted log Kaw data 416 

(blue bars, middle), and cross-validated 𝑞𝑞cv2  quantifying the leave-10%-out prediction capability with (not, 417 

partially and fully) permuted log Kaw data (red bars, right). For 100% permutation, the five different runs 418 

performed yield results within the intervals overlaying the three respective bars that here indicate the 419 

respective medians. 420 

 421 

Besides evaluating r2, the permutation test was extended to check also the pred-422 

iction capability resulting from models trained with scrambled log Kaw. To this end, 423 

leave-10%-out cross-validation was employed with the respective 𝑞𝑞cv2  as measure of 424 

the prediction quality (keeping in mind different variants of 𝑞𝑞cv2 ).28 As can be seen from 425 

Table S2 and its graphical summary in Figure 2, 𝑞𝑞cv2  decreases from 0.966 (no permu-426 

tation) to –0.667 (lowest value for 100% permutation). These results demonstrate that 427 
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the prediction capability rapidly decreases with increasing degree of log Kaw scramb-428 

ling. Moreover, 𝑞𝑞cv2  is below r2 for all models trained with permutation, with no setting 429 

where fortuitous error compensation might have resulted in an artificially good predict-430 

ion despite (partly) wrong compound-Kaw allocations. 431 

EPISuite Dataset. The current EPISuite HENRYWIN dataset14 contains 1829 432 

compounds including 6 duplicates, 36 UVCBs (unknown or variable composition, com-433 

plex reaction products or biological materials), 6 organic salts, 7 compounds represent-434 

ing structurally unique cases (CS2, COS, CO2, SF6, SO2F2, triazoxide as only aromatic 435 

N-oxide, ziram as only organic Zn compound), phenylmercury dimethyldithiocarbam-436 

ate with unresolved covalent vs ionic bonding), 1 structure without experimental value, 437 

and 170 compounds with no alternative literature data instead of the experimental 438 

values not meeting our quality criteria. Removal of these 227 compounds yields a 439 

curated subset of 1602 EPISuite compounds with a structural variation significantly 440 

below the one of the UFZ dataset (1417 vs 1864 first-order and 4948 vs 7408 second-441 

order ACFs). Now, application of HENRYWIN (n=1601, one compound not calculable) 442 

results in r2 0.856, RMS 1.185, bias –0.117, MNE –8.42, MPE 8.50 when using the UFZ-443 

curated experimental data. 444 

Using 80% of these compounds as training set (n=1282, selected according to 445 

our approach as described above), the UFZ fragment and correction factor calibration 446 

was possible for 197 model parameters, yielding r2 0.977, RMS 0.439, bias –0.012, MNE 447 

–2.41, MPE 2.25, and a 20% prediction set (n=320) performance of r2 0.968, RMS 0.520, 448 

bias –0.010, MNE –3.11, MPE 2.76, respectively. Finally, recalibration with all 1602 com-449 

pounds gave r2 0.976, RMS 0.449, bias –0.018, MNE –3.11, MPE 2.32 (see the SI for 450 

more details). These results illustrate the general modelling capability associated with 451 

the presently introduced fragmentation approach. 452 
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Outlier Example. The SI presents manual applications of the UFZ model with 453 

three examples, and in this way provides further insight into the mechanistic basis of 454 

the fragmentation scheme (with all model details being documented in the SI). 1,4-455 

Benzoquinone (4 in Scheme S1) belongs to the outliers of the model. This substance 456 

is both redox-active and electrophilic as Michael acceptor with respective toxicological 457 

concern, and applied in industrial syntheses as Diels-Alder dienophile and as oxidant. 458 

As compared to its indirect experimental log Kaw value of –5.243, the UFZ model 459 

prediction of –6.839 yields an error of –1.596 that is outside ±3 • RMS (= 1.497 for all 460 

2636 compounds, see Table 1). 461 

At present, the UFZ model does not contain any parameter specific for the ben-462 

zoquinone electronic structure. The latter comprises two Michael acceptors bonded to 463 

each other in a ring with strongly polarized but non-aromatic π-bonded carbons, with 464 

four resonance opportunities of the type –HC=C(H)–(R)C=O ↔ –HC+CH=C(R)–O–. In-465 

stead, data from naphtho- and anthraquinones enabled derivation of a respective cor-466 

rection factor that is currently used generically for all quinones. Accordingly, the  467 

log Kaw calculation of 4 invokes the model fragments 4 x C= (fragment #3, 4 • –0.547 468 

= –2.188; see SI), 4 x H attached to sp2-C (#9, 4 • 0.405 = 1.62), and 2 x O=C (#17, 2 469 

• –3.995 = –7.99), augmented by the two correction factors 4 x cyclic C (#76, 4 •  470 

–0.064 = –0.256) and quinone (#82, 1.52) besides the regression constant. 471 

 Since the experimental value was derived as Pv/Sw (eq. 2) with Pv = 3.9 Pa and 472 

Sw = 0.275 mol/L, we checked the latter two values against separate model predictions. 473 

For the solid state of 4, EPISuite MPBPWIN31 and WSKOWIN32 calculate Pv = 3.42 Pa 474 

and Sw = 0.689 mol/L. Noting that 1 atm = 101325 Pa, eq. 2 yields H ≈ Pv/Sw = 475 

(3.42/[101325 • 0.689]) atm • L/mol = 4.90 • 10–5 atm • L/mol, and division through RT 476 

= 24.465 atm • L/mol at 25°C leads to log Kaw = –5.70 (see eq. 1). This value is lower 477 

than the indirect experimental value by 0.46 log units, and thus a bit closer to – but still 478 
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significantly different from – our UFZ model result. Interestingly, the HENRYWIN result 479 

for 4 is –7.302 and thus below the value from separate EPISuite Pv and Sw predictions 480 

by 1.602 log units (and underestimates experimental log Kaw by 2.059). 481 

COSMOtherm19 based on quantum chemistry and statistical thermodynamics 482 

(with an only small number of parameters) provides subcooled-liquid predictions for 4 483 

of Pv = 107.6 Pa and Sw = 1.61 mol/L, leading to H ≈ 0.659 • 10–3 atm • L/mol that finally 484 

gives log Kaw = –4.57. In this case, predicted Pv and Sw result in a log Kaw larger by 485 

0.67 than the indirect experimental value. Note further that the COSMOtherm-predict-486 

ed log Kow of 0.25 comes close to the experimental log Kow of 0.20, suggesting that the 487 

electronic structure of 4 is at least in principle accounted for properly. With EPISuite 488 

KOWWIN,33 the log Kow of 0.22 for 4 agrees almost perfectly with experiment, but this 489 

provides no information about how well 4 is covered by other EPISuite fragment mo-490 

dels for other properties (such as log Kaw). 491 

Thus, Kaw obtained from predicted Pv and Sw yields inconclusive results for 4. 492 

Because data for further 1,4-benzoquinones are not available as basis for calibrating 493 

a respective correction factor, 4 remains an outlier of the UFZ model at this point in 494 

time, which holds correspondingly for another 57 outliers listed in the SI. 495 

Overall, the newly developed fragment scheme for predicting log Kaw at 25°C 496 

from molecular structure is based on a substantial chemical domain as indicated 497 

through the ACF analysis.25 Considering its competitive performance statistics also as 498 

compared to EPISuite HENRYWIN,14 COSMOtherm,19 OPERA,20 and LSER21,22 (with 499 

Platts-calculated23 input parameters), the new model may serve as general-purpose 500 

tool for providing – in a fully computerized manner available to the public24 – Henry’s 501 

law constant in case of missing experimental data. 502 

As indicated above, there are currently 58 outliers with prediction errors ≥ ±3 • 503 

RMS but still within the log interval [–2.74, 2.26]. Their improved treatment would require 504 
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further experimental data from sufficiently similar structures. For the time being, simi-505 

larity checks with these outliers may help to identify model predictions with lower levels 506 

of confidence that would go beyond the ChemProp routine check regarding the ACF-507 

defined chemical domain.25 508 

Correction factors encode the impact of bonding across or interaction between 509 

polar groups on log Kaw. As opposed to the volatility-lowering impact of heteroatom-510 

associated local atomic charge (e. g. increments of the fragments OH, O, SO2, NH/NH2 511 

as presented above), most of the correction factors (160 vs 10) increase log Kaw pos-512 

sibly for one of the two following reasons: First, intramolecular polar interactions are 513 

favored over respective solute-solvent interactions if geometrically feasible. This is 514 

illustrated by the positive log Kaw contribution of intramolecular H bonds at the cost of 515 

solute-water H bonding. Second, intramolecular electron delocalization tends to reduce 516 

local atomic charges and thus their disposition for polar interactions with water. 517 

In case of interest in Henry’s law constants at temperatures different from 25°C, 518 

the current scheme can be combined with a separate model – again programmed for 519 

fully automatized use in ChemProp24 – addressing the respective temperature varia-520 

tion.27 521 

 522 
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